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Abstract – An efficient and compact canonical form is proposed for the Boolean matching 

problem under permutation and complementation of variables. In addition an efficient algorithm 

for computing the proposed canonical form is provided. The efficiency of the algorithm allows it 

to be applicable to large complex Boolean functions with no limitation on the number of input 

variables as apposed to previous approaches, which are not capable of handling functions with 

more than seven inputs. Generalized signatures are used to define and compute the canonical 

form while simple symmetries of variables is used to minimize the computational complexity of 

the algorithm. All other symmetry relations are resulted as a bi-product of the canonical form 

computation. Experimental results demonstrate the efficiency and applicability of the proposed 

canonical form. 

I Introduction 
Boolean matching is the problem of determining whether a Boolean function can be functionally 

equivalent to another one under a permutation of its inputs and complementation of some of its 

inputs. Boolean matching algorithms have many applications in logic synthesis including cell-

library binding where it is necessary to repeatedly determine whether some part (cluster) of a 

Boolean network can be realized by any of the cells in a library [1]. Boolean matching is a 

critical and CPU-intensive task, and therefore, there have been many efforts to effectively solve 

the problem [2]. Boolean functions that are equivalent under negation of inputs are N-equivalent, 

under permutation of inputs are P-equivalent, and under both stated conditions, are NP-

equivalent [3]. If all we consider permutation of inputs and complementation of inputs and 

output the functions are NPN-equivalent. An exhaustive method for Boolean matching is 

computationally expensive since the complexity of such an algorithm for n-variable functions is 

O(n!2n+1). 
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Boolean matching algorithms can be classified into two categories: pair-wise matching 

algorithms and algorithms based on canonical forms of functions. Pair-wise Boolean matching 

algorithms are based on a semi-exhaustive search where the search space is pruned by the use of 

some signatures which are computed from some properties of Boolean functions [2]. A signature 

in general is a description of (one or more) input variables of a Boolean function that is 

independent of the permutation or complementation of the variables of the function. To match a 

function against a cell library, pair-wise matching algorithms often need to perform pair-wise 

matching of the function with all the library cells. Therefore, these algorithms can only cope with 

libraries of modest size.  

Boolean matching algorithms that belong to the second category compute some canonical form 

for Boolean functions [5] - [10]. These algorithms are based on the fact that two functions match 

if and only if their canonical forms are the same. Burch and Long introduced a canonical form 

for matching under complementation and a semi-canonical form for matching under permutation 

of the variables [5]. In their solution, in order to handle complementation and permutation of 

inputs simultaneously, a large number of forms for each cell are required. Other researchers, 

including Wu et al. [6], Debnath and Sasao [8], and Ciric and Sechen [9] have also proposed 

canonical forms that are applicable to Boolean matching under permutation of the variables only 

but do not handle complementation of inputs. Hinsberger and Kolla [7] and Debnath and Sasao 

[10], have introduced a canonical form for solving the general Boolean matching problem. 

However their approach is mainly based on manipulating the truth table of the function and 

employing a table look-up, which results an enormous space complexity, thus restricting their 

algorithm to library cells with seven or fewer input variables. 

In this paper a new canonical form for representing Boolean functions is introduced. The 

proposed canonical form for an arbitrary Boolean function is the unique Boolean function that is 

obtained after applying some canonicity-producing (CP) transformation on the input variables. 

The canonical forms of NPN-equivalent Boolean functions are identical. In particular, an 

effective technique is presented for generating this canonical form. The proposed method is 

based on using generalized signatures (signatures of one or more variables) to find a CP phase 

assignment and ordering for variables. From here on, phase assignment and ordering for 

variables is referred to as a transformation on variables. For most Boolean functions, single-

variable and two-variable signatures are enough to recognize all variables (i.e., to obtain a CP 
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transformation.) However, use of single-variable and two-variable signatures alone may not 

result on a canonical input transformation. In this paper it is shown that, by using generalized 

signatures of one or more variables, it is always possible to create a CP transformation on 

variables of the function.   

Experimental results provided in this paper demonstrate that the proposed approach for 

computing the canonical form does not have the limitations of previous works; i.e., it computes 

the canonical form of a Boolean function with any number of variables under both permutation 

and complementation of variables. An important advantage of the proposed technique is the way 

it handles and uses the symmetry of variables to minimize the complexity of the algorithm 

compared to some of the previous approaches which are not able to consider symmetries [7][10]. 

Hence, the proposed technique is applicable to logic verification of large circuits and to 

technology mapping with a large ASIC library with cells of any number of inputs.  

In section II, definitions and terminology are introduced. In section III, symmetry relations are 

discussed. In section IV signatures that are utilized in the method are described. In section V the 

canonical forms is defined and the details of computing the canonical form is provided followed 

by experimental results and conclusions in sections VI and VII.  

II Preliminaries 
We denote vectors and matrices in capital letters i.e., ),,,( 21 nxxxX K=  where X  denotes a 

vector of n  Boolean variables. A literal is a variable, x , or its complement x . We will refer to 

literal x  as the positive phase of variable x  and to literal x  as its negative phase. In general a 

literal can be denoted as px . The phase of the literal is described using the Boolean variable 

}1,0{=∈Bp  where xxp p =⇒=1  (positive phase) and xxp p =⇒= 0  (negative phase.) 

For the variable vector ),,,( 21 nxxxX K=  and phase vector ),,,( 21 npppP K=    (where X  and 

nBP∈  contain the same number of variables and Bpi ∈ ) the phase assignment of P  to variable 

vector X  is defined as ),,,( 2

2

1

1

n

n

pppP xxxX K= . 

As an example for ),,( 321 xxxX =  and )0,1,0(=P  the result of phase assignment is 

),,( 321 xxxX P = . Also for ),,( 321 xxxX =  and )1,1,0(=P  the result of phase assignment is 

),,( 321 xxxX P = . 
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For a set, A , we use || A  to denote the cardinality of A . Since nnB 2|| = , the number of possible 

different phase assignments to ),,,( 21 nxxxX K=  is n2 . 

The identity phase assignment is denoted by )1,,1,1(1 K= . Obviously, XX =1 . The inverse of 

phase assignment is itself i.e., XX PP =)( .  

The cascade of two phase assignments ),,,( 21 npppP K=  and ),,,( 21 nqqqQ K=  is 

),,,( 2211 nn qpqpqpQP ⊕⊕⊕=⊕ K  since QPQP XX ⊕=)( . (The ‘⊕ ’ is the XNOR operation i.e., 

for Boolean variables x  and y , 1=⊕⇔= yxyx .)  

A permutation is a rearrangement of the elements of an ordered list or a vector. First, we define 

permutation on a set of the form },,2,1{ nAn K= , which will serve as indices of an ordered list or 

a vector.  

Definition: A permutation π  on set },,2,1{ nAn K=  is a bijection from nA  to nA  i.e., nn AA →:π  

and )()( jiji ππ ≠⇒≠ . For a subset nAB⊂ , the range of a permutation π  on domain B  is 

defined as: })({)( BiiB ∈= ππ .  

Based on this definition, nn AA =)(π  which is equivalent to the reversibility of permutation π  as 

a function i.e., , , . . : ( )n nj A i A s t i jπ∀ ∈ ∃ ∈ = . The identity permutation, ι , on },,2,1{ nAn K=  is 

defined as follows: , ( )ni A i iι∀ ∈ = . We denote the set of all permutations on nA  by nΠ . The 

cascade of two permutations 1π  and 2π  on },,2,1{ nAn K= , denoted by 21ππ , is defined as: 

1 2 1 2, ( ) ( ( ))ni A i iπ π π π∀ ∈ = . The cascade operation among permutations is not a commutative 

operation i.e., in general, 1 2 1 2 2 1, ,nπ π π π π π∀ ∈Π ≠ . However, it is an associative operation 

1 2 3 1 2 3 1 2 3, , , ( ) ( )nπ π π π π π π π π∀ ∈Π = . Permutations are reversible. The inverse of a permutation π , 

denoted by 1−π , is defined as: ijji =⇒= − )()( 1ππ . 

Based on these properties, set nΠ  with cascade operation creates a group.1 The number of 

members of this group is !n . Any permutation nΠ∈π  can be applied to a vector of length n  

e.g., ),,,( 21 nxxxX K= . The result of application of permutation nΠ∈π  to vector is determined 

                                                 
1 A group G is a finite or infinite set of elements together with a binary operation (called the group operation) that 
together satisfy the four fundamental properties of closure, associativity, identity, and inverse property. 
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based on the relations )()( ii xx ππ =  and ),,,(),,,()( )()2()1(21 nn xxxxxxX πππππ KK ==  which, is a 

rearrangement the entries of vector X . Next, we describe NP transformations comprising of 

phase assignment and permutations. 

As an example, for the permutation 3Π∈π  where 2)1( =π , 3)2( =π  and 1)3( =π , we have 

),,(),,( 132321 xxxxxx =π .    

Definition: An NP transformation on vector ),,,( 21 nxxxX K=  is defined as a phase assignment 

followed by a permutation. In particular, for phase assignment ),,,( 21 npppP K=  and 

permutation nΠ∈π , the NP transformation PTπ  on vector ),,,( 21 nxxxX K=  is computed as  

follows: )()( PP XXT ππ = . 

Now then, (1) (2) ( )1 2

1 2 (1) (2) ( )1 2( , , , ) ( , , , ) ( , , , )nn

n n

p p ppp pP
nT x x x x x x x x xπ π π

π π ππ π= =K K K , or more simply, 

)()]([)( PP XXT π
π π= . The set of all NP transformations on a vector of size n  is denoted 

by },{ n
nP

n BPT Π∈∈=Γ ππ . 

As an example for )1,1,0(=P  and ),,(),,( 132321 xxxxxx =π , we have ),,(),,( 132321 xxxxxxT P =π .    

The number of transformations in nΓ  is !2|||||| nB n
n

n
n =Π×=Γ . The identity transformation is 

denoted by 1
ιT  where )1,,1,1(1 K=  is the identity phase assignment and ι  is the identity 

permutation. Obviously, XXT =)(1
ι  for any vector X . The cascade of two transformations 1

1

PTπ  

and 1

2

PTπ , denoted by 2

2

1

1

PPTT ππ , is defined as ))(()( 2

2

1

1

2

2

1

1
XTTXTT PPPP

ππππ = . One can verify that 

1 2

1 2

P P PT T Tπ π π=  where 1 2π π π=  and 1 1 2( ) ( )P P Pπ π= ⊕ . The inverse of transformation PTπ , denoted 

by 1)( −PTπ , satisfies the relation 111 )()( ιππππ TTTTT PPPP == −− . Based on the relation 

1 ( ) ( )P P P PT T T T π π π
ι π π π π

′ ′ ′ ′⊕
′ ′= = , one can infer that )(1

1)( PP TT π
ππ −=− . Set nΓ  with cascade operation creates 

a group.  

In the remainder of this paper, when there is no ambiguity, we denote a transformation PTπ  by T  

for brevity. In addition, we may denote an NP transformation on vector as XT P
π  (or TX ) instead 

of )(XT P
π  (or )(XT .) We usually denote the identity transformation by 1

ιTI = . Finally, with 

regard to permutations, Xπ will refer to )(Xπ . 
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Let function )(Xf  be a single-output completely-specified Boolean function of 

),,,( 21 nxxxX K=  i.e., BBf n →: . The onset of )(Xf  is a subset of its domain, nBF ⊂ , that 

results in .1)( =Xf  We will denote the size of onset of  )(Xf  by |)(| Xf  i.e., |||)(| FXf = . 

