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Abstract

We present some fundamental structural properties formmim length
networks (known as Steiner minimum trees) interconnedmgven set of
points in an environment in which edge segments are resdrici A uni-
formly oriented directions. We show that the edge segmehtmnyp full
component of such a tree contain a total of at most 4 diregtioh is not a
multiple of 3, or 6 directions ifA is a multiple of3. This result allows us to
develop useful canonical forms for these full components.

The structural properties of these Steiner minimum treestamn used to
resolve an important open problem in the area: does thesesegblynomial-
time algorithm for constructing a Steiner minimum tree hi¢ ttopology of
the tree is known? We obtain a simple linear time algorithmcfanstruct-
ing a Steiner minimum tree for any given set of points and ami8teiner
topology.
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1 Introduction

Interconnects in VLSI design have traditionally used Mdtdra(or rectilinear)
routing, in which two perpendicular wiring directions ateaed. Due to techno-
logical advances, there is now an increasing interest imugigeofdiagonalinter-
connects (see, e.gwwv. Xi ni ti ati ve. or g). Both traditional Manhattan rout-
ing and the addition of diagonal routing are examples ofated A-geometry, in
which a fixed set o > 2 uniformly oriented directions are allowed.

In VLSI routing, one of the principal objectives is to minimithe total length
of an interconnection, that is, to compute-@eometrySteiner minimum tregr
A-SMT). This is in general an NP-hard problem. However, trebam becomes
significantly simpler if the topology of the tree is known.rFbe Euclidean case
(A = ), the well-known Hwang-Melzak algorithm [5, 6] solves tpi®blem in
linear time. For the rectilinear cask € 2), a theorem of Hwang [4] again solves
this problem in linear time, by showing that there exists @rf&r minimum tree
in which the full components take on restricted canonicahf

In [2] an open question was asked as to whether, for each fixed, there
exists a polynomial-time algorithm for finding &SMT for any given set of
terminals and given full Steiner topology (in which all temals have degree 1
and all Steiner points degree 3). Such an algorithm wouldexiately generalise
to anyA\-SMT, by decomposing it into its full components. The exis of such
an algorithm was recently proved by Xue and Thulasiramad @}, by showing
that the problem can be transformed to a linear programmioiglem whose size
is bounded by a polynomial in and A. It should be noted, however, that the
complexity of this algorithm will generally have very higlegree, and, indeed,
although the algorithm is polynomial in the total input sidras not been shown
to be polynomial itn and A. In another recent result Nielsen et al. [12] obtained
a linear time algorithm for constructingaSMT for a given full Steiner topology
when ) is a multiple of3. However, they also showed that their methods cannot
be extended to other values bf

In this paper we fully answer the above question by presgiatimear time al-
gorithm for constructing a-SMT for any given set of terminals and given Steiner
topology. In developing this algorithm, we also establiahanical forms for the
full components oA-SMTs which give a useful insight into the geometry of these
trees, and have already resulted in a substantial speadaupeaxact algorithm for
constructing\-SMTs [11].

The organisation of this paper is as follows. In Section 2,fiweur nota-
tion, give definitions and state some known results which mélused later. In
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Section 3, we investigate properties of edge directiorsysig that the edge seg-
ments of any full component of & SMT contain a total of at most 4 directions if
A is not a multiple of3, or 6 directions if\ is a multiple of3. In Section 4, we de-
fine a0-shift, a mechanism which allows us to change the directidiao edges
in a full \-SMT while leaving the directions of all other edges fixed.ingsthis
concept, we then establish our canonical forms in Sectiofhgn, in Section 6,
we first give a simple quadratic time algorithm for constingta A-SMT for a
given full Steiner topology; by careful refinement of thealithm we can reduce
the running time to linear time.

2 Background and Preliminaries

Let A > 2 be a given positive integer. Givenorientationsiw (i = 1,2, ..., A) in
the Euclidean plane, whete = 7/\ is a unit angle, we represent these orienta-
tions by the angles with the-axis of corresponding straight lines. A line or line
segment with one of these orientations is said to belegal direction Objects
composed of line segments in legal directions are said tnigeo a\-geometry

A Minkowski plan€or normed plangis a two-dimensional real normed space
(R2, || - ||) with unit ball {x : ||x|| < 1}. (For more background on Minkowski
planes, see [14].) Tha-geometry is an example of a Minkowski plane where
the unit ball is a regula2\-gon. Hence, the distance functionirgeometry is a
norm.

In this paper we study properties of minimum length netwanks-geometry
interconnecting a given set of points, also referred teeawsinals We only con-
sider the problem fod < A < oo as strong results for the cases whare- 2, 3
or oo are already known [1, 4, 5, 8.

Since any minimum length network clearly is a tree, we willyodiscuss
networks inA\-geometry that are trees. We defina-&ree to be a tree network in
A-geometry interconnecting a given set of terminalsA-&ee can contain nodes
of degree3 or more that are not terminals. These nodes are referredSteaser
points A A-tree is said to bé&ull if all terminals have degreke Clearly any\-tree
can be decomposed into a union of full subtrees meeting drtgrminals. This
decomposition allows us to limit our attention to fiitrees in this paper.

We next define &teiner\-tree to be a)-tree that cannot be shortened by
the perturbation of a single Steiner point. For the purpa$ékis paper we will
assume that all Steiner points in a full Steinetree have degreg. Degree4
Steiner points can occur in SOmMeSMTS, but in such cases there always exists a



A-SMT where every degreeSteiner point is adjacent to four terminals. (Degree
4 Steiner points only occur in the cases where 4 or 6. The proof of the above
statement fol = 4 is given in [1]; the proof for = 6 is similar.)

