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i. Introduction and results.

Let S be an algebraic surface, complete and non-singular, over an algebraically

closed field k of characteristic char(A;) =o. Let K denote the canonical bundle of S

(determinant of the cotangent bundle) and let mK be its m-th tensor power. One

defines with Mumford the pluricanonical ring of the surface S as the graded ring
00

R= S H°(S, C>(OTK)) .
w==0

The graded ring R is a birational invariant of S and

K(S)=—i+trdeg^R

is an important birational invariant of S. Surfaces with K(S)==—i , o, i are called

of special type and one of the main results of the theory of classification of surfaces deter-

mines their structure: rational, ruled, abelian, K.3, Enriques5 surfaces, hyperelliptic,

elliptic. Surfaces with K(S)==2 are called of general type.

It is known (Zariski [17], Mumford [10]) that if S is of general type then R is a

finitely generated graded noetherian ring. The scheme

X==Proj (R)
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^ E. B O M B I E R I

will be called the abstract canonical model of S; note that X depends only on the birational
equivalence class of S.

oo

Let R=^R^, where R^=H°(S, ^(wK)), be the canonical ring of S and
let for n ̂  i

R'»)=;SR,,
m=0

oo

R[n]̂  ^ Rm

m=0 n5

where R^c R^ is the subspace of ?(8, 0{mnK)) generated by products ofm sections

in H°(S,^(7zK)). Since R is finitely generated we have that R^ and R^ are again
graded noetherian rings and

RN^RM for ^Q

We define

X^ProKR^),

X^ProKRM)

and call X^ the n-canonical image of S. It is well-known that X^ is isomorphic to X

for n ̂  i, the isomorphism X^X^ being induced by the inclusion R^ c R. The
inclusion R^ c R induces a rational map

9, : X->X^

of the abstract canonical model into the ^-canonical image of S.

The object of this paper is the detailed study of the rational map <p^. We may

ask for instance whether <p^ is a morphism, or is birational, or is a homeomorphism or
an isomorphism.

In order to explain the significance of these questions we recall the answer to the

analogous problem for curves. Curves of (c general type 59 are exactly those for which
the genus is p ^ 2; then X is isomorphic to G and

X-^X121 is an isomorphism if j^3,

X-^X^ is an isomorphism if 72^3,

while if p=2 then X^ is a projective line embedded in P2^) as a conic. Moreover

X-^X^3 is an isomorphism if and only if the curve C is not hyperelliptic.

In the case of surfaces, it is known (Mumford [10]) that X is a birational model

of S and is a normal surface with a finite number of rational double points. A minimal

desingularization of X exists and is an absolutely minimal model of S.

We have the following characterization of surfaces of general type. Let

^-PJS^dim.H^S.^mK))

be the m-th plurigenus of S; if m= i, we write pg{S) instead of Pi(S).
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CANONICAL MODELS OF SURFACES OF GENERAL TYPE 173

Theorem 1. — A minimal surface S is of general type if and only if

K2^!, P^2.

Theorem i is due to Kodaira [7].

We shall prove:

Main Theorem. — Let S be a surface of general type and let K2 be the self-intersection of

the canonical bundle of a minimal model of S.

We have

(i) X-^X^ is an isomorphism for all surfaces S and 72^5;

(ii) X—X143 is an isomorphism if K2^2;

(iii) X—^X^3, ^3 is a birational map, except in the following cases:

a) K2 == i, pg == 2, n == 3 and 4, where X^3 is a rational ruled surface Fg of degree 4 embedded

in P5^) and where X143 is a quadric cone embedded in P8\k);

b) K^s, Pg=3, ^==3) where X^3 is a protective plane P2^) embedded in P9{k) by

means of the linear system of plane cubics;

c) some surfaces with K2 == i, pg == o, n == 3 ^mrf 4 ayzrf wz^A K2 === 2, pg == o, TZ == 3;

(iv) X—^X^3 is a birational map if

K^io, ^6

except if S A^j" ̂  structure of a fiber space

/:S->B

ozw a non-singular curve B, w^A generic fiber a non-singular curve of genus 2.

Conversely., let S be a surface with the above structure f:S->S of fiber space and with

K^IO.J^^G; then X—^X^3 is generically a double covering and X123 is a surface

birationally equivalent to a rational or ruled surface,

Remark 1. — It is doubtful whether the exceptions in (iii) c) really occur. I can

prove that they do not occur if n == 4, while if n -== 3 these surfaces should satisfy rather

strong conditions.

Remark 2. — The fact that if S has a pencil of curves of genus 2 then X—^X^3

is not birational has been remarked by Kodaira [8]. Part (iv) of our Main Theorem

shows that, except for a finite number of algebraic families of surfaces, X—^X^3 is

not birational if and only if S has a pencil of curves of genus 2. We shall also prove

that the condition K^io in (iv) is best possible.

Results in this range of ideas are not new. The first systematic study of surfaces

of general type, mainly in case of irregularity q == o, is due to Enriques [5] and surfaces

with K 2 ==I , J^=2, K2=2, pg==3 were already encountered by him as pathological

examples. The structure of the abstract canonical model was determined by Mum-

ford [10] and the ^-canonical images X^3 have been studied from the birational point

of view by Moisezon and Safarevic [15]; from their results, it follows that there are

only finitely many families of surfaces for which X-^X^3 is not a birational map. The
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174 E. B O M B I E R I

more important biregular point of view was considered by Kodaira [7], [8], obtaining

in some cases the best possible results; he proved in particular that X—^X^3 is birational

if y z ^ 5 and ^===4, K2^. Refinements of Kodaira's results have been obtained in

Bombieri [3]. Kodaira also points out very clearly how the problem can be attacked

using the connectedness properties of pluricanonical divisors and the vanishing theorems.

Our techniques differ somewhat from those used previously. Using a strong

vanishing theorem (Theorem A) due to Ramanujam [14], we are able to use directly

the connectedness properties of pluricanonical divisors, avoiding the cumbersome use

of composition series of [7] and [3]. A few cases with small K2 are dealt with directly.

I want to express here by indebtedness to several mathematicians who helped

me during the preparation of this work; in particular, Artin and Mumford for discussions

on isolated rational singularities of surfaces, Van de Ven for conversations on irregular

surfaces of general type, Ramanujam for the vanishing theorems, and Deligne for

several useful suggestions. I also wish to thank the Mathematics Institute of the

University of Warwick and the Institut des Hautes fitudes Scientifiques for providing

financial support and a stimulating atmosphere during the preparation of part of

this paper.

2. The geometry of the map X-^X^.

We shall review here some fundamental properties of surfaces of general type and

see how properties of the map X-^X^ correspond to properties of the ^-canonical

bundle TzK.

Let S be a complete non-singular algebraic surface over an algebraically closed

field k and let L be a line bundle on it, oSf being the associated invertible sheaf. A point x

ofS (not necessarily a closed point) such that s{x) =o for every global section s of L is

called a base point of the linear system | L | associated to H°(S, JSf). If

00

V=Proj( S H^S,^)"*)
w=0

then it is well-known that the choice of a basis in H^S, oSf) defines a rational map

<DL : S->V

which is a regular map outside the base point set of [ L [. If [ L [ has no base points then

OL ls a morphism and
<jSf=(D^(i)).

Now let S be a minimal surface of general type. We have (Mumford [10],

Kodaira [7]):

Proposition 1. — If G is an irreducible curve on S then KG^o and if K.G==o, then

C2^—2 and C is a rational non-singular curve.
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CANONICAL MODELS OF SURFACES OF GENERAL TYPE 175

Moreover, the irreducible curves E with KE == o form a finite set and are numerically inde-

pendent on S.