The cofactor of )(Xf  with respect to literal ip
ix  is a function )( ix

Xf
ip

i
 of 

),,,,,,( 1121 niii xxxxxX KK +−=  defined as 
iiip

i
ip

i
pxxix

XfXfXf ==
== |)(|)()(

1
. A cube is the 

Boolean conjunction of some literals, mi

m

ii p
i

p
i

p
i xxxq L2

2

1

1
= . The cofactor of )(Xf  with respect to a 

cube q  is a function of variables in X  that are not present in q  (positive or negative phase) is 

defined as 
mimiiiii pxpxpxqqq XfXfXf ==== == ,,,1 2211

|)(|)()( K  where },,,{
21 miiiq xxxXX K−= . 

Consider two functions, )(Xf  and )(Xg , defined over the same variable set ),,,( 21 nxxxX K= . 

Definition: Two functions )(Xf  and )(Xg  are P-equivalent, denoted by gf
P
≡ , if there exists a 

permutation π  such that )()( XgXf π⊕  is a tautology.  

Definition: Two functions )(Xf  and )(Xg  are NP-equivalent, denoted by 
NP

f g≡ , if there 

exists an NP transformation T  such that )()( TXgXf ⊕  is a tautology. 

The most general type of equivalence is when we also consider phase assignment of the output. 

We will denote the phase assignment Bp∈  to function )(Xf  by pXf ))((  or )(Xf p  for short. 

Definition: Two functions )(Xf  and )(Xg  are NPN-equivalent, denoted by gf ≡ , if there 

exists an NP transformation T  and an output phase assignment Bp∈  such that 

)()( TXgXf p⊕  is a tautology i.e., )()(,,, TXgXfBXBpT pn
n =∈∀∈∃Γ∈∃ . 

Example: Let 3121321 ),,( xxxxxxxf +=  and 323121321 ),,( xxxxxxxxxg ++= . It is easy to see 

that )()( TXgXf =  where ),,( 321 xxxX =  and ),,()( 132 xxxXT = . Thus, )(Xf  and )(Xg  are 

thus NPN-equivalent. 

NPN-equivalence is an equivalence relation. Boolean matching is often defined in terms of P, NP 

or NPN-equivalence. In principle, P,  NP, and NPN-equivalence can be reduced to !n , !2 nn  and 

!2 1nn+  tautology checks.  
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We use the symbol x∀  and x∃  to designate the consensus and the smoothing operators with 

respect to variable x, respectively. Recall that the consensus operation corresponds to universal 

quantification and is computed as xxx fff =∀ , while the smoothing operation corresponds to 

existential quantification and is computed as xxx fff +=∀ . Consensus (smoothing) with respect 

to an array of variables can be computed by repeated application of single-variable consensus 

(smoothing) operations. 

III Symmetry relations 
In this section we discuss variable symmetries in Boolean functions. Functional symmetries 

provide significant benefits for multiple tasks in synthesis and verification. As will be explained 

in detail later in this paper, concepts of Boolean matching and symmetry are closely related. In 

the Boolean matching algorithm that will be provided in this paper, this relationship manifests 

itself in two levels. First, simple types of symmetries (that are inexpensive to discover) are 

utilized to reduce the complexity of the Boolean matching algorithm. Second, the proposed 

Boolean matching algorithm will generate (as a bi-product) the remaining (more complicated) 

symmetries.  

Symmetries provide insights into the structure of the Boolean function that can be used to 

facilitate operations on it. They can also serve as a guide for preserving that structure when the 

function is transformed in some way. In the context of Boolean matching problem, symmetries 

that we explore are variable permutations, with possible complementation that leave the function 

unchanged. In the presence of functional symmetries, several design problems (e.g., circuit 

restructuring, checking satisfiability, and computing sequential reachability) are considerably 

simplified. Hence, interest in functional symmetries has been keen since the early days of logic 

design [12]. In the context of logic synthesis which we view as a process that transforms an 

initial representation of the function (e.g., sum of products representation or binary decision 

diagram representation) into a final implementation as a multi-level Boolean network of 

primitive cells selected from a given ASIC cell library, when guided by knowledge of functional 

symmetries, such a process yields higher quality circuit realizations of the function [13].  

In [14] functional symmetry is exploited to optimize a circuit implementation for low power 

consumption and delay under an area increase constraint. Another benefit of knowledge about 

functional symmetries is that it can help produce better variable orders for Binary Decision 
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Diagrams (BDDs) and related data structures (e.g., Algebraic Decision Diagrams). The size of 

the BDD of a Boolean function can be significantly reduced if symmetric variables are placed in 

adjacent positions. Based on this observation a specialized sifting procedure for dynamic 

variable ordering was proposed in [15]. This plays a crucial role in symbolic model checking.  

In this paper we study symmetries in the most general from i.e., considering input permutation, 

input phase assignment, and output phase assignment which to the best of our knowledge has not 

been studied thoroughly enough in the past. 

Definition: A function )(Xf  where ),,,( 21 nxxxX K=  is symmetric with respect to an NP 

transformation nT Γ∈  on its inputs if there exists an output phase assignment Bq∈  such that 

)()( TXfXf q= . 

We will refer to such a transformation a symmetry-producing (SP) transformation and denote the 

set of all SP transformations by })()(,{ TXfXfqTS q
nf =∃Γ∈= . 

fS  creates a sub-group of nΓ . As mentioned before, some types of symmetry are easily 

detectable and are discovered before the Boolean matching algorithm. We start by discussing 

these types of symmetries. 

Definition (Simple Symmetry): For a function )(Xf  where ),,,( 21 nxxxX K= , two variables ix  

and jx  are said to be symmetric, denoted as ji xx ≡ , if )(Xf  is invariant under an exchange of 

ix  and jx  i.e., ),,,,,,(),,,,,,( 11 nijnji xxxxfxxxxf KKKKKK = . 

In the case of simple symmetry, the phase of the output always remains unchanged. The NP 

transformation f
P ST ∈π  associated with this simple symmetry has the following effect: 

),,,,,,(),,,,,,( 11 nijnji
P xxxxxxxxT KKKKKK =π .  

A similar type of simple symmetry between variables ix  and jx  is when the following condition 

holds: ),,,,,,(),,,,,,( 11 nijnji xxxxfxxxxf KKKKKK = . 

In this case we use notation ji xx ≡ , or equivalently, ji xx ≡ . We shall refer to ix  and jx  as being 

symmetric in this case as well. 

Example: For the function ))(()( 4321 xxxxXf ++=  we have 21 xx ≡  and 43 xx ≡ . 
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To account for both types of symmetry with a unified notation, we use p
ji xx ≡ . When 1=p , the 

expression indicates that ji xx ≡  whereas 0=p  implies that ji xx ≡  i.e., 

),,,,,,(),,,,,,( 11 n
p
i

p
jnji

p
ji xxxxfxxxxfxx KKKKKK =⇔≡ . 

Variables ix  and jx  are called symmetric if p
jip xx ≡∃ . We will use p

ijW  (or p
jiW ) to denote the 

NP transformation ),,,,,,(),,,,,,( 11 n
p
i

p
jnji

p
ij xxxxxxxxW KKKKKK = . With this notation 

f
p

ij
p
ji SWxx ∈⇔≡ . 

It is well known, and can be readily shown by using Boole’s expansion theorem [5], that 

condition p
ji xx ≡  is equivalent to p

jip
ji xxxx

ff ≡ . This equation serves as the computational check 

for first-order symmetry between variables ix  and jx  in function )(Xf . 

The symmetry relation, p
jip xx ≡∃ , is an equivalence relation. Hence, it is possible to partition 

variables  nxxx ,,, 21 K  into equivalence classes, which we will refer to as symmetry classes. An 

overview of such a procedure, which is composed of two nested loops that iterate on the 

variables, is as follows. We denote symmetry classes by mCCC ,,, 21 K , where m  is the number of 

classes. The first step is to create }{ 11 xC =  where 1x  is considered the seed variable for class 1C . 

Next, every variable ix  that is symmetric to 1x  will be added to 1C . The first remaining variable, 

say jx , is used to initialize }{2 jxC = . Next, symmetric variables to jx  are added to 2C . This 

procedure continues until all variables are partitioned into symmetry classes mCCC ,,, 21 K . 

Symmetry classes will include all information about simple symmetries. For example, given 

symmetry classes mCCC ,,, 21 K , one can infer that if kji Cxx ∈, , then there exists a phase 

assignment Bp∈  such that p
ji xx ≡ . However, the symmetry classes do not include information 

as to whether 1=p  or 0=p .  

One way to include phase information in symmetry classes is to choose appropriate phases for 

variables while forming classes one at a time. For example, consider a class iC  with seed 

ij Cx ∈ . If there exists a variable kx  that is symmetric to jx  i.e., p
kj xx ≡  then literal p

kx  will be 

added to iC . This is because we chose positive phase jj xx =1  for the seed of iC . If we were to 
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choose jj xx =0  as the seed of iC , then in the case of p
kj xx ≡  literal p

kx  will be added to iC  since 

p
kj

p
kj xxxx ≡⇒≡ . Suppose },,,{ 21

21
kp

k
pp

i xxxC K=  is a symmetry class generated in this manner. 

Based on the previous discussion, negating the phases of the literals },,,{ 21
21

kp
k

pp xxx K  will create 

an alternate symmetry class of the same variables. We shall denote this alternate class by iC  

which introduces the notion of phase assignment for symmetry classes i.e., }{ i
p
j

qp
j

q
i CxxC jj ∈= ⊕ . 

The algorithm for generating first-level symmetry classes is given below. In this algorithm, we 

choose positive phases for the seeds of all classes. 

 

Algorithm Gen_1st_Order_Symm ( ) 

1←i ; 
while {}≠X  do { 

 {}←iC ; select Xx∈ ; 

 for Xy∈∀  do { 

  if  ( pyx ≡ )  then }{ p
ii yCC ∪← ; 

 } 
 iCXX −← ; 

 1+← ii ; 
} 
 

For the symmetry classes generated in this manner, literals of a class do not require any phase 

assignment to become symmetric (the current phases of literals will be fine) i.e., 
jiji p

j
p
ik

p
j

p
i xxCxx ≡⇒∈, . 

Example: For function ))(()( 4321 xxxxXf ++= , there exist two symmetry classes: 

},{ 211 xxC =  and },{ 432 xxC = . 

In the remainder of this paper we shall denote literals by simple letters such as x  or y  which 

does not necessary mean that the phase of literal is positive. With this convention the previous 

relation may be written as: yxCyx k ≡⇒∈, . 
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The classes generated by Gen_1st_Order_Symm are maximal in the sense that for every class iC  

no other literal iCy∉  is symmetric to the literals of the class iC  i.e., ii CyyxCx ∈⇒≡∈ ,  

So far we have discussed simple symmetries which correspond to NP transformations that 

involve only two variables. In the sequel we present a key theorem, which provides a valuable 

insight for handling and enumerating symmetries. First, we present a lemma that will be useful in 

proving the main theorem. 

In the following we will denote the kth element of vector TX  by kTX][ . Furthermore, p
kTX][  will 

denote p
kTX )]([ . 

Lemma 1: For any NP transformation n
PT Γ∈π  and n

q
ijW Γ∈ , q

ji
Pq

ij
P WTWT ′− = )()(

1)( ππππ  where 

)()( ji ppqq ππ ⊕⊕=′ . 

Proof: Based on previous discussions )(
)(][ kp

kk
P xXT π

ππ =  and kk p
k

p

kk
P xxXT )()(

1
1

))((1

1])[( −

−

− ==−
πππ

ππ . We 

compute k
Pq

ij
P XTWT ])[( 1

ππ
−  for different values of },2,1{ nk K∈ . First we consider values of k  

such that )}(),({ jik ππ∉  and then deal with )}(),({ jik ππ∈ . 

