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ABSTRACT. It is shown that the disconjugate equation (1) Lx •» (l/ßn)(d/dt)

■ (l//3„-,) • • • (d/dt)(l/fit)(d/dt)(x/M = 0, a < t < b, where ft > 0, and (2) ft e C(a,b),
can be written in essentially unique canonical forms so that /' ßtdt = oo (/, ßtdt = oo)

for 1 < / < n — 1. From this it follows easily that (1) has solutions X|,...,Xj, which are

positive in (a, b) near b(a) and satisfy lim,-.t-x,(/)/x,(/) = 0 (]im,^*x,(t)/xj(t) = oo) for

1 < i <j < n. Necessary and sufficient conditions are given for (1) to have solutions

yu ...,yn such that lim,^-y,(t)/yj(t) = lim,<1.^(()/y,(l) = 0 for 1 < i <j < n. Using

different methods, P. Hartman, A. Yu. Levin and D. Willett have investigated the existence

of fundamental systems for (1) with these properties under assumptions which imply the

stronger condition (2') ß, e C<"~n(a,b).

1. Introduction. A linear differential equation

(1.1) Lx m *W + / (Ax(»-D + ... + fn(i)x = 0

is said to be normal on an interval /if/ G C(I), 1 < i < n, and disconjugate on

/ if it has no nontrivial solution with more than n — 1 zeros (counting multipli-

cities) on I. Polya [6] showed that if (1.1) is normal and disconjugate on [a, b),

then it can be written as

íí t\ t I  d    I d 1  d x      n .    ^ .
°-2)     Lx-jnjt^-dtjxdtjr^  a<t<b>

where

(13) A G C<»-'>M),       A > 0,       0 < / < n.

Recently, Levin [5, Corollary 2.1] showed that if (1.1) is normal on (a, b), then it

is disconjugate there if and only if it has a representation (1.2) which satisfies

(1.3). (Levin actually assumed /,...,/ to be locally integrable, rather than

continuous, in (a, b).)

Hartman [2], [3], [4] and Levin [5] independently showed that a disconjugate

equation has fundamental systems, which Hartman called principal systems and

Levin called hierarchical fundamental systems, with properties not exhibited by

fundamental systems of other linear equations. We say that solutions xx,..., xH
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320 W. F. TRENCH

of (1.2) form a principal system for (1.2) on (a, b] if they are positive on some

interval (d, b) and

lim ̂  = 0,       1 < » <j < ti,
<-*- xj(t) -

or a principal system for (1.2) oti [a, 6) if they are positive on some interval (a, c)

and

lim -^ = oo,       1 < »</< ti.
™+Xj(t) -    ^J -

If {¿i,... ,x„} is a principal system for (1.2) on both (a, b] and [a, b), we call it a

fundamental principal system for (1.2) oti [a, b] (see Willett [8]).

Hartman [2], [3], [4], Levin [5] and Willett [7], [8] have demonstrated the

existence of principal systems for (1.1). (The work of Hartman and Levin is also

discussed by Coppel [1].) Willett [8] obtained necessary and sufficient conditions

for (1.1) to have fundamental principal systems on [a, b]. These investigations

depend on the properties of Wronskians formed from solutions of (1.1). We use

a different approach which applies to a larger class of equations; namely, those

of the form (1.2) with (1.3) replaced by

(1.4) A E C(a,b),      ß, > 0,       0 < » < ti.

A function x is a solution of such an equation if the derivatives indicated in (1.2)

exist and satisfy (1.2). If we define

x 1
(L5) LqX = ñ-,       Ljx = ^-(L_,jc)',       1 <j < n,

Po Pj

then Lx = L„x; hence (1.2) is equivalent to the system

E;-4+i&4>i.       0<y<7i-2,

i'n-X  = 0,

with ij = LjX, and therefore the usual existence and uniqueness theorems for

linear equations apply to (1.2).