Edges in a Steinex-tree are assumed to be geodesics\{geometry) between
their endpoints. We refer to such an edge agaight edgef it is a single straight
line segment (in a legal direction), or else abemt edgef it consists of two or
more straight line components. It has been shown in [15] beat edges are
composed of line segments in exactly two legal directioffering by an angle of
w. Furthermore, although there are infinitely many ways ofedading a bent edge
pq in the Euclidean plane, there are only two embeddings coetpaisexactly two
straight line segments, as shown in Figure 1(a). Each oétbestains two edges
of the parallelogramr,qr, where the interior angles at andr, arer — w. The
straight line components in such an embedding are refeoredhalf-edgesand
the points; andr, ascorner points

T1

T2

(a)

Figure 1: Embeddings of a bent edge in the Euclidean plane.

A bent edge can also be embedded so that the two line segmeiaksnt with
the endpoints are parallel, as shown in Figure 1(b). Thisesldimg will prove
useful later in this paper.

An important property of a Stein@rtree is that there are strong restrictions on
the possible angles at Steiner points, as indicated in tleniog result [2, 9, 13].

Proposition 2.1 For a given), letT be a Steinei-tree. Then, the only possible
angles at any Steiner point @f are:

(1) 2m — 1w, (2m)w (= 27 /3) or (2m + 1w if A = 3m;

(2) 2m)wor 2m+ 1)wif A =3m+ 1; and

(3) (2m + 1)w or 2m + 2)w if A = 3m + 2.

Note that the angles in Proposition 2.1 are precisely thioaediffer by no
more tharw from 27 /3.



A Steiner)\-treeT is said to bdocally minimalif there is no perturbation of
its Steiner points which reduces the length/ofUnlike the Euclidean case, this
is a strictly stronger condition than simply saying tffais a Steiner\-tree, as it
includes the simultaneous perturbation of a number of 8tginints at once (see
[2] for examples proving that this is a stronger conditione will usually refer
to a locally minimal Steinei-tree with a given topology/” as a\-SMT for7.
However, if we refer to a\-treeT” as a\-SMT without reference to its topology
then we mean thaf is a globally minimum Steinek-tree for its terminal set.

Let P be a path between two nodes in a full SteinereeT. It is useful to
define theangle sequencef P, denotedA(P), to be the sequence of angles en-
countered on the right at Steiner points while travergtdror example, suppose
P = p...s18983...q , Wheresy, so, s3 are Steiner points. Let,r be the edge
incident tos, not lying on P. Then if sor is on the left of P, s, contributes a
single angle/s;sqs3, to A(P). If sor is on the right ofP, s, contributes the two
anglesZs;sor and/rsys3 to A(P). If P contains bent edges, then for each bent
edge we can choose any fixed embedding which minimises tlgthldsetween
endpoints when computindg(P). However, if a bent edge is an interior edge of
P it is convenient to choose an embedding of the type shownguarEil(b); this
will be our convention throughout this paper.

We will make extensive use of the following theorem.

Theorem 2.2 [3] For a given ), let T be a full \-Steiner tree. Theff is locally
minimal if and only if for every subpath of 7" the following condition is satisfied:

S -0 <. ®

3
a€cA(P)

Theorem 2.2 has important implications for the possiblacsirres of a\-
SMT. It should be noted that the theorem is a generalisatidineoconditions on
angles at a Steiner point. In particular, if we restrict elwss to subpaths which
contain no internal edges, we immediately obtain PropmsRi1 as a corollary.

3 EdgeDirections

In this section we look at some corollaries of Theorem 2.8, iamparticular some
important basic structural properties of a fMISMT that are implied by the theo-
rem.



3.1 Colouring and Orienting Edges

Let7 be a full\-SMT. We begin by describing a method of colouring and orient
ing the edges df".

For the colouring of edges, we define an equivalence relatiothe edges
of T. Two edges are said to be equivalent if the angle sequendeeqgidthP
connecting them il has cardinality3/ for some natural numbéer Clearly this
relation is transitive and reflexive. To see that it is symmoghote that if P hask
internal vertices then cafd(P))+ card A(—P)) = 3k, hence card(—P)) =
3(k — £). Thus, the equivalence relation is well definedl’l€ontains at least one
Steiner point, then there are exactly three equivalenssetaof edges. We will
colour each edge df red, green or blue depending on which equivalence class it
belongs to.

An orientation of the edges @f can be defined as follows. Letbe a fixed
vertex of 7. Assign a parity (either “odd” or “even”) to every vertex Bfbased
on whether the path i from r to that vertex contains an odd or even number of
edges. Sinc& is a tree, this assignment of parity is well defined, and eage e
of T is incident with one odd vertex and one even verteX'ofVe can now think
of each edge dt’ as being a directed edge pointing in the direction of thedieiat
odd vertex, as illustrated in Figure 2.

A half-edge is assumed to inherit the colour and orientatibthe edge to
which it belongs.

Figure 2: A coloured and oriented Steiner tree. The diffetgpes of dashed
edges represent the three different colours, and the arnalicate the orientation
of each edge.



3.2 Feasible Edge Directions

We now show that there are strong restrictions on the p@sdib#ctions of edges
in a full \-SMT.

Lemma 3.1 Given any two edges or half-edges in a MdEMTT", coloured and
oriented as above, the smaller anglédbetween them is eithéor w if they are
the same colour, or else satisfigs— 27/3| < w.

Proof. This is a straightforward corollary of Theorem 2.2. Lietbe the path
between the two edges (including the edges themselves). riVefiserve that
the change in direction between the first and last edge efuals the sum of the
angles inA(P). This observation is obvious # contains no internal edges, and
is easily proved by induction (on the number of edge#®)rior longer paths. By
the definition ofA(P), this observation is still true if some internal edge$adre
bent edges.

Now, if the two edges are in the same equivalence class, tlaed A{P))
is @ multiple of3, and hence_, 4 py() and}_ . 4 py(a — 27/3) differ by a
multiple of 2. Thus the result follows by Theorem 2.2. Similarly, if theged
are in different equivalence classes- 27/3| <w. 1

We will refer to the possible directions for oriented straigdges and half
edges in a fulh-SMT T asfeasible directions

Now suppose, in a given ful-SMT 7', edges or half-edges of some colour,
say red, occur in two different directions. Without loss ehgrality (by rotating
if necessary) we can assume the directions of the red edgésadw.

