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Master equations govern the time evolution of a quantum system interacting with an environment, and may
be written in a variety of forms. Time-independent or memoryless master equations, in particular, can be cast
in the well-known Lindblad form. Any time-local master equation, Markovian or non-Markovian, may in fact
also be written in a Lindblad-like form. A diagonalization procedure results in a unique, and in this sense
canonical, representation of the equation, which may be used to fully characterize the non-Markovianity of the
time evolution. Recently, several different measures of non-Markovianity have been presented which reflect, to
varying degrees, the appearance of negative decoherence rates in the Lindblad-like form of the master equation.
We therefore propose using the negative decoherence rates themselves, as they appear in the canonical form of
the master equation, to completely characterize non-Markovianity. The advantages of this are especially apparent
when more than one decoherence channel is present. We show that a measure proposed by Rivas et al. [Phys.
Rev. Lett. 105, 050403 (2010)] is a surprisingly simple function of the canonical decoherence rates, and give
an example of a master equation that is non-Markovian for all times ¢ > 0, but to which nearly all proposed
measures are blind. We also give necessary and sufficient conditions for trace distance and volume measures to

witness non-Markovianity, in terms of the Bloch damping matrix.

DOI: 10.1103/PhysRevA.89.042120

I. INTRODUCTION

An open quantum system is a quantum system whose
dynamics is determined both by interactions internal to the
system, and by influences from an environment. As no physical
system is truly isolated, this is a situation which applies very
widely. Time-independent or memoryless behavior leads to
Markovian master equations in the so-called Lindblad form
[1,2]. Lindblad master equations have been extensively used
to describe phenomena in, e.g., quantum optics, semiconductor
physics, and atomic physics, ranging from the decay of an atom
to a quantum-mechanical description of Brownian motion
[3-5].

The non-Markovian case is less well understood, but is
becoming increasingly relevant as our ability to experimentally
control quantum systems develops. Simple examples are a
damped harmonic oscillator and a damped driven two-level
atom [3,4]. Also, the vast majority of calculations of error
thresholds for quantum computing makes the assumption that
the noise processes are Markovian. This is not necessarily
physically realistic [6].

Recently, several different measures of non-Markovianity
have been proposed [7-15]. For example, the measure in
Ref. [8] is based on whether it is possible for the trace distance
between two initial states to increase as a function of time. If
the time evolution starting from a time #, is completely positive,
then the trace distance cannot exceed its initial value at ¢y, but
it could first decrease and then increase again. This would be a
signature of non-Markovian behavior. Other signatures of this
type are based on increases in entanglement [9,11,12], Fisher
information and Bures distance [10,13,14], and the volume
of states [15]. Measures directly based on the definition of
complete positivity, such as the amount of isotropic noise
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needed to make the evolution completely positive [7], have
also been suggested [7,9].

The above measures are all compatible with a definition
of Markovianity corresponding to being able to write the
master equation in a local-in-time Lindblad-like form, such
that all decoherence rates y;(¢) are positive at all times. Math-
ematically equivalent characterizations for finite-dimensional
systems are that the evolution is divisible into a sequence of
infinitesimal completely positive evolutions [9,16] (analogous
to the classical Chapman-Kolmogorov equation [17]), and
that the evolution can be modelled by standard quantum
jump trajectories for the system [18-20]. Hence, a natural
definition of non-Markovian time evolution is the unavoidable
appearance of one or more negative decoherence rates in the
master equation.

In order to obtain a fundamental characterization under-
lying the many proposed measures of non-Markovianity, it
follows that one should focus on their common point of
origin, i.e., the negative decoherence rates y,(#) themselves.
We will show that this leads to a unique measure that gives
a complete picture of non-Markovianity even when there are
several decoherence channels present. Also, it does not require
solving the master equation to obtain the time evolution of the
system, or optimizing over initial states.

Any function of the y(¢) that can witness their nega-
tivity in at least some cases will be a valid measure of
non-Markovianity, and the measures in Refs. [7-13,15] can
be viewed in this way. Corresponding signatures, such as
increasing trace distance or increasing entanglement, are
useful as experimentally accessible indicators of the presence
of negative decoherence rates [21,22]. If only one decoherence
channel is present, these measures are more or less equivalent

©2014 American Physical Society
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to knowledge of y (¢) [8,9]. However, more generally, they may
not witness non-Markovian evolution even when it is present.

If one is to base a measure of non-Markovianity directly
on the negativity of decoherence rates in a master equation,
it is essential to have a unique form of the equation, since
each master equation may be written in many ways. This is
indeed a reason cited in Ref. [8] for not basing a definition of
non-Markovanity directly on a master equation. Fortunately,
there is such a unique and canonical form. This result is
a straightforward extension of the treatment in Ref. [2].
General forms of time-local master equations have been used
previously, e.g., in Refs. [16,18,23], but the significance and
usefulness of the unique diagonal form of the equation has,
as far as we are aware, not been emphasized. Neither is
the generality of time-local master equations [24] as widely
recognized as it should be. We will therefore start by presenting
the canonical form of a time-local master equation in Sec. II,
before discussing how this gives rise to a natural means of
completely quantifying non-Markovianity in Sec. III, in terms
of the canonical decoherence rates.

In Sec. IV we consider various proposed measures of
non-Markovianity [7—-13,15], and assess their relative abilities
to witness non-Markovianity. We find, surprisingly, that none
of the measures based on an increasing distance, volume, or
entanglement can witness the non-Markovianity of a simple
qubit example. However, the Choi-matrix based measures
of Wolf et al. [7] and Rivas et al. [9] are always faithful
witnesses of non-Markovianity, and are shown to be simple
functions of the canonical decoherence rates. We also give
simple necessary and sufficient conditions for trace distance
and volume measures to be able to witness non-Markovianity,
in terms of the Bloch damping matrix.

Conclusions are presented in Sec. V. Technical details are
largely deferred to the Appendixes.

