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Abstract

A simplification of the canonical Hamiltonian variables for the guiding center
motion of a charged particle in a general toroidal field is obtained using the
Lagrangian formalism of Littlejohn.
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Hamilionian guiding center calculation of pamicle moton in general toroidal
fields is an effective way to examine long-time particle confinement and in-
duced particle losses due to static magnetic perturbations or magnetohydrody-
namic fluctuations.’? The expansion parameter for the derivation of equations
of motion is the ratio of gyroradius to system size, p. Recently, the derivation of
the canonical variables for a given magnetic field representation has been con-
siderably simplified by an elegant Lagrangian formalism due to Liudejohn.®-*
However, for & general magnetic field the canonical variables are algebraically
complicated due w0 nonorthogonality of the magnetic coordinates. In this note
we show that this complexity can be removed by a modification of the parallel
velocity which is of second order in-p. This simplification of the canonical
variables, of use in the study of guiding center motion, is also of interest for the
formulation of gyrokinetics in general toroidal fields.®

First consider magnetic configurations with toroidal symmetry and exact
magnetic surfaces. Cases of broken symmetry are treated using perturbation
theory.

In a general magnetic configuration possessing nested toroidal magnetic sur-

faces the field can be written,? in contravariant and covariant form, as
B = Vi x V8- Vi, x V¢, 1)

B = g(4,)V( + 1(4,) VO + 8(2,, 0) Vi, )

The magnetic coordinates v, ¥, ¢, ¢ are, respectively, toroidal and poloidal flux

and toroidal and poloidal angies. The functions ¢ and [ are related to the
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poloidal and toroidal current, and & describes the degree of nonorihogonality
of the coordinate system, The field lines are swaight in the ¢,0 piane, ic.
dy/dy, = q(1pp). The fact that J is a function of 1, only is the result of a
special choice for the Jacobian J = Yy, - (V8 x V(), with B3 = I + gq.

Derivation of canonical variables is facilitaied by the use of the guiding
center Lagrangian due to Littlejoan,®* which has the form

L=A"-v+ué-H 3

with v the guiding center velocity, A® = A +p;B the modified vector potential,
py = v/ B the normalized parallel velocity, u# the magnetic moment, £ the
gyrophrase and

H= fﬁg- +uB+ 9, “)
the Hamiltonian. The field magnitude B is a function of ¥, and & only, with ¢ an
ignorable coordinate. We use units defined by the on—axis gyrofrequency (time)
and the major radius (distance). Originally, canonical Hamiltonian variables
were found!"? by the rather laborious procedure of first finding the time variation,
following a particle orbit, of the variables 3, 8, {, g by using the guiding center
motion v, e.g., zb = v- V3. Here and in the following all quartities are functions
of the location, i.e., of 4,8, ¢ only. The time derivative refers only to ths change
following a particle orbit. A convenient form for the guiding center motion, due

to Morozov and Soloviev,” is

v=p(B+V xpB)/(1+pgb-Vxb) ®)
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with b = B/B, where in this equation py is considered a function of position
through Eq. (4) with H replaced by the energy, and the denominator is & cor-
rection to the parallel drift discussed by several authors.®'! This second order
parallel drift correction is introduced stricily 1o preserve'lhe Hamiltonian charac-
ter of the moton. There are other second order terms to v, neglected to preserve
Hamiltonian character order by order. Canonical variables were then found by
writing the obtained expressions for J},é, (", #|1 in terms of partial derivatives of
the Hamiltonian, and finding the Darboux transformation 10 put the equations in
canonical form. Lirlejohn® subsequently pointed out that a Lagrangian formal-
ism made this procedure much less arduous, and significantly more transparent.
We will see that the Lagrangian formalism also allows for the simplification of
the canonical variables through a redefinition of the guiding center.

Canonical variables are obtained by substituting expressions for A and B in

termns of magnetic coordinates into Eq. (3), and rewriting it in the form
L= Pg—-H. (6)
i

If this form can be obtained, the canonical momenta and coordinates are imme-
diately identified.

Rewriting Eq. (1) in the form B = V x (¢¥V§ - $,V() = V x A and
substituting A and B into the Lagrangian, we find

L=+ p”])é + (o9 — wp)f.:

+ p€ = H + bpyi,. @)



Except for the last term, this has the form given by Eq. (6). However, it can
be put in canonical form. The appropriate modification, as found in Ref. 2, is
given by using the poloidal variable 6. = 6 — p8/q. Substituting ¢ = 6. +
(d/dt) (pyb/q) into Eq. (7) and discarding the exact differential (d/dt)(py6¢/q)
as well as a term of order p°, we are left with L = Py, + P + pé — H, with

Pi=vy+pml

Pe = pyg — by ®
Note that these expressions are immediately recognizable as the covariant com-
ponents of the sum of particle momentum and vector potential, just as in classical

electrodynamics. Explicit equations of motion are readily obtained. First note

from Eq. (8) that ¢, and g are functions of P, F; only, and that

Hy _9 % _ I

9% D 3 D

Om _L-md Bm_g+tal ©)
% D 3, D

with D = gq+ I+ p)[gI’ — I'g'], and primes indicate differentiation with respect
to . It is then straightforward to find the explicit form of the equations of
motion from B, = —3K /3¢, Py = -0H/[96, 8. = QH[OPs, { = 8H[OPF,. For
simplicity we set the clectrostatic potential ¢ equal to zero. The equations of
motion take the form, 1o second order i p

. _ aBatal) _

o8B I 9B &
¢ 5 (u + pﬁB)a—%— +(k+pBlr s, (10)