If A\ # 3m it immediately follows from Lemma 3.1 that the direction @foh
blue and green edge is fixed. X = 3m then there are exactly two possible
directions for each green and blue edge. These observaiersummarised in
the following corollary.

Corollary 3.2 LetT be a full \-SMT. If A # 3m then edges ifT’ use at most 4
different directions. I\ = 3m then edges ifi" use at most 6 different directions.

Furthermore, up to rotation by multiples of the set of feasible directions in
T is as listed in the table in Figure 3.

A set of feasible directions for a givenwill be referred to as direction set
The direction sets fok = 6, 7 and8 are illustrated in Figure 4.

It will be useful to introduce two categories for edges insibke directions,
namely, primary and secondary.



A feasible directions |

3m 0, w, 2mw, (2m+ 1w, 4mw, (4dm + 1w
3m+1 0, w, 2m+ 1w, (4m + 2)w
3m+ 2 0, w, (2m+ 2)w, (4m + 3)w

Figure 3: Feasible directions (up to rotation by a multidlespfor edges in a full
A-SMT.

A=3m A=3m+1 A=3m+2

Figure 4: Feasible directions for edges in a {EMT, illustrated form = 2.

Let e be a straight edge or half-edge in a falSMT 7', oriented in direction
jw. Thene is said to beprimary if (j — 1)w is not a feasible direction fdF.
Similarly, e is said to besecondanyjf (j + 1)w is not a feasible direction fdf.
If A # 3m then it is possible for an edge to be both primary and secgnifse
say thak is exclusively primaryor exclusively seconda)yf it is primary, but not
secondary (or, respectively, secondary, but not priméy).example, for the sets
of feasible directions in the table aboveit= 3m then an edge with directioh
2mw or 4mw is exclusively primary, whereas an edge with one of the ramgi
three directions is exclusively secondary. On the othedhdérn\ = 3m + 1 then
a primary edge can have direction(2m + 1)w or (4m + 2)w, but only an edge
of direction0 is exclusively primary. Note that every component of a belgee
must be either exclusively primary or exclusively secogdar



3.3 Convexity

Let |T'| be the total edge length of tree’l” whose topology corresponds (pos-
sibly in a degenerate way) to a fixed full Steiner topologync8ithe distance
function in \-geometry is a norm, it follows thaf’|, treated as a function of the
positions of the Steiner points @, is a convex function. Note, however, that this
convexity is not strict (since the boundary of the unit balhtains non-trivial line
segments [14]).

The above convexity property immediately implies the failog theorem.

Theorem 3.3 For a given set of terminals, a locally minimal SteinetreeT is
minimum with respect to its Steiner topology. In particul&rl’ has the same
topology as a\-SMT, theril" is itself aA\-SMT.

Theorem 3.3 cannot reduce the maximum running time of therighgns in
this paper (in Sections 5 and 6) but it can help reduce theageerunning time,
since it means that an algorithm for constructihgan stop as soon as it constructs
a locally minimal Steiner tree with the correct topology.

We also briefly note the following result, which says that &ogiven full
Steiner topology the choice of feasible directions fok-8MT is unique. The
result is straightforward to prove; so we simply give a skeitthe proof below.

Theorem 3.4 If A # 6, then the edges of all fuN-SMTSs for a given set of termi-
nals and given full Steiner topology use a unique set of idasiirections.

Proof. (Sketch) Here we give an outline of the proof for the case whés not
a multiple of3. If X is a multiple of3 then a similar argument applies, except for
A = 6, where two sets of feasible directions are possible in sasex

Let 7" andT' be full »-SMTs for a given set of terminals and a given full
Steiner topology/ . Assume, contrary to the statement of the theorem reatd
T' have different sets of feasible directions. Yet} be the Steiner points &f
and{s;} the corresponding Steiner pointsBf. Now suppose, over a given time
interval, we move each Steiner poistat constant velocity from; to s, along
the line segment between the two points. This gives us aroaun of A-trees
betweerl andT”, each of which must be SMT for 7', by the convexity of the
length function. There exists a tr@& in this continuum representing a point at
which the set of feasible directions changes. It followd #aeither uses at least
5 directions, contradicting Corollary 3.2, or exacslgirections. But in the latter
case, all perturbations of Steiner pointginare strictly length-increasing, by [3],
again giving a contradiction.



4 Length Preserving Shifts

We begin this section by defining the key concept of a ‘shift\igeometry. The
idea of a shift was first introduced by [7], and the followirgfidition is from [2,
10].

We define ashift of a straight edgeq to be a move op to a new poinp’ # p
and a simultaneous move @fo a new point/’ # ¢ such thap'q’ || pg. Similarly,
ashiftof a bent edgeg is defined to be a move gfto p’ and a simultaneous move
of ¢ to ¢’ such thap'q’ is either a bent edge with half-edges in the same directions
as those impgq or a straight edge whose direction is the same as that of otie of
half-edges ofpg. The concept of a shift can be generalised to a gath a full
Steiner)-treeT as follows. Ashiftof P = ps;s,...q is a perturbation of” that
moves the internal Steiner poingsof P to s; (and fixes all other nodes @) such
that the following conditions are satisfied (see also Fidglre

(1) each internal Steiner poist of P moves along the line through contain-
ing the straight edge or half-edge’Bfincident tos; not lying onP; and

(2) the shift of P induces a shift on each internal edgefof

It is important to note that the effect of a shift is that it da®t change the
direction of any straight edge @f except possibly the first and last edgedof

An example of a shift is given in Figure 5.

Figure 5: A shift of a patlP in T'.

