
 1

Canonical Form-Based Boolean Matching and
Symmetry Detection in Logic Synthesis and

Verification

Afshin Abdollahi
University of Southern California

afshin@usc.edu

Massoud Pedram
University of Southern California

pedram@ceng.usc.edu

Abstract – An efficient and compact canonical form is proposed for the Boolean matching

problem under permutation and complementation of variables. In addition an efficient algorithm

for computing the proposed canonical form is provided. The efficiency of the algorithm allows it

to be applicable to large complex Boolean functions with no limitation on the number of input

variables as apposed to previous approaches, which are not capable of handling functions with

more than seven inputs. Generalized signatures are used to define and compute the canonical

form while simple symmetries of variables is used to minimize the computational complexity of

the algorithm. All other symmetry relations are resulted as a bi-product of the canonical form

computation. Experimental results demonstrate the efficiency and applicability of the proposed

canonical form.

I Introduction
Boolean matching is the problem of determining whether a Boolean function can be functionally

equivalent to another one under a permutation of its inputs and complementation of some of its

inputs. Boolean matching algorithms have many applications in logic synthesis including cell-

library binding where it is necessary to repeatedly determine whether some part (cluster) of a

Boolean network can be realized by any of the cells in a library [1]. Boolean matching is a

critical and CPU-intensive task, and therefore, there have been many efforts to effectively solve

the problem [2]. Boolean functions that are equivalent under negation of inputs are N-equivalent,

under permutation of inputs are P-equivalent, and under both stated conditions, are NP-

equivalent [3]. If all we consider permutation of inputs and complementation of inputs and

output the functions are NPN-equivalent. An exhaustive method for Boolean matching is

computationally expensive since the complexity of such an algorithm for n-variable functions is

O(n!2n+1).

 2

Boolean matching algorithms can be classified into two categories: pair-wise matching

algorithms and algorithms based on canonical forms of functions. Pair-wise Boolean matching

algorithms are based on a semi-exhaustive search where the search space is pruned by the use of

some signatures which are computed from some properties of Boolean functions [2]. A signature

in general is a description of (one or more) input variables of a Boolean function that is

independent of the permutation or complementation of the variables of the function. To match a

function against a cell library, pair-wise matching algorithms often need to perform pair-wise

matching of the function with all the library cells. Therefore, these algorithms can only cope with

libraries of modest size.

Boolean matching algorithms that belong to the second category compute some canonical form

for Boolean functions [5] - [10]. These algorithms are based on the fact that two functions match

if and only if their canonical forms are the same. Burch and Long introduced a canonical form

for matching under complementation and a semi-canonical form for matching under permutation

of the variables [5]. In their solution, in order to handle complementation and permutation of

inputs simultaneously, a large number of forms for each cell are required. Other researchers,

including Wu et al. [6], Debnath and Sasao [8], and Ciric and Sechen [9] have also proposed

canonical forms that are applicable to Boolean matching under permutation of the variables only

but do not handle complementation of inputs. Hinsberger and Kolla [7] and Debnath and Sasao

[10], have introduced a canonical form for solving the general Boolean matching problem.

However their approach is mainly based on manipulating the truth table of the function and

employing a table look-up, which results an enormous space complexity, thus restricting their

algorithm to library cells with seven or fewer input variables.

In this paper a new canonical form for representing Boolean functions is introduced. The

proposed canonical form for an arbitrary Boolean function is the unique Boolean function that is

obtained after applying some canonicity-producing (CP) transformation on the input variables.

The canonical forms of NPN-equivalent Boolean functions are identical. In particular, an

effective technique is presented for generating this canonical form. The proposed method is

based on using generalized signatures (signatures of one or more variables) to find a CP phase

assignment and ordering for variables. From here on, phase assignment and ordering for

variables is referred to as a transformation on variables. For most Boolean functions, single-

variable and two-variable signatures are enough to recognize all variables (i.e., to obtain a CP

 3

transformation.) However, use of single-variable and two-variable signatures alone may not

result on a canonical input transformation. In this paper it is shown that, by using generalized

signatures of one or more variables, it is always possible to create a CP transformation on

variables of the function.

Experimental results provided in this paper demonstrate that the proposed approach for

computing the canonical form does not have the limitations of previous works; i.e., it computes

the canonical form of a Boolean function with any number of variables under both permutation

and complementation of variables. An important advantage of the proposed technique is the way

it handles and uses the symmetry of variables to minimize the complexity of the algorithm

compared to some of the previous approaches which are not able to consider symmetries [7][10].

Hence, the proposed technique is applicable to logic verification of large circuits and to

technology mapping with a large ASIC library with cells of any number of inputs.

In section II, definitions and terminology are introduced. In section III, symmetry relations are

discussed. In section IV signatures that are utilized in the method are described. In section V the

canonical forms is defined and the details of computing the canonical form is provided followed

by experimental results and conclusions in sections VI and VII.

II Preliminaries
We denote vectors and matrices in capital letters i.e.,),,,(21 nxxxX K= where X denotes a

vector of n Boolean variables. A literal is a variable, x , or its complement x . We will refer to

literal x as the positive phase of variable x and to literal x as its negative phase. In general a

literal can be denoted as px . The phase of the literal is described using the Boolean variable

}1,0{=∈Bp where xxp p =⇒=1 (positive phase) and xxp p =⇒= 0 (negative phase.)

For the variable vector),,,(21 nxxxX K= and phase vector),,,(21 npppP K= (where X and

nBP∈ contain the same number of variables and Bpi ∈) the phase assignment of P to variable

vector X is defined as),,,(2

2

1

1

n

n

pppP xxxX K= .

As an example for),,(321 xxxX = and)0,1,0(=P the result of phase assignment is

),,(321 xxxX P = . Also for),,(321 xxxX = and)1,1,0(=P the result of phase assignment is

),,(321 xxxX P = .

 4

For a set, A , we use || A to denote the cardinality of A . Since nnB 2|| = , the number of possible

different phase assignments to),,,(21 nxxxX K= is n2 .

The identity phase assignment is denoted by)1,,1,1(1 K= . Obviously, XX =1 . The inverse of

phase assignment is itself i.e., XX PP =)(.

The cascade of two phase assignments),,,(21 npppP K= and),,,(21 nqqqQ K= is

),,,(2211 nn qpqpqpQP ⊕⊕⊕=⊕ K since QPQP XX ⊕=)(. (The ‘⊕ ’ is the XNOR operation i.e.,

for Boolean variables x and y , 1=⊕⇔= yxyx .)

A permutation is a rearrangement of the elements of an ordered list or a vector. First, we define

permutation on a set of the form },,2,1{ nAn K= , which will serve as indices of an ordered list or

a vector.

Definition: A permutation π on set },,2,1{ nAn K= is a bijection from nA to nA i.e., nn AA →:π

and)()(jiji ππ ≠⇒≠ . For a subset nAB⊂ , the range of a permutation π on domain B is

defined as: })({)(BiiB ∈= ππ .

Based on this definition, nn AA =)(π which is equivalent to the reversibility of permutation π as

a function i.e., , , . . : ()n nj A i A s t i jπ∀ ∈ ∃ ∈ = . The identity permutation, ι , on },,2,1{ nAn K= is

defined as follows: , ()ni A i iι∀ ∈ = . We denote the set of all permutations on nA by nΠ . The

cascade of two permutations 1π and 2π on },,2,1{ nAn K= , denoted by 21ππ , is defined as:

1 2 1 2, () (())ni A i iπ π π π∀ ∈ = . The cascade operation among permutations is not a commutative

operation i.e., in general, 1 2 1 2 2 1, ,nπ π π π π π∀ ∈Π ≠ . However, it is an associative operation

1 2 3 1 2 3 1 2 3, , , () ()nπ π π π π π π π π∀ ∈Π = . Permutations are reversible. The inverse of a permutation π ,

denoted by 1−π , is defined as: ijji =⇒= −)()(1ππ .

Based on these properties, set nΠ with cascade operation creates a group.1 The number of

members of this group is !n . Any permutation nΠ∈π can be applied to a vector of length n

e.g.,),,,(21 nxxxX K= . The result of application of permutation nΠ∈π to vector is determined

1 A group G is a finite or infinite set of elements together with a binary operation (called the group operation) that
together satisfy the four fundamental properties of closure, associativity, identity, and inverse property.

 5

based on the relations)()(ii xx ππ = and),,,(),,,()()()2()1(21 nn xxxxxxX πππππ KK == which, is a

rearrangement the entries of vector X . Next, we describe NP transformations comprising of

phase assignment and permutations.

As an example, for the permutation 3Π∈π where 2)1(=π , 3)2(=π and 1)3(=π , we have

),,(),,(132321 xxxxxx =π .

Definition: An NP transformation on vector),,,(21 nxxxX K= is defined as a phase assignment

followed by a permutation. In particular, for phase assignment),,,(21 npppP K= and

permutation nΠ∈π , the NP transformation PTπ on vector),,,(21 nxxxX K= is computed as

follows:)()(PP XXT ππ = .

Now then, (1) (2) ()1 2

1 2 (1) (2) ()1 2(, , ,) (, , ,) (, , ,)nn

n n

p p ppp pP
nT x x x x x x x x xπ π π

π π ππ π= =K K K , or more simply,

)()]([)(PP XXT π
π π= . The set of all NP transformations on a vector of size n is denoted

by },{ n
nP

n BPT Π∈∈=Γ ππ .

As an example for)1,1,0(=P and),,(),,(132321 xxxxxx =π , we have),,(),,(132321 xxxxxxT P =π .

The number of transformations in nΓ is !2|||||| nB n
n

n
n =Π×=Γ . The identity transformation is

denoted by 1
ιT where)1,,1,1(1 K= is the identity phase assignment and ι is the identity

permutation. Obviously, XXT =)(1
ι for any vector X . The cascade of two transformations 1

1

PTπ

and 1

2

PTπ , denoted by 2

2

1

1

PPTT ππ , is defined as))(()(2

2

1

1

2

2

1

1
XTTXTT PPPP

ππππ = . One can verify that

1 2

1 2

P P PT T Tπ π π= where 1 2π π π= and 1 1 2() ()P P Pπ π= ⊕ . The inverse of transformation PTπ , denoted

by 1)(−PTπ , satisfies the relation 111)()(ιππππ TTTTT PPPP == −− . Based on the relation

1 () ()P P P PT T T T π π π
ι π π π π

′ ′ ′ ′⊕
′ ′= = , one can infer that)(1

1)(PP TT π
ππ −=− . Set nΓ with cascade operation creates

a group.

In the remainder of this paper, when there is no ambiguity, we denote a transformation PTπ by T

for brevity. In addition, we may denote an NP transformation on vector as XT P
π (or TX) instead

of)(XT P
π (or)(XT .) We usually denote the identity transformation by 1

ιTI = . Finally, with

regard to permutations, Xπ will refer to)(Xπ .

 6

Let function)(Xf be a single-output completely-specified Boolean function of

),,,(21 nxxxX K= i.e., BBf n →: . The onset of)(Xf is a subset of its domain, nBF ⊂ , that

results in .1)(=Xf We will denote the size of onset of)(Xf by |)(| Xf i.e., |||)(| FXf = .

