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A b s t r a c t .  We present a canonical frame construction for determining pro- 

jectively invariant indexing functions for non-algebraic smooth plane curves. 

These invariants are semi-local rather than global, which promotes tolerance 

to occlusion. 

Two applications are demonstrated. Firstly, we report preliminary work 

on building a model based recognition system for planar objects. We demon- 

strate that the invariant measures, derived from the canonicM frame, pro- 

vide sufficient discrimination between objects to be useful for recognition. 

Recognition is of partially occluded objects in cluttered scenes. Secondly, 

jigsaw puzzles are assembled and rendered from a single strongly perspective 

view of the separate pieces. Both applications require no camera calibration 

or pose information, and models are generated and verified directly from 

images. 

1 I n t r o d u c t i o n  

There has been considerable recent success in using projective invariants of plane alge- 

braic curves as index functions for recognition in model based vision [10, 15, 23, 28]. Less 

attention has been given to invariants for smooth non-algebraic curves. In this paper we 

present a novel and simple method of constructing a family of invariants for non-convex 

smooth curves. 

Lamdan et al. [18] proposed and implemented a canonical frame construction. We 

improve on this in two important ways: 

1. The transformation here is projective not aj~ine. Central projection between two 

planes is a type of projective transformation, not subject to the limitations on viewing 

distance required for affine approximation to hold. The affine transformation is only 

valid if the object depth variation is small compared to the camera viewing distance. 

Of course, projection includes the case that the transformation might actually be 

affine, because the affine group is a sub-group of the projective group. 

2. Recognition is entirely via index functions based on projective invariants. In [18] 

recognition was a mixture of indexing and Hough style voting. 

As has been argued elsewhere [10, 23]. there is considerable benefit in using invariants 

to imaging transformations as indexing functions for generating recognition hypotheses. 

In particular, such functions only involve image measurements and avoid comparison 
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against each object in the model library. Complexity is then O(i k) rather than O(Aikm k) 
for the pose based comparison, where i is the number of image features, A the number 

of models, m the number of features per model, and k the number of features needed 

to compute invariants, or determine transformations where invariants are not used 4. 

Recognition hypotheses are verified in both cases by back-projection from models to 

images, and determining overlap of projected model with image curves. 

This paper largely follows the path suggested by Lamdan et al. [18], where a very 

good discussion is given of reasonable requirements for curve representation in order to 

facilitate recognition tolerant to occlusion and clutter. Briefly, indices should be local 

and have some redundancy (i.e. several per outline), so if one index is occluded there 

is a good chance recognition can proceed on other visible parts; they should be stable, 

so small perturbations in the curve (due to image noise) do not cause large fluctuations 

in index value; and they should have sufficient discriminatory power over models in the 

library (so all models do not have similar index values). All of these requirements are 

satisfied by the bitangent construction described here. Provided the object outline is 

sufficiently rich in structure there will be several such constructions for each object, and 

thus redundancy in the representation giving partial immunity to occlusion. 

We briefly review previous methods for curve recognition under distorting imaging 

transformations in section 2. The canonical frame construction and invariant measures 

are described in section 3. We apply these techniques to model based recognition for a 

library of planar objects of arbitrary (but non-convex) shape. They are recognised from 

single perspective views (no affine approximation is assumed) in scenes in which there 

may be partial occlusion by other known objects, or unknown clutter. The process does 

not require camera calibration. This is described in section 4. Finally, in section 5 we 

show how these measures can be used to reassemble a jigsaw. 

2 B a c k g r o u n d  

The recognition of silhouettes of planar objects under 2D similarity transformation (plane _ 

rotation, translation and isotropic scaling) and affine transformation has been extensively 

studied. The curve differential invariant curvature ~ and the (integral) invariant s (arc 

length) have played a significant role because they are clearly unaffected by the action of 

the plane Euclidean group: Matching of these invariant curve "signatures" ~(s) or their 

integral O(s) (where ~ = 0) are routine in the vision literature [1]. Unfortunately, such 

differential invarian~s for projection (called Wilczynski's invariants [19, 29]) require 7 th 

order derivatives. This is clearly numerically infeasible. Even affine projection requires 

5 ~h order derivatives. Such high order derivatives are required to give invariance to both 

projection and reparameterisation 5. 

Given the impracticality of using differential invariants directly, a number of methods 

have been derived for matching smooth curves despite affine or projective distortion: 

1. Semi -d l f fe ren t i a l  invar lan t s :  

An ingenious method, proposed and implemented independently by Van Gool r 

4 This complexity analysis is not for the asymptotic case as we assume that the library, imple- 
mented as a hash table, is sparse. Should this not be the case we increase the dimension of 
the library by using further invariants. 