We shall write the operator L in (1.2) as

(Ï 6) r =LÉ_J_      ±Ld 1.
ßndtßn.x'" dtßxdtßQ'

and denote the class of such operators that satisfy (1.4) by D(a, b). In §2 we show

that an operator L in D(a, b) can be written in certain canonical forms, and use

this to prove that (1.2) has principal systems on (a, b] and [a, b). We also give

necessary and sufficient conditions for (1.2) to have fundamental principal

systems on [a, b].
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GENERAL DISCONJUGATE EQUATIONS 321

Throughout this paper c is a fixed point in (a, b) and n > 2.

2. Canonical forms and principal systems. The following notation of Willett

provides a convenient way to represent solutions of (1.2).

If a,, a2, ... are continuous on (a, b), define

/„= 1,

Ijit,s;aj,...,ax) — J aj(X)Ij-X(X,s;aj-X,...,ax)dX,      j> 1.

The functions

(2.1) xj(t) = ß0(t)Ij-X(t,c; p\,..., A_i),       \<j<n,

are solutions of (1.2), and repeated application of Rolle's theorem shows that a

nontrivial linear combination of xx, ..., xk (1 < k < n) cannot have more than

k — 1 zeros in (a, b). This implies that {xx,... ,x„) is a fundamental system for

(1.2) and (1.2) is disconjugate on (a, b).

L'Hospital's rule shows that (2.1) defines a principal system for (1.2) on (a, b] if

(2.2) f ßjdt = oo,       1 < J < h - 1,

while the functions

(2.3) zjit) = (-1)""'/?,,« W>c; A, - • •, A-A       1 < / < n,

form a principal system for (1.2) on [a, b) if

(2.4) j ßjdt = oo,       1 < j < n - 1.

However, a given representation of an operator in D(a, b) may fail to satisfy

either (2.2) or (2.4). For example, the operator defined by Lx = x'" — x' is in

D(-co, oo), and can be represented as

/        <— -2td_ ,d_'_
L~edte    dte dt\'

which satisfies neither (2.2) nor (2.4). Nevertheless, L can be rewritten as

i        <d_ -td_ -,d   •
L~edte   dte   dte-"

which satisfies (2.2), or as

¡d ,d ,d
L = e

which satisfies (2.4)

L ~ e 'dte'dte'dt e"
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322 W. F. TRENCH

Theorem 1. Any operator L in D(a, b) has a representation (1.6) which satisfies

(2.2). and this requirement determines ß0, ..., ß„ up to positive multiplicative

constants with product 1. The same statement is true with (2.2) replaced by (2.4).

We shall say that L is in canonical form at b if (2.2) holds, or in canonical form

at a if (2.4) holds.

It is convenient to prove Theorem 1 by means of a series of lemmas and

corollaries, as follows.

Lemma 1. //

(2.5) M = md_L
t2dtbdtt0

is in D(a, b), with J** £xdt < co, then M can be rewritten as

(2.6) M = ±dld_
1?2 dt I), dt T)0

so that fb t)xdt = co, with

and

Proof. Straightforward evaluation of Mx, with M as defined by (2.6), shows

that (2.5) and (2.6) define the same operator.

Lemma 2. //

N = }_±}_d_}Ld_^

p3 dt pi dt p, dt po

is in D(a, b), with

(2.7) j  ¡ixdt = co   and  j  fodt < co,

then N can be rewritten as

(2.8) N = iimi-
i>3 dt v2 dt vx dt v§

where the v¡ are in C(a, b) and positive, andjb vtdt = co, » = 1, 2.

Proof. By applying the device of Lemma 1 to /j^, we obtain

»»3 dt v2 dt vx dt vq
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GENERAL DISCONJUGATE EQUATIONS 323

with

(a) v0 = /to,

(b) h = fi, jt   frdr,

(2.10)
(c) v2 = pa\Jt  frdrj   ,

(d) h = /i3 jt  frdT.