The cofactor of)(Xf with respect to literal ip
ix is a function)(ix

Xf
ip

i
 of

),,,,,,(1121 niii xxxxxX KK +−= defined as
iiip

i
ip

i
pxxix

XfXfXf ==
== |)(|)()(

1
. A cube is the

Boolean conjunction of some literals, mi

m

ii p
i

p
i

p
i xxxq L2

2

1

1
= . The cofactor of)(Xf with respect to a

cube q is a function of variables in X that are not present in q (positive or negative phase) is

defined as
mimiiiii pxpxpxqqq XfXfXf ==== == ,,,1 2211

|)(|)()(K where },,,{
21 miiiq xxxXX K−= .

Consider two functions,)(Xf and)(Xg , defined over the same variable set),,,(21 nxxxX K= .

Definition: Two functions)(Xf and)(Xg are P-equivalent, denoted by gf
P
≡ , if there exists a

permutation π such that)()(XgXf π⊕ is a tautology.

Definition: Two functions)(Xf and)(Xg are NP-equivalent, denoted by
NP

f g≡ , if there

exists an NP transformation T such that)()(TXgXf ⊕ is a tautology.

The most general type of equivalence is when we also consider phase assignment of the output.

We will denote the phase assignment Bp∈ to function)(Xf by pXf))((or)(Xf p for short.

Definition: Two functions)(Xf and)(Xg are NPN-equivalent, denoted by gf ≡ , if there

exists an NP transformation T and an output phase assignment Bp∈ such that

)()(TXgXf p⊕ is a tautology i.e.,)()(,,, TXgXfBXBpT pn
n =∈∀∈∃Γ∈∃ .

Example: Let 3121321),,(xxxxxxxf += and 323121321),,(xxxxxxxxxg ++= . It is easy to see

that)()(TXgXf = where),,(321 xxxX = and),,()(132 xxxXT = . Thus,)(Xf and)(Xg are

thus NPN-equivalent.

NPN-equivalence is an equivalence relation. Boolean matching is often defined in terms of P, NP

or NPN-equivalence. In principle, P, NP, and NPN-equivalence can be reduced to !n , !2 nn and

!2 1nn+ tautology checks.

 7

We use the symbol x∀ and x∃ to designate the consensus and the smoothing operators with

respect to variable x, respectively. Recall that the consensus operation corresponds to universal

quantification and is computed as xxx fff =∀ , while the smoothing operation corresponds to

existential quantification and is computed as xxx fff +=∀ . Consensus (smoothing) with respect

to an array of variables can be computed by repeated application of single-variable consensus

(smoothing) operations.

III Symmetry relations
In this section we discuss variable symmetries in Boolean functions. Functional symmetries

provide significant benefits for multiple tasks in synthesis and verification. As will be explained

in detail later in this paper, concepts of Boolean matching and symmetry are closely related. In

the Boolean matching algorithm that will be provided in this paper, this relationship manifests

itself in two levels. First, simple types of symmetries (that are inexpensive to discover) are

utilized to reduce the complexity of the Boolean matching algorithm. Second, the proposed

Boolean matching algorithm will generate (as a bi-product) the remaining (more complicated)

symmetries.

Symmetries provide insights into the structure of the Boolean function that can be used to

facilitate operations on it. They can also serve as a guide for preserving that structure when the

function is transformed in some way. In the context of Boolean matching problem, symmetries

that we explore are variable permutations, with possible complementation that leave the function

unchanged. In the presence of functional symmetries, several design problems (e.g., circuit

restructuring, checking satisfiability, and computing sequential reachability) are considerably

simplified. Hence, interest in functional symmetries has been keen since the early days of logic

design [12]. In the context of logic synthesis which we view as a process that transforms an

initial representation of the function (e.g., sum of products representation or binary decision

diagram representation) into a final implementation as a multi-level Boolean network of

primitive cells selected from a given ASIC cell library, when guided by knowledge of functional

symmetries, such a process yields higher quality circuit realizations of the function [13].

In [14] functional symmetry is exploited to optimize a circuit implementation for low power

consumption and delay under an area increase constraint. Another benefit of knowledge about

functional symmetries is that it can help produce better variable orders for Binary Decision

 8

Diagrams (BDDs) and related data structures (e.g., Algebraic Decision Diagrams). The size of

the BDD of a Boolean function can be significantly reduced if symmetric variables are placed in

adjacent positions. Based on this observation a specialized sifting procedure for dynamic

variable ordering was proposed in [15]. This plays a crucial role in symbolic model checking.

In this paper we study symmetries in the most general from i.e., considering input permutation,

input phase assignment, and output phase assignment which to the best of our knowledge has not

been studied thoroughly enough in the past.

Definition: A function)(Xf where),,,(21 nxxxX K= is symmetric with respect to an NP

transformation nT Γ∈ on its inputs if there exists an output phase assignment Bq∈ such that

)()(TXfXf q= .

We will refer to such a transformation a symmetry-producing (SP) transformation and denote the

set of all SP transformations by })()(,{ TXfXfqTS q
nf =∃Γ∈= .

fS creates a sub-group of nΓ . As mentioned before, some types of symmetry are easily

detectable and are discovered before the Boolean matching algorithm. We start by discussing

these types of symmetries.

Definition (Simple Symmetry): For a function)(Xf where),,,(21 nxxxX K= , two variables ix

and jx are said to be symmetric, denoted as ji xx ≡ , if)(Xf is invariant under an exchange of

ix and jx i.e.,),,,,,,(),,,,,,(11 nijnji xxxxfxxxxf KKKKKK = .

In the case of simple symmetry, the phase of the output always remains unchanged. The NP

transformation f
P ST ∈π associated with this simple symmetry has the following effect:

),,,,,,(),,,,,,(11 nijnji
P xxxxxxxxT KKKKKK =π .

A similar type of simple symmetry between variables ix and jx is when the following condition

holds:),,,,,,(),,,,,,(11 nijnji xxxxfxxxxf KKKKKK = .

In this case we use notation ji xx ≡ , or equivalently, ji xx ≡ . We shall refer to ix and jx as being

symmetric in this case as well.

Example: For the function))(()(4321 xxxxXf ++= we have 21 xx ≡ and 43 xx ≡ .

 9

To account for both types of symmetry with a unified notation, we use p
ji xx ≡ . When 1=p , the

expression indicates that ji xx ≡ whereas 0=p implies that ji xx ≡ i.e.,

),,,,,,(),,,,,,(11 n
p
i

p
jnji

p
ji xxxxfxxxxfxx KKKKKK =⇔≡ .

Variables ix and jx are called symmetric if p
jip xx ≡∃ . We will use p

ijW (or p
jiW) to denote the

NP transformation),,,,,,(),,,,,,(11 n
p
i

p
jnji

p
ij xxxxxxxxW KKKKKK = . With this notation

f
p

ij
p
ji SWxx ∈⇔≡ .

It is well known, and can be readily shown by using Boole’s expansion theorem [5], that

condition p
ji xx ≡ is equivalent to p

jip
ji xxxx

ff ≡ . This equation serves as the computational check

for first-order symmetry between variables ix and jx in function)(Xf .

The symmetry relation, p
jip xx ≡∃ , is an equivalence relation. Hence, it is possible to partition

variables nxxx ,,, 21 K into equivalence classes, which we will refer to as symmetry classes. An

overview of such a procedure, which is composed of two nested loops that iterate on the

variables, is as follows. We denote symmetry classes by mCCC ,,, 21 K , where m is the number of

classes. The first step is to create }{ 11 xC = where 1x is considered the seed variable for class 1C .

Next, every variable ix that is symmetric to 1x will be added to 1C . The first remaining variable,

say jx , is used to initialize }{2 jxC = . Next, symmetric variables to jx are added to 2C . This

procedure continues until all variables are partitioned into symmetry classes mCCC ,,, 21 K .

Symmetry classes will include all information about simple symmetries. For example, given

symmetry classes mCCC ,,, 21 K , one can infer that if kji Cxx ∈, , then there exists a phase

assignment Bp∈ such that p
ji xx ≡ . However, the symmetry classes do not include information

as to whether 1=p or 0=p .

One way to include phase information in symmetry classes is to choose appropriate phases for

variables while forming classes one at a time. For example, consider a class iC with seed

ij Cx ∈ . If there exists a variable kx that is symmetric to jx i.e., p
kj xx ≡ then literal p

kx will be

added to iC . This is because we chose positive phase jj xx =1 for the seed of iC . If we were to

 10

choose jj xx =0 as the seed of iC , then in the case of p
kj xx ≡ literal p

kx will be added to iC since

p
kj

p
kj xxxx ≡⇒≡ . Suppose },,,{ 21

21
kp

k
pp

i xxxC K= is a symmetry class generated in this manner.

Based on the previous discussion, negating the phases of the literals },,,{ 21
21

kp
k

pp xxx K will create

an alternate symmetry class of the same variables. We shall denote this alternate class by iC

which introduces the notion of phase assignment for symmetry classes i.e., }{ i
p
j

qp
j

q
i CxxC jj ∈= ⊕ .

The algorithm for generating first-level symmetry classes is given below. In this algorithm, we

choose positive phases for the seeds of all classes.

Algorithm Gen_1st_Order_Symm ()

1←i ;
while {}≠X do {

 {}←iC ; select Xx∈ ;

 for Xy∈∀ do {

 if (pyx ≡) then }{ p
ii yCC ∪← ;

 }
 iCXX −← ;

 1+← ii ;
}

For the symmetry classes generated in this manner, literals of a class do not require any phase

assignment to become symmetric (the current phases of literals will be fine) i.e.,
jiji p

j
p
ik

p
j

p
i xxCxx ≡⇒∈, .

Example: For function))(()(4321 xxxxXf ++= , there exist two symmetry classes:

},{ 211 xxC = and },{ 432 xxC = .

In the remainder of this paper we shall denote literals by simple letters such as x or y which

does not necessary mean that the phase of literal is positive. With this convention the previous

relation may be written as: yxCyx k ≡⇒∈, .

 11

The classes generated by Gen_1st_Order_Symm are maximal in the sense that for every class iC

no other literal iCy∉ is symmetric to the literals of the class iC i.e., ii CyyxCx ∈⇒≡∈ ,

So far we have discussed simple symmetries which correspond to NP transformations that

involve only two variables. In the sequel we present a key theorem, which provides a valuable

insight for handling and enumerating symmetries. First, we present a lemma that will be useful in

proving the main theorem.

In the following we will denote the kth element of vector TX by kTX][. Furthermore, p
kTX][will

denote p
kTX)]([.

Lemma 1: For any NP transformation n
PT Γ∈π and n

q
ijW Γ∈ , q

ji
Pq

ij
P WTWT ′− =)()(

1)(ππππ where

)()(ji ppqq ππ ⊕⊕=′ .

Proof: Based on previous discussions)(
)(][kp

kk
P xXT π

ππ = and kk p
k

p

kk
P xxXT)()(

1
1

))((1

1])[(−

−

− ==−
πππ

ππ . We

compute k
Pq

ij
P XTWT])[(1

ππ
− for different values of },2,1{ nk K∈ . First we consider values of k

such that)}(),({ jik ππ∉ and then deal with)}(),({ jik ππ∈ .

For)}(),({ jik ππ∉ , k
pp

k
p

k
Pp

k
Pq

ijk
Pq

ij
P xxXTXTWXTWT kkkk ==== −

−−−
−)(][][])[())(1(

111))(()()(
1 ππ

ππππππππ

The second equality follows from },{)(1 jik ∉−π .