5 Recall that the familiar Euclidean curvature has this invariance: ~ = (~(t)~(~)-  
~(t)~(t))/(~(t) 2 + y(t)2) 1/2 irrespective of the parameterisation t. That is, t can be replaced 
by f(~) without affecting the value of s. 
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ai. [27] and Barrett et al. [3], is to trade derivatives at a point for more points. They 

demonstrate that at a combinatorial cost (some "reference" points must be matched) 

projective differential invariants can be derived~requiring only first or second deriva- 

tives. 

2. R e p r e s e n t a t i o n  by  a lgebra ic  curves :  

Since invariants for algebraic curves are so well established it is natural to try and 

exploit them by "attaching" algebraic curves to smooth curves. The algebraic invari- 

ants of these attached curves are then used to characterise the non-algebraic curve. 

This is the approach taken in [12] for affine invariance and [9, 17] for projective in- 

variance. The problem here is that such methods tend to be global. Consequently, 

the associated algebraic curves and their invariants change if part of the curve is 

occluded. 

3. D i s t i n g u i s h e d  po in t s :  

A common method is to determine distinguished points on the curve, such as in- 

flections and corners, which can be located before and after projection. Such points 

then effectively represent the curve - either to determine the transformation (e.g. 

alignment[14]) or to form algebraic invariants. The disadvantage is curve information 

between these points is effectively wasted. 

4. D i s t i n g u i s h e d  f r ame :  

The goal is to get to some distinguished frame from any starting point; usually the 

frame corresponding to the plane of the object. A typical method is to maximise 

a function over all possible transformations - the transformed frame producing the 

function maximum determines the distinguished frame. Brady and Yuille considered a 

function measuring compactness over orthography [7, 11]; Witkin and others texture 

isotropy (over orthography) [5, 16, 30]; Marinos and Blake texture homogeneity (over 

perspectivities) [20]; and more recently Blake and Sinclair [6] with compactness over 

projectivities. Once in the distinguished frame any measurements act as invariants 

(because the measurements are independent of the original frame and transforma- 

tion). Again this is a global approach and degrades with occlusion. There are also 

problems of uniqueness if the cost function is not convex, i.e. there are many local 

maxima. 

5. Canon ica l  f r ame :  

Distinguished points are used to transform a portion of the object curve to a canonical 

frame [18]. As for the distinguished frame, any measurement made in this frame is 

an invariant. However, the canonical frame does not daffy over the disadvantages: 

i) it is semi-local (depends on more than a single point) but is not global; ii) the 

transformation to the canonical frame is unique. 

3 C a n o n i c a l  F r a m e  C o n s t r u c t i o n  

3.1 P r o j e c t i v e  T r a n s f o r m a t i o n s  

A projective transformation between two planes is represented as a 3 x 3 matrix act- 

ing on homogeneous coordinates of the plane. The homogeneous representation means 

that only ratios of matrix elements are significant, and consequently the transformation 

has 8 degrees of freedom. This transformation models the composed effects of 3D rigid 

rotation and translation of the world plane (camera extrinsic parameters), perspective 

projection to the image plane, and an affine transformation of the final image (which 

covers the effects of changing camera intrinsic parameters). Clearly, all of these separate 
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transformations cannot be uniquely recovered from the single 3 x 3 matrix, since there 

are 6 unknown pose parameters, and 4 unknown camera parameters (camera centre, focal 

length and aspect ratio). We therefore have 10 unknowns with 8 constraints. 

The mapping of four points between the planes is sufficient to determine the trans- 

formation matrix T (each point provides two constraints, therefore 4 independent points 

provide 4 x 2 = 8 constraints). Corresponding points (xl, Yl) and (Xi, ~ )  are represented 

by homogeneous 3 vectors (zi, Yi, 1) w and (Xi, Yi, 1) T. The projective transformation 

x = TX is: 

where k is an arbitrary non-zero scalar. 

linear in the matrix elements: 

Eliminating k gives eight simultaneous equations 

vei(TaXi + ThYi + 1) : TaXi + TbYi + Te 

y~(TgXi + ThY~ + 1) = TaXi + T , ~  + Ts 

with i E {1, .., 4}. These are straightforward to solve, for example by Gaussian elimina- 

tion. 