Given a subpath of a full locally minimal SteingftreeT’, we define a shift
on that subpath to be(shiftif the shift does not increase the lengthiaf

Theorem 4.1 Given an exclusively primary edge or half-edgeand an exclu-

sively secondary edge or half-edgein a full \-SMT, there exists @-shift on the
path betweem; andes,.
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Figure 6: The base case for the inductive proof of Theorem Bt a given set
of feasible directions there are two possibilities fgras shown. In each case it is
clear, by inspection, that the indicated shift i8-ahift.

Proof. The proof is by induction on the number of internal edges efgtbpath

P betweene; ande,. If P contains at most one internal edge then the theorem
can be confirmed either by direct computation or using theltesf [3]. This is
illustrated for\ = 4 in Figure 6.

Now supposeP contains at least two internal edges. This meansfhedn-
tains a Steiner point¢ which is not incident with eithe¢; or e,. Some edge or
half edgee incident withs is either exclusively primary or exclusively secondary
(by Corollary 3.2). Supposeis exclusively secondary. Then, by the inductive
assumption, there exist9ashift on the path between ande. Applying a small
0-shift effectively transfers an arbitrarily small exchasly primary component to
e (see Figure 5). More specifically, it reduces the length eftkclusively primary
edge or half-edge;, and adds an exclusively primary component.tégain ap-
plying the inductive assumption, there exist§-ahift on the path between the
primary component o and the edge,. Because the primary componenteof
can be assumed to be arbitrarily small, it follows that tleisosd shift can transfer
the entire primary component efto e;. Hence, together these two shifts give a
0-shift on the path between ande,. &

The following two corollaries follow immediately from Theem 4.1.

Corollary 4.2 Given any two edges in a fulbSMT with anglev between them,
there exists @-shift on the path between the two edges.

A stronger corollary holds ik = 3m.
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Corollary 4.3 Let A\ = 3m, m > 1. Given any two edges in a fulbSMT such
that the angle between them is not a multipl@of3, there exists @-shift on the
path between the two edges.

We can use the concept obashift to resolve the question of precisely when
degreed Steiner points can occur ¥ = 4 or 6. Some properties of degrele
Steiner points were established in [1] and [2], but the feilg theorem is a
stronger result. Note that a fuN-SMT is said to befulsomeif every A-SMT
on the same set of terminals is full. Also, a full Steiner igegaid to be @rossif
it contains no bent edges and exactly one Steiner point,faidteiner point has
degreet and all incident angles equal 1g/4.

Theorem 4.4 Let\ = 4 or 6. Supposé’is aa full and fulsome-SMT containing
a Steiner point of degreé ThenT is a cross.

Proof. Consider first the case wheke= 4. Let s be the Steiner point of degree
4, and, in clockwise order, let,, v, v3, v4 be the four vertices adjacent4oSup-
pose, contrary to the statement of the theorem, that at éeesof these vertices,
sayw, is a Steiner point. We observe some basic properti@s(tifie first two of
which are from [2]):

e Each edgev; is a straight edge.

e If v; is a Steiner point, then the angle betwegn and each of the other
edges incident with; is 37 /4.

e \erticesv, andv, must be terminals. This follows from the fact that the
shift in Figure 7(a) reduces the length’Bf

o LetT; (1 = 1,...,4) be the subtrees resulting from decomposingto
four subtrees meeting atwhere eacH; is the subtree containing. Then,
for eachi, the edges iff; use at most three directions. To see why this is
the case, note that if arf§} contained four directions, then, by Theorem 4.1,
there would exist &-shift between two edges if. This0-shift could create
a bent edge, contradicting Lemma 4.6 of [1].

Let v5 andwvg be the two vertices other thamadjacent ta);. To obtain a contra-
diction towv; being a Steiner point, consider the shift shown in Figure, “ich
movesw; to v} and splitss into two degree3 pointss} ands,. It is clear, by
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Figure 7: Proof of Theorem 4.4. The shift in (a) reduces tingytle of the tree,
while the shift in (b) is &-shift.

inspection, that this is &-shift. We can continue to perform this shift without
changing the length df until one (or more) of the following occurs:

(1) s, coincides withvy;

(2) s} coincides withvs;

(3) v} coincides withws;

(4) vivg Or sv, is a straight edge.

If (1) occurs we have a contradiction  being fulsome. Similarly, if (2)
occurs ands is a terminal, or (3) occurs ang is a terminal,I” cannot be fulsome.
If (3) occurs andvs is a Steiner point, then, sinég contains only three edge
directions, one of the angles &t is now /4, contradicting minimality. If (4)
occurs, then by sliding] s, across to the right we obtain, by symmetry, the same
contradiction as for cases (1) or (3). Finally, if (2) occarnglv; is a Steiner point
then (assuming (4) does not occldinow contains a degrekeSteiner point and
a bent edge, again contradicting Lemma 4.6 of [1]. This ceteglthe proof for
A=4.

If A =6 a similar argument applies. Crucially, we can once agaiogonse
T into four subtrees meeting atsuch that each subtree uses at most three direc-
tions (either the three primary directions or the three sdaoy directions). By
applying the0-shift in Figure 8, we can again obtain a contradictiorftbeing
either fulsome or minimal. &
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Figure 8: Proof of Theorem 4.4. &shift at a degree Steiner point for\ = 6.

5 Canonical Formsfor full A-SMTs

Our aim in this section is to develop a useful class of caradifiicms for a\-SMT
with a given set of terminal®d” and a given full Steiner topolody. The canonical
forms are obtained from Theorem 4.1 and the geometric ptiepadeveloped in
the previous section. They will allow us to find efficient aigjoms for construct-
ing a\-SMT for a given full Steiner topology in Section 6. We wilkal discuss
some of the important structural properties that stem fronuraderstanding of
canonical forms.

We now define the concept of a canonical tree. Recall that af8MT is said
to befulsomef every \-SMT on the same set of terminals is full. Suppose we are
given a full and fulsome\-SMT T for N with topology7. Given an ordering
of the edges off, T is said to becanonicalwith respect to that ordering i’
contains at most one bent edge and all primary edges anadhgéfs ofl’ come
before secondary edges and half-edg€eB ahder the ordering. In particular, this
means that there exists an edg#at is either primary or bent, such that all edges
that come before under the ordering are primary, and all edges greaterdiaae
secondary. The edgewill be referred to as th&ansition edge

The next theorem is the main result for this section.