For)(ik π= , q
j

ppq
j

pq
j

Pp
i

Pq
iji

Pq
ij

P xxXTXTWXTWT jiii ′⊕⊕⊕− ====)()()(
1)()()()(][][])[(πππππππ

ππππ . In addition, for

)(jk π= , q
i

ppq
i

pq
i

Pp
j

Pq
ijj

Pq
ij

P xxXTXTWXTWT ijjj ′⊕⊕⊕− ====)()()(
1)()()()(][][])[(πππππππ

ππππ . Hence we showed

that),,,,,,(),,,,,,()()()(1)()(1
1

n
q

i
q

jnji
Pq

ij
P xxxxxxxxTWT KKKKKK ′′− = ππππππ which proves that

q
ji

Pq
ij

P WTWT ′− =)()(
1)(ππππ . ■

Let ix and jx denote two symmetric variables of function)(Xf . Consider a general symmetry

relation that involves more than two variables i.e., consider)()(XTfXf P
π= . In the following we

will explore the effect of n
P ST ∈π on symmetric variables.

Every NP transformation n
PT Γ∈π on X can be regarded as a mapping function on literals with

the specification)(
)()(ip

ii
P xxT π

ππ = .

 12

We define the effect of NP transformation PTπ on literal q
ix as q

i
Pq

i
P xTxT))(()(ππ = .

Lemma 2: Let function)(Xf be symmetric with respect to NP transformation PTπ i.e., f
P ST ∈π ;

Mappings of two symmetric variables ix and jx under PTπ are symmetric i.e.,

q
j

P
i

Pq
ji xTxTxx))(()(ππ ≡⇔≡ .

Proof: Since fS is a subgroup, f
P

f
P STST ∈⇒∈ −1)(ππ . Furthermore, since variables ix and jx

are symmetric, f
q

ij
q
ji SWxx ∈⇒≡ . Based on the previous Lemma and the fact that nS is a

subgroup, f
Pq

ij
Pq

ji STWTW ∈= −′
ππππ

1
)()()(where)()(ji ppqq ππ ⊕⊕=′ , which proves that q

ji xx ′≡)()(ππ .

By applying phase assignment)(ipπ to both sides of q
ji xx ′≡)()(ππ , one obtains

)()()(
)()()(
jii p

j
pq

j
p

i xxx πππ
πππ =≡ ⊕′ or q

j
P

i
P xTxT))(()(ππ ≡ , which proves the lemma ■

Now we will investigate the effect of NP transformation f
P ST ∈π on simple symmetry classes.

The range of an NP transformation T on a symmetry class (or any other subset of literals) is

defined as })({)(kk CxxTCT ∈= , where x in general represents a literal (with positive or

negative phase) rather than a variable i.e. there is variable ix with phase p such that p
ixx = .

Theorem 1: Let function)(Xf be symmetric with respect to NP transformation T i.e., fST∈

and let kC be a first order maximal symmetric class of variables of)(Xf . The range of T on kC

(i.e.,)(kCT) will be a maximal symmetry class.

Proof: Based on the previous lemma, any pair of literals, x and y , of)(kCT are symmetric.

Recall that for two literals in a symmetry class, the symmetry does not require additional phase

assignment since appropriate phases have already been assigned to the literals while generating

the symmetry classes. Now we will prove that)(kCT is maximal by showing if there is a literal

y symmetric to literal)(kCTx∈ (i.e., yx ≡), then y is a literal in)(kCT .

Since nS is subgroup, ff STST ∈⇒∈ −1 . From the previous lemma,)()(11 yTxTyx −− ≡⇒≡ .

From)(kCTx∈ it can be seen that kCxT ∈−)(1 and since kC is maximal :

)()()()(111
kk CTyCyTyTxT ∈⇒∈⇒≡ −−− . This proves the theorem. ■

 13

The theorem has a strong implication, that is, any NP transformation f
P ST ∈π maps maximal

symmetry classes to other maximal symmetry classes. This result can be considered as a

constraint for any f
P ST ∈π . It is especially important in the process of identifying NP

transformations of fS since it will limit the space of transformations to be explored. In other

words, to explore possible NP transformations f
P ST ∈π , it is sufficient to only explore NP

transformations that are specified in terms of higher order symmetry classes instead of individual

variables. Since the number of classes is usually considerably fewer than the number of

variables, this theorem tends to greatly reduce the search space.

Let mCCC ,,, 21 K represent the maximal symmetry classes for variables of function)(Xf . The

corresponding NP transformation f
P ST ∈π must satisfy jiji CCTCC =∃∀)(, .

IV Signatures
Conventionally, a signature (a filter or a necessary condition) is defined as some characteristics

of a Boolean function with respect to one of its input variables. We shall refer to such a signature

as a first order signature (or 1st-signature) since it only depends on one input variable. First order

signatures have been used to identify variables that can be exchanged (permuted) without

affecting the function itself, i.e., any possible correspondence between the input variables of two

functions is restricted to a correspondence between variables with the same 1st-signature. So, if

each variable of a function has a unique 1st-signature, then there can be at most one possible

correspondence to any of the variables of some other function.

That is why the quality of any 1st-signature is characterized by its ability to be a unique

identification of a variable of a function and, of course, by its ability to be computed fast. The

1st-signatures that have been introduced in literature differ in terms of their quality figure.

Although the 1st order signatures have been successful in a large number of practical cases, they

do not utilize the full potential of signatures in the Boolean matching problem. There is no set of

1st-signatures that can uniquely identify all the variables. However, this goal can be achieved by

using higher order signatures as described below.

The 1st-signatures have been traditionally defined for variables. However, since we intend to

consider phase assignment in addition to permutation of input variables, we define the 1st-

signatures for literals (as opposed to variables.)

 14

A well-known 1st-signature for a literal x of a Boolean function)(Xf is the “minterm” count of

the ONSET of the cofactor of this function w.r.t. x i.e, || xf .

In pair-wise matching methods (for checking P-equivalence), a 1st-signature must be able to

make out an input variable ix independent of input variable permutation so that it can establish a

correspondence between variable ix of)(Xf with a variable jx of some other Boolean function

)(Xg . It only makes sense to try to establish a correspondence between these two variables only

if variable ix of)(Xf has the same 1st-signature as variable jx of)(Xg .

The main idea of this pair-wise matching approach is clear: If we are able to compute a unique

signature for each input variable of)(Xf , then the variable mapping problem will have been

solved – there is only one or no possible variable correspondence for P-equivalence of function

)(Xf with any other function)(Xg . If we find for each variable of)(Xf a variable of)(Xg

that has the same unique signature, then we will have established a correspondence. Otherwise,

we will know immediately that these two functions are not P-equivalent.

The main problem that arises in this paradigm is when more than one variable of a function

)(Xf has the same 1st-signature, it is not possible to distinguish between these variables, i.e.

there is no unique correspondence that can be established with the inputs of some other function.

In this paper we will generalize the concept of first order signatures to higher order signatures

that have complete expressive power to handle the Boolean matching problem.

Recall that a cube (product term) is the conjunction of some literals. Let kaaa ,,, 21 K be literals

created from variables nxxx ,,, 21 K i.e., p
jiji xapxa =∃∃∀ ,,, with the restriction that both phases of

the same literal are not present in kaaa ,,, 21 K i.e., for each variable ix at most one of literals ix

and ix belong to },,,{ 21 kaaa K .

Definition: The kth order signature of function)(Xf with respect to literals kaaa ,,, 21 K is the

minterm count of cofactor of)(Xf with respect to cube kaaaq K21= i.e., |)(| qq Xf where qX

denotes those variables of X that are not in },,,{ 21 kaaa K in any phase. The 0th order signature is

|)(| Xf .

 15

We will refer to a cube kaaaq K21= as a positive cube if literals kaaa ,,, 21 K are in their positive

phases i.e., jiji xaxa =∃∀ ,, , or equivalently, },,,{},,,{ 2121 nk xxxaaa KK ⊂ .

We also refer to signatures associated with positive cubes as positive signatures.

With respect to variables nxxx ,,, 21 K , the number of k-literal cubes (or the number of kth-order

signatures) is k

k
n

2⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ whereas the number of positive kth-order signatures is
)!(!

!
knk

n
k
n

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ .

In the following we introduce a method to enumerate positive signatures of function)(Xf .

A k-literal cube can be presented as
k

xxxq ααα L
21

= where },2,1{},,,{ 21 nk KK ⊂ααα .

We impose the constraint that kααα <<< K21 . Obviously, for each k-literal cube it is always

possible to find kααα ,,, 21 K that satisfy this constraint.

Before we proceed further, we must define the lexicographical comparison of two vectors.

Definition: Consider two vectors),,,(21 kA ααα K= and),,,(21 kB βββ K= where

},2,1{},,,{ 21 nk KK ⊂ααα and },2,1{},,,{ 21 nk KK ⊂βββ . Let i be the smallest index such that

ii βα ≠ . Then the order relation ‘p ’ between A and B is defined as BAii p⇒< βα .

With this definition, an order relation can be defined between k-literal positive cubes.

Definition: Consider two cubes
k

xxxqA ααα L
21

= and
k

xxxqB βββ L
21

= where

nk ≤<<<≤ ααα K211 and nk ≤<<<≤ βββ K211 . The order relation ‘p ’ between Aq and Bq

is defined as BAkk qq pKpK ⇒),,,(),,,(2121 βββααα .

We denote the set of all k-literal positive cubes by }1{ 2121
nxxxQ k

k
k

≤<<<≤= αααααα KL .

Since we have defined an ordering for members of kQ , these members (which correspond to k-

literal positive cubes) can be represented as k
n

kk
k

qqq ,,, 21 K where the superscript k indicates the

number of literals in each cube and the following ordering is satisfied by their indices:

k
n

kk
k

qqq pKpp 21 . Notice that
)!(!

!||
knk

n
k
n

Qn k
k −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== .

Every possible positive cube can be denoted as k
iq . The set of all positive cubes is denoted by

}1,1{210
k

k
i

k ninkqQQQQQ ≤≤≤≤=∪∪∪∪= L .

 16

Now we extend the definition of ordering to members of Q . For two cubes k
iq and l

jq if lk ≠

then l
j

k
i qqlk p⇒< . Now, if lk = then l

j
k
i qqji p⇒< .

In this ordering, single literal cubes appear first followed by two literal and higher literal cubes

i.e.,
}

n

n

n

n

Q

n
n

Q

n
n

nn

Q

n

Q

n qqqqqqqqqqq p
444 8444 76
pKpppKp

444 8444 76
pKppp

444 8444 76
pKppp

1

1

2

1

1

1

11
2

1
1

22
2

2
1

11
2

1
1

0
1

−

−

−−−

which can also be represented as (except for {}0
1 =q):

48476
Lp

44444 844444 76
LpKpLpKp

4444 84444 76
pKppp

44 844 76
pKpp

nn Q

n

Q

nn

Q

n

Q

n xxxxxxxxxxxxxxxxxx 21321211312121

121 −

−

We are now ready to introduce the signature vector for a function)(Xf .

Definition: For the function)(Xf where),,,(21 nxxxX K= with positive cubes k
iq , the

signature vector denoted by fV is defined as follows:

|)|,||,|,||,|,,||,|,||,|,||,|,||,||,(|
)1(21

1
1

1
2

1
1

2
2

2
2

2
1

1
1

1
2

1
1

n
nn

nd

n
nn

nn

nd

n

st

n q

signaturesn

qqq

signatures

qqq

signatures

qqq
f fffffffffffV

4444 84444 76
KK

444 8444 76
K

444 8444 76
K

−−−−

−
−

−−=

which can equivalently be presented as:

)||,|||,...,|,...,|||,...,||,|,|||,...,||,||,(|
signaturen

...

signatures)1(

......

signatures2signatures1 th

1

th

211

nd

13121

st

21

876444 8444 764444 84444 76444 8444 76 −−−−−

−−
=

nnnnnn xx

n

xxxxxxxxxxxxx
f ffffffffffV

In the following we present an important theorem, which proves that the signature vector of a

function is unique i.e., two different functions have different signature vectors i.e.,

)()(XgXfVV gf =⇔= .