Proof. — If an irreducible curve C on a surface S satisfies G2 ̂  o, it is clear that

CD ̂  o for every effective divisor D of S. Since mK. is not empty for large m, we see

that if KG <o we must have also C
2
<o. Hence

2J&(C)-2=KG+G2^-2

and since G is irreducible we would have

p{G)==o, G2^-!,

which contradicts the minimality of S.

Next, assume KG==o. Write

|^zK|- |D|+F,

where F is a fixed part. Since S is of general type, we have D^o for large m. Now

CD=mKC-FG=-FG

and if G2 ̂  o we would have FG ̂  o, therefore GD ̂  o and thus CD == o. Since

D^o and GD==o, G^o, the Algebraic Index Theorem gives C==o. Thus we have

proved that G
2
<o. It follows that

2^(C)-2=KG+G2<o

and thus
^(C)=o, G^-2,

as asserted. Note that this implies that K^o.

Finally, let E^, . . ., E^ be distinct curves with KE^ = o. Assume a numerical

equivalence relation

S m, E,^ S 772, E,
i=l j=r+l J J

where m^Oy m^o. Then

(^^EJ^^S^E,) (^S^,E^o,

while the Algebraic Index Theorem gives

(S^E.)2^

unless all m^==o. Hence the curves E^ are numerically independent, and they form

a finite set because, since E?<o, they must be isolated in their numerical equivalence

class, while
rankQ Num^S) < +00. d.E.D.
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Let § denote the set of such curves E and let ̂  be a maximal connected component

of g, ^=Ei+ . . .+E^ . Following Artin [i], we define ^fundamental cycle Z of
^ as the smallest divisor m^+ . . . +^E^==Z, m^i, such that

ZE^o for z = i , . . . , r .

We shall say for brevity that a divisor Z on S is a fundamental cycle if it is the fundamental

cycle associated to a maximal connected component of<^.

The following facts are known:

Proposition 2 (Artin [i], [2]).

(i) An effective divisor Z on S is a fundamental cycle if and only if it is a maximal cycle with

KZ=o, Z^-2.

(n) If 7r:S->X is a minimal resolution of singularities of the abstract canonical model X, the

fibers of TT over the singular points of X are the fundamental cycles of S.

(iii) We have:

s == Tc ~\x •

(iv) If Z is a fundamental cycle on S, p==n{Z) and m' is the maximal ideal of (9^ we have

a canonical isomorphism

H^S^/^^m'/On')2.

If S is a minimal model, the morphism 0^ ^S-^X^ factors as $^ == <p^ o TT, where

7r:S—^X is a minimal resolution of singularities of X. Let <^, X = = i , . . . , N be the

maximal connected components of<? and let Z^ be the associated fundamental cycles.

Following Kodaira, we say that $^ is one-to-one mod S if, for x, y closed points of S,

x+y, and not belonging to a same connected component <^ of<?, we have that O^M

^d ^(j^) ^e distinct closed points of X^. In this case q^ is a homeomorphism.

Finally we note that X-^X^ is an isomorphism if 0^ ls one-to-one mod € and an

isomorphism outside the set € , and if the fibers of 0^ over ^e singular points of X^

are the fundamental cycles of S. In terms of the pluricanonical ring R of S, this means

that there exists an integer a^o such that

R^R^R^^ for m^i.

If this holds with ^=o, then X^ is a projectively normal surface, X^ is projective

and X^^X^ as polarized surfaces. This will certainly happen if n is large enough,

and Kodaira [8] has proved that it is sufficient to take n^8.

We end this section with the following useful result (see Kodaira [7]).

Proposition 3. — Let S be a minimal surface of general type. Then there are only finitely

many irreducible curves G on S such that KG is bounded and G^o.

Proof. — Let ^ be the (integral) numerical equivalence class of (K^G-^KG^

in Num^S). Since G is irreducible we have

KG+G2=2p{C)-2^-2,
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CANONICAL MODELS OF SURFACES OF GENERAL TYPE 177

therefore

-^(KC)2^2)-^2)^2

is bounded from above by a quantity depending only on KG and K2. Now ^ belongs

to the orthogonal of K in Num^S) and the quadratic form in the orthogonal of K given

by the self-intersection is negative definite, by the Algebraic Index Theorem and K
2
>o,

Hence ^ belongs to only finitely many classes, because rankqNum^S) <+oo. Finally

if C
2
<o the curve G is isolated in its equivalence class. Q.E.D.

3. A vanishing theorem.

In this section we prove a vanishing theorem for a cohomology group H^S,^),

where S is a complete non-singular algebraic surface over an algebraically closed field

of characteristic o, D is an effective divisor on S and J^is its sheaf of ideals. I am indebted
to Ramanujam [14] for this proof.

If D is a divisor on S we denote by [D] the associated line bundle and by ^([D])

the sheaf of germs of sections of D. If D is effective we have a canonical isomorphism

^(-[D])^.

By an algebraic system {G} of divisors on S parametrized by V we always mean

a flat family (see Mumford [i i]). We also say that {C} is composed of a pencil if there
is a morphism

/: S->B

ofS onto a non-singular curve B, such that every G(={G} is

C^-^E)
for some EeDiv(B). If B has genus p ^ i we shall say that {C} is composed of an
irrational pencil of genus p.

We have

Theorem A (Ramanujam [14]). — Let S be as before and let D be an effective divisor

on S. Assume that for some n>o the linear system \n[D]\ has dimension

dim \n[D] |^ i

and is not composed of an irrational pencil.

Then we have

dim^ H^S.J^) -dim^ H°(D, ̂ )-i.

Let D be an effective divisor on S. We say that D is (numerically) m-connected

if for every decomposition

D=Di+D^ D,>o
we have

DiDg^m.

453

23



178 E. B O M B I E R I

Now Ramanujam [14, Lemma 3] has proved that if D is connected (i.e., i-con-
nected) then

dim,H°(D,^)=i.

We thus obtain:

Corollary. — If D is connected and if jy>o we have

H^S.^-o.

Proof of Corollary. — If D
2
>o the Riemann-Roch theorem gives

dim\n[D]\^I-n2D2+0{n)

which grows with n like n
2. Hence the linear system \n[D] \ cannot be composed of

a pencil. Q..E.D.

Proof of Theorem A. — For any effective divisor G let

a(G) == dim^ ker^S, 0) -^?(0, 0^)}.

The conclusion of Theorem A is equivalent, in view of the exact sequence

Q-^^->(9->(9^->Q,

to the statement that a(D) ==o.

The basic result is Ramanujam's:

Lemma. — For every G we have

a(G)=a(G,,).

Proof (Ramanujam [14], Lemma 6).

It is sufficient to prove that

a(G,)=a(G,)

for Ci^Cg^sGi. Since the ideal sheaf ^ (9^ of C^ in Cg is of square o, we have

the exact sequence

0 -^ ̂ , -L^ ^ ——> ^ -^ I

by means of the truncated exponential. This gives the cohomology sequence

H°(^) ̂ H1^ ̂ ) -^Pic(G2) ->Pic(Gi).

Since we are assuming char(A;)==o, H°(^) is a divisible group, so that the kernel

of Pic(G2)-^Pic(Gi) is torsion-free. Now let A .̂ denote the connected component

at o of

ker{Pic°(S)^Pic(Cy}.
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CANONICAL MODELS OF SURFACES OF GENERAL TYPE 179

By Carrier's theorem, the A^ are abelian varieties and from what we have just proved

we see that Ag/A^ has no torsion. Hence A^Ag and the result follows because

ke^H^S, ^—H^C,, 0^} is the dual of the Zariski tangent space at o of

ker{Pic°(S)^Pic(G,)}. Q..E.D.