Now /* v2dt = 00; hence, if fb vxdt = 00, then we are finished, with v, = v„

0 < i < 3. If f* ?i¿/ < 00, we apply the device of Lemma 1 to vx in (2.9) to

obtain (2.8) with

"0 = hjt   v\dr,       "1 = vx\[t   hdrj   ,

"2 = h J,   hdr,       i>3 = h-

Now J"* vxdt = 00. Let a < f0 < Í! < è; then integration by parts of

f\2dt = £ v2(t)(l" Px(r)dr) dt,

in conjunction with (2.10(b)) and (2.10(c)), yields

£ „2dt = (j; lhdr)-\j; hdr)\\ jyxdt.

Therefore, (2.7) implies that/* v2dt = 00. This completes the proof of Lemma 2.

Lemmas 1 and 2 also hold with f * and X* replaced everywhere by fa and SI-

With these same substitutions, the proof of the assertions in Theorem 1

concerning the point a can be obtained from the proof of the assertions

concerning b; therefore, we present only the latter.

Proof of Theorem 1 (existence). The proof is by induction. Lemmas 1 and 2

imply existence for n = 2 and n = 3. Suppose n > 4 and existence has been

established for any (n — l)st order operator in D(a, b). Then any nth order

operator in D(a, b) can be written as

L = ]_d_ J_d_]_d_^
a„dtair.x       dt ax dt Oq'

with

(2.11) fb ajdt =00,       1 < / < n - 2.
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324 W. F. TRENCH

If/* a„-xdt = co, then L is already in canonical form at b and there is nothing

to prove. If/* a„-Xdt < co, we construct a sequence of representations

J_¿_1_¿J_ ¿_1
<Xmdta„_u '     dtaXidt oq,'

with 0,0 = <*,■» 0 < / < 7i, and, for »' > 1 :

(a) or,¡ = Oy_|,      / # » - i + 1, « - i or n - i - 1,

(b) <*„_,+,,, = a„_I+u_, J(  a„_M_,»/T,

(212) /  , x-2
(C) «V^-tV-i^-lU,    <*n-iJ-\dT)     ,

(d)       a„_,_u = «„_,_,,,_,^  a„_u_xdT.

This process terminates at the »th step if

(2.13) fbaßdt= oo

for all / in {1,..., 7» - 1}. If 0 < » < « - 2, then (2.11), (2.12) and Lemma 2
imply that (2.13) holds for all such/with the possible exception of/ = ti - » — 1;

hence, the process terminates when » is such that /* a^¡_XJdt = oo, or when

» = ti - 1, whichever occurs first. If it terminates with » = r, we take ß) = aJr in

(1.6). This completes the induction and the existence proof.

Coupled with the earlier discussion of (2.1) and (2.3), this existence theorem

yields the following corollary.

Corollary 1. If L is in D(a, b), then (1.2) has principal systems on (a, b] and [a, b).

The essential uniqueness of the canonical forms is a consequence of the

following lemma, which was stated without proof by Levin [5, p. 59] for

disconjugate equations of the form (1.1). The lemma follows directly from the

properties of principal systems.

Lemma 3. If{xx,... ,x„) and{yx,... ,yn] are principal systems for (1.2) oti (a, b]

(la, b)), then

y¡ = 2 OijXj      (y¡ = 2 a¡jXjj,

where the {a¡j) are constants and au > 0.

Corollary 2. If [xx,... ,x„}and{yx,... ,y„) are fundamental principal systems for

(1.2) oti [a, b], then x¡ = X¡y¡, 1 < ¡ < n, where Xx, ..., Xn are positive constants.
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GENERAL DISCONJUGATE EQUATIONS 325

Corollary 3. Let L in (1.6) be in canonical form at b, suppose Lq, ..., L„_| are as

defined by (1.5), and let [yx,.. .,y„) be a principal system for (1.2) on (a, b]. Then:

(a) L,yj = 0, 1 <j < i;
(2.14)

(b) L,y,+X = p, (= positive constant),       0 < i < n — 1.

Proof. If x, is as defined by (2.1), then (2.14) holds with p, = 1. Hence, the

conclusion follows from Lemma 3.