To prove this claim, we first prove that values of all signatures of all orders can be obtained from

the signature vector (which only include positive signatures.) This vector eventually specifies the

function)(Xf uniquely for all nBX ∈ .

Lemma 3: Values of all kth-signatures can be uniquely obtained from the (k-1)th-signatures and

positive kth-signatures.

Proof: Given all (k-1)th-signatures and positive kth-signatures we want to prove that all kth-

signatures can be computed. A kth-signature in general can be denoted by || qf where

k

k

ppp xxxq ααα L2

2

1

1
= , },,2,1{ ni K∈α and Bpi ∈ . The proof is by induction on the number of negative

 17

literals of k

k

ppp xxxq ααα L2

2

1

1
= denoted by qn . The value of qn ranges from 0 to k . For 0=qn , the

cube is positive and since positive kth-signatures are given, the claim is correct for 0=qn .

Assume that it is correct for 1−=mnq i.e., all kth-signatures associated with cubes of 1−m

negative literals are computed. Now we will compute the kth-signatures associated with cubes of

m negative literals. Let’s denote such a cube by k

k

i

i

i

i

i

i

pppppp xxxxxx αααααα LL 1

1

1

1

2

2

1

1

+

+

−

−
 . Assume that i

i

pxα is

one of the negative literals i.e., 0=ip . Let’s denote this cube by k

k

i

ii

i

i

ppppp xxxxxxq αααααα LL 1

1

1

1

2

2

1

1

0
0

+

+

−

−
= .

Accordingly we create the cube k

k

i

ii

i

i

ppppp xxxxxxq αααααα LL 1

1

1

1

2

2

1

1

1
1

+

+

−

−
= in which the phase of

i
xα is

positive. One can easily verify that ||||||
01 qqq fff =+ where k

k

i

i

i

i

ppppp xxxxxq ααααα LL 1

1

1

1

2

2

1

1

+

+

−

−
= . Hence

||
0qf can be computed as ||||||

10 qqq fff −= Since q is a (k-1)-literal cube and 1q contains 1−m

negative literals the claim is proven by induction. ■

Theorem 2: For a function)(Xf , signature vector fV uniquely and completely specifies

function)(Xf .

Proof: Since the signature vector includes all positive signatures, it can be seen that the values of

|| qf can be computed for all possible cubes q by using induction on the number of literals in q

and the previous Lemma. However, for this proof, we are only interested in n-literal cubes since

they deliver sufficient information to specify function f for all points n
n Bppp ∈),,,(21 K i.e.,

||),,,(21 qn fpppf =K where np
n

pp xxxq L21
21= . ■

Based on this theorem, the necessary and sufficient condition for two functions)(Xf and)(Xg

to be equal is that |||| qq gf = for all positive cubes q (which are presented in the signature

vectors of)(Xf and)(Xg .)

In this part we investigate the implication of this theorem on the general symmetry relation.

Consider NP transformation T which corresponds to the symmetry relation)()(TXfXf = . Let’s

denote)()(TXfXg = . Since functions)(Xf and)(Xg are equal, their signature vectors are

equal i.e., |||| qq gf = for all
k

xxxq ααα L
21

= . The cofactors qf and qg can be expressed as

121
)(=====

kxxxq Xff
ααα L and 1)()()(11 212121

)()()(============ ===
kkk xTxTxTxxxxxxq XfTXfXgg

ααααααααα LLL .

 18

Let’s denote)(ii xTt = and
k

tttqT ααα L
21

)(= for
k

xxxq ααα L
21

= . The necessary and sufficient

condition for NP transformation T to be symmetric is QqffTXfXf qTq ∈∀=⇔= ||||)()()(.

Notice that if)()(TXfXf = , then ||||)(qTq ff = , where q denotes any cube (not only a positive

cube.) A result of the previous theorem is that it proves that a sufficient condition for

)()(TXfXf = is that ||||)(qTq ff = for positive cubes only. We will revisit these results in future

sections.

V Canonical form
In this section we present a canonical form for Boolean matching under NPN-equivalence. As

was proved in previous chapters, NPN-equivalence is an equivalence relation that partitions the

set of all single output Boolean functions into equivalence classes. Let’s consider an NPN-

equivalence class by)}(,),(),({ 21 XfXfXfE mK= . Every two functions in E are symmetric to

each other, i.e.,)()()(,)(XfXfEXfEXf jiji ≡⇒∈∈ and any function symmetric to some

function in E is also in E . The Boolean matching problem under NPN-equivalence is reduced to

that of verifying whether or not two target Boolean functions,)(Xf and)(Xg , belong to the

same NPN-equivalence class.

In the canonical form based Boolean matching, a unique representative is selected for every class

called the NPN-representative of the class. Let’s denote the NPN-representative of a class E by

)(XF .

Definition: The NPN-representative)(XF of a class E is defined as the NPN-representative (or

the canonical form) of all functions)(,),(),(21 XfXfXf mK in E . Let’s denote the canonical

form of a function)(Xf by)(XF (i.e., we use capital letters for canonical forms.) We have:

)()()()(21 XFXFXFXF m==== K . Notice that)(XF is one of)(,),(),(21 XfXfXf mK i.e.,

EXF ∈)(.

The NPN-representative)(XF is selected among)(,),(),(21 XfXfXf mK based on some criteria

that makes)(XF unique. For example, one way is to define a total ordering for functions

)(,),(),(21 XfXfXf mK and select the maximum or minimum (with respect to the defined order)

as the NPN-representative (canonical form.)

 19

Observation: Two functions)(Xf and)(Xg are NPN-equivalent if and only if they have the

same canonical form i.e.,)()()()(XGXFXgXf =⇔≡ .

The NPN-equivalence class that includes a function)(Xf , denoted by fE is the set of all

functions that are NPN-equivalent to)(Xf . Hence fE can be created by applying all NP

transformations and output phase assignments to)(Xf i.e., },)({ n
q

f TBqTXfE Γ∈∈= .

The number of different NP transformations and output phase assignments to)(Xf is

!2|||| 1nB n
n

+=Γ× ; However || fE is in general less than |||| nB Γ× because of the symmetry

relations discussed in previous chapters.

Since)(Xf and)(XF are NPN-equivalent, there is an NP transformation T such that

)()(XFTXf q
q =∃ ; however, T is not the only such NP transformation.

Definition: We call the set of NP transformations T such that)()(XFTXf q
q =∃ , the canonicity-

producing (CP) transformations :)}()(,{ XFTXfqTC q
nf =∃Γ∈= .

We present an algorithm to compute the canonical form of a given NPN-equivalence class as

well as the set of all CP transformations fC . We will show that the set of symmetry-producing

(SP) transformations fS can be easily obtained from fC . The importance of identifying all NP

transformations in fS was explained in the previous section.

For any set nS Γ⊂ of NP transformations and transformation nT Γ∈ , we define TS and ST as

follows: }{ STTTTS ∈′′= and }{ STTTST ∈′′= . If nS Γ⊂ is a subgroup, then TS is called the

left coset of S determined by T and ST is called the right coset of S determined by T .

Lemma 4: For function)(Xf , let T and T ′ be two CP transformations. 1−′TT is a SP

transformation i.e., fff STTCTCT ∈′⇒∈′∈ −1, .

Proof: Clearly,)()(, XFTXfqCT q
f =∃⇒∈ and)()(, XFXTfqCT q

f =′′∃⇒∈′ ′ which result in

f
qqqq STTXTTfXfXTfTXf ∈′⇒′=⇒′= −−′⊕′ 11)()()()(. ■

Theorem 3: For function)(Xf and any CP transformation T , fC is the right coset of fS

determined by T i.e., TSCCT fff =⇒∈ .

 20

Proof: First we prove that ff CTTST ∈⇒∈ 11 :

TTTSTTST ff ′=∈′∃⇒∈ 11 ,

)()()()()(, 1 TXfTXTfXTfXfXTfqST qq
f

′′ =′=⇒=′′∃⇒∈′

)()(, XFTXfqCT q
f =∃⇒∈

f
qqq CTXFTXfXTf ∈⇒==′⊕

11)()()(

Now we prove that TSTCT ff ∈⇒∈ 11 . Based on the previous Lemma

TSTTSTTTSTTCTCT fffff ∈⇒∈⇒∈⇒∈∈ −−
1

1
1

1
11 , ; hence, TSC ff = . It can be easily

verified that fffff STTSTCTSC ==⇒= −− 11 ; hence, for any fCT ∈ , 1−= TCS ff which

shows that fS can be easily obtained from fC . ■

The set of SP transformations, fS , includes transformations corresponding to simple

symmetries. In the algorithm that we will present next to identify CP transformations fC , first

simple symmetries are identified since the computational complexity is relatively lower than that

of general symmetries. This information is used efficiently to compute fC . Next based on fC

the remaining SP transformations of fS are computed.

V.1 The Proposed Canonical Form
In this part the canonical form used in this paper is formally defined. As mentioned earlier,

among functions of an NPN-equivalence class the NPN-representative is selected based on a

criterion that makes the representative unique among all functions in the class.

We previously defined the signature vector for a function and proved that it is unique for every

function. We will define a total ordering for functions based on the lexicographical comparison

of their signature vector.

Definition: Consider two functions)(Xf and)(Xg with signature vectors fV and gV ,

respectively. The order relation ‘p ’ between)(Xf and)(Xg is defined as:

)()(XgXfVV gf pp ⇔ . The relation)()(XgXf f means that)()(XgXf f or)()(XgXf = .

This ordering is well defined since we proved that)()(XgXfVV gf =⇔= . An important

aspect of the signature vector is that it enables us to compare functions even if they are not

 21

functions of the same variable vector. The only requirement is the size of their variable vectors

should be the same. Consider functions)(Xf and)(Yg where),,,(21 nxxxX K= and

),,,(21 nyyyX K= , then f and g are equal (or equivalent) if their signature vectors are equal

i.e., gf VVgf =⇔= . Also for the order relation ‘p ’, gf VVgf pp ⇔ . Using this order

relation, the NPN-representative (canonical form) is defined as follows.

Definition: The NPN-representative of a class { })(,),(),(21 XfXfXf mK of functions is a

function)(XF which is maximal with respect to the order relation, ’f ’ i.e.,

)()(},,,2,1{ XfXFmi ifK∈∀ .

V.2 Properties of the Canonical Form
In this section we will observe some important properties of the proposed canonical form that are

used for the purpose of computing the canonical form.

Theorem 4: Let)(XF be the canonical form of an NPN-equivalence class E .)(XF is greater

than or equal to that of its complement)(XF (which may also be denoted by)(XF) i.e.,

)()(XFXF f .

Proof: Obviously)(XF and)(XF are NPN-equivalent, Therefore, they belong to the same

NPN-equivalence class i.e., EXFXFXFEXF ∈⇒≡∈)()()(,)(.

Since)(XF is the NPN-representative of class E , it is maximal i.e.,)()(XFXF f . Clearly,

the equality in not possible; hence,)()(XFXF f . ■

Corollary: |)(||)(| XFXF ≥ .