Theorem 5.1 Let a set of: terminals/NV and a full Steiner topology for that set
of terminals be given. Suppose there exists a full and fldso®MT for N with
topology7. Then for any ordering of the edgesbfthere exists a\-SMT for N
(with topology7) which is canonical with respect to that ordering.

Proof. We give a constructive proof. L&t be a full \-SMT for N with topology
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T. SinceT is full, 7 contains2n — 3 edges. Assign the natural numbeérso
2n — 3 to the edges of to reflect the given ordering of edges. We can use the
edge numbers of to also number the corresponding edge&'pbr any\-SMT
for N with topology7 .

We next show that we can iteratively apply Theorem 4.1 tosfiam T to
another fullA-SMT for N with the same topology, which we cdll, and which is
canonical with respect to the given ordering. Suppose, ecdintrary, there is an
exclusively secondary edge or half-edgavhose label is strictly less than that of
an exclusively primary edge or half-edge Then, by Theorem 4.1, there exists
a 0-shift on the path between these two edges. We can continpertorm this
shift without changing the length @f until one of the following occurs:

(1) Two Steiner points coincide;

(2) A Steiner point coincides with a terminal;

(3) e; has no exclusively secondary component; or

(4) e; has no exclusively primary component.

Now note that if (1) occurs, we necessarily have a contraxtidb the mini-
mality of 7', unless\ = 4 or 6 in which case, by Theorem 4.4, we have a contra-
diction to T being either fulsome or minimal (dF is a cross). If (2) occurs we
have a contradiction to the fact thAtis fulsome. So eventually either (3) or (4)
must occur, which reduces the number of primary/secondiyg pairs where the
primary edge has a higher number than the secondary edgeeHaniterative
application of0-shifts, we can construct a tr&&, with the same length &8, such
that no primary edge df” has a higher number than any secondary edge.

An important property of the canonical form is that the clmosembering
scheme cannot rely on the geometric embedding of an undgrsanonical)-
SMT, but only on the topology™. (However, if some\-SMT for 7 is known, the
edges may be numbered according to the geometric embedflihig a-SMT.)
The transition edge can occur anywhere withindepending on the positions of
the terminals. The canonical form will depend on the ordgahthe edges of’,

i.e., on how the natural numbernstp 2n —3) are assigned to edges. Two examples
of ordering that result in nice canonical forms are the fwitgy:

e Breadth-first ordering In this ordering,7 is rooted at a terminal, and the
tree is then traversed in a breadth-first fashion. An edgssigiaed the next
available natural number when it is traversed. Hence, norslry edge
will be closer to the root than any primary edge.

¢ Depth-first ordering In this ordering,7 is rooted at a terminal, and the
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tree is then traversed in a depth-first fashion. An edge ig@ad the next
available natural number when it is traversed.

A full A-SMT T constructed using either breadth-first or depth-first ondgsr
has the following important property: if we divide into two subtrees by delet-
ing the transition edge, then one of these subtrees cordalgsecondary edges
(namely the subtree not containing the root). Furtherntbeepath from the root
to the transition edge contains primary edges only. Finpailfthe subtree con-
taining the root, any path from a terminal to the transitidge may change the
category of its edges from secondary to primary (at most proceé never from
primary to secondary. Some stronger structural propesfiise canonical forms
based on the depth-first ordering will be discussed in Se&is.

The significance of these observations is that, given anogpijate canonical
form, a strong restriction on the structure of fadlSMTs can be assumed. This
property was recently incorporated into the first exact @illgon for the Steiner
tree problem in uniform orientation metrics [11]. In thigalithm the possible
full Steiner trees (or FSTs) of & SMT are built up by constructing “half FSTs”
with straight edges, which are either merged together atia&tpoint to form a
larger half-FST, or at a corner point to form an FST. The numnigescheme —
and thus the canonical form — that was chosen in the exactigdgowas the
following:

1. Every FST was rooted at its lowest index terminal (as giveithe input
to the algorithm) and the edges were numbered accordingdapth-first
traversal from this root.

2. The children of a node were visited in the order given byrtheometric
location such that the leftmost child was visited beforertgbtmost child.

Note that in this case a numbering scheme that depended a@etmeetric em-
bedding was possible since subtrees with known embedding ezenbined into
larger subtrees; this again made it possible to assumehhatansition edge oc-
curred “outside” half-FSTs (see [11] for details). This eaital form had a sig-
nificant impact on the running time of the exact algorithmr. ke= 3m a speed-up
of several orders of magnitude was obtained.

As a final application of the canonical forms developed ia Haction, we now
give a stronger version of Corollary 3.2, that follows imnaely from choosing
a clever ordering of the edges in the topology.
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Theorem 5.2 LetT be a full and fulsom@&-SMT for terminal seiV with topology
T. Then there exists &-SMTT" for terminal setN with topology7 that uses at
most4 different directions.

Proof. Order the edges of T by theaolour, for example, the red edges may
come first in the ordering followed by the green edges and therblue edges.
Consider a canonical-SMT 7" that comes from this ordering (by Theorem 5.1
such a tree exists). Then it follows from the canonical fohattthe edges of
any given colour, not the same as the colour of the transddge, are either all
primary or all secondary. Hen@& uses at most 4 directions. i

6 Quadraticand Linear Time Algorithms

In this section we present two algorithms for constructing®MT for a given set
of n terminalsN and a given topology . Both algorithms depend strongly on a
so-calledmergingoperation that can be performed in constant time (Sectibn 6.
The first simple algorithm that we present run§igh\n?) time (Section 6.2), while
the second runs i@ (An) time — which is optimal for fixed\ (Section 6.3).

