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It is well known that—differing from ordinary gauge systems—canonical gauges

are not admissible in the path integral for parametrized systems. This is the case for

the relativistic particle and gravitation. However, a time dependent canonical trans-

formation can turn a parametrized system into an ordinary gauge system. It is

shown how to build a canonical transformation such that the fixation of the new

coordinates is equivalent to the fixation of the original ones; this aim can be

achieved only if the Hamiltonian constraint allows for an intrinsic global time.

Thus the resulting action, describing an ordinary gauge system and allowing for

canonical gauges, can be used in the path integral for the quantum propagator

associated with the original variables. © 1997 American Institute of Physics.

@S0022-2488~97!02002-1#

I. INTRODUCTION

When the transition amplitude for a gauge system is written as the sum over all histories of the

exponential of the gauge-invariant action, the path integral diverges because of the integration

over the non physical degrees of freedom. This difficulty can be solved by imposing gauge

conditions which select one path from each class of physically equivalent paths. Admissible

gauges are those which can be reached from any path by performing gauge transformations

leaving invariant the action. A gauge transformation is generated by the first class constraints

Ga(q i,p i),

@Ga ,Gb#5Cab
c~q i,p i!Gc . ~1.1!

Under a gauge transformation the action changes by an endpoint term

deS 5Fea~t !S p i

]Ga

]p i

2GaD G
t1

t2

. ~1.2!

If the constraints are linear and homogeneous in the momenta, as in Yang–Mills theories, the

endpoint term ~1.2! vanishes. If not, as it happens with generally covariant systems as the rela-

tivistic particle and gravitation, the action is invariant under a gauge transformation only if the

gauge parameters ea~t! vanish at the endpoints. Thus the admissible gauges in the path integral for

generally covariant systems are those which can be reached from any path by means of a gauge

transformation mapping the boundaries onto themselves. This is a serious limitation to the gauge

conditions to be used in the path integral: canonical gauge conditions @i.e., those of the type
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x~q ,p ,t!50# cannot be used with generally covariant systems because, since the action has not

gauge freedom at the boundaries, they would imply a restriction on the initial and final quantum

states.

This difference was taken as the main distinction between ordinary gauge systems and gen-

erally covariant systems.1 However, the gauge freedom at the endpoints can be recovered if the

action is modified by appropriate endpoint terms, as has been recently shown for simple

systems.2,3

We will develop a method to obtain these terms for a generic parametrized system having

only one constraint H , by taking them as the consequence of a time-dependent canonical trans-

formation such that one of the new momenta, say P0 , coincides with the Hamiltonian constraint

H . Then, the new variables (Qm,Pm), mÞ0, will be observables ~although not conserved!, while

Q0 will be pure gauge. In the new variables the constraint is linear and homogeneous in the

momenta; thus the action S(Q i,P i) will have gauge freedom at the endpoints and a canonical

gauge condition will be admissible. In addition, the canonical transformation will be built in such

a way that the quantum state uq i& is equal to uQ i&. Then the action S(Q i,P i), which is stationary

on the classical trajectory when the Q’s are fixed at the boundaries, will result appropriate for

computing the propagator ^q8uq&.

II. PARAMETRIZED SYSTEMS

The action of a parametrized system reads

S @q i,p i ,N#5E
t1

t2S p i

dq i

dt
2NH D dt , ~2.1!

where H is the null Hamiltonian and the lapse function N~t! is the Lagrange multiplier enforcing

the constraint H50. The constraint implies the existence of nonphysical variables, which leads to

an action with some kind of invariance or symmetry.

Under arbitrary changes of q , p , and N it is obtained

dS 5p idq iu
t1

t2
1E

t1

t2F S q̇ i
2N

]H

]p i
D dp i2S ṗ i1N

]H

]q iD dq i
2HdNGdt . ~2.2!

The action is stationary on the classical path when the endpoint values of q i are fixed.

The action ~2.1! has two different types of invariance:

~1! Invariance under a reparametrization

dq i
5e~t !

dq i

dt
, ~2.3!

dp i5e~t !
dp i

dt
, ~2.4!

dN5

d~Ne !

dt
~2.5!

with e~t1!505e~t2!. This transformation is called a reparametrization because it is equivalent to

change t by t1e~t! on the path given by q i~t! and p i~t!, the integral

E
t1

t2

N~t !dt
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remaining unchanged. The invariance of the action ~2.1! under a reparametrization means that t is

not the time but a physically irrelevant parameter. When a system is described by an action like

that of ~2.1!, the solutions of the dynamical equations are not parametrized by t but are

q i
5q iS E t

N dt D , p i5p iS E t

N dt D . ~2.6!