Now we can complete the proof of Theorem A. Let n be so large so that

dim |%[D][=N—i ^i .

By the previous lemma we have

a(D)==a(^D).

Now let
V^SxP^

be a relative effective Gartier divisor over P^ ~
1 representing | n [D] [. Let also f: V —^P^1

be the structure morphism of V, so that the elements of |?z[D] | can be viewed as the

fibers y"1^), x a closed point ofP1^"1. Since f is flat we have that

dim.H0^-1^),^-^)^^)

is an upper semicontinuous function of x and it follows that

^)^dim,H°^D,^)

if x is the generic point of PN~1. The generic fiber f^1
^) is a divisor on S' == S®^k{x)

and the exact sequence

o^H°(S', G) -.V°{f-\x), 0^) -^(S',^,) -^ker^S', G) ->^\f-\x), ̂ )}^o

shows that

^f-'W) +d{x) = i +dim^Hl(S',J^)

=I+dim^Hl(S,^D)

=a(nD)+dim,H°(nD,^)

therefore
oc^D)^^/-1^)).

Writing G^ for y-l(A:), we thus see that there is a Zariski open set UcP^1 such that

for xeV we have
a(7zD) ^ a(GJ.

We have to prove that
Pic°(S)->Pic(CJ

has finite kernel. By duality, this means that if j:G^->S is the inclusion map then

j\ : Alb(GJ -^Alb(S)

is an epimorphism, or in other words that

^ : S^Alb(S)/j,Alb(GJ
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180 E. B O M B I E R I

is a constant map. To be more explicit, if cp : S ->Alb(S) is the Albanese map, j, Alb(GJ

is the abelian subvariety of Alb (S) generated by 9(jQ—y(^), where y, ^ are points of

(GJred- Note that this already implies that ^ is a constant map on every connected

component of (GJ^- Now by Chow's theorem (see Lang [9]) there is a Zariski open

set U'cP^ such that j,Alb(GJ, for xeV, is a fixed abelian subvariety, say
7,Alb(C), of Alb(S). It follows easily from this that

S->Alb(S)/;,Alb(C)

is a constant map on every connected component of every Ce| n[D] |.

Now if \n[D] is not composed of a pencil, any two closed points of S can be

joined by a connected union of connected components of elements of |^[D][, whence

S->Alb(S)/;^Alb(G) is a constant map. If instead \n[D]\ is composed of a pencil
we see that there is a factorization

B —> Alb(S)/^Alb(C)

through the parametrizing curve B of the pencil. If B == P1 we get again a constant

"^P- Q..E.D.

Remark. — If S is a regular surface, that is

din^H^S^^o

we have trivially oc(D)==o and Theorem A holds with no conditions about D.

Theorem A requires D to be an effective divisor. The following result ofMumford

takes care of the case in which D is not effective.

Theorem B. — Let S be as before and let JSf be an invertible sheaf such that, for large n,

S^ is spanned by its sections and has three algebraically independent sections. Then we have

H^S.JSf-^^o.

For the proof, we refer to Mumford [12].

4. Connectedness of pluricanonical divisors.

Let S be a complete non-singular surface defined over an algebraically closed

field k and let K be the canonical bundle of S. The two basic facts used in this section
are:

;(i) For any divisor D on S, we have:

D2+KD^o(mod2);
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CANONICAL MODELS OF SURFACES OF GENERAL TYPE 181

(ii) (Algebraic Index Theorem) the quadratic form on Num^S) given by the

self-intersection is non-degenerate, indefinite, with only one positive eigen-

value.

In what follows, S will also be a minimal surface of general type. By Proposition i,

we have:

(iii) For any effective divisor D on S we have:

KD^o.

Lemma 1. — If D is effective and. D^wK, m^i, then D is numerically 2-connected

except in case K2 == i, m == 2, D == D^ + Dg, D^Dg^K.

Corollary. — If D is as before, then D is numerically 1-connected.

Proof (see also [7]). — If D^D^+Dg we can write

Di-rK+^ D2-(m-r)K-S,

where r== (KDjJ/K.2 and where ^ is a numerical equivalence class in Num^S)®^

with K^ == o. Hence

DiD2==r(w-r)K2-^;

since r^o, m—r^o by (iii) and ^<.o by (ii) unless ^==0, and since we cannot have

at the same time r===o and S=o (otherwise D^ would be zero) we deduce that

DiD^i

and in particular D is numerically i-connected.

We have also

DI Dg = (m + i) KDi- (D2 + KDi)

hence by (i) we get that D^Dg is even unless m is even and KD .̂ both odd. However

in this case we have i /K2 ̂  r ^ m— (i /K2) and we get

DiD^r^-^K^^m-^/K.2)---^

which gives for m ̂  2 the inequality D^ Dg > i, unless 771=2, r=i , 'K
2
=l, ^==o.

Q..E.D.

The same method gives:

Lemma 2. — If D is effective, D/^TTIK, m ̂  2 a^rf if D = D^ + Dg z^r^ D^ u effective

with KD^ ̂  i, w^ ^ay^

DiD^s

except in the following cases:

K^i or 2, m=2, Di^/Dn^K:

K2 == i, 771 = 3, DI or D^K.
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182 E. B O M B I E R I

Proof. — The method of Lemma i gives the result unless either KD^ ^ 2 or

KDg^ 2 and TTI^ 3. Suppose KDi==i. By (i) D2 is odd; also the Algebraic Index

Theorem shows that

D^™2
1^=-^

with equality only if D^ "K. Hence D2 ̂  — i unless K2-! and D^—K.

Since now

DI Dg = TTzKDi-D^ 772 + I

unless K.2^^! and D^K, we get what we want. Essentially the same argument

applies if KD^=2. Q..E.D.

Lemma 3. — Let Z be a fundamental cycle of S. ^/' D^mK—Z, m^i, then D ^

numerically 1-connected. Moreover if m ̂  2 ^TX D ^ numerically 2-connected, except in case

K?==i, m=2.

Proof. — Let D=Di+D2 an(l suppose we are not in case K2= i, m==2 . By

Lemma i we have

Di(D^+Z)^2, D2(Di+Z)^2;

summing these two inequalities and using DZ^—Z2^^ we get what we want. Now

if K 2 =I , m=2 the previous argument still applies unless either D^K or Dg^^K.

If DI—K we get

DiD2=KD2=K(K-Z)=i,

as we wanted. The second part of Lemma 3 is proved in the same way using Lemma 2.

Q..E.D.

The same argument gives:

Lemma 4. — Let Z^, Z^ be distinct fundamental cycles of S. If Dr^mK.—Z^—Z^,

m ̂  2, then D is numerically 1-connected.

Lemma 5. — Let Z be a fundamental cycle of S. If Dr^mK.—2Z, m^2, then D is

1-connected except in the following cases:

K2 == i or 2, m = 2;

1^=1, 77Z=3.

Now we shall study the connectedness of pluricanonical divisors after blowing

up one or two points on S.

Let TT : S->S be the blowing up of S at a closed point x of S, x^€^ and let L=7T-1(^)

be the exceptional curve of the first kind on S.

Lemma 6. — Let D be an effective divisor on S and let D^mTC'K—2L, m^ i. Then

D is numerically 1-connected except if K2 == i, 771=2, D^D^+Dg, D^^/Dg^/^K—L.
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Proof. — Let D=Di+D2 and let

A,=D,+(D,L)L.