Proof: Clearly FF VVXFXF ff ⇒)()(where FV and FV are the signature vectors of

)(XF and)(XF respectively and |)(| XF is the zeroth signature and the first entry of

signature vector FV and |)(| XF is the first entry of FV . Since FF VV f is based on

lexicographic comparison, |)(||)(| XFXFVV FF ≥⇒f . ■

Let
ixF denote the cofactor of function)(XF with respect to ix where),,,(21 nxxxX K= . (

ixF

is regarded as a function of),,,,,(111 niii xxxxX KK +−= .) Signatures in the signature vector ixFV

of
ixF are in the form of || qF where cube q always include literal ix . (We will use the

 22

notation qxi ∈ to indicate that literal ix is included in cube q .) Obviously,

ixF
qi VFqx ∈⇔∈ || . All signatures that exist in the signature vector of

ixF will also exist in the

signature vector of F i.e., F
q

F
q VFVF ix ∈⇒∈ |||| .

It is important to point out that the order in which signatures || qF appear in ixFV is maintained

in FV . To state this fact formally let’s denote the location of || qF in FV by |)|,(q
F FVL . We

have }2,,3,2,1{|)|,(n
q

F FVL K∈ . For example 1|)|,(+= iFVL
ix

F and 1|)|,(=
i

ix
x

F FVL

since ||
ixF is the 1+i st entry of FV and the first entry of ixFV .

Recall that in the previous chapter, when defining the signature vector, we defined an ordering

‘p ’ between cubes q of a given function)(XF . One can verify that this ordering has the

following important property. For any two cubes 1q and 2q that contain literal ix i.e., 11 qxq i ′=

and 22 qxq i ′= , we have 2121 qqqq pp ⇔′′ . If the cubes are ordered based on the ordering ‘p ’,

then),(qFL will be location of q in that ordering. From this argument it can be resulted that

|)|,(|)|,(q
F

q
F FVLFVLqq ′<⇔′p . Therefore, if two signatures || qF and || qF ′ exist in both

FV and ixFV (i.e., qxi ∈ and qxi ′∈) then the order in which they appear in FV and ixFV is

the same i.e., if || qF appears before || qF ′ in ixFV , then || qF will appear before || qF ′ also in

ixFV and vice versa i.e., |)|,(|)|,(|)|,(|)|,(q
F

q
F

q
F

q
F FVLFVLFVLFVL ixix

′′ <⇔< .

Theorem 5: Let)(XF be the canonical form of an NPN-equivalence class E . The cofactor of

)(XF with respect to the positive phase literals ix is greater than or equal to that of negative

literals ix i.e.,
ii xx FFni fK },,,2,1{∈ .

Proof: The proof is by contradiction. Assuming that
ii xx FF p for some },,2,1{ ni K∈ , we

prove that)(XF cannot be the canonical form. We will show that if
ii xx FF p then negating ix

will transform)(XF to another function)(XF ′ such that FF f′ which is clearly a

contradiction. Consider the NP transformation:

),,,,,,,(),,,,,,,(11211121 niiiniii xxxxxxxxxxxxT KKKK +−+− = .

 23

We create a new function)()(TXFXF =′ . Clearly)(XF and)(XF ′ are NPN-equivalent,

thus EXF ∈′)(since EXF ∈)(. Previously, we defined the NP transformation on cubes.

Using this definition, ||||)()()(qxTqx ii
FFTXFXF =′⇒=′ . Based on the definition of

transformation T , if a cube q does not include ix i.e., qxi ∉ , then qqT =)(. Therefore,

||||)()()(qxqxiii ii
FFqxqTxTqxT =′⇒== . We made the assumption that

ii xx FF p . The

signatures of ixFV are of the form || qxi
F where q is a positive cube not including ix (qxi ∉).

Let 1q be the first cube (not including ix i.e., 1qxi ∉) for signature vectors ixFV and ixFV that

||||
11 qxqx ii

FF < . Based on the previous Theorem for signature vectors FV and FV ′ , 1qxi will

also be the first cube (including ix) such that ||||
11 qxqx ii

FF ′< and for all cubes qxi before 1qxi

i.e., 1qxqx ii p (or equivalently 1qq p), |||| qxqx ii
FF ′= . (Notice that since)(XF and)(XF ′ are

defined over the same variable vector X for all cubes q , |)|,(|)|,(q
F

q
F FVLFVL ′= .)

Signatures in FV ′ are of the form || qF ′′ . In addition, ||||)()()(qTq FFTXFXF ′′ =′⇒=′ . If a cube

q′ does not include ix then qqT ′=′)(; Thus ||||||)(qqTq FFF ′′′ ==′ . Now if a signature || qF ′′

from FV ′ is different from the corresponding signature || qF ′ from FV , then q′ must include ix

i.e., qxq i=′ . Based on these arguments, for signature vectors FV and FV ′ , 1qxi will be the

first cube among all cubes (including and not including ix) that ||||
11 qxqx ii

FF ′< (for all cubes q

before 1qxi i.e., 1qxq ip , |||| qq FF ′= .) This condition results in FF ′p which is a

contradiction since)(XF is the NPN-representative of its class E that also contains)(XF ′

(the relation FF ′ f must be satisfied.) Hence the assumption
ii xx FF p must be wrong which

proves that
ii xx FF f . However if

ii xx FF = then)(XF will be independent of ix . Therefore,

ii xx FF f . ■

Corollary: | | ||
ii xx FF f .

Proof: Since ||
ixF and ||

ixF are the first entries of the signature vectors of
ixF and

ixF ,

|| | |
iiii xxxx FFFF ≥⇒f . ■

 24

Let’s use Q to denote the set all positive cubes created from conjunction of some literals among

nxxx ,,, 21 K . Also let iQ denote the set of cubes that do not include ix i.e., }{ qxQqQ ii ∉∈= .

The set ijQ is defined as the set of cubes that do not include ix and jx i.e.,

},{ qxqxQqQ jiij ∉∉∈= . It is easy to see that jiij QQQ I= . Similarly ijkQ is defined as

kjiijk QQQQ II= .

Since we include || f in the signature vector of function)(Xf , we define the cube {}0 =q

which contains no literals. Notice that ff q =
0

 and iQqi ∈∀ 0, .

In the following we study the symmetry of variables in the canonical form.

Theorem 6: Let)(XF be the canonical form of an NPN-equivalence class E and q′ represent

a cube that does not include literals ix and jx (ijQq ∈′). For every such cube, ijQq ∈′ , || qxi
F ′

and || qx j
F ′ are equal if and only if ix and jx are symmetric i.e.,

jiqxqxij xxFFQq
ji

≡⇔=∈′∀ ′′ |)|||,(.

Proof: We will prove that if signatures || qxi
F and || qx j

F are equal, then swapping ix and jx will

not change the value of the signature vector of)(XF and vice versa. Let’s denote the NP

transformation that swaps ix and jx by T i.e.,),,,,,,(),,,,,,(11 nijnji xxxxxxxxT KKKKKK =

Furthermore, let’s denote)()(TXFXF =′ . We will investigate the relation between signature

vectors of functions)(XF and)(XF ′ . The cubes q appearing in the signature vector of)(XF

(or)(XF ′) can be classified into four types. For ijQq ∈′ , the following relations are satisfied:

qqT ′=′)(, qxqxT ji ′=′)(, qxqxT ij ′=′)(and qxxqxxT jiji ′=′)(. As we can see, cubes of the

form q′ and qxx ji ′ are invariant under NP transformation T . Recall that for a cube q ,

||||)()()(qTq FFTXFXF =′⇒=′ ; therefore, the signatures of the signature vectors FV and FV ′

that correspond to cubes of the form q′ and qxx ji ′ are always equal. The signature vectors FV

and FV ′ are equal if and only if |||| qq FF ′= for every cube q ; therefore,

FF
qxqxqxqx VVFFFF

jjii

′
′′′′ =⇔′=′= ||||&|||| . However, from ||||)(qTq FF =′ , it can be concluded that

|||| qxqx ji
FF ′′ =′ and |||| qxqx ij

FF ′′ =′ , which combined with the previous relation, results in

 25

|||| qxqx ji
FFFF ′′ =⇔′= . Since)()(TXFXF =′ and T only swaps ix and jx , FF ′= means that

ix and jx are symmetric. Therefore, jiqxqx xxFF
ji

≡⇔= ′′ |||| . ■

Theorem 7: Let)(XF be the canonical form of an NPN-equivalence class E . Assume that ix

and jx (with ji <) are not symmetric. There exists a cube ijQq ∈1 such that ||||
11 qxqx ji

FF > and

for every cube ijQq∈ before 1q (i.e., 1qq p), || qxi
F and || qx j

F are equal i.e.,

||||,
111 qxqxij ji

FFQq >∈∃ and ||||, 1 qxqxij ji
FFqqQq =⇒∈∀ p .

Proof: Let ijQq ∈1 be the first cube in ijQ that ||||
11 qxqx ji

FF ′′ ≠ . From the previous Theorem since

ix and jx are not symmetric, such a cube exists. We will prove that ||||
11 qxqx ji

FF > . The proof is

by contradiction. We will prove that if ||||
11 qxqx ji

FF < , then swapping ix and jx in)(XF will

result in another function EXF ∈′)(with FF f′ which is a contradiction since)(XF is the

NPN-representative of E . Let’s denote the NP transformation that swaps ix and jx by

),,,,,,(),,,,,,(11 nijnji xxxxxxxxT KKKKKK = . Also let’s denote)()(TXFXF =′ . Now we

compare signatures || qF and || qF ′ of signature vectors FV and FV ′ . Assuming that q′

generally denotes a cube not including ix and jx i.e., ijQq ∈′ , signatures || qF and || qF ′ are

equal for cubes q of the form of qq ′= or qxxq ji ′= i.e., ||||||)(qqTq FFF ′′′ ==′ and

||||||)(qxxqxxTqxx jijiji
FFF ′′′ ==′ . Hence, FV and FV ′ may only be different in signatures with cubes

of the form qxq i ′= or qxq j ′= . Notice that ||||||)(qxqxTqx jii
FFF ′′′ ==′ and

||||||)(qxqxTqx ijj
FFF ′′′ ==′ . Hence, ||||||||

1111 qxqxqxqx iiji
FFFF ′<⇒< and

||||||||,, 1 qxqxqxqxij iiji
FFFFqqQq ′=⇒=∈∀ p which proves that FF VV f′ . Since

FFVV FF ff ′⇒′ results in a contradiction; Thus, ||||
11 qxqx ji

FF > must be correct. ■

Corollary: If for the canonical form)(XF , ix and jx (ji <) are not symmetric, then

||||
ji xx FF ≥ .

Proof: Since {}0 ∈q is the first cube in ijQ , ||||
00 qxqx ji

FF ≥ In addition, since
ii xqx FF =

0
 and

jj xqx FF =
0

, it can be seen that ||||
ji xx FF ≥ . ■

 26

Corollary: For the case that ||||
ji xx FF = , let },{ jik ∉ be the first number that ||||

kjki xxxx FF ≠ ;

if such k exists, ||||
kjki xxxx FF > .