II. FORMS OF MASTER EQUATIONS
A. Memoryless master equations

Under fairly general conditions, a master equation for a
system density operator p takes the form [25,26]

pUt) = = [Hs.p()] + / Kolplds. (1)
0

Here Hy is the system Hamiltonian, and the memory kernel
KCs.¢ 1s a linear map describing the effects of the environment
on the system. The Born-Markov approximation amounts to
approximating the memory kernel (in the interaction picture)
by K, = §(t — s) ;. Further, any explicit time dependence
in K, typically comprises rapidly fluctuating terms, that may
be removed via a secular (or random wave) approximation to
give a memoryless master equation of Lindblad form [3]:

i fuphl — iii
p=—3[H.p1+ n (Lka,L - E{LlLkﬁp}) - @
k

Here the y; are positive constants, called decoherence rates,
and the unitary part of the time evolution corresponding to
H may include effects arising from the environment [3].
The Lindblad form in Eq. (2) may also be derived under

PHYSICAL REVIEW A 89, 042120 (2014)

the assumptions that the evolution is completely positive and
generated by a dynamical semigroup [1].

B. Time-local master equations

More generally, even when the system “remembers” its pre-
vious evolution, it has been shown via the time-convolutionless
projection operator method [27,28] that a general master
equation (1) often can be written in a time-local form,
o) = A p(t)], where A, is, among other requirements, a
linear map such that A,[p] is Hermitian and traceless for all
p. An alternative approach, for the class of master equations
obtained from the reduced memoryless evolution of a system
plus ancilla, is given in Ref. [29]. Such a description of the
evolution is not only convenient, but appears necessary, for
example, to construct a quantum trajectory unravelling in terms
of possible “paths” the time evolution of the system may take
[18,19,30-32].

For an alternate and very simple proof that memory-kernel
master equations can typically be written in time-local form
[33], consider some evolution process described by the linear
(usually completely positive) map p(¢) = ¢:[p(0)], which
satisfies a memory-kernel master equation of the general form
in Eq. (1). If it is assumed that the map ¢; is invertible for the
time interval considered, i.e., that there exists a linear map ¢, 1
satisfying ¢, ! o ¢, = 1 where 1 is the identity map, then one
can write, absorbing the Hamiltonian component into C; ,,

p(0) = / ds (K. 0 d)p(O)]
0

- /0 ds (Ky 0 65 0 6,) (@1 [pON)

= Ai[p(D)], 3)

where A, := fot ds K5 0¢s0¢, !, which is of time-local
(albeit in general complicated) form.

The assumption that the evolution is invertible is not strong,
and is violated only if two initially distinct states evolve to the
same state at some finite time ¢ (e.g., if an “equilibrium state”
is reached within a finite time rather than asymptotically).
As shown in Ref. [33], even in this case it is sometimes
possible to describe the evolution by a time-local master
equation. Typically, decoherence rates approach infinity at
times when the evolution is not invertible [29,33-35]. Note
also that even if the time evolution is not invertible for isolated
points in time, but a time-local master equation exists for
other times, it can still be used for a characterization of
non-Markovianity. Physically relevant examples where the
time evolution is invertible for all times include spontaneous
emission and optical phase diffusion [36], where the latter is
also an example of a time-local master equation corresponding
to non-Markovian evolution.

C. Canonical form for master equation

The Lindblad form for memoryless master equations in
Eq. (2) is nonunique, as y; and L; can be chosen in infinitely
many different ways, corresponding to different Kraus decom-
positions of completely positive maps [1]. Nevertheless, as
shown in Appendix A by explicit construction, any time-local
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master equation, p = A,[p()] = Y, Ax(t)p Bk(t), can be cast
in a canonical Lindblad-like form that uniquely defines a set
of corresponding “canonical” decoherence rates. Hence, this
form is suitable for characterizing non-Markovianity.

The key to obtaining the canonical form is to first rewrite the
master equation in terms of a corresponding time-dependent
“decoherence matrix.” The eigenvalues and eigenvectors of
this matrix directly determine the canonical decoherence rates
¥« () and decoherence operators L(¢), and the corresponding
canonical decoherence channels are mutually orthogonal in
the sense defined below. The derivation is a straightforward
extension of the approach in Ref. [2] (see [16,37]), and
deserves to be more generally known.

In particular, as shown in Appendix A, any local-in-time
master equation, for a quantum system having a d-dimensional
Hilbert space, can be written in the canonical form

p= —%[H(r),p]

d*>—1

1
+y n(r)[Lk(t)pL,t(r)— E{L,t(t)Lk(t),p}}, @)

k=1

where the L;(t) form an orthonormal basis set of traceless
operators, i.e.,

Tr(Li()] =0, Tr[L1@) Li()] = 81 (5)

and H(t) is Hermitian [38].

Equation (4) may be recognized as being similar to the
Lindblad form for memoryless master equations in Eq. (2).
However, unlike Eq. (2):

(1) the decoherence rates y4(f) and the decoherence opera-
tors Ly (¢) are in general time dependent;

(i1) the decoherence rates y(¢) are uniquely determined,
and, moreover, remain invariant under any unitary transforma-
tion p — V(1)pV(t)! (e.g., to an “interaction” picture);

(iii) the decoherence rates can be negative, corresponding to
interactions between the environment and the system in such
a way that the system may recohere, reversing earlier decay
processes [19,32,33,39]; and

(iv) the decoherence operators Lj(¢) are restricted to
correspond to a set of “orthogonal” decoherence channels,
as per Eq. (5).

Note that constraints on y,(#) and Li(¢) to ensure that the
time evolution is completely positive, or even positive, have not
been considered here. Thus, for instance, while all time-local
master equations can be written in the above canonical form,
there is no guarantee that an arbitrary master equation of this
form will yield only positive eigenvalues for o for all times.
Conditions for time-local qubit master equations to generate
completely positive evolution are discussed in Ref. [40].

III. CHARACTERIZING NON-MARKOVIANITY
A. Definition

It is seen that time-local master equations are widely appli-
cable, and that any such master equation may be rewritten in the
canonical form (4). Further, this form uniquely determines a
set of corresponding canonical decoherence rates, y;(?), given
by the eigenvalues of the decoherence matrix d in Eq. (A7).
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An alternative means for determining the y;(¢) is given in
Appendix C.