An analogous result is valid if {.V|,... ,y„) is a principal system for (1.2) on

[a, b).

Proof of Theorem 1 (essential uniqueness). Suppose (1.6) and

(2.15) L = L±A_Í-4-
a„ dt a„_|       dt ax dt oq

are both canonical forms for L at b. Then

yjit) = a0(t)Ij-i(t,c;ax,...,<*,_,),       1 < j < n,

defines a principal system for (1.2) on (a, b], and (2.14b) yields

(2.16) Lja0it)Ijit,c; ax,...,«,) = p,,       0 < / < n - 1,

with Lq, ..., L„_i as defined by (1.5). Suppose it is known that

(2.17) a0 = poßo,   «i = (pi/po)A> •••» «h = (p,-i/p,-2)A-i»

for some/ 2 <j < n — 1. (Direct computation with (2.16) verifies (2.17) for

j = 2.) Then, from (2.16),

Pi = Py-i Ljßo(l)Ij(>> c;ßx,...,ßj.x, aj) = p,_, a/A,

which yields (2.17) withy replaced by7 + 1. Thus, by induction, (2.17) holds for

j = n, and (2.15) can be rewritten as

(2.18) L = J-LáA_...lLl^
PB-.«n^A-i       dtßxdtß0-

Now define

x„+l =ßa(t)ln(t,c;ßx,...,ß„).

From (1.2), Lx„+X = 1, while from (2.18), Lx„+X = (l/p«-i)A/««; hence aB

= A/Pn-i> which completes the proof.

Although (1.2) always has principal systems on (a, b] and [a, b), the next

theorem shows that it may fail to have a fundamental principal system on [a. b].
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Theorem 2. Suppose the operator L in (1.6) is in canonical form at b. Then (1.2)

has a fundamental principal system on [a, b] if and only if

(2.19) faß'dt< °°>        1 <»<»»- 1.

Proof. For sufficiency, observe that (2.19) implies that the integrals in

(2.20) *,(/) = ß0(t)Ij.x(t,a;ßx,...,&_,),       a < t < b,

exist for 1 <j<n, and that these functions form a fundamental system for (1.2)

on [a, b]. For necessity, suppose [yx,... ,y„) is a fundamental principal system

for (1.2) on [a, b]. From Lemma 3,

(2.21) y.(t) = ßQ(t) 2 aijIj-X(t,c;ßx,...,/?,_,),       1 < » < ti,

for suitable constants {a¡j). In particular, yx = axxßo, and therefore

0 = lim^ = V lim>2. + fl22/i(',c;»3,)).
<-»u+ yx (t) /-»«+

Since a22 =£ 0, this implies that Ix(a,c;ßx) exists, which confirms (2.19) for/ = 1,

and completes the proof if ti = 2. Now suppose ti > 2 and the desired

conclusion holds for all operators in D(a, b) of order n — 1. Since (2.14(a))

implies that [yx,... ,y„-X) is a fundamental principal system on [a, b] for the

equation

(7 221 » -    1    d    \ d 1  d x
(■    ) L«-ix = ßn_xdtßn_2---dtßxdtß0-0'

it follows from the induction assumption that (2.19) holds with ti replaced by

ti — 1 and therefore that xx, ..., *,,_,, as defined for 1 < / < ti - 1 by (2.20),

also form a fundamental principal system for (2.22) on [a, b]. Therefore, from

Corollary 2,

%-i (0 = A;i. ßo(')In-2(t, a;ßx,..., ßn.2).

This, together with (2.21) and repeated application of L'Hospital's rule, yields

0 = lim ^¡- = V.limK»., + aMIx(t,c;ßn.x)),

which implies that /, (a, c;/?„_,) exists. This confirms (2.19) and completes the

induction.
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GENERAL DISCONJUGATE EQUATIONS 327

It can be shown in the same way that if (1.6) is in canonical form at a, then

(1.2) has a fundamental principal system on [a, b] if and only if

fbß,dt<<x>,       l<i<n-l.
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