Proof: Notice that cubes of the form kk xq = where },{ jik ∉ belong to ijQ . For },{, jilk ∉ ,

lk qqlk p⇒< . ■

Another way of describing this result is,),(),(ijVjiV FF f where),(jiV F is a partial

signature vector defined as,

 |)|,|,||,|,|,||,|,|,||,||,(|),(
111121 nijijiiiiiiii xxxxxxxxxxxxxxx

F FFFFFFFFjiV KKK
+−+−

=

Similarly),(ijV F is defined as,

 |)|,|,||,|,|,||,|,|,||,||,(|),(
111121 njjjjjijijjjj xxxxxxxxxxxxxxx

F FFFFFFFFijV KKK
+−+−

=

Theorem 8: Let)(XF be the canonical form of an NPN-equivalence class E . If for ji < , ix

and jx are symmetric in function)(XF , then all other kx where jki << are also symmetric to

ix and jx i.e., jiiji xxxxx ≡≡≡⇒≡ + L1 .

Proof: The proof is by contradiction. Assume that there exist kx (where jki <<) that is not

symmetric to ix and jx . Let’s denote the NP transformation that swaps ix and jx by

),,,,,,(),,,,,,(11 nijnji xxxxxxxxT KKKKKK = . Since ix and jx are symmetric,

)()(XFTXF = . Let ikQq ∈1 be the first cube in ikQ such that ||||
11 qxqx ki

FF ≠ . Based on the

previous Theorem, since ki < , ||||
11 qxqx ki

FF > and ||||,
111 qxqxik ki

FFqqQq =⇒∈∀ p . In addition,

let ikQq ∈2 be the first cube in kjQ that ||||
22 qxqx kj

FF ≠ . Based on the previous Theorem, since

jk < , ||||
22 qxqx jk

FF > and ||||,
222 qxqxkj jk

FFqqQq =⇒∈∀ p . Cube ikQq ∈1 does not include ix

and kx . However, it may or may not include jx . Similarly cube kjQq ∈2 may or may not include

ix . Hence four possibilities exist. We will investigate all cases. First let’s assume that 1qx j ∉

and 2qxi ∉ i.e., ijkQqq ∈21, which results in 11)(qqT = and 22)(qqT = since ijQqq ∈21, . Now

since)()(XFTXF = , ||||||
111)(qxqxTqx jii

FFF == . From the definition of 1q ,

||||||||
1111 qxqxqxqx kjki

FFFF >⇒> . Therefore, based on the definition of 2q and since jkQq ∈1 , 1q

 27

should satisfy the relation 12 qq p because if 21 qq p , then ||
1qx j

F and ||
1qxk

F must be equal.

Therefore, again based on the definition of 1q , ||||,
22212 qxqxik ki

FFQqqq =⇒∈p . However,

22)(qqT = since ijQq ∈2 , and therefore, ||||||
222)(qxqxTqx jii

FFF == which combined with the

previous relation results in ||||
22 qxqx kj

FF = . This is clearly a contradiction since based on the

definition of 2q , ||||
22 qxqx jk

FF > . Hence our last assumption (i.e., 1qx j ∉ and 2qxi ∉) must be

incorrect. Next we investigate the case 1qx j ∈ and 2qxi ∉ . Clearly,

1111 , qxqQqqx jijkj ′=∈′∃⇒∈ . From the definition of 1q , ||||||||
1111 qxxqxxqxqx jkjiki

FFFF ′′ >⇒> .

Since ijQq ∈′1 , 11)(qqT ′=′ , ||||||
111)(qxxqxxTqxx ikjkjk

FFF ′′′ == which combined with the previous

relation results in ||||
11 qxxqxx ikij

FF ′′ > . Therefore, based on the definition of 2q and since

jki Qqx ∈′1 , 1qxi ′ should satisfy the relation 12 qxq i ′p . Since ji p , 11 qxqx ji ′′ p which combined

with 12 qxq i ′p results in 12 qxq j ′p . Notice that 11 qqx j =′ ; hence, 12 qq p . Therefore, again

based on the definition of 1q , ||||,
22212 qxqxik ki

FFQqqq =⇒∈p . However 22)(qqT = since

ijQq ∈2 , and therefore, ||||||
222)(qxqxTqx jii

FFF == which combined with the previous relation

results in ||||
22 qxqx kj

FF = . This is a contradiction since based on the definition of 2q ,

||||
22 qxqx jk

FF > . Hence the assumption (i.e., 1qx j ∈ and 2qxi ∉) is also incorrect. Similarly one

can prove that 1qx j ∉ and 2qxi ∈ leads to contradiction. Hence the only remaining option is

1qx j ∈ and 2qxi ∈ which in the following we will show that results in a contradiction. Clearly,

1111 , qxqQqqx jijkj ′=∈′∃⇒∈ and 2222 , qxqQqqx iijki ′=∈′∃⇒∈ . From the definition of 1q ,

||||||||
1111 qxxqxxqxqx jkjiki

FFFF ′′ >⇒> . Since ijQq ∈′1 , 11)(qqT ′=′ and therefore

||||||
111)(qxxqxxTqxx ikjkjk

FFF ′′′ == which combined with the previous relation results in

||||
11 qxxqxx ikij

FF ′′ > . Therefore, based on the definition of 2q and since jki Qqx ∈′1 , 1qxi ′ should

satisfy the relation 21 qqxi f′ because if 21 qqxi p′ then ||
1qxx ij

F ′ and ||
1qxx ik

F ′ must be equal.

Therefore, since 22 qxq i ′= , 2121 qxqxqqx iii ′′⇒′ ff . Based on one of important properties of the

order relation that we defined between cubes, 212121 qxqxqqqxqx jjii ′′⇒′′⇒′′ fff which

 28

combined with 11 qxq j ′= results in 21 qxq j ′f . Therefore, again based on the definition of 1q ,

||||,
22221 qxxqxxikjj jkji

FFQqxqxq ′′ =⇒∈′′f . However, ||||
22 qxqxx jji

FF =′ ; also 22)(qqT ′=′ since

ijQq ∈′2 . Therefore, ||||||||
2222)(qxqxxqxxTqxx kikjkjk

FFFF === ′′′ which combined with the previous

relation results in ||||
22 qxqx kj

FF = . This is clearly a contradiction since based on the definition of

2q , ||||
22 qxqx jk

FF > . Hence, the statement that “there exist kx where jki << that is not

symmetric to ix and jx ” is incorrect, which proves that jii xxx ≡≡≡ + L1 . ■

This Theorem indicates that for the canonical form)(XF , symmetric variables are positioned

consecutively in),,,(21 nxxxX K= i.e., variables will be arranged as:

444 8444 76
LL

444 8444 76
L

48476
L

k

kk

C

nnnnn

C

nnnn

C

n xxxxxxxxx ,,,,,,,,,,,, 212121

2

2111

1

1 +−+−+++ where kCCC ,,, 21 K are symmetry classes

and || ii Cn = .

VI Computing the canonical form
Given a function)(Xf the objective is to find its canonical form)(XF and the corresponding

set of CP transformations)}()(,{ XFTXfqTC q
nf =∃Γ∈= . Equivalently the set of CP

transformations can be expressed as:)}()(,,{ XTfTXfqTTC q
nnf ′=∃Γ∈′∀Γ∈= .

Previous Theorems impose some conditions on the canonical form)(XF . For a CP

transformation T ′ such that)()(XFXTf q
q =′∃ , we project the conditions on)(XF to conditions

on T ′ . These conditions significantly limit the search space (for fC) since

)()()()(1XTFXfXFXTf qq −′=⇒=′ .

Let’s denote the inverse of T ′ by 1−′= TT P
π where),,,(21 npppP K= . Let’s also denote the

variable after phase assignment by PXX =~ (i.e. ip
ii xx =~) for simplicity. With this notation,

)~,,~,~()~()()()2()1(n
PP xxxXXXT ππππ ππ K=== . Based on the relation)()(XTFXf Pq

π= the

conditions of previous Theorems are translated as follows.

The first condition is on the output phase assignment q . Since FF f , phase assignment q

should satisfy the condition qq ff f . Again for simplicity we denote qff =~ . The second

 29

condition is on phase assignment P which follows from
ii xx FF f and translates to

ii xx ff ~~
~~

f

(or
ip

i
ip

i xx
ff ~~

f). The next condition is as follows. If for ji < ,)(
~

ixπ and)(
~

jxπ are symmetric in

function)(Xf (or)(~ Xf), then all other)(
~

kxπ where jki << are also symmetric to)(ixπ and

)(jxπ i.e.,)()1()()()(
~~~~~

jiiji xxxxx πππππ ≡≡≡⇒≡ + L . 

Another important constraint is that if )(
~

ixπ  and )(
~

jxπ  are symmetric in function )( Xf  

(or )(~ Xf ), then ),(),(
~~

ijVjiV ff
ππ f  where ),(

~
jiV f

π  is a partial signature vector defined as 

 |)~|,|,~||,~|,|,~||,~|,|,~||,~(|),(
)()()1()()1()()1()()1()()1()()(

~~~~~~~~~~~~~
~

nijijiiiiiii xxxxxxxxxxxxx
f fffffffjiV

ππππππππππππππ KKK
+−+−

= ,

 |)~|,|,~||,~|,|,~||,~|,|,~||,~(|),(
)()()1()()1()()1()()1()()1()()(

~~~~~~~~~~~~~
~

njjjjjijijjj xxxxxxxxxxxxx
f fffffffijV

ππππππππππππππ KKK
+−+−

=  

Symmetry classes of variables will be arranged as: 

 
44 844 76

LL
444 8444 76

L
4484476

L

k

k

C

nnn

C

nnn

C

n xxxxxx )()1()()1()()1(
~,,~,,~,,~,~,,~

2

211

1

1 ππππππ +−++  where iC  with in  members is a maximal 

symmetry class for function )(~ Xf . The first order signatures |~|
)(

~
ixf

π
 are sorted non-

increasingly. 

|~||~||~||~||~||~|
)()1()21()11()1()1(

~~~~~~
nknnnnnn xxxxxx ffffff

ππππππ
==>>==>==

+−++
LLLL

One can use this property to reduce the complexity of identifying symmetry classes since a

necessary condition for symmetry of)(
~

ixπ and)(
~

jxπ is the equality of |~|
)(

~
ixf

π
 and |~|

)(
~

jxf
π

 i.e.,

|~||~|~~
)()(

~~)()(ji xxji ffxx
ππππ =⇒≡ .

These conditions on 1−′= TT P
π are necessary conditions for f

P CT ∈−1)(π . Hence, if we define

inverse of fC as }{ 11
fnf CTTC ∈Γ∈= −− , then these are necessary conditions for 1−∈ f

P CTπ .

An important property of the CP transformation set fC is as follows. If for two NP

transformations T and T ′ satisfy the inequality)(~)(~ XTfTXf ′f , then T ′ is definitely not a

CP transformation i.e., fCTXTfTXf ∉′⇒′)(~)(~
f .

These constraints are effectively used to identify CP transformations fC as described in the

following.

 30

VI.1 The Compute_Cf Algorithm

The proposed algorithm, called Compute_Cf, uses signatures of function)(Xf to compute the

CP transformations on inputs and corresponding output phase assignments. However, at the

beginning, only 0th, 1st and if necessary 2nd signatures are used. In most cases, 1st-signatures

alone determine a considerable portion of the inequalities required to identify the desired NP

transformation. Otherwise, as will be explained later, the remaining comparisons are performed

using 2nd-signatures. Similarly higher order signatures are used only if they become necessary.