Clearly the A, are still effective divisors (even if D,L<o) possibly zero, and A^L=o$

hence there are effective divisors C^ on S such that TT*[GJ = [AJ. Since A^ 4- A^WTC* K

we have G^ + G^mK, and if C^ and Cg are not zero the result follows from Lemma i,

from DI L + Dg L = 2 and

D, D, = Ai A,- (D, L) (D, L) = G, G,- (D^ L) (D, L).

If Gi=o then Di=—(DiL)L, hence

DiD,=-(DiL)(D,L)^3

because DiL<o and D^L+D^L==2. Q.E.D.

Lemma 7. — Let D be an effective divisor on S and let D^mn*¥L—3L, 772^2. TA^TZ

D is 1-connected except in the following cases'.

K? ==i or 2, m=2;

K^i, ^=3-

Proof. — We define A,, G, as in the proof of Lemma 6 and use Lemma 2 instead

of Lemma i. We get the required result except possibly if KCi==o or KCa==o.

Assume KCi=o; then G^ has support in S and since x^S by hypothesis we see that

the supports ofA^ and L are disjoint. This implies that DiL<o, and Lemma 7 follows

easily from this. Q.E.D.

Using Lemma 3 the same technique gives:

Lemma 8. — Let Z be a fundamental cycle of S and let D be an effective divisor on S,

D'^77Z7c*K—2L—Z, 772^2. Then D is 1-connected except if K2=I, 772=2.

Now let TT::S—^S be the blowing up of S at two closed points x, y^ A:4=j, and x,

y ̂  € and let L == n~
l
 {x), M = n~

1 (j/) be the corresponding exceptional curves of the first

kind on S. Using Lemma 2 we easily obtain:

Lemma 9, — Let D be an effective divisor on S and let D^mn*K.—2L—2M, 772^2.

Then D is 1-connected except in the following cases:

K2^ I or 2, 772 ==2;

K2-!, 772=3.

Moreover if K.2^^^, 772=2 and D=Di+D2, with D^Dg^o, then

Di-Da-^K-L-M.

Lemma 9A. — Let D be an effective divisor on S and let D^^TT'K-^L—M, 772^2.

Then D is 1-connected except if K?==i, 772=2.
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We can summarize the results so far obtained in the following table:

Numerical

class

772K

772K-Z

7727l*K—2L

772K-Z,-Z^

772Tc*K—sL—

m^K—sL—M

7727T:* K— 2L— 2M

^71:^—22

772TC*K—3L

equivalence

ofD

Z

772^ i

772^ I

772=^ I

772^ 2

772^2

772^2

772^2

772^2

772^2

Excep

being

K2^

K2=

K2^

K2 = I or 2, 772

K2
 -== I Or 2, 772

K2 == I Or 2, 772

tions to D

connected

none

none

I, 772=2

none

I, 772= 2

I, 772=2

=2; K^I, 772=3

=2; K^I, 772=3

=2; K^I, 772=3

Moreover, in the exceptional cases, if D =D-^+D^ and DiDg ^ o, then one has

the numerical equivalence classes of D^ and Dg; this additional information will be
used later in dealing with surfaces with K^i or 2.

5. Normal canonical models.

Theorem 2. — Let S be a minimal surface of general type. Then (7724- i)K is spanned

by its global sections if:

(i) 772^3;

(ii) 772=2, K2^ or K2^, p g ^ i ;

(iii) 772=1, K2^, ^^3 or ^3, q===o.

Remark 1. — Statements (i) and (ii), second half, are already proved in Kodaira [7];
(ii), also in case K2==23 ^==0, is proved in Bombieri [3]. Result (iii) seems to
be new.
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Corollary (see [7]). — If m'^2 the m-th plurigenus P^ of S is given by

p^^^.^K^^),

and %(^)^i .

Proof of the Corollary. — Since S is of general type, TTzK has three algebraically inde-

pendent sections if m^>o. Now Theorem B applies and we get

Hl(S,^(~mK))=o for m^i.

The result follows by duality and the Riemann-Roch theorem. Finally the inequality

x(^) ̂  I follows from classification of surfaces; see [7] for details. Another proof will

be found in Section X of this work.

Proof of Theorem 2. — Let x be a closed point of S, x^S and let ̂  denote its sheaf

of ideals. The sheaf (9^{m-\-1) K)®e^ is the sheaf of germs of sections of (m+i )K-

vanishing at x. We have the exact sequence

o^((^4-i)K)®J^^((m+i)K)-^->o

where e^ is a sheaf with support x and stalk k{x) at A:, and it is obvious that x will not

be a base point of | (m + i) K | if and only if

dim,H°(S,^((m+i)K)®jy=P,-i.

Let 7r:S-^S be the blowing up ofS at x, x^-S^ and let L=7^-l(^) be the exceptional

curve of the first kind on S. Clearly

H°(S, 0{(m-\- i)K)®jy and H°(S, (P{{m+ i) TT'K)®^)

are isomorphic, also {n*K.)^ is a trivial bundle. Hence the cohomology sequence of

0^((m+l)7r*K)®J^^((^+l)^K)^L^0

shows that x cannot be a base point of | (w+i )K. | if

HP(S, 0{(m+ i)^K)®^)== o.

If instead ^e^, let Z be the fundamental cycle of the connected component of S

containing x. Since

^®^((m+i)K)=^

and H°(Z,^)=yk

(use KZ = o, the fact that invertible sheaves on Z are classified by the degree, by Artin [2],

to get the first result, and use [2], Lemma 3 and Z numerically i-connected to get the

second equation), and since sections of (m+i )K are constant on Z, we conclude as

before that x cannot be a base point of | (m + i) K | if

H^S.^+^K)®^)^.
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Assume that there exists a divisor De| WTT*K—2[L] [. By Lemma 6, D is numeri-

cally i-connected except in case K 2 =I3 w=2, and we have also D^o provided

y^K2^.

Hence if n^K?^^ Theorem A applies and we obtain

H^S^^o;

note that by Theorem A, Remark 2, the above condition is not needed if q=o. The

canonical bundle of S is K==7^1 tK+ [L], therefore by duality we find

Vl(S,ffl{{m+l)^K)®^)=o

as we wanted.

A similar argument shows that if there exists a divisor De| mK.— [Z] |, then

H^S, 0{(m + i) K)®jy = o

provided y^K2^.

In order to see which conditions give the existence of the divisor D, we may assume,

by reductio ad absurdum^ that A: is a base point of | (m-\- i )K|, otherwise there is nothing

to prove. Consider the case x^S. Since

(P{m^K)®(P^==^

we have the exact sequence

o^H°(S, d)(m^K)®^) -^H°(S, ̂ (m^K)) -^H°(2L, ffij

and since dim^H°(2L, ̂ ==3 we obtain dim^H°(S, (P{mn*K)®^) ^P^—3 and there

is De|(m7r*K)-[2L]| if P^^4.

Now suppose pg^. i. If s is a non-trivial section of K then ^w+l is a non-trivial

section of (m4-i)K, hence vanishing on x^ and it follows that if m^2 then

sme'HO{S,S{mK)®J^)

and {i^s^ is a section of mn*K. vanishing on L of order at least 2. Hence D exists

if m^2 , p g ^ i .

If m == i, noting that every base point of | 2K | is also a base point of | K | we get

that there exists a section of K vanishing of order at least 2 at x, provided pg ^ 3, hence

D exists if m==i, p g ^ 3 '

Finally if XE(S' we see easily that D exists if P^^2, and if m==i, pg^ i.