So the ‘‘proper time’’ *tN dt , instead of t, plays the role of time. When equations ~2.6! can be

globally solved for *tN dt @i.e., *tN dt5t(q ,p)#, it is said that the system has a global phase

time t(q ,p).4

~2! Invariance under a gauge transformation

deq i
5e~t !@q i,H#5e~t !

]H

]p i

, ~2.7!

dep i
5e~t !@p i ,H#52e~t !

]H

]q i . ~2.8!

Then

deS 5p ideq iu
t1

t2
2E

t1

t2Fe~t !S q̇ i
]H

]q i 1 ṗ i

]H

]p i
D1HdeNGdt . ~2.9!

As deN cannot be generated by H , it can be defined

deN5 ė , ~2.10!

and then

deS 5p ideq iu
t1

t2
2E

t1

t2 d

dt
~eH !dt5Fe~t !S p i

]H

]p i

2H D G
t1

t2

. ~2.11!

On the classical path, where Hamilton equations hold, the reparametrization ~2.3!–~2.5! is equiva-

lent to a gauge transformation with parameter Ne and the boundary restrictions e~t1!505e~t2!.
If the constraint H is not linear and homogeneous in the momenta, as is usual when one deals

with parametrized systems, the action is not gauge-invariant unless the restrictions

e~t1!505e~t2! ~2.12!

are added.

Gauge invariance is usually regarded as the consequence of the existence of spurious degrees

of freedom. However, gauge invariance of parametrized systems is related to reparametrization

invariance; i.e., the physically irrelevant variable is not a canonical variable but is the parameter t.

t is not the time but the time can be hidden among the dynamical variables. This is the case when

a global phase time exists ~the Jacobi action is an example of a parametrized action which has not

a global phase time!.5 As a result, the path integral for such a system does not depend on t1 , t2 ,

but only on the initial and final values of q i. Hence, the path integral for a parametrized system

corresponds to the probability ^q i8uq i&.

The restrictions ~2.12! make impossible to fix the gauge in the path integral by imposing

conditions on the canonical variables of the form

x~q ,p ,t !50, ~2.13!
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~‘‘canonical gauges’’!. This type of gauge conditions are not admissible when the constraints are

not linear and homogeneous because, due to the restrictions ~2.12!, there is no gauge freedom at

the endpoints, and then ~2.13! would imply a restriction on the initial and final quantum states.1

Admissible gauges in the path integral are those which can be carried to x50 by means of a

gauge transformation leaving the action invariant. Let us consider a trajectory which differs from

the condition x50 by an infinitesimal quantity D; the gauge transformation which makes the

variables reach the gauge condition must be such that

dex52D . ~2.14!

In order to have only one solution e~t! with the boundary conditions ~2.12!, ~2.14! should be a

second order differential equation in the parameter e. Since deN5 ė , the most obvious gauge

condition could be given by a function of Ṅ , namely,1

x5Ṅ50. ~2.15!

Any particular choice of N~t! can be carried to Ṅ50 by successive infinitesimal gauge transfor-

mations deN5 ė; these transformations are possible because there are no restrictions on ė , but only

on e at the endpoints. Gauges like ~2.15! are called ‘‘derivative gauges.’’ Although the gauge

condition ~2.15! does not fix the value of N , but only says that N is constant on the trajectory, the

value of N is determined by the variational principle itself when the data at t1 and t2 are enough

for knowing the global phase time t(q ,p) at the endpoints. In fact, N5Dt/Dt . So no ambiguities

are left on the classical trajectory.

The practical value of having linear and homogeneous constraints led to distinguish these

ordinary gauges systems from all others by calling them systems with internal gauge symmetries.

However, there is not a true conceptual difference between both classes of systems: internal gauge

symmetry can be no more than a consequence of a particular choice of variables, and an appro-

priate transformation (q i,p i)→(Q i,P i) can eliminate the restrictions e~t1!505e~t2! on the admis-

sible gauges, allowing us to impose canonical gauge conditions in the path integral.3

III. THE ENDPOINT TERMS

As we have seen, the general form of the variation of the action under a gauge transformation

is that of an endpoint term @see ~2.11!#. It is then possible to achieve gauge freedom at the

endpoints by means of including appropriate endpoint terms in the action. These terms have been

obtained in Ref. 2 for the parametrized free particle and the free relativistic particle.