Experimental evidence shows that in the great majority of cases, a signature inequality occurs for

the low order signatures (0th, 1st and 2nd signatures.) Intuitively, the reason is that the lower order

signatures depend on higher number of minterms of the function, and thus, contain more

information about the function. For example, a 1st-signature depends on 2n-1 minterms, which is

one half of the whole Boolean space (2n minterms) whereas a 2nd-signature depends on one-forth

of all minterms (2n-2 minterms.) Hence, the 1st-signatures are the most powerful and effective

signatures. The 2nd-signatures are the next most effective signatures and so on. The reader will

observe that this arrangement of the proposed signature vector minimizes the computational

complexity.

The first step of the Compute_ fC algorithm is to identify the output phase assignment. If

|||| ff ≠ , then the output phase q can be uniquely determined from the relation |||| qq ff > .

However, if |||| ff = , the output phase cannot be determined by using only 0th signatures. In

this case (|||| ff =) the output phase is considered undecided , which is denoted by uq = .

(Thus we have extended the set of acceptable phases }1,0{ to },1,0{ u .) If the output phase is

undecided, it will be determined in subsequent steps of the algorithm. In the end, the algorithm

will return a value in }1,0{ for the phase. For simplicity we will denote qff =
~ .

In the next step, input phase assignment is performed by using 1st-signatures. First assume that

the output phase is decided i.e., uq ≠ . The opposite case will be discussed later. For variable ix

if |~||~|
ii xx ff ≠ , then ip , the phase of ix , can be uniquely determined by using the relation

|~||~|
ip

i
ip

i xx
ff > . However, if |~||~|

ii xx ff = , ip cannot be determined by using only 1st-signatures in

which case the phase of ix is considered undecided (which is again denoted by upi = .)

 31

Undecided input phases will be determined in subsequent steps of the algorithm. If the output

phase is undecided i.e., uq = , then 1st-signatures are used as follows to determine output and

input phases. The are two possibilities for the final value of q i.e., 0=q or 1=q . Each

possibility for q results in input phase assignments)(qpi (where q in the parenthesis indicates

the dependence of ip on q) based on the following relation, ||||
)()(

q

x

q
x qip

i
qip

i
ff > and

uqpff i
q

x
q

x ii
=⇒=)(|||| . Notice that even if uqpi =)(, the value of ||)(

q
x qip

i
f will be unique i.e.,

||||||)()(
q

x
q

x
q

xi iiqip
i

fffuqp ==⇒=

Next we sort signatures ||)(
q

x qip
i

f in a non-increasing order. Let qπ be a permutation that results

in such an ordering i.e., ||||||
)()2()1(

~~~
q

x
q

x
q

x nqqq
fff

πππ
≥≥≥ L  where )(~ qp

ii
ixx =  for simplicity. Let 

)(qV  denote the vector comprising of the ordered 1st-signatures i.e., 

|)|,|,||,(|)(
)()2()1(

~~~
q

x
q

x
q

x nqqq
fffqV

πππ
K= . Assuming that q is the output phase assignment that

results in the canonical form, one can easily see that)(qV consists of 2nd to (1) stn + entries of

the signature vector of the canonical form of)(Xf . (The first entry is |||| ff = .) Now if

)()(qVqV ≠ , then q must satisfy the following relation:)()(qVqV f since the canonical

form has the maximal signature vector. This relation uniquely determines the output phase

assignment q unless)()(qVqV = in which case the computation of q is again postponed to the

subsequent steps of the algorithm.

Let’s denote a variable after phase assignment as jp
jj xx =~ . In the next step, symmetry classes of

variables are determined. A necessary condition for ji xx ~~ ≡ is |~||~| ~~
ji xx ff = ; therefore the

symmetry check is performed for ix~ and jx~ only if |~||~| ~~
ji xx ff = . If the phases of variables ix

and jx are undecided, we will determine ix and jx to be symmetric only if they are symmetric

independent of their phases i.e. ji xx ≡ and ji xx ≡ . An example of this situation is when

)(~ Xf depends on ji xx ⊕ .

Based on these symmetry relations, we form the maximal symmetry classes of variables

mCCC ,...,, 21 . Function)(~ Xf will remain invariant under permutations inside a symmetry

 32

class. Based on this fact and since symmetric variables are positioned consecutively, instead of

finding NP transformations on the variables, it is sufficient to search for NP transformations on

classes mCCC ,...,, 21 , which will in turn greatly reduce the size of search space. In fact, this is

a major advantage of the proposed technique compared to previous approaches.

The objective is to determine all members of fC . Obviously, if an NP transformation T is a

member of fC and fST ∈′ , then the transformation TT ′ is also a member of fC .

(Recall that fS is the set of SP transformations i.e.,)()(XTfXfST q
qf ′=∃⇔∈′ .)

Let’s denote the subgroup of SP transformations that correspond to simple symmetry of variables

by W . An example of a member of W is the NP transformation that swaps variables ix and jx .

Notice that W also includes the cascades of NP transformations that correspond to simple

symmetry of variables i.e., W is closed with respect to the cascade operation:

WTTWTWT ∈′⇒∈′∈ , . Obviously fSW ⊂ and also ff CTWCT ⊂⇒∈ . Thus, to avoid

computational redundancy, the proposed algorithm will return only one member of TW since

given an NP transformation fCT ∈ , one can easily obtain all members of TW .

To explain this matter formally, we define a relation ‘≈ ’ between fCTT ∈′, where TT ′≈

means that there exist a WT ∈′′ such that TTT ′′′= . This relation breaks fC into equivalence

classes. The proposed algorithm returns the set ff CC ⊂′ which contains exactly one member of

each such class i.e., ff CTTWTCT ′∉′⇒∈′′∈ , or equivalently, ff CTTTCT ′∉′⇒′≈′∈ , .

Now we will discuss the concept of NP transformations on classes. The phases of classes that

contain variables with decided phases are defined as 1. The phase assignment for classes that

contain variables with undecided phases is defined as: }|{ ij
p
j

p
i CxxC ii ∈= where ip is to

be determined.

An NP transformation on classes mCCC ,...,, 21 signifies a transformation on variables

),,,(21 nxxxX K= . The cofactor of function)(Xf with respect to any member of a class iC is

a unique function; hence the cofactor of)(Xf with respect to the class iC can be defined as

ji xC ff = for ij Cx ∈ .

 33

Let’s denote the classes after phase assignment as mCCC ~,...,~,~
21 . In the next step, classes are

ordered based on their first signatures. Let π be a permutation on classes that respects the

ordering: |~||~||~|
)()2()1(

~~~
mCCC fff

πππ
≥≥≥ L  (even when the phase of a class, iC~ , is undecided, 

the 1st-signature can be defined since |~||~|
ii CC ff = .) 

If the 1st-signatures are distinct values for mCCC ~,...,~,~
21 , then a unique ordering can be 

achieved since |~||~||~|
)()2()1(

~~~
mCCC fff

πππ
>>> L in which case the algorithm terminates

returning the NP transformation resulting from π and the corresponding phase assignment as a

member of }{ 11
fnf CTTC ′∈Γ∈=′ −− . Otherwise, the classes are placed in k groups such that all

classes inside a group have the same 1st-signature:

444 8444 76
LL

444 8444 76
L

4484476
L

k

k

G

mnn

G

nnn

G

n CCCCCC)()1()()1()()1(
~,,~,,~,,~,~,,~

2

211

1

1 ππππππ +−++

where |~||~||~||~||~||~|
)()1()21()11()1()1(

~~~~~~
mknnnnnn CCCCCC ffffff

ππππππ
======

+−++
LfLfLfL . 

We refer to a group as unresolved if it contains more than one class or the phases of classes in 

that group are undecided. If all the groups are resolved, a unique ordering has been obtained and 

the algorithm terminates. The objective of next steps is to resolve all unresolved groups.  

Let }~,,~,~{ )()1()( ljjj CCCG πππ K+=  be the first unresolved group. Since all groups 121 ,,, −jGGG K  are 

resolved, (i.e., they contain a single class with decided phase,) the ordering of classes up to jG  is 

identified. (The case that 1G  is unresolved is discussed later.)  

Now the 2nd-signatures are used to specify the ordering inside the unresolved groups starting 

with jG . Since 1G  is resolved, }~{ )1(1 πCG = , 2nd-signatures with respect to )1(
~
πC  and )(

~
iCπ  for 

lij ≤≤  (i.e., |~|
)()1(

~~
iCCf ππ

) can be used for phase assignment (if needed) and ordering classes 

)()1()(
~,,~,~

ljj CCC πππ K+  (later on this step will be referred to as iteration 1.)  



 34

If phases of classes )(iCπ  in jG  is undecided, the 2nd-signatures |~|
)()1(

~
iCCf ππ

 and |~|
)()1(

~
iCCf ππ

are 

compared and phase p  for )(iCπ  is decided based on |~||~|
)()1()()1(

~~ p
i

p
i CCCC

ff
ππππ

> . In case of equality of 

the 2nd-signatures, the phase of )(iCπ  remains undecided.  

Next, new values of 2nd-signatures |~|
)()1(

~~
iCCf ππ

 after phase assignment are used to order classes 

)()1()(
~,,~,~

ljj CCC πππ K+  and subsequently regroup these classes i.e., the values of  

)(,),1(),( ljj πππ K+  are updated to respect the following ordering: 

|~||~||~|
)()1()1()1()()1(

~~~~~~
ljj CCCCCC fff

ππππππ
≥≥≥

+
L . Subsequently, jG is split into smaller groups such that

inside each group the 2nd-signatures, |~|
)()1(

~~
iCCf ππ

, are equal. The same procedure (phase

assignment, ordering and regrouping based on |~|
)()1(

~~
iCCf ππ

) is applied to all other unresolved

groups.

Finally, the indices of new groups are properly updated. If after these steps, there still exists

some unresolved group, lG , a similar procedure (called iteration 2) is applied based on 2nd-

signatures with respect to)2(
~
πC and li GC ∈)(

~
π (i.e., |~|

)()2(
~~

iCCf ππ
 assuming 2>l). If needed

iterations 1,,4,3 −jK are applied. If at iteration j, there still exists some unresolved groups and

jG itself is also unresolved, the procedure described below will be used. (This case includes the

case where 1G is unresolved.)

At this point, the values of)1(,),2(),1(−jπππ K have been finalized (so is the value of π for

any other group with only one class). However, the values of)(,),1(),(ljj πππ K+ (group jG) is

not final (since 1st and 2nd signature have not made them distinct.) The final value for)(jπ can

be any value among)(,),1(),(ljj πππ K+ . Finalizing the value of)(jπ to one of

)(,),1(),(ljj πππ K+ is equivalent to splitting }~,,~,~{)()1()(ljjj CCCG πππ K+= to groups }~{)(iCπ and

}~,,~,~,,~{)()1()1()(liij CCCC ππππ KK +− and updating π and indices of groups so these two groups are

represented by }~{)(jj CG π= and }~,,~,~{)()2()1(1 ljjj CCCG πππ K+++ = . Therefore, there are 1+− jl

ways to do this split (1+− jl ways to specify new jG) and if the phase of)(jCπ is undecided,

 35

then there will be two ways to resolve the group, new jG (two phases 1=p and 0=p .)

Consequently, there are 1+−= jlr (or)1(2 +−= jlr) ways to specify and resolve the new

group, jG . All these r cases need to be tracked, since it is unknown which one(s) will result in a

maximal transformation. For each case, the 2nd-signatures, |~|
)()(

~~
ij CCf ππ

, are used to first order

classes inside the unresolved groups among mjj GGG ,,, 21 K++ and then split them based on the

outcome of ordering.