Now the Riemann-Roch theorem and -^{(P) ̂  i show that

P ^ ^ ^ w ( w — I ) K 2 + I if m^2,
2

and Theorem 2 follows from the conditions we have found for the existence of D.

Q.E.D.
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Remark 2. — We have also proved that | 3K | has no fixed part in §, and that
| 2K| has no fixed part in S if p ^ i.

Lemma 10. — The map X-^X^13 is a homeomorphism if

H^S^^+^K)®^®^)^

for x.y^S^ x^jy, S the blowing up of S at x ^ y , L^Tr"^), M^-nT1^);

H^S, 0{{m+ i) Tr'K)®^®^)^

for x^€ and every fundamental cycle Z o/S, S the blowing up of S at x, L^TT"1^);

?(8,^+1)^®^®^)^

for Z^, Z^ distinct fundamental cycles of S.

Moreover the map X^X^"^ z'j fln isomorphism if it is a homeomorphism and

Hl(S,(P{{m+I)^K)®^)=o

/or x^S, S ̂  blowing up of S at x, L=n~l{x)^ and if

Hl(S^((m+I)K)®^)=o

for every fundamental cycle Z of S.

Proo/*. — The argument in the course of the proof of Theorem 2 giving the analogous

criterion for (m+i )K. being spanned by its sections shows easily that X-^-X^4'11 is

a homeomorphism if the first three conditions of Lemma i o are verified. In order to
verify the second part of Lemma 10 we proceed as follows.

We have a commutative diagram

S -^ X

^(m+l)K\ / Vw+l

^[m+l]

Now let Z denote a fundamental cycle, let ^==^+I)K(Z), j&'=7r(Z) and let (A, m),

(A', m') be the local rings of p, p ' . Since (X, q^+i) is a normalization of X^^ and

since 9^.^ is a homeomorphism we may identify A with a subring of A', A7 is a finite
A-module and

A'=A+m'.

We have the exact sequence

o->^((^+i)K)®J^->^((m+i)K)®^->^/J^-^o

(we use KZ = o and the fact that invertible sheaves on Z are classified by the degree,

Artin [2]) hence we get the cohomology sequence

?(8^(^+1)^®^)^^$,^^)^.
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On the other hand, by Proposition 2 we have an isomorphism

H^S^/^^W)2

and since H°(S, 0{(m+ i)K)®J^)->m7(m')2 factors through the maximal ideal of A,
we deduce that the natural homomorphism

m^m7(m')2

is surjective.

This clearly implies that m^mA'+^T for every n and since m'/mA' is an

Artinian ring we must also have that (m')" is o in m'/mA' for large n. Hence m' = mA'
and

A'^A+mA'.

If we define M=A'/A then M is a finite A-module and by the previous equation we
have:

M=mA7A==mM.

By Nakayama's lemma, M==o and A=A'.

Finally, in order to show that (p^i is an isomorphism at TC(^), ^<?, we use the

same argument together with the isomorphism H°(§, J^/J^) ̂ m7(m')2. This is in

fact clear, because TC is an isomorphism at ^, and S->S is the blowing up of S at ^.

Q..E.D.

Theorem 3. — Let S be a minimal surface of general type. Then X-^X^4'13 is an

isomorphism if:

(i) w^4;

(ii) 77Z=3, K2^;

(iii) m=2, K2^6 or K2^, ^^4.

Proof. — The method of proof of Theorem 2 shows that the five conditions of

Lemma 10 are satisfied if we can find D numerically i-connected with D^o such that
respectively

De|w7r*K-2[L]-2[M]|

De|m7r*K-2[L]-[Z]|

De|mK-[ZJ-[ZJ|

De]m7r'K-3[L]|

De[77zK-2[Z]|.

The condition D^o is satisfied if

T^K^IO;

by Lemmas 9, 8, 4, 7 and 5, D is numerically i-connected if

^+K^5;
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and the existence of D is assured by

P^7 or rn==2, ^4$

the result now follows from Theorem 2, Corollary. 0 .E.D.

Remark. — Since X-^43 is not an isomorphism if K2^ i, pg==2, and also for
some surfaces with K?== i, pg=o, we see that (ii) cannot be much improved. Result (iii)

instead still leaves room for improvements and we can show that it remains true if

t^S? Pg==3'
 rrhi

^ ^ easily obtained by showing first that in this case it is sufficient
to have Pg ̂  6, again using a reductio ad absurdum. Then one has to prove that P^ ̂  6

follows indeed from K2^, ^=3. In case K2^, ^=3 the results of Section X

show that q==o and thus Pa =7- If instead K?=^ ^=3 the same results give q==o

or 2, and thus Pg == 8 or 6. Since Pg ̂  K2 + i in any case, we have what we wanted.

Now we turn to the question of projectively normal models. We have:

Theorem 3A. —If K2 ̂  5, pg ̂  3, then X^ is a projectively normal model of X for n ̂  6.

Proof. — Let t ̂  i be such that ^K is spanned by its sections, and let C be an

irreducible non-singular curve in |/'K|. We denote by SQ a non-trivial section of ^K
vanishing on C. The exact sequence

o —> 0{{m-^K) -^ 0{mK) ̂  ^c(^Kc) —> o

shows that

^=A-^+A

where R^==H°(S, ^(mK)) and where A is any subspace of R^ such that ^R^=rcA.
Now there is a section

^er,R,c=H°(G,^Kc))

with only simple zeros; let X be the divisor of zeros of a^. We have the exact sequence

o —> ^((^-^)Kc) ^> ^c(^Kc) ̂  ^x —> o

and we deduce that

rcR,C(T,H°(G,^(^^)Kc))+B

where B is any subspace of H°(C, ^c(wKc)) such that r^H^C, (Pc{mK^)==r^'K.

Now consider the exact sequence:

o —> ^((^-2^)Kc) -^> ^((^)Kc) ^> ^ —> o.

If deg(^-2^)Kc>2j&(G)-2 we have ?(0, ̂ ((m-2^)Kc))==o and thus

rxH°(G, ^((^-^)Kc))==H°(X, ̂ ).

Now since we are assuming that /K is spanned by its sections, we can find another section

c^er^R.^
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such that 0'a never vanishes on X. Hence

r^ a, H°(G, Q^m-f) K,))= H°(X, ̂ )

and we may take B= ^H^G, ^((w—/')Kc)).

Thus we get

rcR,c^HO(G,^((^-^Kc))+^HO(C,^((m-^Kc)).

The exact sequence

o —> (P{{m-^) K) -^ ^((m-^)K) -^> ^((w-^)Kc) —> o

gives rcR^=H°(C,6c((77z-^Kc)) provided B
l
{S,0{{m-2^K))^o, which is the

case if m— 2/' + o, i. Hence ^ R^ c ̂  ̂  R^ _ ^ + ̂  re R^ _ ^ ; therefore if ̂ , s^ are sections
of^K whose restriction to G is CT^, erg, we see that

^m^^l^m-l+^m-f)'

The conditions we have made are:

deg(m-2^)Kc>2^(C)-2,

m—2^4=0, i
which are satisfied if

772^3/'4-2.

We conclude with the following statement:

Lemma. — If^K is spanned by its sections and if m ̂  ̂  + 2 we have:

R^=R^R^_^.

The proof of Theorem 3A is now immediate, for if £ = i we get

R,^=R,R^ m==i, 2, ...

which implies R^=R^ for 71^4 and all m.

If K2 ̂  5, pg ^ 3, by Theorem 2 we may take for £ any integer ^ 2. We get

R,==RA_, if m^8

R^=R3R,_3 if m^ii

and it follows form this that

Rnn^R:

for n^6 and all m. Q.E.D.