In this work we develop a method that gives the appropriate endpoint terms for a parametrized

system in a general way, by seeing them as a consequence of having performed a canonical

transformation. If the endpoint terms are called B , the gauge-invariant action of a parametrized

system reads

S @q i,p i ,N#5E
t1

t2S p i

dq i

dt
2NH D dt1B , ~3.1!

where, as it follows from ~2.11!, it is clear that it must be

deB5F2e~t !S p i

]H

]p i

2H D G
t1

t2

~3.2!

to have deS50 for any gauge transformation.

Let us consider a complete solution W(q i,am ,E) of the t-independent Hamilton–Jacobi

equation
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HS q i,
]W

]q i D5E . ~3.3!

If E and the integration constants am are matched to the new momenta P̄0 and P̄m respectively,

then W(q i, P̄ j) can be regarded as the generator function of a canonical transformation

(q i,p i)→(Q̄ i, P̄ i) defined by the equations

p i5

]W

]q i
, Q̄ i

5

]W

] P̄ i
, K̄5NP̄0 . ~3.4!

As the transformation is canonical, it is clear that

@Q̄m, P̄0#5@Q̄m,H#50, @ P̄m , P̄0#5@ P̄m ,H#50, ~3.5!

which means that Q̄m and P̄m are ~conserved! observables describing the reduced system.

The dynamical evolution for Q̄0

dQ̄0

dt
5@Q̄0,K̄#5N@Q̄0, P̄0#5N

is solved by Q̄0
5*tN dt . If Q̄0 is globally well defined, then Q̄0 is a global phase time.

The action

S̄@Q̄ i, P̄ i ,N#5E
t1

t2S P̄ i

dQ̄ i

dt
2NP̄0D dt ~3.6!

describes a parametrized system with a constraint which is linear and homogeneous in the mo-

menta. Therefore the action S̄ has gauge freedom at the boundaries, and does not need endpoint

terms. Canonical gauges are then admissible in a path integral with the action S̄ . A canonical

gauge can be chosen to be x5Q̄0
2g(t), meaning that N(t)5g8(t) on the classical trajectory.

The action S̄ can be related with S by noting that

p i dq i
5d~W2Q̄ iP̄ i!1 P̄ i dQ̄ i,

as it follows from ~3.4!. Then

S̄5E
t1

t2S p i

dq i

dt
2NH D dt1@Q̄ i~q i,p i!P̄ i~q i,p i!2W#t1

t2 ~3.7!

and the endpoint terms making the action S gauge-invariant are

B̄5@Q̄ i~q i,p i!P̄ i~q i,p i!2W#t1

t2; ~3.8!

the property ~3.2! is straightforwardly verified by these terms.

IV. THE VARIABLES TO BE FIXED AT THE ENDPOINTS

We have succeeded in identifying the reduced system, described by the coordinates and

momenta (Q̄m, P̄m), and in getting the action ~3.6! which has gauge freedom at the boundaries.

The added endpoint terms do not change the dynamical equations, but change the quantities to be

fixed at the endpoints in order to get the trajectories from the variational principle. The action ~3.6!
requires fixing the Q̄ i’s at the endpoints ~actually only the Q̄m’s should be fixed, since P̄050 on
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the classical trajectory!. So S̄ is appropriate to compute ^Q̄ i8uQ̄ i&5^Q̄m8,Q̄08uQ̄m,Q̄0&—remind

that Q̄0 is the global phase time—by means of a path integral allowing for canonical gauges.

However, our aim is to compute ^q i8uq i&, instead of ^Q̄ i8uQ̄ i&; but ^Q̄ i8uQ̄ i& is not equal to

^q i8uq i&, because the choice of the Q̄ i’s does not fix the same quantum state that the choice of the

q i’s does. In fact, Eqs. ~3.4! and ~3.5! tell us that the variables (Q̄m, P̄m) are conserved on classical

trajectories. While any classical trajectory can be characterized by the choice of the q i’s at the

endpoints, in the new variables this is done by the choice of the conserved observables (Q̄m, P̄m),

and the Q̄0’s at the endpoints. Thus new and original variables play different roles in character-

izing states or histories, and the amplitudes ^q i8uq i& and ^Q̄ i8uQ i& have different meanings.