Projectivities form a group, so every action has an inverse, and the composition of two 

projectivities is also a projectivity. Consequently two images, from different viewpoints, 

of the same object are related by a projectivity. This result is used in the verification 

stage of matching. 

3.2 O b t a i n i n g  Four  D i s t i n g u i s h e d  P o i n t s  

The aim here is to exploit a construction that  is preserved under projection. Certain 

properties, such as tangency and point of tangency are preserved by projection [26]. We 

use tangency to select 4 distinguished points on the curve (see figure 1) and then de- 

termine the projection that maps these to the corners of a unit square in the canonical 

frame. This projectivity is then used to map the curve into this frame. Figure 2 demon- 

strates this process for one concavity of a spanner. The object curve, and any projective 

view of it, are mapped into the same curve. Consequently, any (metric) measurements 

made in this frame are invariant descriptors and hence may be used as index functions to 

recognise the object. For example the location of any point in the frame is an invariant; 

it is not necessary to use Euclidean such as curvature. 

Lamdan et al. [18] used bitangents to obtain two of three points to define a canonical 

frame under affine transformations. The third point was obtained by introducing a line 

parallel to the bitangent line in contact with the apex of the concavity. Since parallelism is 

not preserved under projective transformations, we use tangency conditions to define our 

third and fourth points. The selection of the corners of a unit squares as the corresponding 

points in the canonical frame is arbitrary - any four points, no three of which are collinear 

will do. 

Alternative constructions are possible using other projectively preserved properties. 

For example, inflections can be used in two ways: i) to define a distinguished point on 

the curve; and ii) tO define a line which is tangent at the inflection (3 point contact with 

the curve). If a concavity contains an inflection (and therefore it will necessarily have at 

least two inflections), then the bitangent contact points and inflections can be used as 

the four correspondence points. We believe a construction based on inflections will not be 
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Fig. 1, (a) Construction of the four points necessary to define the canonicM frame for a concavity. 

The first two points (A D) are points of bitangency that mark the entrance to the concavity. 

Two further distinguished points, (B C), are obtained from rays cast from the bitangent contact 

points and tangent to the curve segment within the concavity. These four points are used to 

map the curve to the canonical frame. (b) Curve in canonical frame. A projection is constructed 

that transforms the four points in (a) to the corner of the unit square. The same projection 

transforms the curve into this frame. 

as stable (i.e. immune to small curve perturbations)  as one based on tangencies, though 

we have not confirmed this e. 

For this construction to be useful in model based vision it must  satisfy two sensible 

and useful criteria: 

1. Curves in the canonical frame for differing views of the same object should be very 

"similar". 

2. Curves in the canonical frame from different objects should "differ" from each other. 

The measures used to distinguish canonical curves are discussed in section 3.4. 

3.3 S t a b i l i t y  O v e r  V iews  

The stabili ty of the canonical frame representation is i l lustrated by figures 3a-d, which 

show three different views of the same spanner with extracted concavity and four reference 

points. The marked edge data  is then mapped into the canonical frame. The curves in the 

canonical frame are almost identical. Representative images of other objects, a second 

e One interesting case of a further application of the bitangent construction is in forming in- 

variants for curves with double points. This construction uses the dual space representation of 

a curve where the curve tangents (which are lines) are represented as homogeneous points in 

the plane. Then, a double point maps to a bitangent in the dual space of the curve (tangent 

space), and so invariants can be formed in the dual space. 
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Fig .  2. Canonical frame transformation for a spanner concavity. (a) Original image. (b) Bitan- 

gent and tangents (see figure 1). These are determined via a bitangent detectors acting on image 

edge data. (c) Four distinguished points and concavity curve. (d) Projected curve in canonical 

frame. The curve passes through the corners of the unit square which are the projections of the 

four distinguished points. Note, the spanner has four external bitangents, four internal bitan- 

gents, and also bitangents which cross the boundary. Each of these can generate a curve in the 

canonical frame. Consequently, considerable redundancy is possible in the representation 

spanner  and a pair  of  scissors, are shown in figures 4 and 5 with their  corresponding 

canonical  curves (again from three views). Note tha t  the jagged port ion (A), of the curve 

in figure 5, varies over viewing position, but  tha t  the smooth por t ions  (B), are consistent 

for all views. This  is because (B) is produced by the plast ic  handles of the  scissors, which 

are coplanar with the four reference points.  The metal  hinge is not coplanar with the 

reference point  and so (A) is not posi t ioned in a project ively invariant  manner .  This  par t  

of the curve must  be excised. The var ia t ion emphasises the fact tha t  the canonical frame 

construction is defined only on p lanar  structures.  