Remark. — It is possible to show that surfaces with K.^2, pg==3 have Rg^R2 ,
R3=R3^ R^=R,R^-4 for m^4.

6. Birational maps.

Theorem 4. — Let S be a minimal surface of general type. Then X—^X^ is a homeomor-

phism if K2^, j^2.
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Proof. — We have to verify the first three conditions of Lemma 10 and, as in the

proof of Theorem 3, this reduces to show the existence of a numerically i-connected

divisor D with D^o, in the appropriate linear system.

Reasoning by reductio ad absurdum as in the proof of Theorem 2, we readily see that D
exists if K2^, pg^2. Q.E.D.

Theorem 5. — Let S be a minimal surface of general type. Then X-^X^ is a birational

map if K2^ 10, A^6, except if S has the structure of a fiber space over a curve, with generic

fiber a non-singular curve of genus 2. Conversely, ifS has a pencil of curves of genus 2, the map

X-^X123 is generically a double covering and X^ is birationally equivalent to a ruled surface.

Proof. — Assume that cpg is not a birational map. Then there is a Zariski open

set U of S such that for every closed point x of U there is y in U with

^KW-^KOO and x^y.

Choosing a smaller U if necessary, by Proposition 3 we may assume that U ^ S — U G ,

where G runs over all irreducible curves C on S with KG ^ K2 and G
2
<o. If ^ is

the set of such curves, we have that ^ contains all irreducible curves with KG = o

and with KG=i, since if K2^ and KG==i the Algebraic Index Theorem gives
G2 ^ o, and clearly C2 is odd.

Since p g ' ^ 6 , we see that there is a non-zero section s of the sheaf ^(K)®e^®^2;

hence if TT: S->-S is the blowing up of S at x andj/ we have that there is a non-trivial

section n*s of ^(^K)®^®^, where as before L and M denote the exceptional curves

of the first kind on S. It follows that there exists a divisor De| 7r*K-—2[L]—2[M] |

and since K^g we have D
2
>o. If D were numerically connected, as in the proof

of Theorem 2, we would obtain

?(8, 0{27C K)®^0^) = o,

which contradicts Lemma 10. Hence D cannot be numerically connected.

Let C be the divisor of zeros of the section j, so that C^/K, x andj/ are multiple

points of C and Tc- l(G)=D+2L+2M. Let D=D^+D2, let

A,=D,+(D,L)L+(D,M)M

and note that A^, Ag are effective divisors and that there are effective (possibly o)

divisors G, on S such that C^G^+Gg and

A-^-TO.

We have DiDg -C^-^DiL) (D2L)--(DiM) (DgM) and clearly

D^L+D2L=2, D^M+DgM^.

Hence D^D^C^C^—2 and we have equality only if D,L==D,M=i.
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Suppose first that Ci==o. Then D^L^o, D ^ M ^ o and since either DiL<o

or DiM<o (otherwise D^=o) we obtain

DiD^3.

Now suppose that Ci and Ga are effective and not o. By Lemma i and its proof G is

numerically 2-connected and C^ Gg is even, therefore if D is not numerically connected

we must have:

GiG2=2, D,L=D,M=i.

Clearly this implies that x andj/ are simple points of C^ and Gg. By our choice ofU we

may assume that KG^ ̂  2.

If KG^ 3 and if K2^ 10, the method of proof of Lemma i gives easily C^Cg^,

hence D^ Dg ̂  i. It follows that, if D is not numerically connected, then we may

assume KGi=2. Since GiCg^G^K—Gi) we deduce that C^=o. Now we can

write

G i = G + Z

where x, j/eG, KG ==2, KZ=o and G is irreducible. Since by our choice of U we

cannot have G2 < o and since C2 is even, the Algebraic Index Theorem shows again that

G^o.

By the theorem of Bertini we may assume, by further restricting U, that G is non-singular

of genus 2. Thus we have found an algebraic pencil {G} on the surface S.

Conversely, let {G} be a pencil of curves of genus 2 on S and let B denote the

parametrizing curve of the pencil. The pencil {G} can be viewed as a relative effective

Gartier divisor V^SxB over B, and the fibers of the morphism y:S->B over the

closed points ofB are the curves of the pencil. Let C^=f~
l
{x) be the fiber of f over

the point x of B, and, for x a closed point of B, let

^=^,®(P([CU)
be the normal sheaf of G^ in S (if Cg is non-singular, then ̂ ; is the sheaf of germs

of sections of the normal bundle of Gg in S).

Since dim^H^G^,./^ ) ̂  I
 ^

or every closed point xofB (this follows from Mum-
ford [n], lecture 22), we obtain that if Cg is non-singular then its normal bundle in S

is trivial, therefore the canonical bundle k^ of Gp is given by

^=K^.

Now we readily see that, if D/^K—Cp, then D is i-connected, because D+G,

is 2-connected by Lemma i (if D^D^+D^ then D^Dg+CJ^, D^D^+GJ^,
and (Di+D2)G,==2), hence by Theorem A and D^o we get

H^S.^K-EGJ))^.
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This shows that the restriction map

r^ : HO(S^(2K))->HO(C,,^®^(2K))

is surjective. Since 2K^==2^5 we deduce that the restriction of O^ to Qc ls ̂

2-canonical map of Gg. Hence Cai^Oc) ls a conic and G^—^O^Cy ls a covering
of degree 2.

It remains to show that Ogg is a double covering, or in other words that, if G, G' are

distinct fibers of/:S->B, then ^(CO+Oai^G')-

Clearly we have (I)2K(G)=(I)2K(G') ^ ̂ d only if every section of 2K vanishing
on G also vanishes on G'. Since we have shown that

H\S,0{2K-[G]))==o

we have the exact sequence

o->H°(S, fi?(2K)0^c) -^H°(S, ^(2K)) ̂ H°(C, ^c® ̂ (2K)) ->o;

therefore assuming ^KC^O^^K^7^ we ^d

dim^HO(S,^(2K)®J^®^)==dim^HO(S,^(2K)®J^)=P2-3.

It follows easily from this

dim^H^S, ̂ K)®^0^)^

whence using Theorem A, Corollary we conclude that, if D is an effective divisor

De| K— [G]— [G'] |, then D is not numerically connected (note that D2 = K2—8>o). Let

D=Di+D2 where the divisors D^ are effective and non-zero. By Lemma i we have

D^D^ + G + G') ̂  2, D^Di + G + G') ̂  2

and since K2^ 10 by hypothesis, the argument given in the proof of Lemma i shows

that there is equality only if KD^ ̂  2.

On the other hand, summing the two inequalities and using

(Di+D2)G=(Di+D2)G'=2

we see that ifD is not i-connected then equality must hold. We deduce that KD^ 2 and

K^K^Di+Da+G+C') ^ 8,

a contradiction. Q.E.D.

Remark. — The conditions given in Theorem 5 cannot be weakened too much.

For if B, B' are non-singular curves of genus 2 then S == B x B' is a minimal surface of

general type with pg ==4, K2 = 8 and the 2-canonical map Og^ ls a covering of degree 4
of a quadric, rather than being of degree 2.

We end this section with the following

Example. — There is a regular minimal surface S with K2 == 9, p == 6, q == o with

the following properties:
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(i) |K[ has one (closed) base point;

(ii) X113 is a rational normal ruled surface Fg of degree 4 in P5^);

(iii) X123 is isomorphic with a quadric cone embedded in P15^);

(iv) if S is the blowing up of S at the base point of | K ], then S has a pencil of curves

of genus 3 but no irreducible curve G with p{C)==2.