However, one can look for a propagator equal to ^q i8uq i& by performing a canonical transfor-

mation (Q̄m, P̄m)→(Qm,Pm) in the reduced space. If this transformation is t-dependent the Hamil-

tonian will change; then the observables Qm will not be conserved, and one could succeed in

getting the wished propagator. Let us consider the canonical transformation generated by

F~Q̄ ,P !5P0Q̄0
1 f ~Q̄m,Pm ,t !. ~4.1!

Then

H5 P̄05

]F

]Q̄0
5P0 ,

Q̄0
5

]F

] P̄0

5Q0. ~4.2!

The transformation (Q̄m, P̄m)→(Qm,Pm) is generated by f (Q̄m,Pm ,t). Qm and Pm are observ-

ables, because their Poisson brackets with P05H are zero, but are not conserved because their

evolution is governed by the nonzero Hamiltonian

K5K̄1

]F

]t
5NP01

] f

]t
~4.3!

~h[] f /]t is the Hamiltonian for the reduced system!.
The additional endpoint term

@Q iP i2F#t1

t2
5@QmPm2 f ~Q̄m,Pm ,t !#t1

t2

depends only on observables; then it is gauge-invariant. This means that the action

S@Q i,P i ,N#5E S P i

dQ i

dt
2NP02

] f

]t D dt ~4.4!

also has gauge freedom at the endpoints ~which appears to be obvious if we regard that after the

new canonical transformation generated by f the constraint remains linear in the momenta!.
The action S[Q i,P i ,N] describes a non parametrized system with internal gauge symmetry.

For this system t is the time, but Q0 is pure gauge ~of course, the roles of t and Q0 are inter-

changeable since Q0 is a global phase time!. Then, the gauge can be fixed in the path integral by

means of a canonical gauge.

The action ~4.4! is appropriate to compute the amplitude ^Q i8,t2uQ i,t1&

^Q i8,t2uQ i,t1&5E DQ0 DP0 DQm DPm DN d~x !u@x ,P0#ue iS, ~4.5!
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where x is any admissible canonical gauge, and u@x,P0#u is the Fadeev–Popov determinant. Let us

pay attention to the fact that this amplitude depends on t1 and t2 , because the new action S is

gauge-invariant but is not invariant under reparametrizations. Of course, the path integration in Eq.

~4.5! is nothing but the path integral for the reduced system: The functional integration on N

enforces the path to lie on the constraint hypersurface, then by using x[Q0
2g(Qm,t)—which

gives the endpoint values of Q0 in terms of the endpoint values of Qm and t—one integrates in Q0

and P0 to obtain ^Qm8,t2uQm,t1&.

In the propagator ~4.5!, S is related to the original action by

S5E
t1

t2S p i

dq i

dt
2NH D dt1B , ~4.6!

where

B[@Q̄ iP̄ i2W1QmPm2 f #t1

t2 ~4.7!

can be expressed as a function of the original canonical variables q i and p i .

As the generator f (Q̄m,Pm ,t) has not been defined yet, one can try to define it in such a way

that ^Q i8,t2uQ i,t1&(5^Qm8,t2uQm,t1&) coincides with ^q i8uq i&. In order to reach this aim one

must check that

~1! The constraint is such that it admits a canonical gauge x̃ ~satisfying [x̃ ,H]'” 06! depending

only on t, q i. Then x̃50 defines t as a function t5t(q i). If so, one says that there exists an

intrinsic time.7

If this requirement is fulfilled, one chooses the generator f (Q̄m,Pm) in such a way that

~2! The gauge-invariant coordinates Qm behave as coordinates on the surface x̃50, so mean-

ing that a particular choice of Qm and t defines a point q i in the original configuration space.

In that case, uQmt&5uq i&. However, the path integral ~4.5! is gauge invariant; then, not only

x̃ but any canonical gauge condition can be used in ~4.5!. So the path integral ~4.5! is equal to the

propagator ^q i8uq i& when the generator f (Q̄m,Pm) is chosen according to the prescription 2.

A practical way to understand the prescription 2 comes of considering Eq. ~4.6!. In fact, while

the action S is stationary on the classical trajectory when the values of Qm are fixed at t1 and t2 ,

the action S on the right-hand side requires the fixation of the q i’s. In order that both set of

variables are equivalent in the gauge x̃50, the generator f (Q̄m,Pm) should be such that the

endpoint terms vanish on the constraint hypersurface when the gauge x̃50 is used,

B[@Q̄ iP̄ i2W1QmPm2 f #t1

t2uP050,x̄ 5050. ~4.8!

If so, the paths will be weighted by the original action S .