For )}(),({ jik ππ∉ ,  k
pp

k
p

k
Pp

k
Pq

ijk
Pq

ij
P xxXTXTWXTWT kkkk ==== −

−−−
− )(][][])[( ))(1(

111 ))(()()(
1 ππ

ππππππππ  

The second equality follows from },{)(1 jik ∉−π . 

For )(ik π= , q
j

ppq
j

pq
j

Pp
i

Pq
iji

Pq
ij

P xxXTXTWXTWT jiii ′⊕⊕⊕− ==== )()()(
1 )()()()( ][][])[( πππππππ

ππππ . In addition, for 

)( jk π= , q
i

ppq
i

pq
i

Pp
j

Pq
ijj

Pq
ij

P xxXTXTWXTWT ijjj ′⊕⊕⊕− ==== )()()(
1 )()()()( ][][])[( πππππππ

ππππ . Hence we showed 

that ),,,,,,(),,,,,,()( )()(1)()(1
1

n
q

i
q

jnji
Pq

ij
P xxxxxxxxTWT KKKKKK ′′− = ππππππ  which proves that 

q
ji

Pq
ij

P WTWT ′− = )()(
1)( ππππ .  ■ 

Let ix  and jx  denote two symmetric variables of function )(Xf . Consider a general symmetry 

relation that involves more than two variables i.e., consider )()( XTfXf P
π= . In the following we 

will explore the effect of n
P ST ∈π  on symmetric variables. 

Every NP transformation n
PT Γ∈π  on X  can be regarded as a mapping function on literals with 

the specification )(
)()( ip

ii
P xxT π

ππ = .  
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We define the effect of NP transformation PTπ  on literal q
ix  as q

i
Pq

i
P xTxT ))(()( ππ = . 

Lemma 2: Let function )(Xf  be symmetric with respect to NP transformation PTπ  i.e., f
P ST ∈π ; 

Mappings of two symmetric variables ix  and jx  under PTπ  are symmetric i.e., 

q
j

P
i

Pq
ji xTxTxx ))(()( ππ ≡⇔≡ . 

Proof: Since fS  is a subgroup, f
P

f
P STST ∈⇒∈ −1)( ππ . Furthermore, since variables ix  and jx  

are symmetric, f
q

ij
q
ji SWxx ∈⇒≡ . Based on the previous Lemma and the fact that nS  is a 

subgroup, f
Pq

ij
Pq

ji STWTW ∈= −′
ππππ

1
)()( )( where )()( ji ppqq ππ ⊕⊕=′ , which proves that q

ji xx ′≡ )()( ππ . 

By applying phase assignment )(ipπ  to both sides of q
ji xx ′≡ )()( ππ , one obtains 

)()()(
)()()(
jii p

j
pq

j
p

i xxx πππ
πππ =≡ ⊕′  or q

j
P

i
P xTxT ))(()( ππ ≡ , which proves the lemma   ■ 

Now we will investigate the effect of NP transformation f
P ST ∈π  on simple symmetry classes. 

The range of an NP transformation T  on a symmetry class (or any other subset of literals) is 

defined as })({)( kk CxxTCT ∈= , where x  in  general represents a literal (with positive or 

negative phase) rather than a variable i.e. there is variable ix   with phase p  such that p
ixx = .  

Theorem 1: Let function )(Xf  be symmetric with respect to NP transformation T  i.e., fST∈  

and let kC  be a first order maximal symmetric class of variables of )(Xf . The range of T  on kC  

(i.e., )( kCT ) will be a maximal symmetry class. 

Proof: Based on the previous lemma, any pair of literals,  x  and y , of )( kCT  are symmetric.  

Recall that for two literals in a symmetry class, the symmetry does not require additional phase 

assignment since appropriate phases have already been assigned to the literals while generating 

the symmetry classes.  Now we will prove that )( kCT  is maximal by showing if there is a literal 

y  symmetric to literal )( kCTx∈  (i.e., yx ≡ ), then y  is a literal in )( kCT . 

Since nS  is subgroup, ff STST ∈⇒∈ −1 . From the previous lemma, )()( 11 yTxTyx −− ≡⇒≡ . 

From )( kCTx∈   it can be seen that kCxT ∈− )(1  and since kC  is maximal : 

)()()()( 111
kk CTyCyTyTxT ∈⇒∈⇒≡ −−− . This proves the theorem.   ■ 
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The theorem has a strong implication, that is, any NP transformation f
P ST ∈π  maps maximal 

symmetry classes to other maximal symmetry classes. This result can be considered as a 

constraint for any f
P ST ∈π . It is especially important in the process of identifying NP 

transformations of fS  since it will limit the space of transformations to be explored. In other 

words, to explore possible NP transformations f
P ST ∈π , it is sufficient to only explore NP 

transformations that are specified in terms of higher order symmetry classes instead of individual 

variables. Since the number of classes is usually considerably fewer than the number of 

variables, this theorem tends to greatly reduce the search space.  

Let mCCC ,,, 21 K  represent the maximal symmetry classes for variables of function )(Xf . The 

corresponding NP transformation f
P ST ∈π  must satisfy jiji CCTCC =∃∀ )(, . 

IV Signatures 
Conventionally, a signature (a filter or a necessary condition) is defined as some characteristics 

of a Boolean function with respect to one of its input variables. We shall refer to such a signature 

as a first order signature (or 1st-signature) since it only depends on one input variable. First order 

signatures have been used to identify variables that can be exchanged (permuted) without 

affecting the function itself, i.e., any possible correspondence between the input variables of two 

functions is restricted to a correspondence between variables with the same 1st-signature. So, if 

each variable of a function has a unique 1st-signature, then there can be at most one possible 

correspondence to any of the variables of some other function. 

That is why the quality of any 1st-signature is characterized by its ability to be a unique 

identification of a variable of a function and, of course, by its ability to be computed fast. The 

1st-signatures that have been introduced in literature differ in terms of their quality figure. 

Although the 1st order signatures have been successful in a large number of practical cases, they 

do not utilize the full potential of signatures in the Boolean matching problem. There is no set of 

1st-signatures that can uniquely identify all the variables. However, this goal can be achieved by 

using higher order signatures as described below.  

The 1st-signatures have been traditionally defined for variables. However, since we intend to 

consider phase assignment in addition to permutation of input variables, we define the 1st-

signatures for literals (as opposed to variables.) 



 14

A well-known 1st-signature for a literal x  of a Boolean function )(Xf  is the “minterm” count of 

the ONSET of the cofactor of this function w.r.t. x  i.e, || xf . 

In pair-wise matching methods (for checking P-equivalence), a 1st-signature must be able to 

make out an input variable ix  independent of input variable permutation so that it can establish a 

correspondence between variable ix  of )(Xf  with a variable jx  of some other Boolean function 

)(Xg . It only makes sense to try to establish a correspondence between these two variables only 

if variable ix  of )(Xf  has the same 1st-signature as variable jx  of )(Xg . 

The main idea of this pair-wise matching approach is clear: If we are able to compute a unique 

signature for each input variable of )(Xf , then the variable mapping problem will have been 

solved – there is only one or no possible variable correspondence for P-equivalence of function 

)(Xf  with any other function )(Xg . If we find for each variable of )(Xf  a variable of )(Xg  

that has the same unique signature, then we will have established a correspondence. Otherwise, 

we will know immediately that these two functions are not P-equivalent. 

The main problem that arises in this paradigm is when more than one variable of a function 

)(Xf  has the same 1st-signature, it is not possible to distinguish between these variables, i.e. 

there is no unique correspondence that can be established with the inputs of some other function. 

In this paper we will generalize the concept of first order signatures to higher order signatures 

that have complete expressive power to handle the Boolean matching problem. 

Recall that a cube (product term) is the conjunction of some literals. Let kaaa ,,, 21 K  be literals 

created from variables nxxx ,,, 21 K  i.e., p
jiji xapxa =∃∃∀ ,,,  with the restriction that both phases of 

the same literal are not present in kaaa ,,, 21 K  i.e., for each variable ix  at most one of literals ix  

and ix  belong to },,,{ 21 kaaa K . 

Definition: The kth order signature of function )(Xf  with respect to literals kaaa ,,, 21 K  is the 

minterm count of cofactor of )(Xf  with respect to cube kaaaq K21=  i.e., |)(| qq Xf  where qX  

denotes those variables of X  that are not in },,,{ 21 kaaa K  in any phase. The 0th order signature is 

|)(| Xf .  
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We will refer to a cube kaaaq K21=  as a positive cube if literals kaaa ,,, 21 K  are in their positive 

phases i.e., jiji xaxa =∃∀ ,, , or equivalently, },,,{},,,{ 2121 nk xxxaaa KK ⊂ . 

We also refer to signatures associated with positive cubes as positive signatures. 

With respect to variables nxxx ,,, 21 K , the number of k-literal cubes (or the number of kth-order 

signatures) is k

k
n

2⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  whereas the number of positive kth-order signatures is 
)!(!

!
knk

n
k
n

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ . 

In the following we introduce a method to enumerate positive signatures of function )(Xf . 

A k-literal cube can be presented as  
k

xxxq ααα L
21

=  where  },2,1{},,,{ 21 nk KK ⊂ααα . 

We impose the constraint that  kααα <<< K21 . Obviously, for each k-literal cube it is always 

possible to find kααα ,,, 21 K  that satisfy this constraint. 

Before we proceed further, we must define the lexicographical comparison of two vectors. 

Definition: Consider two vectors ),,,( 21 kA ααα K=  and ),,,( 21 kB βββ K=  where 

},2,1{},,,{ 21 nk KK ⊂ααα  and },2,1{},,,{ 21 nk KK ⊂βββ . Let i  be the smallest index such that 

ii βα ≠ . Then the order relation ‘p ’ between A  and B  is defined as BAii p⇒< βα . 

With this definition, an order relation can be defined between k-literal positive cubes. 

Definition: Consider two cubes 
k

xxxqA ααα L
21

=  and  
k

xxxqB βββ L
21

=  where 

nk ≤<<<≤ ααα K211  and nk ≤<<<≤ βββ K211 . The order relation ‘p ’ between Aq  and Bq  

is defined as BAkk qq pKpK ⇒),,,(),,,( 2121 βββααα . 

We denote the set of all k-literal positive cubes by }1{ 2121
nxxxQ k

k
k

≤<<<≤= αααααα KL . 

Since we have defined an ordering for members of kQ , these members (which correspond to k-

literal positive cubes) can be represented as k
n

kk
k

qqq ,,, 21 K  where the superscript k  indicates the 

number of literals in each cube and the following ordering is satisfied by their indices: 

k
n

kk
k

qqq pKpp 21 . Notice that 
)!(!

!||
knk

n
k
n

Qn k
k −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== . 

Every possible positive cube can be denoted as k
iq . The set of all positive cubes is denoted by 

}1,1{210
k

k
i

k ninkqQQQQQ ≤≤≤≤=∪∪∪∪= L .  



 16

Now we extend the definition of ordering to members of Q . For two cubes k
iq  and l

jq   if lk ≠  

then l
j

k
i qqlk p⇒<  . Now, if  lk =  then l

j
k
i qqji p⇒< . 

In this ordering, single literal cubes appear first followed by two literal and higher literal cubes 

i.e., 
}

n

n

n

n

Q

n
n

Q

n
n

nn

Q

n

Q

n qqqqqqqqqqq p
444 8444 76
pKpppKp

444 8444 76
pKppp

444 8444 76
pKppp

1

1

2

1

1

1

11
2

1
1

22
2

2
1

11
2

1
1

0
1

−

−

−−−  

which can also be represented as (except for {}0
1 =q ):  

48476
Lp

44444 844444 76
LpKpLpKp

4444 84444 76
pKppp

44 844 76
pKpp

nn Q

n

Q

nn

Q

n

Q

n xxxxxxxxxxxxxxxxxx 21321211312121

121 −

−  

We are now ready to introduce the signature vector for a function )(Xf . 