3 .4  I n d e x  F u n c t i o n s  a n d  D i s c r i m i n a t i o n  

Since any measurements  made in the canonical frame are invariant  signatures for the 

curve, the question is what  is the op t imum set for discr iminat ion over objects  in the 

l ibrary? Clear cri teria are tha t  the number  of measures should be reasonably small,  but  

t ha t  there should be enough to discr iminate  objects  from clutter,  and that  each one 

should be useful. 

I t  appears  tha t  the most naive measurements ,  area moments ,  are s table and efficient 

discriminators.  We use the area bounded by the x-axis and the curve. The moments  
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Fig .  3. (a) - (c) Three  views of a spanner  with  ext rac ted  concavity curves and dis t inguished 

points  marked.  Note the  very different appearance due to perspective effects. (d) Canonical  

f rame curves for the  three  different views of the  spanner.  The  curves are a lmost  identical  demon-  

s t ra t ing  the s tabi l i ty  of the  method.  Of course the  same curve would result  from a project ive  

t ransformat ion  between the  object and canonical frame. 

F ig .  4. (a) A second spanner  with extracted concavity curves and dist inguished points  marked.  

(b) Canonical  f rame curves for this image and the  same spanner  from two other  viewpoints.  

Again,  the  curves are very similar. 
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Fig .  5. (a) A pair of scissors with extracted concavity curves and distinguished points marked. 

(b) CanonicM frame concavity curves from three views of the pair of scissors. The smooth end 

portions of the curve (B) correspond to regions of the concavity coplanar with the four reference 

points. These match well between images. The jagged portions (A) do not match as well because 

these are formed by edges non-coplanar with the reference points. 

computed  for the three views of the first spanner are given in table  1, and for all the 

objects  in table 2. Its clear tha t  in practice this construction gives very good results. For 

example,  area enclosed by the curve is constant  to 5% over views (viewpoint  invariance),  

whilst  differing by more than  30% between the spanner and scissors (discr iminat ion) .  

However, area alone could not rel iably dist inguish the two spanners (their  area 's  differ 

by only 7%). 

view Area M x  M z  "~ M y  M y  2 

1 1.35 0.516 0.341 0.72010.686 

2 1.40 0.518 0.343 0.743 0.732 

3 1.42 0.516 0.34110.756 0.756 
i 

Table  1. Moments computed for the spanner concavity when in the canonical frame (figure 3). 
The moments are about the x and y axes. Both the first and second moments are computed. 

The values are constant over change in the viewing position and so can be used as invariant 

measures to index into a library. 

Integral  measures  should be chosen as they promote  s tabi l i ty  by smoothing noise 

( immuni ty  to small  curve per turbat ions) .  For example,  measurement  of curve arc length, 

which is the integral  of a constant  function along the curve, degrades sys temat ica l ly  with 

image noise. However, the area enclosed by the curve (which may also be determined via 

an integral  along the curve) provides an effective smoothing function, since local curve 

f luctuat ions have l i t t le  effect on the to ta l  area enclosed by the curve. 

To date,  we have not  invest igated a set of ' op t ima l '  measures tha t  will provide maxi-  

m u m  discr iminat ion between objects  wih~good stabil i ty.  Future  work will investigate two 

areas: 

1. Given the model  base we may perform a pr incipal  axis analysis to determine the 

dominant  features (ie. the image shapes corresponding to the largest  eigenvalues of 
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view Area M x  M x  ~ M y  M y  2 

spanner 1 1.35 0.516 0.341 0.720 0.686 

scissors 1.99 0.506 0.318 1.107 1.694 

spanner 2 1.26 0.507 0.334 0.665 0.584 

Table  2. Moments for the three different objects are sufficiently different that they can be 

used for model discrimination. Note for example, that the measures for M x  2 appear to be very 

similar, but because the values of Mx 2 are very stable the small differences provide sufficient 

discrimination. 

the l ibrary  covariant matr ix)  tha t  provide the best  d iscr iminat ion between different 

models.  One obvious problem with this approach is tha t  the eigenvectors will be of  

high dimension, and so may  not be real is t ical ly computable .  

2. We may t ransform the da t a  in the canonical frame to a set of or thogonal  functions,  

for example using a Walsh or cosine transform, and use the t ransform coefficients as 

indexing values. 

We are current ly investigating different choices of index function, but  in the demon- 

s t ra t ion of object  recognition given in the next section we s imply use area  based mea- 

surements.  