If the canonical decoherence rates are positive at all times,
then the evolution over any time interval is completely positive.
This has been termed “time-dependent Markovian” evolution,
e.g.,in Refs. [7-9], and clearly generalizes the completely pos-
itive evolution guaranteed for memoryless master equations in
Eq. (2). Moreover, for finite systems, having positive decoher-
ence rates for all times is equivalent to the divisibility of the
evolution into a sequence of infinitesimal completely positive
evolutions [9,16]; and to being able to model the evolution by
standard quantum jump trajectories for the system [18-20].

In light of the above, and as foreshadowed in the Introduc-
tion, we are led to the following.

Definition. A time-local master equation is Markovian, at
some given time, if and only if the canonical decoherence rates
are positive. Correspondingly, the evolution is non-Markovian
if one or more of the canonical decoherence rates is strictly
negative.

To illustrate the importance of using the canonical form
of the master equation to characterize non-Markovianity,
consider the evolution corresponding to

o =2y (@) + 7®][20. p0x + 20, p0y — 4p]
—y®[20_poy —or0_p — pojo_]
—y®[201p0- —0_01p — po_oy].

At first sight this may appear to be non-Markovian whenever
y(t) > 0or2y(¢) 4+ y(t) < 0. However, the canonical form of
this equation may be written as

p = ly@®) + 7(Ol20cpox + 20y poy — 4p],

and hence the evolution is non-Markovian if and only if y (¢) +
() < 0.

A more general example showing the necessity of using the
canonical form is the master equation

. 1
p=LoL' —$(L'Lp + pL'L)
—[LTpL — $(LLTp + pLLY)],

where the second line appears, prima facie, to generate non-
Markovian evolution for any nonzero L. However, making the
choice L=(14+iH/h)/ ﬁ, for any Hermitian operator H,
this master equation reduces to the Hamiltonian form

i
) = —— H? )
p=—71H.p]

corresponding to unitary (and hence trivially Markovian)
evolution.

Finally, it is worth emphasizing again that the canonical
decoherence rates, and hence the above characterization of
non-Markovianity, are not only unique, but are invariant under
any time-dependent unitary transformation of the system (see
previous section and Appendix A).

B. Canonical measures of non-Markovianity

Since the defining feature of non-Markovianity is whether
any of the y4(¢) in the canonical form (4) become negative, it
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is natural to make use of the functions

Ji(®) == max[0,—y(1)] =0 (6)

to describe the non-Markovanity in individual decoherence
channels. We can either use the f;(¢) directly, as canonical
measures of non-Markovianity at time ¢, or a function such as

-1 ldz—l
1) = t) = = 1) — 7
f@) ; Ji() 5 ;[ka( )= ve(®)] (7

(rescaled by some function of d if we wish).
We can similarly use the corresponding integrals

’

Fet.t') = / ds fu(s) ®)

to characterize the “total amount of non-Markovianity in
channel k over the time interval [¢,'],” and the corresponding
sum

d>—1

F(t.t) =Y F(t.t) =/ ds f(s) 9)
k=1 !

as a measure of the “total amount of non-Markovianity
over the interval [z,¢'].” Either of these quantities may be
rescaled—e.g., by the total elapsed time ¢’ — . Note that
f@) and F(z,t") are strictly positive if and only if the
evolution is non-Markovian. It will be shown in Sec. IV that a
measure proposed by Rivas et al. [9] is equal to 2d~! F(0,00),
thereby providing a simple formula (and interpretation) for
the proposed measure, in terms of the canonical decoherence
rates.

We also define a canonical discrete measure of non-
Markovianity, as the number of strictly negative decoherence
rates, i.e.,

n(t) = #k : () < 0} = #{k : fi(t) > 0}.  (10)

Thus, n(t) is a “non-Markov index.”

In the sense that Tr[Lj(t)Jka(t)] = 8, as per Eq. (5), the
non-Markovian part of the dynamics takes part in a region
of “evolution space” which is orthogonal to the Markovian
region. For example, for a two-level system, if Markovian
behavior is generated by the x direction of the Bloch vector,
then non-Markovian behavior can be generated by the y and z
directions. The non-Markov index therefore characterizes the
dimension of the space of non-Markovian evolution.

C. Example: Single decoherence channel

The simplest case to consider is a master equation with
only one nonzero decoherence rate, i.e., of the form p =
—+[K@),p] + a(OIA@)p AW — S{AW) A1), p}]. The cor-
responding canonical form is easily checked to be

j 1 4
p= —%[H(t),p] + 7/(t)(L(f),0L(t)T - E{L(I)'L(t),p})

(11
with  L(1) := (A — a)/{Tr[(AT — a*)(A — )}V/?, y (1) :=
aTr[(AT —a*)(A —a)l,  H(t):= K — ihala AT — a*A],
and a(t) := d~'Tr[A(r)]. These definitions ensure that
Tr[L(t)] = 0 and Tr[L(t)TL(#)] = 1, as required by Eq. (5).

PHYSICAL REVIEW A 89, 042120 (2014)

Hence, from the definition of non-Markovianity in
Sec. IIT A, the evolution of a system with a single decoherence
channel is non-Markovian, at time ¢, if and only if y(#) < 0 [or,
equivalently, a(¢) < 0]. The total amount of non-Markovianity
over an interval [¢,1'] follows from Eq. (9) as

F(t,t) = —/ ds y(s). (12)
y()<0

Further, from Eq. (10), the non-Markov index is unity when
y(t) < 0 and zero otherwise.

The case of a single decoherence channel appears to be
the prototypical example used in the literature to assess
various proposed measures of non-Markovianity [7-13,15].
However, this case is too simple to assess the relative strengths
of the proposed measures, as they are all functionals of
y(t) that are sensitive to its sign. For example, the rate of
change of trace distance for the qubit example in Ref. [§]
is —y(t)exp[— fot ds y(s)], while the Choi-matrix based mea-
sure 7 in Ref. [9] evaluates to F(0,00) with F' as in Eq. (12).

For this reason, examples of master equations with multiple
decoherence channels are required to properly assess and
compare proposed measures of non-Markovianity (see also
Sec. IV).