Definition: For the function )(Xf  where ),,,( 21 nxxxX K=  with positive cubes k
iq , the 

signature vector denoted by fV  is defined as follows: 

|)|,||,|,||,|,,||,|,||,|,||,|,||,||,(|
)1(21

1
1

1
2

1
1

2
2

2
2

2
1

1
1

1
2

1
1

n
nn

nd

n
nn

nn

nd

n

st

n q

signaturesn

qqq

signatures

qqq

signatures

qqq
f fffffffffffV

4444 84444 76
KK

444 8444 76
K

444 8444 76
K

−−−−

−
−

−−=  

which can equivalently be presented as:  

)||,|||,...,|,...,|||,...,||,|,|||,...,||,||,(|
signaturen

...

signatures)1(

......

signatures2signatures1 th

1

th

211

nd

13121

st

21

876444 8444 764444 84444 76444 8444 76 −−−−−

−−
=

nnnnnn xx

n

xxxxxxxxxxxxx
f ffffffffffV  

In the following we present an important theorem, which proves that the signature vector of a 

function is unique i.e., two different functions have different signature vectors i.e., 

)()( XgXfVV gf =⇔= . 

To prove this claim, we first prove that values of all signatures of all orders can be obtained from 

the signature vector (which only include positive signatures.) This vector eventually specifies the 

function  )(Xf  uniquely for all nBX ∈ . 

Lemma 3: Values of all kth-signatures can be uniquely obtained from the (k-1)th-signatures and 

positive kth-signatures. 

Proof: Given all (k-1)th-signatures and positive kth-signatures we want to prove that all kth-

signatures can be computed. A kth-signature in general can be denoted by || qf  where 

k

k

ppp xxxq ααα L2

2

1

1
=  , },,2,1{ ni K∈α  and Bpi ∈ . The proof is by induction on the number of negative 
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literals of k

k

ppp xxxq ααα L2

2

1

1
=  denoted by qn . The value of qn  ranges from 0 to k . For 0=qn , the 

cube is positive and since positive kth-signatures are given, the claim is correct for 0=qn . 

Assume that it is correct for 1−=mnq  i.e., all kth-signatures associated with cubes of 1−m  

negative literals are computed. Now we will compute the kth-signatures associated with cubes of 

m  negative literals. Let’s denote such a cube by k

k

i

i

i

i

i

i

pppppp xxxxxx αααααα LL 1

1

1

1

2

2

1

1

+

+

−

−
  . Assume that i

i

pxα  is 

one of the negative literals i.e., 0=ip . Let’s denote this cube by k

k

i

ii

i

i

ppppp xxxxxxq αααααα LL 1

1

1

1

2

2

1

1

0
0

+

+

−

−
= . 

Accordingly we create the cube  k

k

i

ii

i

i

ppppp xxxxxxq αααααα LL 1

1

1

1

2

2

1

1

1
1

+

+

−

−
=  in which the phase of 

i
xα  is 

positive. One can easily verify that ||||||
01 qqq fff =+  where k

k

i

i

i

i

ppppp xxxxxq ααααα LL 1

1

1

1

2

2

1

1

+

+

−

−
= . Hence 

||
0qf  can be computed as ||||||

10 qqq fff −=  Since q  is a (k-1)-literal cube and  1q   contains 1−m  

negative literals the claim is proven by induction. ■ 

Theorem 2: For a function )(Xf , signature vector fV  uniquely and completely specifies 

function )(Xf . 

Proof: Since the signature vector includes all positive signatures, it can be seen that the values of  

|| qf  can be computed for all possible cubes q  by using induction on the number of literals in  q  

and the previous Lemma. However, for this proof, we are only interested in n-literal cubes since 

they deliver sufficient information to specify function f  for all points n
n Bppp ∈),,,( 21 K   i.e., 

||),,,( 21 qn fpppf =K  where np
n

pp xxxq L21
21= . ■ 

Based on this theorem, the necessary and sufficient condition for two functions  )(Xf  and )(Xg  

to be equal is that |||| qq gf =  for all positive cubes q  (which are presented in the signature 

vectors of  )(Xf  and )(Xg .) 

In this part we investigate the implication of this theorem on the general symmetry relation. 

Consider NP transformation T  which corresponds to the symmetry relation )()( TXfXf = . Let’s 

denote )()( TXfXg = . Since functions  )(Xf  and )(Xg  are equal, their signature vectors are 

equal i.e., |||| qq gf =  for all 
k

xxxq ααα L
21

= . The cofactors qf  and qg  can be expressed as 

121
)( =====

kxxxq Xff
ααα L  and 1)()()(11 212121

)()()( ============ ===
kkk xTxTxTxxxxxxq XfTXfXgg

ααααααααα LLL . 
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Let’s denote )( ii xTt =  and 
k

tttqT ααα L
21

)( =  for 
k

xxxq ααα L
21

= . The necessary and sufficient 

condition for NP transformation T  to be symmetric is QqffTXfXf qTq ∈∀=⇔=       ||||)()( )( . 

Notice that if )()( TXfXf = , then  |||| )(qTq ff = , where q denotes any cube (not only a positive 

cube.) A result of the previous theorem is that it proves that a sufficient condition for 

)()( TXfXf =  is that  |||| )(qTq ff =  for positive cubes only. We will revisit these results in future 

sections. 

V Canonical form 
In this section we present a canonical form for Boolean matching under NPN-equivalence. As 

was proved in previous chapters, NPN-equivalence is an equivalence relation that partitions the 

set of all single output Boolean functions into equivalence classes. Let’s consider an NPN-

equivalence class by )}(,),(),({ 21 XfXfXfE mK= . Every two functions in E  are symmetric to 

each other, i.e., )()()(,)( XfXfEXfEXf jiji ≡⇒∈∈  and any function symmetric to some 

function in E  is also in E . The Boolean matching problem under NPN-equivalence is reduced to 

that of verifying whether or not two target Boolean functions, )(Xf  and )(Xg , belong to the 

same NPN-equivalence class. 

In the canonical form based Boolean matching, a unique representative is selected for every class 

called the NPN-representative of the class. Let’s denote the NPN-representative of a class E  by 

)(XF .  

Definition: The NPN-representative )(XF  of a class E  is defined as the NPN-representative (or 

the canonical form) of all functions )(,),(),( 21 XfXfXf mK  in E . Let’s denote the canonical 

form of a function )(Xf  by )(XF  (i.e., we use capital letters for canonical forms.) We have:  

)()()()( 21 XFXFXFXF m==== K . Notice that )(XF  is one of )(,),(),( 21 XfXfXf mK  i.e., 

EXF ∈)( . 

The NPN-representative )(XF  is selected among )(,),(),( 21 XfXfXf mK  based on some criteria 

that makes )(XF  unique. For example, one way is to define a total ordering for functions 

)(,),(),( 21 XfXfXf mK  and select the maximum or minimum (with respect to the defined order) 

as the NPN-representative (canonical form.) 
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Observation: Two functions )(Xf  and  )(Xg  are NPN-equivalent if and only if they have the 

same canonical form i.e., )()()()( XGXFXgXf =⇔≡ .  

The NPN-equivalence class that includes a function )(Xf , denoted by fE  is the set of all 

functions that are NPN-equivalent to )(Xf . Hence fE  can be created by applying all NP 

transformations and output phase assignments to )(Xf  i.e., },)({ n
q

f TBqTXfE Γ∈∈= . 

The number of different NP transformations and output phase assignments to )(Xf  is 

!2|||| 1nB n
n

+=Γ×  ; However || fE  is in general less than |||| nB Γ×  because of the symmetry 

relations discussed in previous chapters.  

Since )(Xf  and )(XF  are NPN-equivalent, there is an NP transformation T  such that 

)()( XFTXf q
q =∃ ; however, T  is not the only such NP transformation.  

Definition: We call the set of NP transformations T  such that )()( XFTXf q
q =∃ , the canonicity-

producing (CP) transformations : )}()(,{ XFTXfqTC q
nf =∃Γ∈= . 

We present an algorithm to compute the canonical form of a given NPN-equivalence class as 

well as the set of all CP transformations fC . We will show that the set of symmetry-producing 

(SP) transformations fS  can be easily obtained from fC . The importance of identifying all NP 

transformations in fS  was explained in the previous section. 

For any set nS Γ⊂  of NP transformations and transformation nT Γ∈ , we define  TS  and ST  as 

follows: }{ STTTTS ∈′′=  and }{ STTTST ∈′′= . If nS Γ⊂  is a subgroup, then TS  is called the 

left coset of S  determined by T  and  ST  is called the right coset of S  determined by T . 

Lemma 4: For function )(Xf , let T  and T ′  be two CP transformations. 1−′TT  is a SP 

transformation i.e., fff STTCTCT ∈′⇒∈′∈ −1, . 

Proof:  Clearly, )()(, XFTXfqCT q
f =∃⇒∈  and )()(, XFXTfqCT q

f =′′∃⇒∈′ ′  which result in 

f
qqqq STTXTTfXfXTfTXf ∈′⇒′=⇒′= −−′⊕′ 11 )()()()( .  ■ 

Theorem 3: For function )(Xf  and any CP transformation T , fC  is the right coset of fS  

determined by T  i.e., TSCCT fff =⇒∈ . 
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Proof: First we prove that ff CTTST ∈⇒∈ 11 : 

TTTSTTST ff ′=∈′∃⇒∈ 11 ,  

)()()()()(, 1 TXfTXTfXTfXfXTfqST qq
f

′′ =′=⇒=′′∃⇒∈′  

)()(, XFTXfqCT q
f =∃⇒∈  

f
qqq CTXFTXfXTf ∈⇒==′⊕

11 )()()(  

Now we prove that TSTCT ff ∈⇒∈ 11 . Based on the previous Lemma 

TSTTSTTTSTTCTCT fffff ∈⇒∈⇒∈⇒∈∈ −−
1

1
1

1
11 , ; hence, TSC ff = . It can be easily 

verified that fffff STTSTCTSC ==⇒= −− 11 ; hence, for any fCT ∈ , 1−= TCS ff  which 

shows that fS  can be easily obtained from fC .  ■ 

The set of SP transformations, fS , includes transformations corresponding to simple 

symmetries. In the algorithm that we will present next to identify CP transformations fC , first 

simple symmetries are identified since the computational complexity is relatively lower than that 

of general symmetries. This information is used efficiently to compute fC . Next based on fC  

the remaining SP transformations of fS are computed. 

V.1 The Proposed Canonical Form 
In this part the canonical form used in this paper is formally defined. As mentioned earlier, 

among functions of an NPN-equivalence class the NPN-representative is selected based on a 

criterion that makes the representative unique among all functions in the class. 

We previously defined the signature vector for a function and proved that it is unique for every 

function. We will define a total ordering for functions based on the lexicographical comparison 

of their signature vector. 

Definition: Consider two functions )(Xf  and )(Xg  with signature vectors fV  and gV , 

respectively. The order relation ‘p ’ between )(Xf  and )(Xg  is defined as: 

)()( XgXfVV gf pp ⇔ . The relation )(  )( XgXf f  means that )()( XgXf f  or )()( XgXf = . 

