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Abstract

This paper presents a general formulation enabling
construction of all functions that are steerable under
any transformation group� The method is based on a
Lie�group theoretic approach�

� Introduction

A function is called steerable under some transfor�
mation if all transformed versions of this function can
be expressed as linear combinations of a �xed� �nite
set of basis functions� Steerable functions have been
used widely in image processing ��� ��� ��	 and com�
puter vision �
� �	�

The importance of steerable functions stems from
the property of superposition of linear systems� Hence�
any linear operation applied to a transformed version
of a steerable function can be expressed as a linear
combination of the operation applied separately to the
basis functions� The main advantage of this property
is that the linear operations can be applied to the ba�
sis function once and o��line� In image processing�
steerable functions have been used as �lter kernels�
Because convolution is a linear operation� the �lter
output of a transformed version of the �lter kernel is
obtained by linearly combining the �lter outputs of its
associated basis �lters�

Freeman and Adelson presented functions steerable
with respect to rotation using derivatives of a Gaus�
sian as the basis set� An extension of this technique
to translation and scaling was shown by Simoncelli et
al� ���	� Approaching the problem from a numerical
point of view� Perona ���	 proposed a method for syn�
thesizing these basis functions using the singular value
decomposition� Although these studies deal with a
large variety of transformations� they do not present a
general method for constructing all the functions that
are steerable under any given transformation� In this
paper� we propose a general formulation that can be
used to determine all the functions steerable under any
group of transformations� The formulation is based on
the theory of Lie transformation groups� It is con�
structive for any one�parameter or multi�parameter

Abelian group� Functions steerable under various sub�
groups of the a�ne group have also been tabulated�

Several others have also used Lie group theory in a
similar context� Amari originally proposed the use of
the theory for invariant feature detection via feature
normalization �	� Our work applies and extends his
idea to the design of steerable functions� Lenz also
recognized the usefulness of Lie group theory and ap�
plied it to several computer vision applications includ�
ing pattern detection ���	� Recently� Michaelis and
Sommer ��	 suggested a method for deriving steerable
�lters using a Lie�group theoretic approach� While
their method is closely related to the one presented in
this paper� they deal only with orthogonal basis func�
tions that were constructed using a generalization of
the Fourier decomposition� This restriction limits the
transformation groups to which their approach can be
applied�

� Background on Lie Groups
Lie groups are often encountered as families of

transformations acting on a function ��	� In this pa�
per� we consider� primarily� the families of transfor�
mation groups acting on real�valued� two�dimensional
functions� We assume that these functions are non�
zero only within a bounded region and denote them
by f�x� y� � R� �� R� We describe each fam�
ily of transformations by operators fg�� �g where
� � ���� � � � � �k� � Rk are parameters of the trans�
formation� For example� consider the family of
one�dimensional translations of a function in the x�
direction�

�f��x� �y� � gtx��� f�x� y� � f�x� �� y�

where � denotes the amount of translation� In words�
the operator gtx��� acts on the original function

f�x� y� to yield a new translated function �f��x� �y� �
f�x� �� y��

A family of transformations fg�� �g parameterized
by ��� � � � � �k over some prede�ned range is a Lie group
if� ��� it satis�es the group conditions of closure under
composition� associativity� inverse and the existence of



Group Operator Generator Equivariant Function Space

x�translation gtx��� f � f�x� �� y� Ltx � �
�x

f�p�y�x
pe�xg for � � p � m�

x�scaling gsx��� f � f�e�x� y� Lsx � x �
�x

f�p�y�x
��lnx�pg for � � p � m�

Rotation gr��� f � f�x cos � � y sin �� Lr � �x �
�y

� y �
�x

� �
��

f�p�r��
pe��g for � � p � m�

�x sin � � y cos ��

Uniform scaling gs��� f � f�e�x� e�y� Ls � x �
�x

� y �
�y

� r �
�r

f�p���r
��ln r�pg for � � p � m�

Table �� Several examples of one parameter groups� their generators� and associated equivariant function
spaces� In the rotation and uniform scaling examples� �r� �� are the polar coordinates of the image�

an identity� and �� the maps for inverse and compo�
sition are smooth�

Lie groups are rich in structure and many prop�
erties of the group can be discerned by studying the
properties of in�nitesimal actions of the group� The
in�nitesimal actions of a k�parameter group are a set
of di�erential operators fLi j i � � � � � kg� called the
generators of the group� corresponding to derivatives
of the transformation at the identity with respect to
each parameter �i in turn� i�e��

d �f

d�i

�����
���

� Li
�f where Li �

�
�x

��i

�

�x
�

�y

��i

�

�y

�����
���

The k generators provide a basis for the k�dimensional
tangent space G � f��L�� � � �� �kLkj� � Rkg� There
is a correspondence between a k�parameter Lie group
and its k�dimensional tangent space in the form of the
exponential map��

g�� � f�x� y� � e��L� � � � e�kLk f�x� y�� ���

The notation e�iLi represents the series expansion
e�Li � I � �iLi �

�
���

�
i L

�
i � � � �� which is an in�nite

sum of di�erential operators ��	� The exponential map
generates a group similar to the original group up to
a change of parameterization� Examples of common
one�parameter groups and their generators are given
in Table ��

� Equivariant Basis Functions

In this section� we identify the functions that are
steerable under di�erent transformation groups� Be�
fore describing these functions� we formalize the no�
tion of steerability with a de�nition�

�To be precise� this is only true for group elements that their

Taylor expansions converge� and for elements within the con�

nected component containing the identity� In this paper� we

consider only transformation groups with one connected com�

ponent for which convergence holds�

De�nition � �Steerability� � A function f�x� y� �
R� �� R is steerable under a k�parameter Lie trans�
formation group G if any transformation g�� � � G of
f can be written as a linear combination of a �xed�
�nite set of basis functions f�i�x� y�g�

g�� � f�x� y� �
nX
i��

�i�� � �i�x� y� � �
T �� ���x� y�

The functions �i are known as the steering functions
of f associated with the basis f�ig and depend solely
on the transform parameters� Without loss of general�
ity� we assume that n is the minimum number of basis
functions required and these basis functions are lin�
early independent� Clearly� the set of basis functions
required to steer a given function is not unique� any
�non�singular� linear transformation of the set of basis
functions could also be used�

If a function f is steerable with a set of basis func�
tions �� then each of the basis functions �i are them�
selves steerable with the same basis functions� This
is true since each basis function can be rewritten as a
linear combination of transformed replicas of f �cho�
sen to be linearly independent�� Thus� transforming a
basis function is equivalent to linearly combining the
set of transformed replicas of f � which are themselves
steerable�

Since steerability of the given function f implies
steerability of its basis functions �i as well� it is more
natural to express steerability in terms of a function
space� i�e� in terms of the space spanned by the basis
functions f�ig�

De�nition � �Equivariant Function Space� �
An n�dim� function space F �spanf��� � � � � �ng is
equivariant under a k�parameter Lie transforma�
tion group G if every �i is steerable with respect to
the basis f��� � � � � �ng� i�e�� there is a matrix function
A�� �� called the interpolation matrix � such that�

g�� ���x� y� � A�� ���x� y� for all g�� � � G



This equation is called the interpolation equation�

From the de�nition it follows that an equivariant
function space is a function space that is closed under
the associated transformation group� More generally�
any function f � F � such that f �

P
ci�i � cT� is

steerable by steering the basis of F �

g�� �f � cTA�� ���

As a result� any function f is steerable under a k�
parameter transformation group if and only if it be�
longs to some function space that is also equivariant
under the same transformation group�

For example� consider the function space F� �
spanfcos �� sin �g under the one�parameter group of
rotations� gr���f��� � f�� � ��� It is easy to verify
the following two identities�

cos�� � �� � cos � cos � � sin � sin ��

sin�� � �� � � sin � cos � � cos � sin ��

Thus� rotated versions of any basis function in F� can
always be expressed as linear combinations of the basis
functions� Hence� any f � F� is steerable under the
rotation group�

� Construction of Equivariant Func�

tion Space

In the previous section� equivariant function spaces
were de�ned to be closed under the associated trans�
formation group� Because we are dealing with Lie
transformation groups� the closure of a function space
under g�� � can be reformulated� more simply� in terms
of the group generators fL�� � � � � Lkg� This approach
is based on the seminal work of S� Amari ��� 	 who
originally proposed it in the context of invariant fea�
ture detection in pattern recognition�

Theorem � �Interpolation Equation� �
The function space F � spanf��� � � � � �ng is equiv�

ariant under the transformation group G if and only
if F is closed under the action of each generator Li of
G� That is� g�� �� � A�� �� if and only if there is a
set of n� n matrices fB�� � � � � Bkg such that�

Li � � Bi � for all i � �� � � � � k

In particular� the interpolation matrix can be written
as follows�

A�� � � e�kBk � � � e��B� such that g�� �� � A�� ��

Proof � � Let ���x� y� � � � g�� ���x� y�� the trans�
formed basis functions� The su�cient direction of
this theorem can be veri�ed by solving the di�erential

equation� Li�
�
� d��

d�i

���
���

� Bi�� for ��� Conversely� if

�� � e�kBk � � � e��B� �� taking derivatives with respect
to �i �about � � �� on both sides of the equation yields
the system of equations Li � � Bi �� �

Theorem � provides a recipe for verifying whether
a space spanned by a set of functions f�ig is equiv�
ariant� and if it is� derives the interpolation matrix
A�� �� Unfortunately� the construction of all possi�
ble n�dimensional equivariant function spaces is not
as methodical in general� For one�parameter groups�
however� the construction is straightforward and will
be treated extensively in the next section�

The following are corollaries that can be used to
construct more complicated equivariant spaces from
existing ones� Their validity can easily be veri�ed�

Corollary � � If � is a vector of n equivariant func�
tions� then P�� where P is a non�singular n� n ma�
trix� is also a vector of equivariant functions� Hence�
two vectors of functions ����� share the same equiv�
ariant function space if and only if they can be related
by a non�singular n�n matrix P such that �� � P���

Corollary � � If �� and �� are vectors of equiv�
ariant functions with respect to the same transforma�
tion group� then the space spanned by their direct sum
�� ��� �i�e� the concatenation of the two vectors� is
also equivariant�

Corollary � � If �� and �� are vectors of equivari�
ant functions with respect to the same transformation
group� then the space spanned by the Kronecker prod�
uct of the two vectors of functions �� � �� �i�e� the
pairwise products of functions from �� and ��� is also
equivariant�

� Equivariant Function Spaces for

One�Parameter Groups
In the previous section� the conditions that are re�

quired for a function space to be equivariant under
a transformation group were stated� In this section�
we attend to the construction of all possible equivari�
ant spaces with respect to any one�parameter transfor�
mation group� First� we provide examples of several
equivariant function spaces� After that� we show that
any one�parameter group can be re�parameterized to
appear as a group of translations in the new param�
eterization� Finally� we propose a canonical decom�
position of all the function spaces equivariant under



the translation group �and correspondingly under any
one�parameter group that has been appropriately re�
parameterized��

��� The Translation Group

Consider the group of one�dimensional translations
in the x�direction� �f��x� �y� � gtx��� f�x� y� � f�x �
�� y� whose generator Ltx � �

�x
� An n�dimensional

function space � is equivariant with respect to gtx���
if Ltx� � �

�x
� � B� for a given n�n matrix B� The

general solution to this di�erential equation is

��x� y� � eBx ���� ��

where ���� is the value of � at x � �� Actually�
the product of ��x� y� with any function solely in y
leaves it equivariant� thus� without loss of generality�
we refer to ��x� y� only as ��x�� Since ���� can be
arbitrary chosen� any element in the column space of
eBx is a possible solution� We will denote this by
��x� � R�eBx� where R refers to the column space of
the matrix eBx� Regardless of the choice of ����� the
interpolation equation is the same� i�e� �� � eB���

In the following examples� we present di�erent
choices for the matrix B and derive the corresponding
function spaces� We show that the commonly used
steerable functions are the result of particular choices
of the matrix B�

Example � � Consider the simplest case where B is
a �� � matrix� i�e� B � ��	 where � is a scalar value
�which may be complex�� From Equation � the space
of equivariant functions is� ��x� � ae�x� where a is
some scalar value �the value at ������ while the inter�
polation equation is �� � e���� This result is straight�
forward since �� � ae��x��	 � e��ae�x � e����
When � is purely imaginary� the functions are complex
exponentials� In phase�based motion estimation� the
parameter � is regarded as the di�erence in phase ��	�

Example � � Now� let B � diag���� ��� where
diag�x�� � � � � xn� stands for a diagonal matrix with the
values x�� � � � � xn along its diagonal� In this case� the
solution to Equation  implies that

��x� � R�eBx� � R

��
e��x �
� e��x

��

and the interpolation equation is

�� � e�B � �

�
e��� �
� e���

�
��

Simoncelli et� al� ���	 proposed a criterion for shiftabil�
ity in position that decomposes the �lter into a set of
complex exponentials �using Fourier decomposition��
In this example� it would correspond to B being a di�
agonal matrix with unique and purely imaginary ��s�

Example � � Let

B �

�
� � � �

� � �
� � �

�
A where eBx �

�
� � x �

��x
�

� � x
� � �

�
A

In this case� the equivariant functions are ��x� �
R�eBx�� This example produces the moment �lters
which are used in many applications involving invari�
ant feature detection ���	 and motion estimation ���	�

��� The Rotation Group

Another commonly encountered one�parameter
transformation group is the group of rotations in the
plane�

gr��� f�x� y� � f�x cos � � y sin ���x sin � � y cos ��

where � represents the angle of rotation� The genera�
tor of the rotation group is� Lr � y �

�x
�x �

�y
� It is easy

to see that if we represent the function f�x� y� in po�
lar coordinates �r� ��� then rotation becomes similar
to translation� gr���f�r� �� � f�r� � � ��� In these
coordinates� the generator is Lr � �

��
� Therefore�

as before� an n�dimensional vector function ��r� ��
is equivariant with respect to gr��� if it satis�es the
equation Lr�

�
� ��

��
� B� where B is an n � n

matrix� The general solution to the above equation
is simply ���� � eB����� where ���� is the value
of ���� at � � �� Since ���� is arbitrarily chosen�
���� � R�eB���

Example � � In this example� we show that a vector
of functions is equivariant with respect to rotation and
derive its interpolation matrix� Let ��x� y� be a D�
vector containing the spatial derivatives of a Gaussian
G � exp���x� � y���� � exp��r��� in the x� and
y� directions�

��x� y� �

�
�
�x
�
�y

�
G �

�
�x
�y

�
G �

�
�r cos���
�r sin���

�
G�

Applying the generator Lr �
�
��

to �� we obtain

Lr � �

�
r sin���
�r cos���

�
G �

�
� ��
� �

�
� � B ��

Thus� the elements of ��x� y� span an equivariant
function space whose interpolation function is

�� � e�B � �

�
cos��� � sin���
sin��� cos���

�
��

This is an example of the steerable �lters suggested
by Freeman and Adelson ��	�



��� Canonical Coordinates of One�
Parameter Transformation Groups

The construction of a set of equivariant function
spaces depends on the existence of a solution to the
system of partial di�erential equations L� � B�� It
was shown that for translations and planar rotations�
solutions exist for any given matrix B� In this section�
we show that solutions exist for any one�parameter
transformation group� The simplest way to show this
is via a re�parameterization of the current coordinates
into some canonical coordinates where solutions are
known to exist� For any one�parameter transforma�
tion group g���� there exists a change of coordinates
such that the group resembles a translation in the
new parameterization ��	� Hence� given a function
f�x� y�� one can determine a change of coordinates
f�	�x� y�� 
�x� y�� such that

g��� f�	� 
� � f�	 � �� 
��

Segman et�al� ���	 used this re�parameterization to
construct invariant kernels for pattern recognition�
Ferraro and Caelli ��	 used this method in a similar
context and suggested its relevance to biological vi�
sion�

Since the group operation is the same as one�
dimensional translation� the equivariant condition
with respect to the canonical coordinates is also the
same�

L��� ��	� 
� �
�

�	
��	� 
� � B ��	� 
��

Therefore� its equivariant spaces also resemble the
equivariant spaces for translation �up to a change of
coordinates��

Example � � In Section ��� polar coordinates were
used for the group of rotations in the plane� It is
easy to show that polar coordinates are the canoni�
cal coordinates for this group� Recall the change of
coordinates from Cartesian to polar�

	 � arctan�y�x� � � � 
 �
p
x� � y� � r�

Rotating a function f�x� y� in Cartesian coordinates
is the same as translating the function in polar coor�
dinates� gr��� f�	� 
� � f�	 � �� 
� where � � ��� ���

Example 	 � Consider next the one�parameter
group of scaling in the x direction� i�e� gsx��� f�x� y� �
f�e�x� y� where e� ensures that the scaling constant
is always positive� The canonical coordinates of this
transformation group are obtained by the coordinate
changes� 	 � ln�x� and 
 � y� In this case�

gsx��� f�	� 
� � f�ln�e�x�� 
� � f�ln�x� � ln�e� �� 
�

� f�	 � �� 
�

which is a translation in the new coordinate system�
Suppose now that

B �

�
� � � �

� � �
� � �

�
A where eB� �

�
� � 	 �

��	
�

� � 	
� � �

�
A

In this case� equivariant functions are ��	� � R�eB��
as in Example � of Section ��� but with function space
in 	 coordinates� After a change of coordinates� the
function space in x coordinates is

��x� � R

�
	
�
� � lnx �

�� �lnx�
�

� � lnx
� � �

�
A


� �

��� Canonical Decomposition of One�
Parameter Equivariant Spaces

For any one�parameter transformation group� the
n�vector of equivariant functions � depends on the
apriori choice of the n � n matrix B� However� the
same function space� span���

�
� spanf��� � � � � �ng�

may be generated by di�erent B matrices� The follow�
ing theorem provides an equivalence condition among
the various B matrices that generate the same equiv�
ariant function space�

Theorem � � Let ����� be two n�vectors of equivari�
ant functions �with respect to the same one�parameter
group� and B�� B� are such that� L �� � B��� and
L �� � B���� then

�� � P �� i� B� � PB�P
���

for any non�singular n� n matrix P �

Proof � � If �� � P ��� then substituting into L ���
we get

L�� � L�P��� � PB��� � �PB�P
���P��

and since P �� � ��� it must follow that PB�P
�� �

B�� The proof in the opposite direction follows the
same argument� �

In words� two vectors of functions� �� and ���
which are equivariant with respect to the same group�
span the same function space if and only if their cor�
responding matrices B�� B� are similar � Hence� it suf�
�ces to examine all matrices B that are unique up to a
similarity transformation� The Jordan decomposition
is useful to this end since any two matrices that are
similar share the same Jordan form ���	�

With the Jordan decomposition� any n� n matrix
B can be rewritten as PJP�� such that P is a non�
singular n�n matrix and J is a block�diagonal matrix
of the form

J � P��BP � diag�J�� J�� � � � � Js� �



Each block Ji is a upper bidiagonal matrix with a
single eigenvalue �i and one eigenvector�

Ji �

�
��	

�i �
� �

� �
�i



� �

The matrix J is called the Jordan form of B and Ji
are its Jordan blocks� A special case of the Jordan de�
composition occurs when the matrix B is normal� i�e�
BBH � BHB where BH is the complex conjugate of
the transpose of B� In this case� the Jordan decom�
position yields a diagonal matrix J � hence� each Ji is
simply a �� � matrix containing the eigenvalue �i�

Let �B ��J be vectors of equivariant functions with
respect to the translation group having corresponding
matrices B� J such that J is the Jordan form of B� i�e�
B � PJP��� From Theorem � then �B � P �J � In
other words� the function spaces spanned by �B and
�J are identical� Furthermore�

�J�x� � eJx �J ��� � diag�eJ�x� � � � � eJsx� �J ���

Since eJx is block diagonal� the function space spanned
by �J can be decoupled into a direct sum of function
spaces spanned by each Jordan block�

�J�x� � R�e
Jx� � R�eJ�x��R�eJ�x�� � � � �R�eJsx��

Furthermore� each R�eJix� is a solution to Ltx� �
Ji � and thus by itself equivariant under translation�
Finally� from the identity ���	�

eJix �

�
��	

e�ix xe�ix �
��x

�e�ix �
e�ix xe�ix �

� �
e�ix



� �

it follows that any equivariant function space spanned
by �J�x� can be represented by a direct sum of the
equivariant function basis �Ji of the form�

�Ji � e�ix��� x� x�� � � � � xni���T �

where ni is the dimension of the Jordan block Ji� Note
that if the matrix B is real� its eigenvalues appear
in conjugate pairs� i�e� if one of the eigenvalues � is
complex� its conjugate �� is also an eigenvalue of B� In
this case� the equivariant spaces will appear in pairs�

�Ji�� 
Ji � e�ix��� � � � � xni���T �e

�ix��� � � � � xni���T �

When � is zero� the equivariant space is spanned by
the �rst ni moments� Alternatively� when ni is one

and � is purely imaginary� the space is spanned by
the complex exponentials� which are also the Fourier
basis functions� Since any one�parameter transforma�
tion group can be put into its canonical coordinates
�where the group operation becomes a translation in
these new coordinates�� the decomposition of equiv�
ariant function spaces for translation applies directly
to all other one�parameter transformation groups �af�
ter re�parameterization� as well� Table � is a sum�
mary of several common one�parameter groups and
their equivariant function spaces�

Example 
 � The following functions span an equiv�
ariant function space under gtx����

� �
�
sin� x� cos� x� � cos� x sinx� � sin� x cosx

�T
since

Ltx� � B� where B �

�
BB�

� � � �
� � �� �
� � � �

�� �  �

�
CCA

A di�erent way to represent span��� is with the
basis functions determined by the Jordan form of B
which is�

JB � diag�i��i� �i���i�

and hence span��JB � is determined by

span�R�eJBx�� � span
�
eix� e�ix� e�ix� e��ix

�T
�

The interpolation equation in this case is�

gtx����JB � eJB��JB � diag�ei� � e�i� � e�i� � e��i� ��JB �

� Equivariant Function Spaces for

Multi�Parameter Groups
With one�parameter groups �in their canonical co�

ordinates�� various equivariant function spaces can be
constructed by choosing di�erent B matrices� Solu�
tions to the system of partial di�erential equations
L� � B� exist for arbitrary choices of B� Un�
fortunately� there is no systematic way to construct
general n�dimensional equivariant spaces for multi�
parameter groups� Unlike one�parameter groups� arbi�
trary choices of Bi for multi�parameter groups will of�
ten not yield solvable systems of di�erential equations�
For Abelian multi�parameter groups� i�e� groups made
up of one�parameter subgroups that commute� how�
ever� a categorization of the equivariant spaces simi�
lar to that for one�parameter groups can be carried
out� In the following� the categorization of equiv�
ariant spaces for Abelian multi�parameter groups is
presented� After that� a technique for handling non�
Abelian multi�parameter groups is suggested�



Abelian Multi�Parameter Groups When the
multi�parameter group is Abelian� there exists a re�
parameterization of the group so that the group
action is equivalent to independent translations in
the new parameterization ��� ��� �	� Formally� for
any two�parameter Abelian group� there exists a re�
parameterization of the function f�	�x� y�� 
�x� y�� so
that

g���� ��� f�	� 
� � f�	 � ��� 
 � ����

Segman and Zeevi in ���	 describe a constructive way
of determining this canonical re�parameterization� In
the new parameterization� the equivariant space for
the two�parameter group is simply the product of the
equivariant spaces for each one�parameter translation
group�

span���	� 
�� � span� 	pe�� �� span� 	qe�� �

for � � p � m and � � q � l� Note that multi�
parameter groups acting on a two�dimensional image
with more than two parameters are necessarily not
Abelian as there are only two independent translations
in an image�

Example � � Consider the group of rotation and
uniform scaling made up of the two one�parameter
subgroups gr���� and gs���� from Table �� The gen�
erators for these groups are Lr � �x �

�y
� y �

�x
and

Ls � x �
�x

� y �
�y

respectively� Recall that two one�
parameter groups are Abelian if their generators com�
mute� i�e�� �Lr� Ls	 � LrLs � LsLr � ��

It is easy to verify that this equality holds in our
case� The re�parameterization that makes gr���� and
gs���� act as translations on the image is�

	�x� y� � arctan�y�x� � �


�x� y� � ln�
p
x� � y�� � ln�r�

Thus� the equivariant spaces for rotation and scaling
are�

span� ln�r�pe� ln�r	 �� span� �qe�� �

for � � p � m and � � q � l�

Non�Abelian Multi�Parameter Groups For
multi�parameter groups that are not Abelian� there
are no re�parameterizations such that the group be�
haves like the group of independent translations in
the new parameterization� One way to approach the
problem is to start with the largest Abelian subgroup
of the multi�parameter group for which the equivari�
ant spaces can be constructed� The rest of the sub�
groups impose constraints on the equivariant space by
way of the di�erential equations� Li� � Bi�� Thus�

Groups �dim�� Equivariant Measuring Space

x� y�translation �� fxpyqe�x��yg
� � p � m and � � q � l�

x� y�scaling �� fx�y� ln�x�p ln�y�qg
� � p � m and � � q � l�

Rotation f�ln r�p�qe����ln�r	g
Uniform�scaling �� � � p � m and � � q � l�
x� y�translation fxpyqg
Rotation ��� � � p� q � m�
x� y�translation fxpyqg
x� y�scaling ��� � � p � m and � � q � l�
x� y�translation fxpyqg
x� y�scaling � � p� q � m�
Rotation ���

Table � Several examples of multi�parameter groups
and their equivariant function spaces� The numbers in
brackets denotes the number of parameters that form
this group�

the equivariant function space for the multi�parameter
group can be constructed by successively constraining
the equivariant space of the largest Abelian subgroup�

Example  � Consider the multi�parameter group
made up of translations in the x and y directions to�
gether with the group of rotations� i�e� gtx � gty and
gr respectively� The largest Abelian subgroup is the
two�parameter group of translations in the x and y
directions� The equivariant space for this group is�
span��� � span�xpyqe�x��y� for � � p � m and
� � q � l� The group of rotations yields the additional
constraint that Lr� � Br� where Lr � �x �

�y
� y �

�x
�

By observation� we can rule out the exponentials
e�x��y �i�e� � � � � �� since applying Lr to each term
raises the power of the monomial factor by one each
time� repeated application of the conjugate generator
will raise the power without bound� Applying Lr to
the monomial xpyq � however� raises the power in one
variable and decreases the power in the other� Suc�
cessive applications will result in one of the variables
being reduced to zero� Hence� fxpyqg is an equivari�
ant space under this group where � � p � q � m for
some m�

Table  is a summary of several common multi�
parameter groups and their equivariant function
spaces calculated using similar considerations�

� Conclusions and Discussion
Steerable functions �nd application in numerous

problems in image processing� computer vision and



computer graphics� As such� it is important to de�
velop the appropriate mathematical tools to analyze
them� In this paper� we introduced the mathematics
of Lie group theory in the context of steerable func�
tions and presented a canonical decomposition of these
functions under any transformation group�

The theory presented in this paper can be applied
and extended in various ways� Unfortunately� due to
page limitations� we will only brie�y describe them
here� For a detailed discussion the reader is referred
to ��	�

The relevance of identifying equivariant function
spaces lies in the fact that any function belonging to
that space is automatically steerable using a basis for
that space� In practice� the function to be steered may
not reside completely in an equivariant function space
in which case the function is �rst approximated by an
appropriate equivariant function space� and then the
approximation is steered instead� Also� often a func�
tion needs to be steered only over a restricted range
of transform parameters� hence� the function needs to
be only locally steerable� If the function is compactly
supported� this restriction implies that the function
needs to be approximated only within some small com�
pact domain�

As mentioned earlier� steerable functions are often
used as �lter kernels for which the output of the trans�
formed �lter kernel can always be expressed as linear
combinations of the outputs of a �xed set of basis �l�
ters� Motion estimation using linear �lters� on the
other hand� could be regarded as the reverse of this
process� Given the �lter outputs from two images that
di�er by some transformation� the transform parame�
ters are to be estimated� It is shown in ��	 that this
implies that the �lters used have to be steerable�

Another application of steerable functions is in the
design of invariant feature detectors� For example� an
edge detector should be able to detect the presence
of an edge independent of the orientation of the edge
in the image� According to this paradigm� the fea�
ture to be detected is �rst described by several steer�
able functions� since the functions are steerable� any
transformed version of the feature can be synthesized
through linear combination� Consequently� the invari�
ant feature detector is constructed by identifying a
suitable invariant over the set of steerable functions�
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