This process will continue for all r cases, recursively (cf. the recursive-resolve algorithm), until

all groups are resolved. All resulting NP transformations sTTT ,,, 21 K resulting from different

cases are stored (where in general rs ≥ since each returns more than one transformation as a

result of the recursion process.)

Because of the way they have been constructed, the inverses of CP transformations are among

},,,{ 21 sTTT K , or equivalently, },,,{ 11
2

1
1

−−−⊂′ sf TTTC K . Hence by using 1st and 2nd signatures, we

have limited the search for a fC′ among all !2 nn transformations of nΓ to search among

},,,{ 11
2

1
1

−−−
sTTT K which is a significantly smaller size space than nΓ . Indeed, our experimental

results confirm that most of the time all members of },,,{ 11
2

1
1

−−−
sTTT K are CP transformations

i.e., },,,{ 11
2

1
1

−−−=′ sf TTTC K , which implies that most of the time only 1st and 2nd signatures are

capable of determining the canonical form.

Members of fC′ among },,,{ 11
2

1
1

−−−
sTTT K are identified based on the fact that fi CT ∈−1 if and

only if)(~)(~ 11 XTfXTf ji
−− f for sj ≤≤1 . This task requires the performing comparison

)(~)(~ 11 XTfXTf ji
−− f repeatedly. The comparison is done based on their signature vectors.

However, before using the signature vectors, the possibility equivalency of iT and jT should be

considered i.e., first the relation)(~)(~ 11 XTfXTf ji
−− = should be checked since in case of equality

their signature vectors will be equal as well. On the other hand, if)(~)(~ 11 XTfXTf ji
−− ≠ as we

proved in a theorem earlier, their signature vectors are different i.e., either)(~)(~ 11 XTfXTf ji
−− f

or)(~)(~ 11 XTfXTf ji
−− p .

 36

The algorithm will return fC′ which in general may contain more than one transformation.

As a result of the way in which these NP transformations are obtained, they all have the same set

of 0th and 1st signatures and some of their 2nd signatures are equal as well. Hence, to avoid

redundancy in comparing)(~ 1XTf i
− and)(~ 1XTf j

− , only signatures that are not already

determined to be equal are generated and compared. Since comparison is done based on

lexicographic comparison of signature vectors, signatures are generated one by one based on

their significance order. Furthermore, only in case of equality, the subsequent signatures are

generated and compared. Experimental results show that for nearly all functions, 1st and 2nd

signatures conclude the comparison of)(~ 1XTf i
− and)(~ 1XTf j

− .

Different steps of the proposed techniques are summarized in the following pseudo-code

descriptions of Compute_Cf and Recursive_Resolve algorithms.

Algorithm Compute_Cf ()(Xf)

Input: A Boolean function)(Xf

Output: The canonical form)(XF and CP transformations fC′ .

Using the 0th-signature perform output phase assignment ;
Using the1st-signatures,
 Assign phases ;
 Create symmetry classes ;
 Order and group classes to groups kGGG ,,, 21 K ;

Recursive_Resolve(fk CGGG ;,,, 21 K) ;

Set the canonical form:)(~)(TXfXF = where fCT ∈ ;

Algorithm Recursive_Resolve (fk CGGG ;,,, 21 K)

Input: Ordered groups (kGGG ,,, 21 K)

Output: The CP transformations fC′

1=i ; {}=′fC ;

while (mi ≤) { // m is the number of classes

 if (iG is resolved) { // }~{)(ii CG π=

 for (all unresolved groups jG){

 use signatures |~|
)()(

~~
li CCf ππ

 (jl GC ∈)(
~
π) to assign phase, order and split jG ;

 update indices of groups and classes;

 37

 }
 1+= ii ;

 } else { // }~,,~,~{)()1()(liii CCCG πππ K+= is not resolved

 // for space limitation assume the phase of }~,,~,~{)()1()(liii CCCG πππ K+= is decided

 for (ij = ; lj ≤ ; ++j) {

 split iG to groups }~{)(jCπ and }~,,~,~,,~{)()1()1()(ljji CCCC ππππ KK +− ;

 update indices of groups and classes: (121 ,,,, +kk GGGG K);

 recursive-resolve (TEMP
fkk CGGGG ′+ ;,,,, 121 K) ;

 if ({}=′fC or)(~)(~ TXfXTf TEMP f) {// TEMP
f

TEMP
f CTCT ′∈′∈ ,

 TEMP
ff CC ′=′ ;

 } else if ()(~)(~ TXfXTf TEMP =) {

 TEMP
fff CCC ′′=′ U ;

 }
 }
 return;
 }
}
// At this point there are m groups and all of them are resolved
T =Transformation resulted from current phase assignment and π ;

}{ 1−=′ TCf ;

return;

In the above description of the algorithm we have not included the case where the output phase

may not be decided by the 0th signature. In such a case, the following steps will have to be

performed for both output phases. Let’s assume that fC′ is the set of NP transformations

returned by the algorithm for f and fC ′′ is returned for f then if)()(XTfXTf ′′′ f (where

fCT ′∈′ and fCT ′′∈′′) then output phase is 1=q , if)()(XTfXTf ′′′ p then 0=q and if

)()(XTfXTf ′′=′ then both phases can result in the canonical form i.e.,)()()(XTfXTfXF ′′=′= .

And the set of CP transformations is set to ff CC ′′∪′ .

The algorithm will return fC′ which in general may contain more than one NP transformations.

Based on the members of fC′ SP transformations (other than transformations corresponding to

simple symmetries) are detected i.e., fff STTCTCT ∈′⇒′∈′′∈ −1, . Equivalently, for an NP

 38

transformation fCT ′∈ , ff SCT ⊂′−1 . The remaining member of fS can be generated by

cascading NP transformation fCT ′−1 of with transformations of W . By cascading we mean

generation every transformation that can be generated by members of fCT ′−1 and W which might

require repeated cascading since the cascade operation is not commutative.

VII Experimental Results
The technique presented above has been implanted as part of the SIS logic synthesis

environment. To reveal the effectiveness of the proposed technique, the proposed canonical form

is computed for all cells in a cell library, containing a large number of complex cells with up to

20 inputs. To asses the efficiency of the method, a large number of randomly generated logic

cells with different input counts were added to the library. Figure 1 shows the worst-case and

average run-times required for computing the canonical form in terms of the number of inputs;

i.e., the height of the nth bars are the worst-case and average runtimes for all n-input cells.

Yellow bars present results provided in reference [10].

Figure 1. Worst-case and average runtimes to compute canonical forms

The run-times in this Figure 1 (Y-axis) are in microseconds and include data for cells with more

than five inputs. This is because run-times for cells with as few as five inputs are too small (less

than 1µ-sec) to be discernible. As an example the worst-case 20-input cell was a multiplexer

0

50

100

150

200

250

300

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Average run-time
Worst-case run-time
Reference 10

 39

with four select inputs for which the algorithm takes 240 microseconds to compute its canonical

form.

These results show a major improvement in run-time over previous approaches [9][10]. (Notice

that reference [9] does not handle complementation of inputs and output and reference [10]

entails enormous space complexity.) For nearly all of the cells in the library, the canonical forms

were computed using only the zeroth, 1st and 2nd signatures. Only one of the cells required the

use of the 3rd signatures and none of them required the use of higher order signatures. However,

the algorithm given above is complete and able to handle functions that may require the use of

higher order signatures for computing the canonical form.

As mentioned in the paper, one of the advantages of this technique is identifying all symmetry

relations for the given function.

The runtime of the algorithm for any function has a direct relation with the number of non-

simple symmetry relations of the function. More precisely, the higher the number of non-simple

SP transformations, the higher the runtime. Figure 2 demonstrates the number of non-simple SP

transformations for functions that correspond to the worst-case runtimes in the previous

experiment. Note that the number of non-simple SP transformations is equal to the number of

non-trivial CP transformations i.e., || fC′ .

Figure 2. Number of non-simple SP transformations

0

100

200
300

400

500

600
700

800

900

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 40

VIII Conclusions
A new efficient and compact canonical form was defined and an effective algorithm for

computing the proposed canonical form was provided in this paper. The compactness and

efficiency of the presented methods enables the approach to be applicable to a wide range of

Boolean networks as apposed to previous approaches that either do not solve the problem

generally or only handle functions with limited number of inputs. This paper addresses the

general Boolean matching problem in which both permutation and complementation of inputs

and output are considered. The proposed canonical form was based on using generalized

signatures to obtain all CP transformations on inputs. Signatures were defined very effectively

and first, most powerful signatures (that include more information about the function) are

generated and used followed by less significant signatures, only if necessary. Using the resulted

CP transformations the information about all symmetry relations are provided. Experimental

results demonstrate the efficiency of the proposed approach and it was observed, in nearly all

cases zeroth, 1st and 2nd signatures are enough to provide the canonical form and since these

signatures is performed efficiently by ordering variables, the proposed approach is associated

with a very low computational complexity.

References
[1] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
[2] L. Benini and G. De Micheli, “A survey of Boolean matching techniques for library binding,” ACM

Trans. Design Automation of Electronic Systems, vol. 2, no. 3, pp. 193–226, July 1997.
[3] M. A. Harrison, Introduction to Switching and Automata Theory, McGraw-Hill, 1965.
[4] J. Mohnke, P. Molitor, and S. Malik, "Limits of using signatures for permutation independent Boolean

comparison," Proc. of ASP Design Automation Conf., pp. 459-464, 1995.
[5] J. R. Burch and D. E. Long, “Efficient Boolean function matching,” in Proc. Int. Conf. on Computer-

Aided Design, pp. 408–411, Nov. 1992.
[6] Q. Wu, C. Y. R. Chen, and J. M. Acken, “Efficient Boolean matching algorithm for cell libraries,”

Proc. IEEE Int. Conf. on Computer Design, pp. 36–39, Oct. 1994.
[7] U. Hinsberger and R. Kolla, “Boolean matching for large libraries,” Proc. of Design Automation

Conf., pp. 206–211, June 1998.
[8] D. Debnath and T. Sasao, “Fast Boolean matching under permutation using representative,” Proc. ASP

Design Automation Conf., pp. 359–362, Jan. 1999.
[9] J. Ciric and C. Sechen, “Efficient canonical form for Boolean matching of complex functions in large

libraries,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 5, pp.
535–544, May 2003.

[10] D. Debnath and T. Sasao, “Efficient computation of canonical form for Boolean matching in large
libraries,” Proc. ASP Design Automation Conf., pp. 591–596, Jan. 2004.

 41

[11] C. R. Edwards and S. L. Hurst, “A digital synthesis procedure under function symmetries and mapping
methods”, IEEE Trans. Comp., Vol. C-27, No. 11, pp. 985-997, NOV. 1978.

[12] C. E. Shannon, “A symbolic analysis of relay and switching circuits,” AIEE Trans., 57:713-723, 1938.
[13] V. N. Kravets and K. A. Sakallah, “Constructive library-aware synthesis using symmetries,” In Proc.

Design, Automation and Test in Europe , pp. 208-213, March 2000.
[14] K. S. Chung and C. L. Liu, “Local transformation techniques for multi-level logic circuits utilizing

circuit symmetries for power reduction,” in Proc. of Internat. Symp. on Low Power Electronics and
Design, pp. 215–220, August 1998.

[15] S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry detection and dynamic variable ordering of
decision diagrams,” in Proc. International Conference on Computer-Aided Design, pp. 628–631,
November 1994.