This ordering is well defined since we proved that )()( XgXfVV gf =⇔= . An important 

aspect of the signature vector is that it enables us to compare functions even if they are not 
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functions of the same variable vector. The only requirement is the size of their variable vectors 

should be the same. Consider functions )(Xf  and )(Yg  where ),,,( 21 nxxxX K=  and 

),,,( 21 nyyyX K= , then f  and g  are equal (or equivalent) if their signature vectors are equal 

i.e., gf VVgf =⇔= . Also for the order relation ‘p ’, gf VVgf pp ⇔ . Using this order 

relation, the NPN-representative (canonical form) is defined as follows. 

Definition: The NPN-representative of a class { })(,),(),( 21 XfXfXf mK  of functions is a 

function )( XF  which is maximal with respect to the order relation, ’f ’ i.e., 

)(  )(},,,2,1{ XfXFmi ifK∈∀ . 

V.2 Properties of the Canonical Form 
In this section we will observe some important properties of the proposed canonical form that are 

used for the purpose of computing the canonical form. 

Theorem 4: Let )( XF  be the canonical form of an NPN-equivalence class E . )( XF  is greater 

than or equal to that of its complement )( XF  (which may also be denoted by )( XF ) i.e., 

)(  )( XFXF f . 

Proof: Obviously )( XF  and )( XF  are NPN-equivalent, Therefore, they belong to the same 

NPN-equivalence class i.e., EXFXFXFEXF ∈⇒≡∈ )()()(,)( . 

Since )( XF  is the NPN-representative of class E , it is maximal i.e.,  )(  )( XFXF f . Clearly, 

the equality in not possible; hence, )()( XFXF f .  ■ 

Corollary: |)(||)(| XFXF ≥ .  

Proof: Clearly FF VVXFXF ff ⇒)()(  where FV  and FV  are the signature vectors of  

)( XF  and )( XF  respectively and |)(| XF  is the zeroth signature and the first entry of 

signature vector FV  and |)(| XF  is the first entry of  FV . Since FF VV  f  is based on 

lexicographic comparison, |)(||)(| XFXFVV FF   ≥⇒f .  ■ 

Let 
ixF  denote the cofactor of function  )( XF  with respect to ix where ),,,( 21 nxxxX K= .  (

ixF  

is regarded as a function of ),,,,,( 111 niii xxxxX KK +−= .) Signatures in the signature vector ixFV   

of  
ixF  are in the form of || qF  where cube q  always include literal ix . (We will use the 
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notation qxi ∈  to indicate that literal ix  is included in cube q .) Obviously, 

ixF
qi VFqx ∈⇔∈ || . All signatures that exist in the signature vector of 

ixF  will also exist in the 

signature vector of F  i.e., F
q

F
q VFVF ix ∈⇒∈ |||| . 

It is important to point out that the order in which signatures || qF  appear in ixFV  is maintained 

in FV . To state this fact formally let’s denote the location of || qF  in FV  by |)|,( q
F FVL . We 

have }2,,3,2,1{|)|,( n
q

F FVL K∈  .  For example 1|)|,( += iFVL
ix

F  and 1|)|,( =
i

ix
x

F FVL  

since ||
ixF  is the 1+i st entry of FV  and the first entry of ixFV .  

Recall that in the previous chapter, when defining the signature vector, we defined an ordering 

‘p ’ between cubes q  of a given function )( XF . One can verify that this ordering has the 

following important property. For any two cubes 1q  and 2q  that contain literal ix  i.e., 11 qxq i ′=  

and 22 qxq i ′= , we have 2121 qqqq pp ⇔′′ . If the cubes are ordered based on the ordering ‘p ’, 

then ),( qFL  will be location of q  in that ordering. From this argument it can be resulted that 

|)|,(|)|,( q
F

q
F FVLFVLqq ′<⇔′p . Therefore, if two signatures || qF  and || qF ′  exist in both 

FV  and ixFV  (i.e., qxi ∈  and qxi ′∈ ) then the order in which they appear in  FV  and ixFV  is 

the same i.e., if || qF  appears before || qF ′  in ixFV , then || qF  will appear before || qF ′  also in 

ixFV  and vice versa i.e., |)|,(|)|,(|)|,(|)|,( q
F

q
F

q
F

q
F FVLFVLFVLFVL ixix

′′ <⇔< . 

Theorem 5: Let )( XF  be the canonical form of an NPN-equivalence class E . The cofactor of 

)( XF  with respect to the positive phase literals ix  is greater than or equal to that of negative 

literals ix  i.e., 
ii xx FFni fK },,,2,1{∈ . 

Proof: The proof is by contradiction. Assuming that 
ii xx FF   p  for some },,2,1{ ni K∈ , we 

prove that )( XF  cannot be the canonical form. We will show that if 
ii xx FF   p  then negating ix  

will transform )( XF  to another function )( XF ′  such that FF f′  which is clearly a 

contradiction. Consider the NP transformation: 

  ),,,,,,,(),,,,,,,( 11211121 niiiniii xxxxxxxxxxxxT KKKK +−+− = .  
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We create a new function )()( TXFXF =′ . Clearly )( XF  and )( XF ′  are NPN-equivalent, 

thus EXF ∈′ )(  since EXF ∈)( . Previously, we defined the NP transformation on cubes. 

Using this definition, ||||)()( )( qxTqx ii
FFTXFXF =′⇒=′ . Based on the definition of 

transformation T , if a cube q  does not include ix  i.e., qxi ∉ , then qqT =)( . Therefore, 

||||)()()( qxqxiii ii
FFqxqTxTqxT =′⇒== . We made the assumption that 

ii xx FF   p . The 

signatures of ixFV  are of the form || qxi
F  where q  is a positive cube not including ix  ( qxi ∉ ). 

Let 1q  be the first cube (not including ix  i.e., 1qxi ∉ ) for signature vectors ixFV  and  ixFV  that  

||||
11 qxqx ii

FF < . Based on the previous Theorem for signature vectors FV  and FV ′ , 1qxi  will 

also be the first cube (including ix ) such that ||||
11 qxqx ii

FF ′<  and for all cubes qxi  before 1qxi  

i.e., 1qxqx ii p  (or equivalently 1qq p ), |||| qxqx ii
FF ′= . (Notice that since )( XF  and )( XF ′  are 

defined over the same variable vector X  for all cubes q , |)|,(|)|,( q
F

q
F FVLFVL ′= .) 

Signatures in FV ′  are of the form || qF ′′ . In addition, ||||)()( )(qTq FFTXFXF ′′ =′⇒=′ . If a cube 

q′  does not include ix  then qqT ′=′)( ; Thus |||||| )( qqTq FFF ′′′ ==′ . Now if a signature || qF ′′  

from FV ′  is different from the corresponding signature || qF ′  from FV , then q′  must include ix  

i.e., qxq i=′ . Based on these arguments, for signature vectors FV  and FV ′ , 1qxi  will be the 

first cube among all cubes (including and not including ix ) that ||||
11 qxqx ii

FF ′<  (for all cubes q  

before 1qxi  i.e., 1qxq ip , |||| qq FF ′= .) This condition results in FF ′p  which is a 

contradiction since )( XF  is the NPN-representative of its class E  that also contains )( XF ′  

(the relation FF ′  f  must be satisfied.) Hence the assumption 
ii xx FF   p  must be wrong which 

proves that 
ii xx FF   f . However if 

ii xx FF =  then )( XF  will be independent of ix . Therefore, 

ii xx FF f .  ■ 

Corollary: | | ||
ii xx FF f .  

Proof: Since  ||
ixF  and  ||

ixF  are the first entries of the signature vectors of   
ixF  and 

ixF ,  

|| | |
iiii xxxx FFFF ≥⇒f .  ■ 
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Let’s use Q  to denote the set all positive cubes created from conjunction of some literals among 

nxxx ,,, 21 K . Also let iQ  denote the set of cubes that do not include ix  i.e., }{ qxQqQ ii ∉∈= . 

The set ijQ  is defined as the set of cubes that do not include ix  and jx  i.e., 

},{ qxqxQqQ jiij ∉∉∈= . It is easy to see that jiij QQQ I= . Similarly ijkQ  is defined as 

kjiijk QQQQ II= . 

Since we include  || f  in the signature vector of function )( Xf , we define the cube {}0 =q  

which contains no literals. Notice that ff q =
0

 and iQqi ∈∀ 0, . 

In the following we study the symmetry of variables in the canonical form. 

Theorem 6: Let )( XF  be the canonical form of an NPN-equivalence class E  and q′  represent 

a cube that does not include literals ix  and jx  ( ijQq ∈′ ). For every such cube, ijQq ∈′ , || qxi
F ′  

and || qx j
F ′  are equal if and only if ix  and jx  are symmetric i.e., 

jiqxqxij xxFFQq
ji

≡⇔=∈′∀ ′′ |)|||,( . 

Proof: We will prove that if signatures || qxi
F  and || qx j

F  are equal, then swapping ix  and jx  will 

not change the value of the signature vector of )( XF  and vice versa. Let’s denote the NP 

transformation that swaps ix  and jx  by T  i.e., ),,,,,,(),,,,,,( 11 nijnji xxxxxxxxT KKKKKK =   

Furthermore, let’s denote )()( TXFXF =′ . We will investigate the relation between signature 

vectors of functions )( XF  and )( XF ′ . The cubes q  appearing in the signature vector of )( XF  

(or )( XF ′ ) can be classified into four types. For ijQq ∈′ , the following relations are satisfied: 

qqT ′=′)( , qxqxT ji ′=′)( , qxqxT ij ′=′)(  and qxxqxxT jiji ′=′)( . As we can see, cubes of the 

form q′  and qxx ji ′  are invariant under NP transformation T .  Recall that for a cube q , 

||||)()( )(qTq FFTXFXF =′⇒=′ ; therefore, the signatures of the signature vectors FV  and FV ′  

that correspond to cubes of the form q′  and qxx ji ′  are always equal. The signature vectors FV  

and FV ′  are equal if and only if |||| qq FF ′=  for every cube q ;  therefore, 

FF
qxqxqxqx VVFFFF

jjii

′
′′′′ =⇔′=′= ||||&|||| . However, from |||| )(qTq FF =′ , it can be concluded that 

|||| qxqx ji
FF ′′ =′  and |||| qxqx ij

FF ′′ =′ , which combined with the previous relation, results in 
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|||| qxqx ji
FFFF ′′ =⇔′= . Since )()( TXFXF =′  and T  only swaps ix  and jx , FF ′=  means that 

ix  and jx  are symmetric. Therefore, jiqxqx xxFF
ji

≡⇔= ′′ |||| .  ■ 

Theorem 7: Let )( XF  be the canonical form of an NPN-equivalence class E . Assume that ix  

and jx  (with ji < ) are not symmetric. There exists a cube ijQq ∈1  such that ||||
11 qxqx ji

FF >  and 

for every cube ijQq∈  before  1q  (i.e., 1qq p ), || qxi
F  and || qx j

F  are equal i.e., 

||||,
111 qxqxij ji

FFQq >∈∃  and ||||, 1 qxqxij ji
FFqqQq =⇒∈∀ p . 