6.1 Constant-TimeMerging Operation

The following lemma establishes conditions under which ae gniquely con-
struct a Steiner point adjacent to two given points. The afpen of constructing
such a Steiner point and effectively replacing the two gpeimts by this Steiner
point, will be referred to, throughout the remainder of théper, as anerging
operation.

Lemma6.1l LetT be a full \-SMT with topology’, and lets be a Steiner point
in 7. Assume that the locations # of two of the neighbours &f « andv, are
known; furthermore, assume that each edggs) and (v, s) is straight and has
been labeled primary or secondary. Finally, assume that menkthe direction
set of edges. If Steiner poiatexists inT’, then its location is unique; also, the
colours of the edge&u, s) and (v, s) — and hence also the colour of the third
edge incident withs — are unique. The existence and the locatios chn be
determined in constant time.

Proof. For the given direction set, we first make the following olagons,
which follow immediately from Corollary 3.2, and our assurop that\ > 3:
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(a) (b)

Figure 9: Proof of Lemma 6.1.

e The smaller angle between any two directed straight edgetdiffeirent
colours is at least /2, and equality can only occur if one of the edges is
exclusively primary and the other exclusively secondary;

e Furthermore, the smaller angle between any two directedgbir edges is
strictly less tharr.

Now suppose, contrary to the statement of the lemma, thatpbssible to
construct two distinct Steiner poindsinds’ adjacent to botl andv. We consider
a couple of different cases. First, assume that the ingenbthe edgegu, s),
(v,58), (u,s'") and (v, s') are all disjoint. Sincdu, s) and (u, s’) are either both
primary or both secondary it follows from the previous olbaéion that the sum
of interior angles in the quadrilateratvs’ is strictly greater tha@z, which gives
a contradiction. Similarly, if the interiors of two of thegeks, sayu, s) and(v, s'),
intersect at a single point (as in Figure 9(a)), then the siineocangles at, s, s
andv is again greater thaw, but must be less than the sum of interior angles in
the quadrilateraliss’v, giving another contradiction.

The only remaining possibility is thatands’ are both collinear with exactly
one of the points: andv, sayu (as in Figure 9(b)). Sincév,s) and(v,s’) are
either both primary or both secondary, it follows that the ®dges have different
colours, while the edgéu, s') must have the third colour. Hence the sum of the
angles betweefw, s) and (v, s') and betweerts’, s) and(s’, v) must be strictly
greater thamr, giving a contradiction.

We conclude that at most one Steiner point can be constructed

Finally, note that this construction can be done in constiam¢, since the
direction set is known. &
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6.2 Quadratic TimeAlgorithm

We are given a set ot terminals/N and a full Steiner topolog§ for the set of
terminals. We would like to construct a full and fulsolwSMT T for N with
topology7 (or prove that no such-SMT exists). In this section we assume that
the topologyT is given by any sparse graph representation.

First we choose an ordering of tBe — 3 edges in7. This ordering is com-
pletely arbitrary, and it is clearly possible to find an ordgrin O(n) time given
any sparse graph representation7af The algorithm presented in this section
constructs &-SMT having the canonical form given by this ordering.

Let us first assume that we are know the directionaset the identity of
the transition edge for some canonigaBMT 7" under the given ordering of the
edges; assume that the transition edge has numbeder the chosen ordering,
wherel < k < 2n — 3. Then, inO(n) time, we can construdt as follows.

Label all edges numbered less thammas primary edges and label all edges
numbered greater thahas secondary edges. We rdbtat the transition edge
and iteratively apply the merging operation to leaf nodesisly a parent until the
locations of the endpoints of the transition edge have beastoucted. Since the
primary/secondary labelling of every edge except the ttiansedge is known,
every merging operation has a unique solution and can berpegfl in constant
time by Lemma 6.1.

Since there are up @\ different directions sets arith — 3 different choices
for the transition edge, iterating over all possible comations and using th@ (n)
algorithm just described will clearly construct a full andsomeA-SMT for N
and7 (if any suchA-SMT exists). The result is summarized in the following
theorem:

Theorem 6.2 Let a set o terminalsN and a full Steiner topology for that set
of terminals be given. Suppose there exists a full and fldse®MT for N with
topology7 . Then such a tree can be foundir{\n?) time.

6.3 Linear TimeAlgorithm

In this section we develop a linear time algorithm for consting a\-SMT for
a given full Steiner topology. More precisely, for a givenedtion set of edges,
the algorithm runs irfD(n) time. By iterating over the (up td)\ different edge
direction sets, a-SMT for the full topology (if it exists) will be constructeid
O(An) time.
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The given full Steiner topology is assumed to be a rooted Treeith node
setV, whereN C V. The treeT is rooted at a terminat € V and all other
terminals are leaves ifi. All internal nodes (Steiner points) have degree 3. For
each internal node € V/, the children ofv are denoted by [w] and Rv]; the
child of the root node is denoted by [r]. For each node # r the parent ob is
denoted by R].

In the algorithm we will initially label all edges iffir as beingsecondary
Instead of storing the primary/secondary labelling witd &dges, it turns out to
be convenient to store this information with the nodes. W&8v| indicate the
primary/secondary labelling of the nodgit will later become clear how this node
information is used to label the edges.

We will useraysto represent subtrees of theSMT that is to be constructed.
A ray is an oriented halfline with a source (point in the plaae)l a direction.
There is one ray[v] for each node iry” and initially all rays areindefined The
source of a node ray will correspond to the current geomketcition of the node
while the direction will correspond to one of the three dil@as in the direction
set having the labeling given by R§ Informally, when a\-SMT for 7 has been
constructed, all node rays will point towards the transigalge (or bent edge) in
the tree.

The linear time algorithm consists of two depth-first traads of 7. Both
traversals use an operation that merges two rays into orseeppieration is de-
scribed next.