4 M o d e l  B a s e d  R e c o g n i t i o n  

This closely follows the system described in [23] where more detai ls  are given. There  are 

two stages: 

P r e - p r o c e s s l n g :  

1. M o d e l  A c q u i s i t i o n :  

Models are extracted directly from a single image of the unoccluded object .  The  

edgel list is stored for later use in the verification process. Segmentat ion is carr ied 

out  as described below to delimit  concavities. No measurements  are needed on 

the ac tual  object ,  nor are pose or camera intrinsic parameters  required. 

2. A d d  t o  m o d e l  l i b r a r y :  

Invar iant  vectors of measures are calculated as described in section 3.4. Each 

component  of this vector is an invariant  measure tha t  may  be used as an index 

to the object .  These vectors are entered into a l ibrary  which will be accessed as 

a hash table.  

R e c o g n i t i o n :  

1. E x t r a c t  c o n c a v i t i e s :  

Feature  extract ion and segmentat ion is carried out as below to del imit  concavities.  

2. C o m p u t e  i n d i c e s  ,for e a c h  c o n c a v i t y :  

As described in section 3.4. 

3. I n d e x  i n t o  l i b r a r y :  

If  the index key corresponds to a table  entry this is used to generate a recognit ion 

hypothesis.  

4. H y p o t h e s i s  V e r i f i c a t i o n :  

Verification proceeds in two phases (both  based on the verification procedure  

of [23]): 
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- Check that the measured and expected model curves in the canonical frame 

are similar (that is lie close to each other). 

- Project the edgel data from an acquisition image onto the current image. 

If sufficient projected edges overlap the target image edgels, the match is 

accepted. Note that  the projective transformation between acquisition image 

and target image is computed directly from the correspondence of the four 

points used in the canonical frame construction. 

4.1 S e g m e n t a t i o n  

A local implementation of Canny's edge detector [8] is used to find edges to sub-pixel 

accuracy. These edge chains are linked, extrapolating over any small gaps. Concavities 

are detected by finding bitangent lines. 

Bitangent lines are found by computing approximations to the tangents of the curve, 

and representing these as points in the space of lines on the plane. Pairs of points that 

are close together in this space are found by a coarse search. These pairs represent 

approximate bitangents, which are refined through a convex hull construction. 

4 .2  E x p e r i m e n t a l  R e s u l t s  

Some initial results of the system are demonstrated in figures 6 and 7. At present the 

model base consists of 5 objects: 2 spanners, scissors, pliers and a hacksaw. The figures 

demonstrate recognition under perspective of two models from this library despite the 

presence of partial occlusion and other objects (clutter) not in the library. Note there is 

a two fold ambiguity in the matching of curve tangent points to canonical frame. The 

matching depends solely on the ordering around the curve. To overcome this problem 

indexes and curves for both orderings are stored. Any problems with local symmetry 

in the concavity giving rise to ambiguous matches will be detected by back projection 

during the verification process. 

5 Solving Jigsaw Puzzles 

We have selected the problem of assembling a jigsaw puzzle to illustrate the shape dis- 

criminating power of the canonical frame approach. Jigsaw assembly has Mso long been 

considered a challenging vision task [13, 31]. The idea is that matching pieces will have 

the same invariant signatures for the tab and slot curves. We image a jumble of (unoc- 

cluded) puzzle pieces under significant perspective distortion and then "assemble" the 

puzzle by matching the pieces using canonical frame matching. The pieces are assumed to 

be planar but not necessarily coplanar with each other (in practice the pieces are not even 

taken from a single image). The assembly process is carried out by mapping the pieces to 

a common canonical frame and then aligning the matching curves. The texture patterns 

on the pieces are not used in the matching process but we warp the image of each piece 

to portray the assembly in a single plane. This experiment illustrates that the invariants 

calculated from the canonical frame can be used to compare unknown objects in a single 

image as well as classify objects from a library of model curves. Such comparison tasks 

are not readily tackled with conventional model-based recognition systems. 
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Fig. 6. (a) Spanner almost entirely occluded by keys. The keys are not the library, and are clutter 
in this scene. (b) Detected concavities, highlighted in white, which are used to compute indexes 
(c) The spanner which is the only model in the scene contained in the library, is recognised from 
the end slot concavity. The projected outline used for verification is highlighted in white. 