Proof: Let ijQq ∈1  be the first cube in ijQ  that ||||
11 qxqx ji

FF ′′ ≠ . From the previous Theorem since 

ix  and jx  are not symmetric, such a cube exists. We will prove that ||||
11 qxqx ji

FF > . The proof is 

by contradiction. We will prove that if ||||
11 qxqx ji

FF < , then swapping ix  and jx  in )( XF  will 

result in another function EXF ∈′ )(  with FF f′  which is a contradiction since )( XF  is the 

NPN-representative of E . Let’s denote the NP transformation that swaps ix  and jx  by 

),,,,,,(),,,,,,( 11 nijnji xxxxxxxxT KKKKKK = . Also let’s denote )()( TXFXF =′ . Now we 

compare signatures || qF  and || qF ′  of signature vectors FV  and FV ′ . Assuming that q′  

generally denotes a cube not including ix  and jx i.e., ijQq ∈′ , signatures || qF  and || qF ′  are 

equal for cubes q  of the form of qq ′=  or qxxq ji ′=  i.e., |||||| )( qqTq FFF ′′′ ==′  and 

|||||| )( qxxqxxTqxx jijiji
FFF ′′′ ==′ . Hence, FV  and FV ′  may only be different in signatures with cubes 

of the form qxq i ′=  or qxq j ′=  . Notice that |||||| )( qxqxTqx jii
FFF ′′′ ==′  and 

|||||| )( qxqxTqx ijj
FFF ′′′ ==′ . Hence, ||||||||

1111 qxqxqxqx iiji
FFFF ′<⇒<  and 

||||||||,, 1 qxqxqxqxij iiji
FFFFqqQq ′=⇒=∈∀ p  which proves that FF VV f′ . Since 

FFVV FF ff ′⇒′  results in a contradiction; Thus, ||||
11 qxqx ji

FF >  must be correct.  ■ 

Corollary: If for the canonical form  )( XF , ix  and jx  ( ji < ) are not symmetric,  then 

||||
ji xx FF ≥ .  

Proof: Since {}0 ∈q  is the first cube in ijQ , ||||
00 qxqx ji

FF ≥  In addition, since 
ii xqx FF =

0
 and 

jj xqx FF =
0

, it can be seen that ||||
ji xx FF ≥ .  ■ 
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Corollary: For the case that ||||
ji xx FF = , let },{ jik ∉  be the first number that ||||

kjki xxxx FF ≠ ; 

if such k  exists, ||||
kjki xxxx FF > .  

Proof: Notice that cubes of the form kk xq =  where },{ jik ∉  belong to ijQ . For },{, jilk ∉ , 

lk qqlk p⇒< .  ■ 

Another way of describing this result is, ),(),( ijVjiV FF f  where ),( jiV F  is a partial 

signature vector defined as, 

 |)|,|,||,|,|,||,|,|,||,||,(|),(
111121 nijijiiiiiiii xxxxxxxxxxxxxxx

F FFFFFFFFjiV KKK
+−+−

=  

Similarly ),( ijV F  is defined as, 

 |)|,|,||,|,|,||,|,|,||,||,(|),(
111121 njjjjjijijjjj xxxxxxxxxxxxxxx

F FFFFFFFFijV KKK
+−+−

=  

Theorem 8: Let )( XF  be the canonical form of an NPN-equivalence class E . If for ji < , ix  

and jx  are symmetric in function )( XF , then all other kx  where jki <<  are also symmetric to  

ix  and jx i.e., jiiji xxxxx ≡≡≡⇒≡ + L1 . 

Proof: The proof is by contradiction. Assume that there exist kx  (where jki << ) that is not 

symmetric to ix  and jx . Let’s denote the NP transformation that swaps ix  and jx  by 

),,,,,,(),,,,,,( 11 nijnji xxxxxxxxT KKKKKK = . Since  ix  and jx  are symmetric, 

)()( XFTXF = . Let ikQq ∈1   be the first cube in ikQ  such that ||||
11 qxqx ki

FF ≠ . Based on the 

previous Theorem, since ki < , ||||
11 qxqx ki

FF >  and ||||,
111 qxqxik ki

FFqqQq =⇒∈∀ p . In addition,  

let ikQq ∈2   be the first cube in kjQ  that ||||
22 qxqx kj

FF ≠ . Based on the previous Theorem, since 

jk < , ||||
22 qxqx jk

FF >  and ||||,
222 qxqxkj jk

FFqqQq =⇒∈∀ p . Cube ikQq ∈1  does not include ix  

and kx . However, it may or may not include jx . Similarly cube kjQq ∈2  may or may not include 

ix . Hence four possibilities exist. We will investigate all cases. First let’s assume that 1qx j ∉  

and 2qxi ∉  i.e., ijkQqq ∈21,  which results in 11)( qqT =  and 22 )( qqT =  since ijQqq ∈21, . Now 

since )()( XFTXF = ,  ||||||
111 )( qxqxTqx jii

FFF == . From the definition of  1q , 

||||||||
1111 qxqxqxqx kjki

FFFF >⇒> . Therefore, based on the definition of 2q  and since jkQq ∈1 , 1q  
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should satisfy the relation 12 qq p  because if 21 qq p , then ||
1qx j

F  and ||
1qxk

F  must be equal. 

Therefore, again based on the definition of 1q , ||||,
22212 qxqxik ki

FFQqqq =⇒∈p . However, 

22 )( qqT =  since ijQq ∈2 , and therefore, ||||||
222 )( qxqxTqx jii

FFF ==  which combined with the 

previous relation results in ||||
22 qxqx kj

FF = . This is clearly a contradiction since based on the 

definition of 2q , ||||
22 qxqx jk

FF > . Hence our last assumption (i.e., 1qx j ∉  and 2qxi ∉ ) must be 

incorrect. Next we investigate the case 1qx j ∈  and 2qxi ∉ . Clearly, 

1111 , qxqQqqx jijkj ′=∈′∃⇒∈ . From the definition of  1q , ||||||||
1111 qxxqxxqxqx jkjiki

FFFF ′′ >⇒> . 

Since ijQq ∈′1 , 11)( qqT ′=′ , ||||||
111 )( qxxqxxTqxx ikjkjk

FFF ′′′ ==  which combined with the previous 

relation results in ||||
11 qxxqxx ikij

FF ′′ > . Therefore, based on the definition of 2q  and since 

jki Qqx ∈′1 , 1qxi ′  should satisfy the relation 12 qxq i ′p . Since ji p , 11 qxqx ji ′′ p  which combined 

with 12 qxq i ′p  results in 12 qxq j ′p . Notice that 11 qqx j =′ ; hence, 12 qq p . Therefore, again 

based on the definition of 1q , ||||,
22212 qxqxik ki

FFQqqq =⇒∈p . However 22 )( qqT =  since 

ijQq ∈2 , and therefore, ||||||
222 )( qxqxTqx jii

FFF ==  which combined with the previous relation 

results in ||||
22 qxqx kj

FF = . This is a contradiction since based on the definition of 2q , 

||||
22 qxqx jk

FF > . Hence the assumption (i.e., 1qx j ∈  and 2qxi ∉ ) is also incorrect. Similarly one 

can prove that 1qx j ∉  and 2qxi ∈  leads to contradiction. Hence the only remaining option is 

1qx j ∈  and 2qxi ∈  which in the following we will show that results in a contradiction. Clearly, 

1111 , qxqQqqx jijkj ′=∈′∃⇒∈  and 2222 , qxqQqqx iijki ′=∈′∃⇒∈ . From the definition of  1q , 

||||||||
1111 qxxqxxqxqx jkjiki

FFFF ′′ >⇒> . Since ijQq ∈′1 , 11)( qqT ′=′  and therefore 

||||||
111 )( qxxqxxTqxx ikjkjk

FFF ′′′ ==  which combined with the previous relation results in 

||||
11 qxxqxx ikij

FF ′′ > . Therefore, based on the definition of 2q  and since jki Qqx ∈′1 , 1qxi ′  should 

satisfy the relation 21 qqxi f′  because if 21 qqxi p′  then ||
1qxx ij

F ′  and ||
1qxx ik

F ′  must be equal. 

Therefore, since 22 qxq i ′= , 2121 qxqxqqx iii ′′⇒′ ff . Based on one of important properties of the 

order relation that we defined between cubes, 212121 qxqxqqqxqx jjii ′′⇒′′⇒′′ fff  which 
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combined with 11 qxq j ′=  results in 21 qxq j ′f . Therefore, again based on the definition of 1q , 

||||,
22221 qxxqxxikjj jkji

FFQqxqxq ′′ =⇒∈′′f . However, ||||
22 qxqxx jji

FF =′ ; also  22 )( qqT ′=′  since 

ijQq ∈′2 . Therefore, ||||||||
2222 )( qxqxxqxxTqxx kikjkjk

FFFF === ′′′  which combined with the previous 

relation results in ||||
22 qxqx kj

FF = . This is clearly a contradiction since based on the definition of 

2q , ||||
22 qxqx jk

FF > . Hence, the statement that “there exist kx  where jki <<  that is not 

symmetric to ix  and jx ” is incorrect, which proves that jii xxx ≡≡≡ + L1 .  ■ 

This Theorem indicates that for the canonical form )(XF , symmetric variables are positioned 

consecutively in ),,,( 21 nxxxX K=  i.e., variables will be arranged as: 

444 8444 76
LL

444 8444 76
L

48476
L

k

kk

C

nnnnn

C

nnnn

C

n xxxxxxxxx ,,,,,,,,,,,, 212121

2

2111

1

1 +−+−+++  where kCCC ,,, 21 K   are symmetry classes 

and || ii Cn = . 

VI Computing the canonical form  
Given a function )(Xf  the objective is to find its canonical form )(XF  and the corresponding 

set of CP transformations )}()(,{ XFTXfqTC q
nf =∃Γ∈= . Equivalently the set of CP 

transformations can be expressed as: )}()(,,{ XTfTXfqTTC q
nnf ′=∃Γ∈′∀Γ∈= . 

Previous Theorems impose some conditions on the canonical form )(XF . For a CP 

transformation T ′  such that )()( XFXTf q
q =′∃ , we project the conditions on  )(XF  to conditions 

on T ′ . These conditions significantly limit the search space (for fC ) since 

)()()()( 1XTFXfXFXTf qq −′=⇒=′ . 

Let’s denote the inverse of T ′  by 1−′= TT P
π  where ),,,( 21 npppP K= . Let’s also denote the 

variable after phase assignment by PXX =~  (i.e. ip
ii xx =~ ) for simplicity. With this notation, 

)~,,~,~()~()( )()2()1( n
PP xxxXXXT ππππ ππ K=== . Based on the relation )()( XTFXf Pq

π=  the 

conditions of previous Theorems are translated as follows. 

The first condition is on the output phase assignment q . Since  FF f , phase assignment q  

should satisfy the condition qq ff f . Again for simplicity we denote qff =~ . The second 
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condition is on phase assignment P  which follows from 
ii xx FF f  and translates to 

ii xx ff ~~
~~

f  

(or 
ip

i
ip

i xx
ff ~~

f ). The next condition is as follows. If for ji < , )(
~

ixπ  and )(
~

jxπ  are symmetric in 

function )( Xf  (or )(~ Xf ), then all other )(
~

kxπ  where jki <<  are also symmetric to  )(ixπ  and 

)( jxπ  i.e., )()1()()()(
~~~~~

jiiji xxxxx πππππ ≡≡≡⇒≡ + L . 

Another important constraint is that if )(
~

ixπ  and )(
~

jxπ  are symmetric in function )( Xf  

(or )(~ Xf ), then ),(),(
~~

ijVjiV ff
ππ f  where ),(

~
jiV f

π  is a partial signature vector defined as 

 |)~|,|,~||,~|,|,~||,~|,|,~||,~(|),(
)()()1()()1()()1()()1()()1()()(

~~~~~~~~~~~~~
~

nijijiiiiiii xxxxxxxxxxxxx
f fffffffjiV

ππππππππππππππ KKK
+−+−

=  , 

 |)~|,|,~||,~|,|,~||,~|,|,~||,~(|),(
)()()1()()1()()1()()1()()1()()(

~~~~~~~~~~~~~
~

njjjjjijijjj xxxxxxxxxxxxx
f fffffffijV

ππππππππππππππ KKK
+−+−

=  

Symmetry classes of variables will be arranged as: 

 
44 844 76

LL
444 8444 76

L
4484476

L

k

k

C

nnn

C

nnn

C

n xxxxxx )()1()()1()()1(
~,,~,,~,,~,~,,~

2

211

1

1 ππππππ +−++  where iC  with in  members is a maximal 

symmetry class for function )(~ Xf . The first order signatures |~|
)(

~
ixf

π
 are sorted non-

increasingly. 

|~||~||~||~||~||~|
)()1()21()11()1()1(

~~~~~~
nknnnnnn xxxxxx ffffff

ππππππ
==>>==>==

+−++
LLLL  

One can use this property to reduce the complexity of identifying symmetry classes since a 

necessary condition for symmetry of )(
~

ixπ  and )(
~

jxπ  is the equality of |~|
)(

~
ixf

π
 and |~|

)(
~

jxf
π

 i.e., 

|~||~|~~
)()(

~~)()( ji xxji ffxx
ππππ =⇒≡ . 