In the next section we shall apply this way of choosing the generator f in several examples.

V. EXAMPLES

A. Parametrized free particle

This is the system obtained when the time t is included among the dynamical variables of a

free particle. The parametrized particle is then described by the original variables q and p , plus t

and its conjugate momentum p t . The action of this system is

S ~q ,p ,t ,p t ,N !5E ~pq̇1p t ṫ2NH !dt ~5.1!

with
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H5p t1

p2

2m
. ~5.2!

~By solving the constraint for p t the action of a nonrelativistic particle is recovered.! A complete

solution of the t-independent Hamilton–Jacobi equation is

W~q ,t , P̄ , P̄0!5 P̄q1S P̄02

P̄2

2m
D t . ~5.3!

The gauge defining an intrinsic time is x̃[t2T(t) ~for any monotonous function T! and the

appropriate function f making the endpoint terms vanish in this gauge is

f ~Q̄ ,P ,t !5Q̄P1

P2

2m
T~t !.

The original variables (q i,p i) are then related to the new ones by

Q0
5t , Q5q2

P

m
~ t2T~t !!,

~5.4!

p t5P02

P2

2m
, p5P .

On the constraint surface P050 the endpoint terms read

B5F2

p2

2m
~ t2T~t !!G

t1

t2

~5.5!

and vanish in the gauge x̃50. The amplitude ^q8t8uqt& can be written as

E DtDp tDqDpDNd~x !u@x ,H#uexpS iE
t1

t2S p t

dt

dt
1p

dq

dt
2NH D dt2iF p2

2m
~ t2T~t !!G

t1

t2D
~5.6!

but, since the action is gauge-invariant, the amplitude can be computed in any canonical gauge.

For instance, one can choose x[t50, and obtain

^q8tuqt&5E DqDp expS iE
t1

t2F p
d

dt S q1

p

m
T~t ! D 2

p2

2m

dT

dt Gdt D
5E DQDP expS iE

t1

t2S P
dQ

dt
2

P2

2m

dT

dt D dt D . ~5.7!

The endpoint values of Q and t are related to the endpoint values of q and t by the gauge

condition x̃[t2T(t)50, in which the endpoint terms vanish

Qu x̄ 505q , T~t !u x̄ 505t . ~5.8!

The path integral for the free particle is then recovered, as could be expected from the fact that

the reduced system has the Hamiltonian
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h5

P2

2m
.

Compare Ref. 2.

B. Relativistic free particle

The Hamiltonian constraint of this system is

H5

1

2m
~p0

2
2p2

2m2!. ~5.9!

The t-independent Hamilton–Jacobi equation has two different solutions:

W6~x ,x0, P̄ , P̄0!5 P̄x6x0AP̄2
12mP̄01m2. ~5.10!

The gauge x̃[x0
2T(t) defines an intrinsic time. The generator f making the endpoint terms

vanish when x̃50 and P050 is

f ~Q̄ ,P ,t !5Q̄P7T~t !AP2
1m2. ~5.11!

The relation between original and new variables is

Q0
56

mx0

AP2
12mP01m2

,

Q5x6

Px0

AP2
12mP01m2

7

PT~t !

AP2
1m2

,

~5.12!
p056AP2

12mP01m2,

p5P .

On the constraint surface the endpoint terms are

B5F7

m2~x0
2T~t !!

AP2
1m2 G

t1

t2

, ~5.13!

and vanish in the gauge x̃50. The amplitude ^x8x08ux x0& is equal to

E Dx0 Dp0 Dx Dp DN d~x !u@x ,H#uexpS iE
t1

t2S p0

dx0

dt
1p

dx

dt
2NH D dt

7im2F x0
2T~t !

Ap2
1m2G

t1

t2D , ~5.14!

but it can be computed in any canonical gauge; by choosing x[x0
50 the following result is

obtained:
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^x8x08ux x0&5E Dx Dp expS iE
t1

t2

p
dx

dt
dt6iF m2T~t !

Ap2
1m2G

t1

t2D , ~5.15!

where, with the choice x[x0
50,

E
t1

t2

p
dx

dt
dt6F m2T~t !

Ap2
1m2G

t1

t2

5E
t1

t2F p
d

dt S x7

pT~t !

Ap2
1m2D 6Ap2

1m2
dT

dt Gdt

5E
t1

t2F P
dQ

dt
6AP2

1m2
dT

dt Gdt . ~5.16!