D a0 D’



i _ B (1= pmig') 25098 g 2598 &
. ] a8
v = 56 + B35 (12)
(F‘ + PﬁB) ; aB
= —T(l -9 )6—8' (13)
where we have used the definition of 8, to find that within corrections of higher
order in p
o6 [ a0 é
— _— e— ’ —t— —_—— (14)
0P, b Port qD Flope P

Equations (10-13) clearly describe Hamiltonian motion. Directly calculating
v V8, v - V{ by substituting Egs. (1,2) inwo Eq. (5) and using

gl'—Ig' - g06/30
ge+1

. Uxb= (15)

we find that v given by Eq. (5) differs from the Hamiltonian motion by a second
order term. Second order terms in the velocity can be modified by the additon

of exact derivatives. For example, the term

d, . B35 § 20,98
Flae) = T 5(# +P||B)53, (16)

where terms of higher order in p have been discarded, if added to Eq. (10)
eliminates the term in é and adds a @5/99 term almost equal to that given by
Eq. (15). Within the guiding center description such a modification of the veloc-
ity is not significant. It produces nonsecular, periodic motion of the magnitude
of the gyroradius. This suggests that simplification of the Hamiltonian variables

can be obtained by the addidon of such terms.



The Lagrangian formalism can be used to retain the variables ¢ and ¢ as
canonical, eliminating the term containing é in Eq. {7) through a modification
of the second order parallel guiding center drift. Retumn to Eq. (3) and replace
the guiding center velocity v by v + w, with v describing the guiding center
motion, ie., v- V8 = d. This adds a new term to Eq (7) of the form A" - w,
and we choose w 5o that

A" rw= —Ep“:[},. an
First note that a change in gauge A — A 4+ VG adds an exacr derivative to

L. Without loss of generality we choose the gauge B - A = 0. Noting from
Egs. (12) and (13) that to leading order v, = gpy, we find

_SpgB
= ——Bz—. (18)

With this change the canonical variables become 4, £, (, F; and the terms pro-
portional to & are eliminated from Egs. (10) and (11). Directly from the Hamil-

tonian we find

: _ B , 19B
=Fla+ml)-(r+ pﬁB)-ﬁ-an. (19)
) plle ' g 88
: ~g B
Yp = 'E(# + PﬁB)-aji @en
. (n+ 0} B) OB
o= ——D—""(l - 219 )55 @2)



Discarding an exact derivative, we find

#(5) = b

a\p) > D" 708

D 23)

W'Vﬂ:p”

Similarly discarding an exact derivative in w - V¢, we find (v — w) - V¢ = (,
(v = w)- V@ = 4. Thus we have obtained simplified expressions for the motion,
with the magnetic coordinates @, { as canonical Hamiltonian variables. The ve-
locity differs from the usual expression, Eg. (5), only by the second order paraliel
velocity w, which is zero if the magnetic coordinates are orthogonal, Since the
second order parallel velocity is inwoduced only 10 maintain the Hamiltonian
form, this is not a significant difference. Note that the function (3, 8) has
disappeared entirely from the equations of motion. All of the dependence of the
description of the motion appears in the functions g, ¢, /, and B.
Now consider the addition of a general magnetic perturbation, described by
the vector potential
A =aV(+ BV +4Vy, (24)

with a, 3, v general functions of position. The Lagrangian then becomes L =
(Pa+ BY8 + (P, + a){ + (8py + 1), + ué — H with P, P given by Eq. (8).
Thus we identify the canonical variables as

o 1 P0‘=P9+ﬁ(wp1a7c)

¢ .  P=PF+al$,0.) (25)
and again eliminate the term (5g; ++ )1, from the Lagrangian by a modification
of the second order parallel velocity w with A” - w = —(6p) + —f)cf}p. We then
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find )
_Upy +)¥,B
B? )

To find an expression for w, it is necessary to find the equations of motion to-

w= (26)

leading order. Note that, in general, in order to preserve the advantages arising
from using a Hamiltonian formalism in numerical calculations of particle orbits,
all orders in p must be retained in the equations of motion. Truncation of these
¢quations is useful only to calculate leading order effects.

The exact cquations of motion in the perturbed field are readily found.
We simply sketch the procedure here, since the results are algebraically very
cumbersome, and for most applications a perturbed field of the restricted form
A = aB is sufficient, and much easier to implement.! From Eg. (25), using
tp = Yp(Pa, P;) and Eq. (9) all of the parial derivatives of the transforma-
tion to the new canonical variables can be calculated. Finding the equations of
motion is then an exercise in the use of the chain rule. We readily find, for

example,

: =g, 9B [18a ¢ 3B)mB?
v = D(”IIB+“’as+[Dao Y AN

plus terms of order o°.
Exact time derivatives of order p? discarded at various stages in these calcu-
lations integrate to zero by virtue of orbits closing in the ¥, # plane, a property

depending on the existence of the ignorable coordinate ¢. This is no longer



the case in the presence of field perturbations. If the perturbaticns are small,
i.e., the orbits close except for small amounts A#, A, then additionzl small
changes are produced by these terms of order pAd, pAdp,. Motion across the
drift surfaces produced by the ncglected terms is smaller than that produced by
the field perturbation by a factor p. If, however, the field is stochastic, then
the initial guiding center coordinates do not uniquely determine the orbit. The
motion is sensitive to the exact particle location, and depends for example on
the initia] gyrophase as well as the guiding center position. The inaccuracies
given by discarding order p? exact derivatives are no larger than these initial
condition inaccuracies. In such a system it makes little sense to discuss preciss
individual particle orbits. Only statistical quantities obtained using a distribution
of initial values are relévant, and thus these terms can also be safely ignored in
this case.
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