Merging Rays

The basic constant time operation that we will use is dendtedeRays(z, ).
This operation assumes thaandy are neighbours to a common Steiner paint
and that the primary/secondary labels of the edges) and(y, v) are given by
PYz| and P$y|, respectively, and that both edges are to become straigfesed
We distinguish between two cases:

Both « and y areterminals By the proof of Lemma 6.1 the location of Steiner
pointwv is unique and it can be constructed in constant time (if istsyi If
the Steiner point exists, the result oMergeRays(z, y) is the ray having
its source inv, and direction of the unique third edge outwwith pri-
mary/secondary label P§ — otherwise the result dflergeRays(z, y) is
undefined.

Either  or y (or both) are Steiner points First assume that is a terminal (the
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case wherey is a terminal is similar). 1f®[y] is undefined, the result of
MergeRays(z, y) is undefined. Otherwise, again if Steiner poingxists,
the result oMergeRays(z, y) is the ray having its source in and direction

of the unique third edge out af with primary/secondary label RS —
otherwise the result dflergeRays(z, y) is undefined. If bothx andy are
Steiner points the resulting ray has its source at the ietdion between
®[z] and@[y]; if ®[z] or ®[y] are undefined or they do not intersect, the
result ofMergeRays(z, y) is undefined.

First Traversal of T

In the following we letT, denote some constructed subtreefofooted atv. A
primary (or secondary subtreeT, is defined to be a tree that contains primary
(respectively, secondary) edges only. When constructimignaary (respectively,
secondary) subtreg,, ®[v] has its source located at the constructed ro@i,&nd
the direction of®[v] corresponds to that of the primary (respectively, secordar
edge fronw to its parent, that is, it will be directed towards the rooffof

In the first traversal of” we attempt to construct secondary subtrees for each
nodev # r; we assume that Pg = secondaryfor all nodesv # r. This is done
bottom-up by applying the recursive algorithm in Figure a@he edg€r, L[r]).
If a secondary subtree rootedwatannot be constructed|v] is undefined when
the traversal finishes.

Traverse(u, v)

1 if (second traversathen TryBentEdge(u, v)
2 if (vis a Steiner point)hen

3  Traverse(v, L[v])

4  Traverse(v, R[v])

5  ®[v] = MergeRays(L[v], R[v])

Figure 10: Traversal of full Steiner topology.

Second Traversal of T

In the second traversal gf (again by the algorithm shown in Figure 10), the
secondary subtrees constructed in the first traversal amgechavith primary sub-
trees. More specifically, we try to construct all possibées having the canonical
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form which comes from the edge ordering given by the travetbare exists a
bent edg€w, v) such that all edges visited befofe, v) areprimary edges while
all edges visited aftefu, v) aresecondaryedges.

The TryBentEdge(u, v) procedure (Figure 11) processes each edge) in
the order given by the traversal. In line 1 the label of nedechanged to primary
(the nodev is still labelled secondary at this point). 4f = r then we let®[u]
have the same colour @suv| (line 3), such thatb[u] and ®[v] (if defined) will
correspond to two half edges of a bent edge. If the rays itéftines 9-10), a
candidate tree has been constructed.

TryBentEdge(u, v)
1 PSu] = primary
2 if (u=r)then
3 Let ®[u] be the ray with source athaving the same colour dgv|
4 ese
5 Letz = Plu] andy be the two other neighbours of Steiner paint
6 ®[u] = MergeRays(X,y)
7 if (vis aterminalXhen
8 Let ®[v] be the ray with source athaving the same colour dgu|
9 if (®[u] and®[v] have the same colour and intersect each ottter)
0 Intersection point is corner point in constructed tree
1 PSv| =primary

Figure 11: Trying(u, v) as a bent edge.

If »is a Steiner point, its geometric location is first found byrgieg the rays
of its neighbours other than (lines 5-6). Then the intersection betwe®fu]
and®[v] is computed as before (lines 9-10). A special case occurs wiea
terminal (lines 7-8): In this case we kefv] have the same colour &u], similar
to theu = r case. Finally, the label of nodeis changed to primary in line 11.

The length of the constructed tree can be computed in canstaa if the
length of each subtree is maintained during the executigdheoflgorithm. This
is most easily achieved by letting the merge operation caenthe sum of the
lengths stored in the merged nodes and adding this to thendiss from their root
nodes to the new intersection point.

For a given direction set, the algorithm clearly rungifn) time: Two traver-
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sals of 7 are performed and the processing of each edge takes cotistanBy
iterating over all direction sets,)aSMT for 7 (if it exists) will be constructed in
O(An) time.

Correctness of Linear Time Algorithm

In the following we assume that & SMT T* for 7 exists and that it uses the
current edge direction set. Furthermore, we assume thahéochosen canoni-
cal form (edge ordering), the bent edgddsv) with corner pointc (which may
coincide withu or v if 7* contains no bent edge). We will now prove that the
algorithm does construdt*.

’ \
/ \

--< V1 - - / U= vg

Figure 12: Canonical form used by linear time algorithm.

In the following discussion, we say that a rayerlapswith a line segment if
the ray is contained in the line representing the extendidmad line segment.

Consider the pattP in T* from the rootr to the corner point. Let sy, =
r,81,---,81 = u, S = c be the nodes on this path. Foredch 1, ..., k, letv;
denote the node adjacent4pbut not onP, and letT; denote the largest subtree
of T* rooted ats; and not containing any edges Bf(Figure 12).

Lemma 6.3 When the algorithm processes edgev) in the second traversal,
foreachi = 1,..., k, we have that

i) edge(s; 1,s;) is a primary edge, and; is either a primary or secondary
subtree,

ii) the location of the source of ra®|v;] is identical to the location of; in 7%,
and®[v;] overlaps with the edg@;, s;) in T*,
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iif) the location of the source of rag[s; ;] is identical to the location of; ;
inT*, and®[s;_ | overlaps with the edges;_1, s;) in 7.

Proof. Property i) follows from the depth-first ordering of the teasal, while
property ii) follows from the definition of the merge ray opgon and from the
fact that the secondary (respectively, primary) subtreesanstructed bottom-up
in the first (respectively, second) traversaljaf

When the edgés; 1, s;) is processed by the algorithm, all the subtfBes. ., T; ;
have been constructed and remain the same until édgg is processed. This
follows from the depth-first order of the traversal.