D. Example: Eternal non-Markovianity

The qubit master equation

l 3
p=3 k; w(Dlowpor — pl, (13)

where the o are the Pauli o matrices and

() =y(t) =1, y3(t) = —tanht, (14)

is of particular interest, as it provides a simple example of
a completely positive evolution that is non-Markovian at all
times ¢ > 0, yet which is not detectable as non-Markovian
by the majority of proposed measures in the literature (see
Sec. IV).

Complete positivity of the map from p(0) to p(¢), for
a master equation of the form in Eq. (13), corresponds to
' + T < 1+T for all permutations j,k,l of 1,2,3, with
T(1) == exp{—[ds [vx(s) + yi(s)]} [33,40], which is always
satisfied by the above example. Such master equations are
straightforward to solve, and in terms of the Bloch vector x,
with x; := Tr[poy] and p = %[1 + 0.X], one finds

X)) =31+ e )x;(0) (j = 1,2), x3() = e *x3(0).

Thus, the initial Bloch vector asymptotically evolves to its
projection on the xy plane, scaled by a factor of %

Equation (13) is in canonical form [identifying L;(t) =
ox/~/2], and thus the system has three orthogonal decoherence
channels. It is clearly non-Markovian for all # > 0, so that the
third channel could even be termed a “recoherence” channel.
The canonical measure of total non-Markovianity over the
interval [0,¢] follows from Eq. (9) as

t
F(0,1) = —/ ds tanhs = Incoshz. (15)
0
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Thus, the average non-Markovianity, F(0,¢)/¢, approaches
unity as t — oo. The non-Markov index follows from Eq. (10)
as n(t) =1 for all t+ > 0, corresponding to non-Markovian
behavior with respect to the z direction. Even so, this “eternal”
non-Markovianity cannot be detected by various distance,
volume, and entanglement measures, as shown in the following
section.

IV. RELATIVE STRENGTHS OF DIFFERENT MEASURES
OF NON-MARKOVIANITY

Previous measures of non-Markovianity in the literature
are based on the relationship between Markovian evolution
and completely positive maps [7-15]. In particular, for
Markovian evolution at time f, the decoherence rates in
Eq. (4) are all positive, by definition, and hence the in-
finitesimal map taking the system from time ¢ to time ¢ + dt
must be completely positive [16]. It follows, for example,
that any quantity that decreases under completely positive
maps provides a suitable signature of non-Markovianity: if
this quantity is found to increase at time ¢, then the evolution
must be non-Markovian.

Proposed signatures of the above type leads to measures of
non-Markovianity that fall into three broad categories: distance
based measures, volume based measures, and entanglement
based measures. A fourth category of interest is based on
the Choi-matrix representation of completely positive maps.
These categories are examined in turn below. Of the measures
examined, only those based on the Choi matrix can detect the
non-Markovianity of the example in Egs. (13) and (14).

A. Distance measures
1. Trace distance

Breuer et al. have suggested using the increasing of trace
distance between two states as a signature of non-Markovianity
[8], and this signature has subsequently been experimentally
investigated for qubits [21,22].

In the Bloch representation, the square of the trace distance
between any two infinitesimally separated qubit density
operators, p and p + 8p, is

(8s11)* == 1(Tr|6p])* = 16x - 8x, (16)

corresponding to a Euclidean metric on the space of Bloch
vectors. For qubits, it is well known that any master equation
can be rewritten in the Bloch representation as

X = D(O)x+u(), a7)

where x denotes the Bloch vector, and D and u are referred
to as the damping matrix and drift vector, respectively. Hence,
8x = D§x, and so

d((s )? 1[5' 8X + 8x - 8] 15 (D4 D)8
— (s = —|0X - 0X X - 0X| = —0X X,
e T 4 4
where the superscript T denotes the transpose.

Now, the trace distance can increase between some pair
of density operators if and only if it can increase between
some pair of infinitesimally separated density operators. But
the above equation shows that the latter is possible if and only
if the matrix D + DT has a positive eigenvalue. That is, the
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qubit trace distance can witness non-Markovianity at time t if
and only if the damping matrix satisfies the condition

Amax[D(t) + DT ()] > 0 (18)

where Anmax(A) denotes the maximum eigenvalue of A. This
result subsumes the previously considered special case of
random unitary evolution [41].

For the case of a single decoherence channel the above con-
dition is equivalent to y(¢) < 0, and hence non-Markovianity
can always be witnessed for such channels. However, for the
qubit example in Egs. (13) and (14), the damping matrix may
be calculated as [40]

—1 + tanht 0 0
D) = 0 —1l+4+tanht 0 | <0. (19
0 0 -2

Hence, the trace distance can never witness the non-
Markovianity of this example.

2. Bures distance and Fisher information

Other measures of distance which decrease under com-
pletely positive maps, such as the Bures and Hellinger
distance, have similarly been suggested as signatures of
non-Markovianity [10,13,14]. Such distances are typically
generated by some monotone metric G = gj; on the space
of density operators [42], and for qubits have the infinitesimal
form

((Ss)2 = gix(X)éx;8x; = 5x’ G(x) 8x (20)

for Bloch vectors x and x + éx (the higher-dimensional
case is similar, but will not be explicitly considered here).
For example, the qubit Bures distance corresponds to the
(maximally symmetric) quantum Fisher information metric
[43]
, (x- 5x)?
4(6sp)" = —— 4+ 8x - 6X. 20
1—x-x
Note while attention can be restricted to families of density
operators defined by some real parameter, 6 or A say [10,13],
we consider arbitrary density operators here, parametrized by
the Bloch vector, for full generality.

Just as for the trace distance, a given distance measure
can witness non-Markovianity at time ¢ if and only if
the distance between some pair of infinitesimally separated
density operators is increasing. For qubits, using Egs. (17) and
(20), this corresponds to the existence of Bloch vectors x and
X + 6x such that

d 2 Tr¢ T
E(és) =& [G+GD+ D" Gléx > 0.
This is equivalent to to the existence of a positive eigenvalue
of the symmetric matrix J := G + GD + D" G, i.e., to
Amax[G + GD +D'G] >0 (22)

at time 7, which clearly generalizes Eq. (18) for the trace
distance.