5.1 M a t c h i n g  de ta i l s  

Edge pieces are extracted from unoccluded views of the pieces using a Canny [8] edge 

detector. Each piece is assumed to have four sides and to only connect to at most four 

other pieces 7. Each of the four sides of a piece therefore either represent individual shape 

descriptors that  match other pieces within the jigsaw or are edge pieces. Each of  the side 

curves is then classified as either a straight side piece, a tab, or a slot, depending on the 

general shape of the curve in relation to the rest of the piece of which it is part. Each 

curve classed as a tab or a slot contains at least one significant concavity that  corresponds 

to the tab or slot. We map' each of the concavities into the canonical frame and search 

for the unique matching side. Once this is found the pieces can be joined together. 

5.2 R e c o n s t r u c t i o n  

The first corner piece found is used as the bo t tom left hand piece of the completed puzzle 

(a corner piece has two straight sides). This piece is used as the base unit square in the 

canonical frame, on which the puzzle is built. The piece immediately to its right can be 

mapped into the corner piece's image frame using the image to canonical frame mappings 

of  the interlocking tabs and slots. Once this transformation is known the grey level values 

7 This restriction is for implementation purposes only, and does not reduce the value of the 
demonstration. 
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Fig. 7. (a) Image of various planar objects. (b) Concavities, highlighted in white, which are 

used to compute indexes (c) The pliers which are the only model in the scene contained in 
the library, is recognised and verified by projecting the edgels from an acquisition image, and 
checking overlap with edgels in this image. 

of pixels within the bounds of the new piece can be projected into the frame of the corner 

piece, and so effect the joining of the two pieces. A similar process can be performed to 

map the piece directly above the corner piece into the corner image frame. 

The piece diagonally above and to the right of the corner interlocks both the pieces 

above and to the right of the corner. We therefore do a least squares fit to determine the 

projectivity from the eight correspondences, and again render by projecting image grey 

values. A similar process is applied to the rest of the pieces. 

Two examples of this are shown in figures 8 and 9. Both show the original pieces, and 

the final assembled and rendered puzzle. 

This is a O(n ~) algorithm (with n the number of pieces). Extracting indexes in the 

canonical frame, building a hash table, and using these indices for matching as in the 

recognition system, would reduce the complexity to O(n), but here n is small and the 

time taken in computing matches negligible. 

Some extensions are obvious: 

1. The final reconstruction in the canonical frame should be mapped to a rectangle with 

the correct aspect ratio for the assembled jigsaw to remove any projective effects, or 

at least to a frame in which corners have right angles. 

2. There are gaps in the assembled pattern arising because jigsaw pieces are mapped 

by a transformation determined by only a small part of the outline. This can be 

improved by determining the projectivity from all distinguished points around each 

piece using least squares. 
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Fig.  8. (a) Two pieces of a jigsaw, with (b) the assembled and rendered solution. The puzzle 

is solved and rendered using 6nly information from this image. No camera intrinsic parameters 

or pose information is needed. Note the large perspective distortion of the pieces in the original 

image (a) which are not in the same plane (the right hand piece lies in a plane at about 45 ~ to 

the plane of the other piece). 
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Fig. 9, (a) A six piece jigsaw, with (b) the assembled and rendered solution. The puzzle is solved 

and rendered using only information from this image. No camera intrinsic parameters or pose 

information is needed. 
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3. Other constraints - such as collinearity of the outer boundaries - could be incorporated 

by iteratively minimising a cost function. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have demonstrated recognition of non-algebraic planar objects from perspective im- 

ages. The work is currently being extended in a number of ways: 

1. At present there are five objects in the library. We are currently including more 

objects. Efficient development will require attention to the measures used for index 

functions. 

2. We have assumed that the uncalibrated imaging process may be modeled by a pro- 

jectivity. This is exact for a pin-hole camera, but corrections must be applied if 

radial-distortion is present. We are currently evaluating this correction [4, 25]. 

3. We can observe the reliability of an invariant measure by perturbing the distinguished 

points and recomputing the invariant values. This will be of benefit both during 

library construction and during the recognition process: i) We only use invariant 

indexes that are affected little by the bitangent locations, and ii) during verification 

confidence in a match is weighted by the stability of the invariant measure. 

4. At present we use only concavities (exterior bitangents). This does not exploit the 

full structure of the curve. We wish to limit the bitangents used to those that do not 

cross the curve, but this does not prevent the use of internal bitangents. Using these 

will further improve immunity to occlusion. 

5. There are obvious extensions for computing canonical frames for non-smooth curves. 

If a tangency discontinuity is observed we can use the two tangents immediately 

either side of the discontinuity as reference lines. We then find two more points or 

lines and uniquely determine the map to the canonical frame. 
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