Proof. — The surface F^ is a P^bundle over a rational curve and it has a cross-

section B with Jf=—2. If L is the fiber of Fg then L, B form an integral basis for
rational equivalence on Fg and

L^o, LB=i, B2=-2.

The canonical bundle of Fg is

Kp^4[L]-2[B]

while 3[L]+[B] is the hyperplane bundle of Fg. The surface F^ is a quadric

cone Q, blown up at the vertex and 2 [L] + [B] corresponds to the plane section of the

cone Q^. It follows that for every m ̂  i the linear system [ m{2 [L] + [B]) | has no base
points.

We take m == 7 and choose a curve

A<>6|7(2[L]+[B])|

which is irreducible and non-singular. Clearly \ is disjoint from B, therefore

A=Ao+B

is a non-singular effective divisor on Fg. Since the rational equivalence class of A is

I4L+8B, which is divisible by 2, there is a double covering

TT : S-^Fa

which is branched on A. We claim that S is the surface S of the example, blown up

at the base point of |Kg|, and that F^X111 is the i-canonical image ofS.

The canonical bundle of S is

Kg^^K^+^Tc^A].

Now since n is a double covering and B^—2 we have, if A=TC-'1(B)3 that

^[B]=2[A]

and A2^—!. Clearly A is isomorphic to B, therefore p{A)==o and A is an excep-

tional curve of the first kind on S. If now C=7I;~"1(L) we get

Ks=3[C]+4[A]

and thus K^=8.
b

In order to compute /(^g) we use the signature formula for a cyclic covering
which gives
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K|-W§)=T(S)

=2T(E,)-^(A2)

=-^)=-48,

from which it follows that

X(^s)=7-

It is clear that A is the only exceptional curve of S, therefore a minimal model S

of S has K| == 9, ^g) ==7. By a result which will be proved later (Theorem 9 of Sec-
tion X) we have pg{S) ^6, therefore ^(^g)=7 implies

MS)=p,(S)==6
and S is a regular surface. Now

|3[G]+2[A]|+2A<=|Kg[

and since 3[G]+2[A]=^(3[L]+[B]) and

dim|3[L]+[B]]=5

we obtain that | Kg [ = | 3 [G] +2 [A] | + sA. This clearly implies that the linear system

| Kg | has one base point b and that S is the blowing up of S at b; also it implies that
X^=Fa.

Let p:S—^S be the contraction of A. Since GA=i and (C+A)A==o we see
that if r=p(G) then

PW^q+CA]

and Kg=3[T].

The linear system | [F] | has dimension i and b as a base point. Moreover,

since 7r|c: G->L is a double covering, we have that the curves F of | [F] | are hyper-
elliptic of genus 3.

Now we show that X^ is a quadric cone Q, embedded in P15^) by means of

^0(3). It is sufficient to show that X121 is not a birational model of S, since then X^ will

be the image of Fg by means of 3(2 [L] + [B]) (note that 2A is a fixed part of | 2Kg |).

We shall prove in fact that O^ identifies pairs of points of F belonging to the hyper-
elliptic pencil of F.

Let r be a non-singular element of | [F] ] and let

x+ye\h^\, x-^y

where Ap is the hyperelliptic bundle of F.

We have the exact sequence

o^^(2K)®^r-^^(2K)®^®.^-^^p(2Kr~[^+^])->o

and by Theorem A and K == 3 [F] we have

dim^Hl(S,^(2K)®^r^)=dimfcHl(S,^([^]--K))==o.
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The Riemann-Roch theorem now gives

din^H°(S, ^(2K)®^p)= 12
and we get

dim,HO(S^(2K)®^®^)=I2+dim,HO(^^^(2Kp-^+J;])).

Since Pg=i6, we have to show that

dim, H°(r, ^p(2Kp- [x +j/])) = 3

and since F has genus 3 and deg(2Kp- [x+jy])==4. this is equivalent to showing that

2K^—[x+y] is the canonical bundle of F. The canonical bundle Ap==2Ap of F is

[K]r+ [nr^inr- Now [F]? has one non-trivial section s with only one simple zero,

at the base point b of |K|. Clearly .s4 is a section of 2Ap and since | 2Ap| is composed
of |Ap| we get

s^h,h,

with ^eH°(r,^p(Ap)). It follows that s
2 is a section of Ap and

Ap=2[r]p;
this proves what we want.

Finally we show that S has no irreducible curve D with p(D) = 2.

If j&(D)=2 we have D2 ̂  o by the Algebraic Index Theorem. Let G==7r(D).

If 7r:D->G is a double covering we must have C^^D2^ o, and since the only irre-

ducible curves on Fg with non-positive self-intersection are L and B, we get a contra-

diction. If instead TC:D->C is an isomorphism we get j&(G)= 2, which implies easily

[G]==5[L]+2[B].

Now TT-^^D+D' and D' is isomorphic with D. Since

KD=KD'=(3L+B)(5L+2B)=7

and p(D}==p(D
f
)=2 we find D^D'^-5. Also (D+D^^C2^^ therefore

DD'= 17. On the other hand we must have :

DD'^GA=34. Q.E.D.

7. Birational maps, continued.

The arguments of the previous section fail to show that X-^X^ is birational

in all cases with K.2 ̂  3, because we need the existence of a divisor D in the linear system

|2^K~2[L]—2[M]|. Using additional arguments, we shall prove

Theorem 6. — Let S be a minimal surface of general type and let q==dim^El{S, 0) be

its irregularity. Then X-^X^ is a birational map if:
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K^4, pg==o or i,

K^S, Pg=
1
^ ?=°.

K2^, ^==i or 2, ?=o
and S A^y wo torsion.

Remark. — We shall prove in Sections X and XI of this paper that if K2 = 2,

pg==2, then <7==o and S has no torsion.

Proof. — Let x, y^^ be two distinct closed points of S and let TT: S->S denote the

blowing up of S at x,jy. Let also L, M be the exceptional lines of the first kind on S.

Using Lemma 10 we have that ^^{x) ̂ ^SK'OO ^ill follow from

H\S,^(2[L]+2[M]--27^K))==o.

Let De| 277* K—2 [L]— [M] |, assuming for the time being that D exists. By Lemma gA

D is i-connected if K2^, therefore we get

H^S^^-o

if K^2, by Theorem A, Corollary. Our aim is to show that H^J^^M]))^.

Now suppose:

Assumption A. — M is not a component of D.

Then since DM == i, D and M intersect transversally at a simple point ^ ofD. We

have a commutative exact diagram:

o o o

t t t
o —— (9^ —> ^®^([M]) ———> y ———> o

t t t
o —— C ———>• <!'([M]) ————>• ^n ———> o

t t t

0 ——— J"D ——> J^^dX]) ——> ^)®^u ——> 0

t t t
0 0 0

where .̂  is the normal sheaf of M in S and where y is a sheaf with support ^ and stalk

k{^) at ^

Assumption B. — We have:

dim^H°(D, ̂ ®^([M])) = i.
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Using B and

dim,H°(D, ̂ ) = i, H<(S,^) = o, ?(8, ̂ ) = o

we deduce the commutative exact diagram

o —^ H°(D,^) —^ H^D,^) -^ H^D^^dX])) -

H^S,^) ——-. H^S^CM]))

t t

o H^S^^EM]))

from which we obtain

dim^Hl(S,J^0^([M]))==dim^ImHO(D,^)nImHl(S^)}

the intersection being taken in H^D,^).