For the case of the Bures distance in Eq. (21), and a qubit
master equation of the form of Eq. (13), the corresponding
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matrix Jp follows via differentiation of Eq. (21) with respect
to time. Using Eq. (17) with u(z) = 0, this yields
Dxx" +xx'D (x' Dx)xx”

4J3 =D , 23
B + l—x-x +(1—x~x)2 23)

where D := D + DT. We have checked numerically, for D
as in Eq. (19), that Jp is negative definite for all times ¢ > 0.
Hence, just as for the trace distance, the Bures distance cannot
witness the non-Markovianity of the example in Eqs. (13) and
(14). It remains an open question as to whether some other
distance measure can do so.

B. Bloch volume measure

Lorenzo et al. have proposed using the increase of volume
of the set of states of a system as a signature of non-
Markovianity [15]. Here, the volume measure corresponds to
the determinant of the evolution map in the (generalized) Bloch
representation of the system, which cannot decrease under
completely positive evolution [16]. We show here that this
volume signature can witness non-Markovianity if and only
the trace of the (generalized) Bloch damping matrix satisfies a
simple condition. For qubits, this condition is strictly stronger
than the trace distance condition in Eq. (18). Hence, the volume
provides a weaker signature of non-Markovianity than the trace
distance.

As is well known, a d-dimensional quantum system may be
represented by a generalized Bloch vector x of dimension d? —
1, and the corresponding master equation by a generalized
Bloch equation of the same form of Eq. (17) as for qubits
[15,23]. This equation is linear, and hence the evolution of the
system is given by a linear map of the form

x(t) = M()x(0) + w(z). 24)

Substitution into Eq. (17) then yields the equivalent evolution
equations M = DM, w = u+ Dw, with initial conditions
M(0) = I and w(0) = 0.

The determinant of M(¢) determines the Jacobian
of the map in Eq. (24), and hence the “Bloch vol-
ume” of the states of the system evolves as V(r) =
Vodet M(t) [15]. Now, to first order in €, the above
evolution equations imply det M(t 4+ €) = det(M +eDM) =
(det M) ]_[j(l +eDj;) = (det M)(1 + e tr[D]) [38]. Hence,
% det M = tr[ D] det M, which immediately implies that the
Bloch volume can increase at time t, thus witnessing non-
Markovianity, if and only if the trace of the damping matrix is
positive, i.e., if and only if

tr[D(1)] > 0. (25)

Note that one also immediately obtains the formula

V() = Voexp </ ds tr[D(s)]) (26)
0

for the Bloch volume.

For the case of qubits, condition (25) is clearly always
stronger than the corresponding trace distance condition (18).
Asadirect consequence, or alternatively viaEq. (19), the Bloch
volume cannot witness the non-Markovianity of the example
in Egs. (13) and (14).
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More generally, as shown in Appendix B,

(D] = ~d Y yi(0). 27)
k

Hence, condition (25) may equivalently be written in terms of
the canonical decoherence rates as ), yx(¢) < 0. Thus, any
measure of non-Markovianity based on the Bloch volume is
only sensitive to the sum of the canonical decoherence rates,
both positive and negative.

C. Entanglement measures

The entanglement between two quantum systems cannot
increase under local completely positive operations (and/or
classical communication), and hence Rivas et al. have pro-
posed using the increase of any entanglement measure E,
under local evolution, as a signature of non-Markovianity [9].
This signature has been experimentally investigated for the
case of concurrence [21]. The use of logarithmic negativity
[9,11] and quantum mutual information [12] have also been
proposed. Here we show that none of these entanglement
measures can witness the non-Markovianity of the example
in Egs. (13) and (14).

In particular, writing the system master equation as p; =
A¢[ps], we follow Rivas et al. and consider the entanglement
between the system and an ancilla under the evolution

psa = (At ® ]l)[psa]a (28)

for an initial maximally entangled state p,,(0) = |W) (V| [9].
For the qubit master equation in Eqgs. (13) and (14), we may
take |W) = (|4) @ |[4+) + |—) ® |-))/~/2, with |£) denoting
the eigenstates of 3. Relative to the basis {|+) ® |+),|+) ®
[—),]—) ® |[+),]—) ® |—)}, the joint state at time ¢ is then
easily found to be

14+e2 0 0 14e2
1 0 1—e 2 0 0
Pa=71 0 l1-e 0
14e 0 0 142

The corresponding concurrence, logarithmic negativity, and
quantum mutual information can all be evaluated analytically,

as
Closa®] =€, Enl[psa(®)] =logy(1+e72),  (29)

and

l—e 2 142 l—e %
2 ’ 2 2 ’
(30)

Iolpsa(D)] =2 — H(

respectively, where H(p,1 — p) denotes the entropy
—plog, p — (1 — p)log,(1 — p). These quantities are man-
ifestly monotonic decreasing with time. Hence, none of them
provides a signature that witnesses the non-Markovianity of
the example in Egs. (13) and (14).

D. Choi-matrix measures

Any linear map describing the evolution of the density
operator of a finite d-dimensional quantum system has a
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corresponding d? x d* Choi matrix S, where the evolution
is completely positive if and only if S > 0 [44]. Since
Markovianity is equivalent to divisibility into a sequence of
infinitesimal completely positive evolutions [16], this naturally
leads to measures of non-Markovianity based on properties
of the Choi matrix [7,9]. We show here that the proposed
measures are simply related to the canonical measures of non-
Markovianity defined in Sec. III B, and that they are faithful
witnesses, in the sense of always detecting non-Markovianity
when it exists.