The edges from the root ta:, v) are visited in the order they appear on the
path. Assume that nodes, ..., s;_» already have been correctly constructed
when edg€gs;_1, s;) is processed. (This is certainly true foe= 2.) Lines 5-6
in TryBentEdge(s;_1, s;) merge the rays out of;_, andv;_;. Since both nodes
have the correct location and rays overlapping with the sdggacent tos;_1,
the resulting rayb[s;_;] will be located at the correct position and overlaps with
(Si_l, Si) inT*, [ |

Theorem 6.4 When the algorithm processes edgev) in the second traversal,
the \-SMTT* is correctly constructed.

Proof. When (u,v) is processed it follows from Lemma 6.3 thltu] becomes
correctly constructed and overlaps with the half edge ftota the corner point
of the bent edge. Furthermore, the subtfgds a secondary subtree addv]
has been correctly constructed in the first traversal. Thertm follows since
TryBentEdge(u, v) in lines 9-10 computes the intersection between the ¢dys
and®[v]. 1

I mplementation

The linear time algorithm is fairly simple to implement. Inramplementation a
ray ®[v] for a nodev was represented by the x- and y-coordinates of the source
and a number betwednhand2) — 1, corresponding to the (up t@)\ different
legal directions extending from the source. All numericainputations can be
performed in the ray merging operation. In particular, athly ray merge opera-
tion depends on the data types used for representing cavedinThe remaining
code can be written more or less exactly as presented indsdurand 11.

Our experiments with the algorithm show that it is very fasd ¢ghat the con-
stants involved are small. However, a simple exact algarithat enumerates
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all subsets and all full Steiner topologies can only sol@bfems with less than
10 terminals, in a reasonable amount of time. This is due eéddlge number
of possible subsets and large number of different full ®teiopologies for each
subset (e.g., for a subset with 8 terminals there are 1038 ett full Steiner

topologies).

7 Concluding Remarks

In this paper we presented a powerful canonical form forarnity-oriented Steiner
trees in the plane, and gave a linear time algorithm for canshg a\-SMT for

a given full Steiner topology. The canonical forms haveadseproved to be very
useful in the implementation of an exact algorithm for thelgbem [11], resulting
in substantial speed-up and making it feasible to solveskaigale problems to op-
timality. We also believe that the canonical forms and thedr time algorithm
will turn out to be very useful in the design of fast heuristior the problem.

Acknowledgments

The authors would like to thank Benny K. Nielsen and Pawelt@/ifior many fruitful
discussions. Also we thank the anonymous referees for¢beiments and suggestions.

References

[1] M. Brazil. Steiner Minimum Trees in Uniform Orientatidfetrics. In D.-Z.
Du and X. Cheng, editoiSteiner Trees in Industriepages 1-27. Kluwer
Academic Publishers, 2001.

[2] M. Brazil, D. A. Thomas, and J. F. Weng. Minimum NetworksUniform
Orientation Metrics SIAM Journal on Computing0:1579-1593, 2000.

[3] M. Brazil, D. A. Thomas, and J. F. Weng. Locally Minimal formly-
Oriented Steiner Trees. Technical report, University ofddarne, 2003.

[4] F. K. Hwang. On Steiner Minimal Trees with Rectilinearsizince. SIAM
Journal on Applied Mathematic80:104-114, 1976.

[5] F. K. Hwang. A Linear Time Algorithm for Full Steiner TreeOperations
Research Lettergl(5):235-237, 1986.

25



[6] F. K. Hwang, D. S. Richards, and P. Wint@ihe Steiner Tree Probleni\n-
nals of Discrete Mathematics 53. Elsevier Science Pubksietherlands,
1992.

[7] D. T. Lee and C. F. Shen. The Steiner Minimal Tree Problenthe \-
Geometry Plane. IhSAAC’96, Lecture Notes in Computer Science 1178
pages 247-255, 1996.

[8] Y.Y.Li, S. K. Cheung, K. S. Leung, and C. K. Wong. Steinee& Construc-
tions in A;-Metric. IEEE Transactions on Circuits and Systems Il: Analog
and Digital Signal Processingt5(5):563-574, 1998.

[9] Y. Y. Li, K. S. Leung, and C. K. Wong. Efficient Heuristicerf Orienta-
tion Metric and Euclidean Steiner Tree Probledwsurnal of Combinatorial
Optimization 4:79-98, 2000.

[10] G.-H. Lin and G. Xue. The Steiner Tree Problem\iaGeometry Plane. In
ISAAC’98, Lecture Notes in Computer Science 1p8ges 327-337, 1998.

[11] B. K. Nielsen, P. Winter, and M. Zachariasen. An Exaagdyithm for the
Uniformly-Oriented Steiner Tree Problem. Rmoceedings of the 10th Euro-
pean Symposium on Algorithms, Lecture Notes in Computen&eivolume
2461, pages 760—772. Springer, 2002.

[12] B. K. Nielsen, P. Winter, and M. Zachariasen. On the ltmraof Steiner
Points in Uniformly-Oriented Steiner Tredaformation Processing Letters
83:237-241, 2002.

[13] M. Sarrafzadeh and C. K. Wong. Hierarchical SteinereT@onstruction
in Uniform Orientations. IEEE Transactions on Computer-Aided Design
11:1095-1103, 1992.

[14] A. C. ThompsonMinkowski Geometry: Encyclopedia of Mathematics and
its Applications Cambridge University Press, Cambridge, 1996.

[15] P. Widmayer, Y. F. Wu, and C. K. Wong. On Some Distancebfrms in
Fixed OrientationsSIAM Journal on Computind.6(4):728—-746, 1987.

[16] G. Xue and K. Thulasiraman. Computing the Shortest Netwinder a
Fixed Topology.IEEE Transactions on Computeisl:1117-1120, 2002.

26