These conditions on 1−′= TT P
π  are necessary conditions for  f

P CT ∈−1)( π . Hence, if we define 

inverse of fC  as }{ 11
fnf CTTC ∈Γ∈= −− , then these are necessary conditions for 1−∈ f

P CTπ . 

An important property of the CP transformation set fC  is as follows. If for two NP 

transformations T  and T ′  satisfy the inequality )(~)(~ XTfTXf ′f , then T ′  is definitely not a 

CP transformation i.e., fCTXTfTXf ∉′⇒′ )(~)(~
f . 

These constraints are effectively used to identify CP transformations fC  as described in the 

following. 
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VI.1 The Compute_Cf Algorithm  

The proposed algorithm, called Compute_Cf, uses signatures of function )( Xf  to compute the 

CP transformations on inputs and corresponding output phase assignments. However, at the 

beginning, only 0th, 1st and if necessary 2nd signatures are used. In most cases, 1st-signatures 

alone determine a considerable portion of the inequalities required to identify the desired NP 

transformation. Otherwise, as will be explained later, the remaining comparisons are performed 

using 2nd-signatures. Similarly higher order signatures are used only if they become necessary. 

Experimental evidence shows that in the great majority of cases, a signature inequality occurs for 

the low order signatures (0th, 1st and 2nd signatures.)  Intuitively, the reason is that the lower order 

signatures depend on higher number of minterms of the function, and thus, contain more 

information about the function. For example, a 1st-signature depends on 2n-1 minterms, which is 

one half of the whole Boolean space (2n minterms) whereas a 2nd-signature depends on one-forth 

of all minterms (2n-2 minterms.) Hence, the 1st-signatures are the most powerful and effective 

signatures. The 2nd-signatures are the next most effective signatures and so on. The reader will 

observe that this arrangement of the proposed signature vector minimizes the computational 

complexity.  

The first step of the Compute_ fC  algorithm is to identify the output phase assignment. If 

|||| ff ≠ , then the output phase q  can be uniquely determined from the relation |||| qq ff > . 

However, if  |||| ff = , the output phase cannot be determined by using only 0th  signatures. In 

this case ( |||| ff = ) the output phase is considered undecided , which is denoted by uq = . 

(Thus we have extended the set of acceptable phases }1,0{  to },1,0{ u .) If the output phase is 

undecided, it will be determined in subsequent steps of the algorithm. In the end, the algorithm 

will return a value in }1,0{ for the phase. For simplicity we will denote qff =
~ . 

In the next step, input phase assignment is performed by using 1st-signatures. First assume that 

the output phase is decided i.e., uq ≠ . The opposite case will be discussed later. For variable ix  

if |~||~|
ii xx ff ≠ , then ip , the phase of  ix , can be uniquely determined by using the relation 

|~||~|
ip

i
ip

i xx
ff > . However, if  |~||~|

ii xx ff = , ip  cannot be determined by using only 1st-signatures in 

which case  the phase of ix  is considered undecided (which is again denoted by upi = .) 
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Undecided input phases will be determined in subsequent steps of the algorithm. If the output 

phase is undecided i.e., uq = , then 1st-signatures are used as follows to determine output and 

input phases. The are two possibilities for the final value of q  i.e., 0=q  or 1=q . Each 

possibility for q  results in input phase assignments )(qpi  (where q  in the parenthesis indicates 

the dependence of ip  on q ) based on the following relation, ||||
)()(

q

x

q
x qip

i
qip

i
ff >  and 

uqpff i
q

x
q

x ii
=⇒= )(|||| . Notice that even if uqpi =)( , the value of || )(

q
x qip

i
f  will be unique i.e., 

||||||)( )(
q

x
q

x
q

xi iiqip
i

fffuqp ==⇒=  

Next we sort signatures || )(
q

x qip
i

f  in a non-increasing order. Let qπ  be a permutation that results 

in such an ordering i.e., ||||||
)()2()1(

~~~
q

x
q

x
q

x nqqq
fff

πππ
≥≥≥ L  where )(~ qp

ii
ixx =  for simplicity. Let 

)(qV  denote the vector comprising of the ordered 1st-signatures i.e., 

|)|,|,||,(|)(
)()2()1(

~~~
q

x
q

x
q

x nqqq
fffqV

πππ
K= . Assuming that q  is the output phase assignment that 

results in the canonical form, one can easily see that )(qV  consists of 2nd to ( 1) stn +  entries of 

the signature vector of the canonical form of )( Xf . (The first entry is |||| ff = .) Now if 

)()( qVqV ≠ , then q  must satisfy the following relation: )()( qVqV f  since the canonical 

form has the maximal signature vector. This relation uniquely determines the output phase 

assignment q  unless )()( qVqV =  in which case the computation of q  is again postponed to the 

subsequent steps of the algorithm. 

Let’s denote a variable after phase assignment as jp
jj xx =~ . In the next step, symmetry classes of 

variables are determined. A necessary condition for ji xx ~~ ≡  is |~||~| ~~
ji xx ff = ; therefore the 

symmetry check is performed for  ix~  and jx~  only if |~||~| ~~
ji xx ff = . If the phases of variables ix  

and jx  are undecided, we will determine ix  and jx  to be symmetric only if they are symmetric 

independent of their phases i.e. ji xx ≡  and ji xx ≡ . An example of this situation is when 

)(~ Xf  depends on ji xx ⊕ . 

Based on these symmetry relations, we form the maximal symmetry classes of variables 

mCCC ,...,, 21 . Function )(~ Xf  will remain invariant under permutations inside a symmetry 
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class. Based on this fact and since symmetric variables are positioned consecutively, instead of 

finding NP transformations on the variables, it is sufficient to search for NP transformations on 

classes mCCC ,...,, 21 , which will in turn greatly reduce the size of search space. In fact, this is 

a major advantage of the proposed technique compared to previous approaches.  

The objective is to determine all members of fC . Obviously, if an NP transformation T  is a 

member of fC  and fST ∈′ , then the transformation TT ′  is also a member of fC . 

(Recall that fS  is the set of SP transformations i.e., )()( XTfXfST q
qf ′=∃⇔∈′ .) 

Let’s denote the subgroup of SP transformations that correspond to simple symmetry of variables 

by W . An example of a member of W  is the NP transformation that swaps variables ix  and jx . 

Notice that W  also includes the cascades of NP transformations that correspond to simple 

symmetry of variables i.e., W  is closed with respect to the cascade operation: 

WTTWTWT ∈′⇒∈′∈ , . Obviously fSW ⊂  and also ff CTWCT ⊂⇒∈ . Thus, to avoid 

computational redundancy, the proposed algorithm will return only one member of  TW since 

given an NP transformation fCT ∈ , one can easily obtain all members of TW . 

To explain this matter formally, we define a relation ‘≈ ’ between fCTT ∈′,  where TT ′≈  

means that there exist a WT ∈′′  such that TTT ′′′= . This relation breaks fC  into equivalence 

classes. The proposed algorithm returns the set ff CC ⊂′  which contains exactly one member of 

each such class i.e., ff CTTWTCT ′∉′⇒∈′′∈ ,  or equivalently, ff CTTTCT ′∉′⇒′≈′∈ , . 

Now we will discuss the concept of NP transformations on classes. The phases of classes that 

contain variables with decided phases are defined as 1. The phase assignment for classes that 

contain variables with undecided phases is defined as: }|{ ij
p
j

p
i CxxC ii ∈=  where ip  is to 

be determined. 

An NP transformation on classes mCCC ,...,, 21  signifies a transformation on variables 

),,,( 21 nxxxX K=  . The cofactor of function )( Xf  with respect to any member of a class iC is 

a unique function; hence the cofactor of  )( Xf  with respect to the class iC  can be defined as 

ji xC ff =  for ij Cx ∈ . 
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Let’s denote the classes after phase assignment as mCCC ~,...,~,~
21 . In the next step, classes are 

ordered based on their first signatures. Let π  be a permutation on classes that respects the 

ordering: |~||~||~|
)()2()1(

~~~
mCCC fff

πππ
≥≥≥ L  (even when the phase of a class, iC~ , is undecided, 

the 1st-signature can be defined since |~||~|
ii CC ff = .) 

If the 1st-signatures are distinct values for mCCC ~,...,~,~
21 , then a unique ordering can be 

achieved since |~||~||~|
)()2()1(

~~~
mCCC fff

πππ
>>> L  in which case the algorithm terminates 

returning the NP transformation resulting from π  and the corresponding phase assignment as a 

member of }{ 11
fnf CTTC ′∈Γ∈=′ −− . Otherwise, the classes are placed in k groups such that all 

classes inside a group have the same 1st-signature: 

444 8444 76
LL

444 8444 76
L

4484476
L

k

k

G

mnn

G

nnn

G

n CCCCCC )()1()()1()()1(
~,,~,,~,,~,~,,~

2

211

1

1 ππππππ +−++  

where |~||~||~||~||~||~|
)()1()21()11()1()1(

~~~~~~
mknnnnnn CCCCCC ffffff

ππππππ
======

+−++
LfLfLfL . 

We refer to a group as unresolved if it contains more than one class or the phases of classes in 

that group are undecided. If all the groups are resolved, a unique ordering has been obtained and 

the algorithm terminates. The objective of next steps is to resolve all unresolved groups.  

Let }~,,~,~{ )()1()( ljjj CCCG πππ K+=  be the first unresolved group. Since all groups 121 ,,, −jGGG K  are 

resolved, (i.e., they contain a single class with decided phase,) the ordering of classes up to jG  is 

identified. (The case that 1G  is unresolved is discussed later.)  

Now the 2nd-signatures are used to specify the ordering inside the unresolved groups starting 

with jG . Since 1G  is resolved, }~{ )1(1 πCG = , 2nd-signatures with respect to )1(
~
πC  and )(

~
iCπ  for 

lij ≤≤  (i.e., |~|
)()1(

~~
iCCf ππ

) can be used for phase assignment (if needed) and ordering classes 

)()1()(
~,,~,~

ljj CCC πππ K+  (later on this step will be referred to as iteration 1.)  
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If phases of classes )(iCπ  in jG  is undecided, the 2nd-signatures |~|
)()1(

~
iCCf ππ

 and |~|
)()1(

~
iCCf ππ

are 

compared and phase p  for )(iCπ  is decided based on |~||~|
)()1()()1(

~~ p
i

p
i CCCC

ff
ππππ

> . In case of equality of 

the 2nd-signatures, the phase of )(iCπ  remains undecided.  

Next, new values of 2nd-signatures |~|
)()1(

~~
iCCf ππ

 after phase assignment are used to order classes 

)()1()(
~,,~,~

ljj CCC πππ K+  and subsequently regroup these classes i.e., the values of  

)(,),1(),( ljj πππ K+  are updated to respect the following ordering: 

|~||~||~|
)()1()1()1()()1(

~~~~~~
ljj CCCCCC fff

ππππππ
≥≥≥

+
L . Subsequently, jG  is split into smaller groups such that 

inside each group the 2nd-signatures, |~|
)()1(

~~
iCCf ππ

, are equal. The same procedure (phase 

assignment, ordering and regrouping based on |~|
)()1(

~~
iCCf ππ

) is applied to all other unresolved 

groups.  