First, choosing an orthonormal basis {|«)} on the Hilbert
space, with o = 1, ... ,d, the action of any linear map ¢ on
the states of the system can be expanded as

¢lpl =Y lon) e lglpllBr) (Bl

ar,pi

= Z loer) {2l plB2) (Bil {er |@lle2) (B2111B1)
ar,Br,a2,B2

= ZSabtapt}j’ (31)
a,b

where a and b denote the pairs («,o) and (81, 52), respec-
tively, and

Sap = {a1|@lloz) (B2111B1),

The d? x d* matrix S is called the Choi matrix corresponding
to ¢ [44,45]. Note that the Choi matrix of the identity map, 1,
is

Ta = lorr) {er]. (32)

SL = vaup, V4 = Suyay (33)

It is also straightforward to check that d~'S is the matrix
representation of the operator (¢ ® 1)[|W)(W|] in the basis
{la) = |a1) ® |az)}, where |W) is the maximally entangled
state d~1/2 3" o) @ |a) [45], ie.,

Sap = d (al(¢p @ DIWV)(VI]Ib). (34)

Thus, S is Hermitian if ¢ maps Hermitian operators to
Hermitian operators, and tr[S] = d if ¢ is trace preserving
[38].

As mentioned, ¢ is completely positive if and only if
S > 0 [44,45]. Hence, the infinitesimal map ¢ =1+ €A,
generated by the master equation p = A;[p], is completely
positive, corresponding to Markovian evolution at time ¢, if
and only if

¢ =S+ €R(1) > 0. (35)

Here R(t) denotes the Choi matrix of A,, obtained by replacing
¢ by A, in Egs. (32) or (34).

1. Trace-norm measure

It follows from Eq. (35) that (trace preserving) evolution
is Markovian at time ¢ if and only if the eigenvalues of S¢ =
ST 4+ €R(r) are positive and sum to d. Hence, defining the
trace-norm rate of change [9]

d'|IS" + R — 1
gty = tim LIS F RO =T (36)

e—0t €
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one has g(t) > 0, with g(¢) = 0 if and only if the evolution at
time ¢ is Markovian. This led Rivas et al. to propose

T:= /oods g(s) 37
0

as a formal measure of non-Markovianity [9].

It is shown in Appendix C that the trace-norm measure g(z)
has a surprisingly simple interpretation. In particular, it is just
the sum of the negative canonical decoherence rates, up to a
multiplicative factor:

y -1 )
gt)y=d Z[|Vk(t)| — O] = f@). (38)
k=1 d
Here f(¢)is the canonical measure defined in Eq. (7). It follows
immediately that

I= ; F(0,00), (39)

where F(z,t') is the canonical measure of total non-
Markovianity defined in Eq. (9). It further follows that g(¢) and
7 can always detect non-Markovian evolution [9], including
the example in Sec. III D in particular.

The formal connection between the canonical and trace-
norm measures follows from a relationship between the
decoherence matrix and a projected form of the Choi matrix
(Appendix C). However, the canonical approach not only pro-
vides a physical interpretation of Z, but also has the advantage
of identifying all of the individual decoherence channels and
corresponding decoherence rates—allowing, for example, the
definition of the discrete non-Markov index n(¢) in Eq. (10).

2. Isotropic noise measure

Wolf et al. considered the minimal amount of isotropic
noise that must be added to a given quantum channel, to allow
its simulation by a memoryless master equation [7]. This may
be adapted to obtain a natural measure of the non-Markovianity
of a given evolution, at time ¢, corresponding to the smallest
amount of isotropic noise, €v, that must be added to the
infinitesimal evolution ¢€ to make it completely positive. Here
v = v(¢) denotes the rate at which the noise is added at time
t. As for the trace-norm measure above, v(¢) turns out to be a
simple function of the canonical decoherence rates.

In particular, adding isotropic noise ev(t) is equivalent to
mixing the state of the system with the maximally mixed state,
i.e., to the infinitesimal mixing map

pélpl = (1 —ev)p +evTr[pld 1= p + ev(d'1 - p).

The corresponding Choi matrix N€ follows from Eqgs. (32) and
(33) as [7]

N =S+ ev®)[d T — 7], (40)

where I denotes the d> x d” identity matrix.

As shown in Appendix C, the minimum rate of noise v(¢)
that must be added to the master equation to give completely
positive evolution at time ¢ has the explicit simple form

V() =dmax{0,—y1, =y, ... } = dmax{fi()}, (A1)

where fi(¢) is the canonical decoherence measure for the kth
decoherence channel, defined in Eq. (6). Thus, the minimum
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noise rate is determined by the value of the most negative
canonical decoherence rate. For the example in Egs. (13) and
(14), v(r) = tanh ¢ > O for all # > 0. More generally, Eq. (41)
implies that non-Markovianity is always detected by the
isotropic noise measure. Note, however, it is not sensitive to all
of the negative decoherence rates, in contrast to the canonical
measures F(t,t") and n(¢) and the trace-norm measure Z.

V. CONCLUSIONS

The canonical form for time-local master equations allows
a complete characterization of the non-Markovianity of open
quantum systems, in terms of a set of uniquely determined
canonical decoherence rates. These rates are invariant under
time-dependent unitary transformations of the system, and
for a given master equation they may be evaluated as the
eigenvalues of the decoherence matrix d in Eq. (A7), the matrix
R* in Eq. (C1), or the operator R+ in Eq. (C8).

A positive (negative) canonical decoherence rate corre-
sponds to Markovian (non-Markovian) evolution in the respec-
tive decoherence channel. This leads naturally to well-defined
canonical measures of the degree of non-Markovianity of each
channel, and to corresponding measures of the total non-
Markovianity of the evolution, as per Egs. (6)—(9). We have
also defined a discrete non-Markov index, in Eq. (10), which
characterizes the dimension of the space of non-Markovian
evolution.

Signatures of non-Markovianity proposed in the litera-
ture can be assessed, both qualitatively and quantitatively,
in terms of their relative sensitivities to the presence of
negative canonical decoherence rates. For example, we have
shown that signatures based on witnessing an increase in
trace distance, Bures distance, Bloch volume, concurrence,
logarithmic negativity, and quantum mutual information are
completely insensitive to the non-Markovianity of a simple
qubit evolution. It would be of interest to determine whether
there are any measures of distance or entanglement, preferably
physically measurable, from which this evolution cannot
successfully hide.

In contrast, proposed measures based on properties of Choi
matrices are always faithful witnesses of non-Markovianity,
and we have obtained simple formulas and corresponding
physical interpretations of these measures in terms of the
canonical decoherence rates. Thus, the trace-norm measure
of Rivas et al. is proportional to the sum of the negative
decoherence rates, integrated over the time period of the
evolution, while the isotropic noise measure of Wolf et al.
is proportional to the most negative decoherence rate.