The endpoint values of Q and t are related to those of x0 and x by the gauge condition such that

the endpoint terms vanish

Qu x̃505x , T~t !u x̃505x0. ~5.17!

As it could be expected, the Hamiltonian of the reduced system is

h57AP2
1m2,

and the path integral for a free relativistic particle is obtained.

C. A more general constraint

A complete solution of the Hamilton–Jacobi equation is mostly difficult to obtain. There is a

simple case in two dimensions, generalizing the former examples, which can be applied to some

minisuperspace models in cosmology. Let us consider a Hamiltonian constraint

H~f ,V ,pf ,pV!5g~f ,V !~pf
2

2pV
2 !1V~f ,V !, ~5.18!

where g~f,V! and V~f,V! are positive definite functions.

Let us use null coordinates defined as

u5R1~f1V !, v5R2~f2V !,

where R1,2 are some monotonous functions. Then

1
4~pf

2
2pV

2 !5R18~f1V !R28~f2V !pup
v

. ~5.19!

In the case that the potential can be written as

V~f ,V !5g~f ,V !L1~f1V !L2~f2V ! ~5.20!

one can factorize out a positive definite factor in H by choosing R1,28 as the positive definite

functions L1,2/2

H5V~f ,V !@pup
v
11# . ~5.21!

The function in brackets is a constraint H8 equivalent to H , since the potential is positive definite.

Therefore the canonical transformation can be generated by means of a complete solution of the

t-independent Hamilton–Jacobi equation associated with

H85pup
v
11.
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In such a case P0 will not be H but H8. Anyway, the constraint H will be linear and homogeneous

in the new momentum P0 . The new variables Qm and Pm will be observables, because their

Poisson brackets with H will be zero on the constraint surface.

The generator function W is

W5 P̄u1

~ P̄021 !

P̄
v . ~5.22!

The gauge x̃[v2T(t) defines an intrinsic time. The generator function f is

f ~Q̄ ,P ,t !5Q̄P1

T

P
~5.23!

and the new variables are related to $u ,pu ,v ,p
v
% by

Q0
5

v

P
, Q5u1

v

P2 S 12

T

v

2P0D ,

~5.24!

pu5P , p
v
5

P021

P
.

On the constraint surface P050 the endpoint terms read

B5F 2

P
~v2T~t !!G

t1

t2

, ~5.25!

and clearly vanish in the gauge x̃50. The boundaries in the path integral are given by

Tu x̃505v5R2~f2V !,

Qu x̃50,P0505u5R1~f1V !.

VI. CONCLUSIONS

In Ref. 2 it has been signaled that a generally covariant system and an ordinary gauge system

are not conceptually different. In fact, differences between both kinds of systems, which seemed

to be an obstruction to the use of canonical gauges in the path integral for generally covariant

systems,1 can be saved by improving the action principle with appropriate endpoint terms.2,3 In

this way the action is endowed with gauge freedom at the boundaries.

The improved action can be still modified by the addition of gauge invariant endpoint terms.

One can take advantage of this possibility to build the endpoint terms in such a way that they

cancel out on the constraint hypersurface when a gauge defining an intrinsic time—t5t(q i)—is

used. This means that the dynamical variables to be fixed in the variational principle for the

improved and the original action, respectively, define the same physical state in both cases, so

warranting that the improved action can be used in the path integral to compute the quantum

propagator ^q i8uq i& for the original variables.

However, not all systems have an intrinsic time. For instance, the constraint of an ideal clock8

H52p2
1q

does not admit a gauge condition x~q ,t! because [x ,H]52p]x/]q vanishes on the constraint

surface when p50. In this case the solution of the t-independent Hamilton–Jacobi equation is
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W56
2
3~q2 P̄0!3/2,

and the global phase time Q̄0 results in

Q̄0
5

]W

] P̄0

56Aq2 P̄05p .

Then the gauge choice necessarily involves the momentum p . In this case it is said that the system

has an extrinsic time.7

The endpoint terms can be seen as the consequence of a t-dependent canonical transforma-

tion; we have shown how this transformation can be generated in the case of a parametrized

system with a constraint H . In this kind of systems, the constraint means that the time parameter

t has no physical meaning. The canonical transformation that generates the appropriate endpoint

terms is such that t is the time in the new system, while one of the dynamical variables—Q0—is

pure gauge, as it happens in ordinary gauge systems.

Finally we have shown that the procedure to find the generator function W , leading to the

identification of the reduced space, can be simplified by appropriately scaling the constraint.
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