Finally, the indices of new groups are properly updated. If after these steps, there still exists 

some unresolved group, lG , a similar procedure (called  iteration 2) is applied based on  2nd-

signatures with respect to )2(
~
πC  and li GC ∈)(

~
π  (i.e., |~|

)()2(
~~

iCCf ππ
 assuming 2>l ). If needed 

iterations 1,,4,3 −jK  are applied. If at iteration j, there still exists some unresolved groups and 

jG  itself is also unresolved, the procedure described below will be used. (This case includes the 

case where 1G  is unresolved.)  

At this point, the values of )1(,),2(),1( −jπππ K  have been finalized (so is the value of π  for 

any other group with only one class). However, the values of )(,),1(),( ljj πππ K+  (group jG ) is 

not final (since 1st and 2nd signature have not made them distinct.) The final value for )( jπ  can 

be any value among )(,),1(),( ljj πππ K+ . Finalizing the value of  )( jπ  to one of 

)(,),1(),( ljj πππ K+  is equivalent to splitting }~,,~,~{ )()1()( ljjj CCCG πππ K+=  to groups }~{ )(iCπ  and 

}~,,~,~,,~{ )()1()1()( liij CCCC ππππ KK +−  and updating π  and indices of groups so these two groups are 

represented by }~{ )( jj CG π=  and }~,,~,~{ )()2()1(1 ljjj CCCG πππ K+++ = . Therefore, there are 1+− jl  

ways to do this split ( 1+− jl  ways to specify new jG )  and if the phase of )( jCπ  is undecided, 
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then there will be two ways to resolve the group, new jG  (two phases 1=p  and 0=p .) 

Consequently, there are 1+−= jlr  (or )1(2 +−= jlr ) ways to specify and resolve the new 

group, jG . All these r  cases need to be tracked, since it is unknown which one(s) will result in a 

maximal transformation. For each case, the 2nd-signatures, |~|
)()(

~~
ij CCf ππ

, are used to first order 

classes inside the unresolved groups among mjj GGG ,,, 21 K++  and then split them based on the 

outcome of ordering. 

This process will continue for all r  cases, recursively (cf. the recursive-resolve algorithm), until 

all groups are resolved. All resulting NP transformations sTTT ,,, 21 K  resulting from different 

cases are stored (where in general rs ≥  since each returns more than one transformation as a 

result of the recursion process.)  

Because of the way they have been constructed, the inverses of CP transformations are among 

},,,{ 21 sTTT K , or equivalently, },,,{ 11
2

1
1

−−−⊂′ sf TTTC K . Hence by using 1st and 2nd signatures, we 

have limited the search for a fC′  among all !2 nn  transformations of  nΓ  to search among 

},,,{ 11
2

1
1

−−−
sTTT K  which is a significantly smaller size space than nΓ . Indeed, our experimental 

results confirm that most of the time all members of },,,{ 11
2

1
1

−−−
sTTT K  are CP transformations 

i.e., },,,{ 11
2

1
1

−−−=′ sf TTTC K , which implies that most of the time only 1st and 2nd signatures are 

capable of determining the canonical form. 

Members of fC′  among },,,{ 11
2

1
1

−−−
sTTT K  are identified based on the fact that fi CT ∈−1  if and 

only if )(~)(~ 11 XTfXTf ji
−−   f  for sj ≤≤1 . This task requires the performing comparison 

)(~)(~ 11 XTfXTf ji
−−   f  repeatedly. The comparison is done based on their signature vectors. 

However, before using the signature vectors, the possibility equivalency of iT  and jT  should be 

considered i.e., first the relation )(~)(~ 11 XTfXTf ji
−− =  should be checked since in case of equality 

their signature vectors will be equal as well. On the other hand, if  )(~)(~ 11 XTfXTf ji
−− ≠  as we 

proved in a theorem earlier, their signature vectors are different i.e., either )(~)(~ 11 XTfXTf ji
−− f  

or )(~)(~ 11 XTfXTf ji
−− p . 
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The algorithm will return fC′  which in general may contain more than one transformation.  

As a result of the way in which these NP transformations are obtained, they all have the same set 

of 0th and 1st signatures and some of their 2nd signatures are equal as well. Hence, to avoid 

redundancy in comparing  )(~ 1XTf i
−  and )(~ 1XTf j

− , only signatures that are not already 

determined to be equal are generated and compared. Since comparison is done based on 

lexicographic comparison of signature vectors, signatures are generated one by one based on 

their significance order. Furthermore, only in case of equality, the subsequent signatures are 

generated and compared. Experimental results show that for nearly all functions, 1st and 2nd 

signatures conclude the comparison of  )(~ 1XTf i
−  and )(~ 1XTf j

− . 

Different steps of the proposed techniques are summarized in the following pseudo-code 

descriptions of Compute_Cf  and Recursive_Resolve algorithms. 

 

Algorithm Compute_Cf ( )(Xf ) 

Input: A Boolean function )(Xf  

Output: The canonical form )(XF  and CP transformations fC′ . 

Using the 0th-signature perform output phase assignment ; 
Using the1st-signatures, 
 Assign phases ; 
 Create symmetry classes ; 
 Order and group classes to groups kGGG ,,, 21 K ; 

Recursive_Resolve( fk CGGG ;,,, 21 K ) ; 

Set the canonical form: )(~)( TXfXF =  where fCT ∈ ; 

 
Algorithm Recursive_Resolve ( fk CGGG ;,,, 21 K ) 

Input: Ordered groups ( kGGG ,,, 21 K ) 

Output: The CP transformations fC′  

1=i ; {}=′fC ;  

while ( mi ≤ ) { // m is the number of classes 

     if ( iG  is resolved) { // }~{ )(ii CG π=  

     for (all unresolved groups jG ){  

          use signatures |~|
)()(

~~
li CCf ππ

 ( jl GC ∈)(
~
π ) to assign phase, order and split jG ; 

          update indices of groups and classes;  
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     } 
     1+= ii ; 

     } else { // }~,,~,~{ )()1()( liii CCCG πππ K+=  is not resolved 

      // for space limitation assume the phase of   }~,,~,~{ )()1()( liii CCCG πππ K+= is decided 

          for ( ij = ; lj ≤ ; ++j ) {  

                split iG  to groups }~{ )( jCπ  and }~,,~,~,,~{ )()1()1()( ljji CCCC ππππ KK +− ; 

                update indices of groups and classes: ( 121 ,,,, +kk GGGG K ); 

                recursive-resolve ( TEMP
fkk CGGGG ′+ ;,,,, 121 K ) ; 

                if ( {}=′fC  or )(~)(~ TXfXTf TEMP f ) {// TEMP
f

TEMP
f CTCT ′∈′∈ ,  

    TEMP
ff CC ′=′ ; 

           } else if ( )(~)(~ TXfXTf TEMP = ) { 

      TEMP
fff CCC ′′=′ U ; 

           } 
      } 
      return; 
      } 
}  
// At this point there are m groups and all of them are resolved 
T =Transformation resulted from current phase assignment and π ; 

}{ 1−=′ TCf ; 

return; 
 

In the above description of the algorithm we have not included the case where the output phase 

may not be decided by the 0th signature. In such a case, the following steps will have to be 

performed for both output phases. Let’s assume that  fC′  is the set of NP transformations 

returned by the algorithm for f  and fC ′′  is returned for f  then if )()( XTfXTf ′′′ f  (where 

fCT ′∈′  and fCT ′′∈′′ ) then output phase is 1=q , if  )()( XTfXTf ′′′ p  then 0=q  and if  

)()( XTfXTf ′′=′  then both phases can result in the canonical form i.e., )()()( XTfXTfXF ′′=′= . 

And the set of CP transformations is set to ff CC ′′∪′ . 

The algorithm will return fC′  which in general may contain more than one NP transformations. 

Based on the members of fC′  SP transformations (other than transformations corresponding to 

simple symmetries) are detected i.e., fff STTCTCT ∈′⇒′∈′′∈ −1, . Equivalently, for an NP 
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transformation fCT ′∈ , ff SCT ⊂′−1 . The remaining member of fS  can be generated by 

cascading NP transformation fCT ′−1  of with transformations of W . By cascading we mean 

generation every transformation that can be generated by members of fCT ′−1  and W  which might 

require repeated cascading since the cascade operation is not commutative. 

VII Experimental Results   
The technique presented above has been implanted as part of the SIS logic synthesis 

environment. To reveal the effectiveness of the proposed technique, the proposed canonical form 

is computed for all cells in a cell library, containing a large number of complex cells with up to 

20 inputs. To asses the efficiency of the method, a large number of randomly generated logic 

cells with different input counts were added to the library. Figure 1 shows the worst-case and 

average run-times required for computing the canonical form in terms of the number of inputs; 

i.e., the height of the nth  bars are the worst-case and average runtimes for all n-input cells. 

Yellow bars present results provided in reference [10]. 

 

Figure 1. Worst-case and average runtimes to compute canonical forms 

The run-times in this Figure 1 (Y-axis) are in microseconds and include data for cells with more 

than five inputs. This is because run-times for cells with as few as five inputs are too small (less 

than 1µ-sec) to be discernible. As an example the worst-case 20-input cell was a multiplexer 
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with four select inputs for which the algorithm takes 240 microseconds to compute its canonical 

form.  

These results show a major improvement in run-time over previous approaches [9][10]. (Notice 

that reference [9] does not handle complementation of inputs and output and reference [10] 

entails enormous space complexity.) For nearly all of the cells in the library, the canonical forms 

were computed using only the zeroth, 1st and 2nd signatures. Only one of the cells required the 

use of the 3rd signatures and none of them required the use of higher order signatures. However, 

the algorithm given above is complete and able to handle functions that may require the use of 

higher order signatures for computing the canonical form. 

As mentioned in the paper, one of the advantages of this technique is identifying all symmetry 

relations for the given function.   

The runtime of the algorithm for any function has a direct relation with the number of non-

simple symmetry relations of the function. More precisely, the higher the number of non-simple 

SP transformations, the higher the runtime. Figure 2 demonstrates the number of non-simple SP 

transformations for functions that correspond to the worst-case runtimes in the previous 

experiment. Note that the number of non-simple SP transformations is equal to the number of 

non-trivial CP transformations i.e., || fC′ . 

 

Figure 2. Number of non-simple SP transformations 
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VIII Conclusions 
A new efficient and compact canonical form was defined and an effective algorithm for 

computing the proposed canonical form was provided in this paper. The compactness and 

efficiency of the presented methods enables the approach to be applicable to a wide range of 

Boolean networks as apposed to previous approaches that either do not solve the problem 

generally or only handle functions with limited number of inputs. This paper addresses the 

general Boolean matching problem in which both permutation and complementation of inputs 

and output are considered. The proposed canonical form was based on using generalized 

signatures to obtain all CP transformations on inputs. Signatures were defined very effectively 

and first, most powerful signatures (that include more information about the function) are 

generated and used followed by less significant signatures, only if necessary. Using the resulted 

CP transformations the information about all symmetry relations are provided. Experimental 

results demonstrate the efficiency of the proposed approach and it was observed, in nearly all 

cases zeroth, 1st and 2nd signatures are enough to provide the canonical form and since these 

signatures is performed efficiently by ordering variables, the proposed approach is associated 

with a very low computational complexity. 
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