We have also found simple necessary and sufficient
conditions for trace distance and Bloch volume to witness
non-Markovian qubit evolution, and that the former provides
a strictly stronger signature. Further, for arbitrary dimensions,
we have explicitly determined the Bloch volume as a function
of the canonical decoherence rates.

The above results clearly demonstrate the value of the
canonical approach in providing a fundamental characteriza-
tion of non-Markovianity. It would be of interest to extend
this approach to infinite dimensional systems, if possible, and
compare with approaches based on divisibility and quantum
trajectories in this case. The main technical difficulty appears
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to be related to nonfinite operator traces in this regard. Finally,
it would also be of interest to experimentally characterize the
canonical decoherence rates, e.g., via process tomography.
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APPENDIX A: DERIVATION OF THE CANONICAL FORM
FOR MASTER EQUATIONS

A general time-local master equation, such as in Eq. (3),
equates p with a linear map A, acting on p, and hence can
always be written in the form [2]

p=Alpl =) An)pB(0). (AD)
k

The canonical form in Eq. (4) essentially then follows via the
requirements that p remain Hermitian for all time and that the
trace of p be preserved.

First, for a state space of dimension d, define N := d?
and introduce a complete set of N basis operators {G,,;m =
0,1,2,... N — 1}, with the properties

Go=1/Vd; G,.=G};

where 1 is the identity operator. Choosing n = 0 in the last
condition implies that Tr[G,,] = 0 for m # 0.

For brevity, we will suppress the time dependence in
quantities below, but everything except the basis operators
G,, may be time dependent. We can expand

> Gibj
J

so that Eq. (A1) becomes p = >, . > aixb7;,GipG . Defin-
ing the quantities ¢;; =), aixbj, then yields the unique
decomposition [2] '

Tr[Gm Gn] = an s (A2)

A = ZGiaik, By =

N—1
p=_ciGipGj. (A3)

i,j=0

Using the fact that p and hence p are Hermitian, then
ZCUG,’,OG]' = ZC?jGJ"OGi = chiG,-pGj,
i,j i,j i,j

so that ¢;; = c
Hermitian matrlx

Separating out the i =0 and j =0 terms, the above
decomposition for p reduces to

N—-1
. €00 czO
o= (D2
d i=I \/_
N-1

+ Z dijGipGj,

ij=1

. Thus the ¢;; are the elements of an N x N

)p+ Ng%
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where d;; := ¢;; for i,j > 0 are elements of an (N — 1) x
(N — 1) “decoherence” Hermitian matrix d. Defining

1 Coo €i0
Z
\/_

and noting Hermiticity implies that c is real and cp; = c’;o,
this reduces to

(A4)

N—1
p=Cp+pC'+ > dijGipG;.

i,j=1

(AS5)

Taking the trace of Eq. (AS), and noting that trace
preservation implies that Tr[p] = 0, yields

N-1
> d;G;G;.

ij=1

linc —

C+Cl=-

Hence, defining H := C T), Eq. (AS) can be rewritten

as

b= %[(c —CHp + p(CT = C) +(C+ CHp + p(CT + O)]

N-1

+ Y dijGipG;

i,j=1

i = 1
= =3 [H.pl+ > diy(0) (G,-pGj — E{G,-Gi,p}) . (A6)
i,j=1
This is the kind of structure obtained in Theorem 2.2 of
Ref. [2], although because they are considering quantum
semigroups, their decoherence matrix d is independent of time,
as is H. Note that one has the two explicit expressions

d*—1
dij =Y TG AITIG,B{1 = > TG, GiA[GuIG,]
k m=0

(AT)

for the elements of the decoherence matrix, where the first
follows directly from the above construction, and the second
via the proof of Lemma 2.2 of Ref. [2].

‘We now observe a crucial feature of this last result (see also
[16,37]) that seems not to be widely appreciated, but which
enables us to derive the main results of this paper. In particular,
we take advantage of the Hermitian nature of the decoherence
matrix to write it in diagonal form,

dij = " UpnUs.
k

(A8)

where the eigenvalues y; of d are real, but not necessarily
positive at all times, and the Uj are unitary (N — 1) x (N — 1)
matrices formed by the corresponding eigenvectors of d, with
> Uik Uj’fk = §;;. Defining the time-dependent operators

N—-1

Li(t) := ) Un()Gi;,

i=l

(A9)

and restoring explicit time dependence, we finally obtain the
canonical form in Egs. (4) and (5) of the text via Egs. (A2)
and (A6). Noting that only the traceless part of H(f) can
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contribute to the commutator in Eq. (4), one may further
assume Tr[H(¢)] = 0 without any loss of generality.

The decoherence rates y4(¢) are always uniquely defined,
as a consequence of the diagonal decomposition in Eq. (A8).
Similarly, the decoherence operators L;(¢) are unique up to
unitary transformations that preserve any degenerate sub-
spaces of the decoherence matrix d. For the case of a
nondegenerate decoherence matrix, this implies uniqueness
of L;(t) up to multiplication by a trivial phase factor, and
hence that the canonical form of the master equation in Eq. (4)
is fully fixed in this case.

It is of interest to note that under any unitary transformation
p— V(OpV)l, e.g., to an “interaction” picture, the y(¢)
are invariant [whereas both H(¢) and the L;(¢) will typically
change], since any such transformation corresponds to an
orthogonal transformation of the decoherence matrix. This
has the consequence that non-Markovianity can be defined
independently of the operator H.

It is also worth noting that is not in general possible to trans-
form to a picture in which the L; are time independent. This
is because although a suitable (time dependent) orthogonal
transformation of the L, () always exists in the linear space of
traceless operators, that preserves the relations in Eq. (5), such
a transformation will not always correspond to some unitary
transformation on a d x d density matrix (unless d = 2).

APPENDIX B: BLOCH VOLUME AND THE
DECOHERENCE MATRIX

In Sec. IV B it was shown that the condition for the Bloch
volume to increase at time 7 is that the trace of the damping
matrix D(¢) is positive. To show this is equivalent to the trace
of the decoherence matrix d being negative, as per Eq. (27),
define the generalized Bloch vector x by x,, := Tr[pG,,],m =

.,d*> — 1, with G,, as per Eq. (A2) [15,23]. It follows
from p = 2@0 Tr[pG,] G, that

> TrlpGl THA[G,1G ).

n=0

Xm = Tr[A[p]1Gwm] =

Hence, the damping matrix coefficients follow as D,,, =
Tr[A,[G,]G ] for m,n > 1, and so, using the canonical form
of the master equation,

Dy = —%Tr[[H,Gm]Gm]

+ > WTHL,GuLiGy — LLLi(G ).

The first term trivially vanishes. Further, the complete-
ness property » . -oGnXG, =Tr[X]l [2] implies that
> o1 GuXGy =Tr[X]1 —d
L; and X = 1 as appropriate, the trace of the damping matrix
evaluates to [38]

u[D] =" Dyw = —d Z W[ L] L],

m>=1

~1X and hence, choosing X =

Finally, Tr[L}:Lk] = 1 from Eq. (5), and the claimed equiva-
lence between Egs. (25) and (27) follows as desired.

Note that the sum of the canonical decoherence rates in
Eq. (27) only requires evaluation of the trace of the
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decoherence matrix d in Eq. (A7). This implies that no
diagonalization of d (nor writing the master equation in
Bloch form) is needed to determine the Bloch volume V (¢) in
Eq. (26).

APPENDIX C: CHOI MATRIX AND CANONICAL
DECOHERENCE RATES

The Markovianity condition (35) can be rewritten, using
Eq. (33), as 8¢ = wvv” +¢€R > 0. This clearly holds (for
infinitesimal €) if and only if w’R(t)w >0 for all w
orthogonal to v, i.e., if and only if

Rt :=(U - P)RUI - P) >0, (CD

where P = d~'vv” denotes the projection on to the direction
of v. Further, recalling tr[S€] = d [38], it also follows from
Eq. (35) that
0 =u[R] =u[PRP]+t[({ — P)R(I — P)]

=d "o Rv + tu[R*]. (C2)
Now, the eigenvalues of vv! are trivially d,0,0, . . .. Choosing
the corresponding eigenvectors as d=12y, wy, wy, ..., where
wy = (1 — P)wy is the kth eigenvector of R+, the eigenvalues

of ¢ = vv” + €R follow from standard perturbation theory
asd +ed "w"Rv =d — etr[R*] and

ewkTka = ewkT(l — P)R(1 — P)wy = ewkTlek =€r,
to firstorder in €, where ry,rs, . . . ,F;2_; denote the eigenvalues

of R*. It follows immediately that the quantity g(¢) defined in
Eq. (36) can be written as

g)=d”! [—tr[RL] +y m@ =d™" Y llrel = ril.
k k

(C3)

We now show that ry = y;. Expanding R =[P + (I —
P)IR[P + (I — P)] and using Eq. (C2) gives
R =avv” +vw! +wo? + RJ‘,

where w is orthogonal to v and & = —d~'tr[ R*]. Recalling R
is defined to be the Choi matrix of A,, it immediately follows
from Eq. (31) that the master equation can be written as

p=Mlpl = Rap()Tup 7]
a,b

— (et W)+ (2w p+ Y nWipW/
2 2 - ©

interms of W := Y w,7,, Wy :=)_, wy T, and the eigen-
value decomposition Rt = Dk rkwkw,i, where we have used
Eq. (33) to write Za VT, = i. Decomposing %a +W=J-—
ihK into Hermitian and anti-Hermitian parts, and applying
the trace-preserving condition Tr[ A, [p]] = Tr[p], yields2J =
=D Tk W,j W;.. Thus, restoring explicit time dependence,

p= —%[K(n,p]

d>—1

1
+ z; rk(l)[Wk(l)lej(l) - E{W,j(z)wk(t)’p}] (C4)
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Note also, using v - wy = 0 and wy - w; = &y, that
THWe()] =0, TeW/ (O We)] =85 (C5)

Comparison with Egs. (4) and (5) shows that Eq. (C4) is in
canonical form. Hence, since the canonical decoherence rates
are uniquely determined by the canonical form (Appendix A),
we have

Yi(t) = ri(1) (Co)

for some suitable ordering of the eigenvalues of R*.

Note that while R' has the same eigenvalues as the
decoherence matrix d in Eq. (A7), allowing the canonical
decoherence rates to be calculated in two different ways,
these matrices are not equal, but are related by a (nontrivial)
unitary transformation. However, the corresponding defining
conditions for Markovianity, d > 0 and R+ > 0, are of course
equivalent, and thus the above result explicitly demonstrates
the equivalence of Markovian evolution with completely
positive infinitesimal maps.

The formulas in Eqs. (38) and (39) of the main text, for
the trace-norm measures g(#) and Z proposed by Rivas et al.
[9], follow immediately from Egs. (C3) and (C6). Moreover,
from Egs. (35) and (40), the infinitesimal evolution generated
by the addition of isotropic noise at rate v(¢) to A, has the
corresponding Choi matrix

T¢ = ST 4+ €[R+v(d T — v

Similarly as for Eq. (Cl), this corresponds to completely
positive evolution if and only if

0< U —=PIR+vd'T—vwhHU -P)
=Rt +vd™'U - P)
= Z[rk + d’lv]wkwkT.
k

Since v(t) > 0 is, by definition, the smallest noise rate for
which the evolution is completely positive (Sec. IV D 2), one
immediately has

v(t) = drnkax{O,—rl,—rz, ... h (o))

and Eq. (41) follows via Eq. (C6).

Finally, we remark that the projected Choi matrix R* in
Eq. (C1) can alternatively be written as R = (a|R*|b),
analogously to Eq. (34), with

RE = d(d — (W)W )(A, @ D) (W[ — [¥)(W)).
(C8)
Thus the canonical decoherence rates can also be calculated as

the eigenvalues of this operator, for any maximally entangled
state |W).
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