Clearly this implies that H^S.J^^Mj^^o if S has irregularity ?=o$ we

shall prove that if g== i the intersection is o provided a certain condition on D is satisfied.

Since ^ is a simple point of D, there is a unique irreducible component F of D

with ^eF, and F has multiplicity one in D. We shall denote by [L: C->r a normaliza-

tion of r and the point p"1^) on C will be again indicated with ^, since no confusion

should arise in the next argument.

Since q=i by hypothesis, there is a surjective morphism S-^E ofS onto an

elliptic curve E=Alb(S); composing this map with the inclusion of F in S we get a
morphism

9 : C-^E

which is surjective unless ^'H.
l
(E,(!}^)=o. Now it is clear that

dim^Im H°(D,^) nim H^S, 0)}

- dim,{8H°(C, ̂ ( M) /^c) n ?' H^E, ̂ )}

where 8 is the coboundary map induced from

o^^c(Kl)^c(b])/^o.

If we identify the space H^C, ̂ ) with the dual of H°(G,^), the space of regular

differentials on C, the elements of H^G, ̂ ) are linear functionals

<r,co>= S res^co)
a;6 C
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where r is a repartition on G. The subspace 8H°(G, ^(KD/^c) of H^G,^) consists
of the functionals

^(^

where r^ is a rational function which at ^ has at most a simple pole. The image of
H^E, 0^ in H^G, ^c) consists of the functionals

JEJ?^^^

where s is a repartition on E. If T] is a regular differential on E, using the formula of

traces one checks easily that the value of this functional on 9*7] is d<s, T]>, where d

is the degree of the morphism 9. It follows that if H^S.J^^M])) is not o then

^<^7)>==res^(p*7])

therefore 9*7] cannot vanish at ^. Obviously this implies that the restriction to D o

a non-zero regular differential ZS of S cannot vanish at a.

On the other hand, since M is an exceptional curve of the first kind, there is a
closed point t of M such that S itself vanishes at t. Hence ^ 4= t. We conclude that

dim^S.J^^IXl))^

if the following conditions are satisfied:

A) M is not a component of D;

B) dim^H°(S,^®^([M]))==i;

G) in case q==i we have teD.

Lemma 11. — Let D be an effective divisor on S with DM= i. Assume that (A) holds

and that D is 1-connected. Let also T be the irreducible component ofD with FM= i. Then

dim^H°(S, (P^(P{[M]))==i

except possibly if T is a rational curve.

Proof. — We follow Ramanujam's proof ([14], Lemma 3) of a similar result.

Since D is i-connected and F is not a rational curve we have that

H^S.^ed0^™))

consists only of constants. Now let a be a non-zero section in

ker{H°(§, ̂ ®^([M]))^H°(S, ̂ ^(IXI))}-

There is a maximal divisor D^ such that a goes to zero in H°(S, 0^ ®^([M])) and

o<Di<D. Writing D==Di+Dg one checks two exact sequences of sheaves

0 -^ ̂  0> ̂ ^([M]) -> ̂ ^([M])/^ -> o

o -. y -> ^D®^([M])/(T^ -> ̂ ^([M]) -> o
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where y is a sheaf with o-dimensional support; the exactness of these sequences depends

on the fact that D^ is maximal. Taking Chern classes we get

whence
^®^([M])) -^D^([M])) W W

i + M i+M i
..(^).

i+M—D ~~ I+M—DI ' i—Da

If y has support at the points p^, then c[^) == i — S ̂  where ^ ̂  o. Taking degrees

in the previous equation we deduce

DiD^DaM-S^D^M.
i

Now since F has multiplicity one in D, we have that F is a component of D^ 3 hence F is

not a component of Dg. This implies that Dg M == o, hence D^ Dg ̂  o and D is not

i-connected, a contradiction. Q.E.D.

We can now prove Theorem 6. Suppose it is false for a surface S. Then there

is a Zariski open set U of S such that for every closed point x of U there is j/eU,j/=(=.y,

such that

^KW-^SKCA

that is, every section of 3K vanishing at x vanishes also at y. Since our hypothesis

imply Pg ̂  5 except if K2 = 2, pg == i in which case Pg = 4, we obtain easily

^ i if K.^4, A==° or K2^^, A,== I

dim^H°(S, ̂ (2^K-2[L]- [M])) ̂  . , 5 ' 'A; v v L j L J / Y 2 in the other cases

because if pg^ i our hypothesis ^icW^^ROO implies that every section of 2K vanishing

on x vanishes also ony (taking a smaller open set U, if needed). It follows that there

is D with De| 27^1^—-2 [L]— [M] | and that, if t is a given closed point of S, we may

take D such that teD, except possibly if K2==45 pg==o or K.2=2, pg=i. Hence we

may choose D so that condition (G) will be satisfied.

Now we show that we may also suppose that condition (A) is satisfied too. For

if (A) does not hold, we have that

A=D-M(=|27^K-2[L]-2[M]1.

By Lemma 10 and the results of section V we have that the hypothesis OgK^) =(I)3K(JO

implies H^S.^+o; if K2^, since then A^o, Theorem A, Corollary, shows that

A cannot be i-connected, which contradicts Lemma 9, while if K.^2, since then

q==o by hypothesis, the exact sequence

o -^H°(S, 0) ̂ H°(A, ̂ ) -^(S, ̂ ) -^o
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shows again that A cannot be i-connected. By Lemma 9, we must have A ^ A ^ + A g

with A^^A2^TC1CK—L•—M. Writing C^==7r(AJ we have

Gi—Ca—K, x,jyeC,.

Since q==o and S has no torsion, numerical equivalence coincides with linear equiv-

alence, therefore

C.e|K|.

Now if pg = i there is only one effective canonical divisor and, restricting U if necessary,

we cannot have x, j^eC^. If instead p == 2, there is only one canonical divisor F with x,

yeT (restricting U, we may assume that x , y are not base points of |K|) and since now

dim|27r*K~2[L]—[M][ ^ i we see that | 2TC*K—2[L]—[M] | cannot have M as a

fixed curve. This proves that we may choose D satisfying (A) and (C).

Finally we may restrict U so that (B) is satisfied. Otherwise, if F is the component

of D which meets M, Lemma 11 shows that G=7r(r) is a rational curve on S with yeC.

This clearly would imply that S would have an algebraic system of dimension at least i of

rational curves, which is absurd because S is of general type. It follows that

?(8, ̂ ® ffl{ [M])) == o and ^{x) + (R^),

a contradiction. Q^.E.D.

8. Birational maps : K2 == i and p^ == i.

Theorem 7. — Let S be a minimal surface of general type such that:

K2^!, ^==1, q==o

and S has no torsion.

Then X^X^ and X-^X^ are birational maps.

Remark. — We shall prove in Sections X and XI of this paper that if K2 == i and

p — i then q = o and S has no torsion.

Proof. — Since pg>o, it is sufficient to prove that X-^X^ is birational.

Lemma 12. — Let S be as in Theorem 7. Then a general element of \ 2K| is irreducible

and non-singular.

Proof. — | 2K| has no fixed part. For if

| 2K |= [G |+Z

we have KG + KZ == 2, hence KZ = i or o. We cannot have KZ = i since then

KG=i and the Algebraic Index Theorem would give G/^K, hence C==K because

q=o and S has no torsion, which would contradict ^==1. Also we cannot have

KZ==o, by Theorem 2, Remark 2.

Now a general element Ce|2K| cannot be singular. Otherwise by the Bertini
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theorem, since C2 = 4, the curves G would not have variable intersections outside the

base points, which contradicts

dim|2K|==P2~i=2. Q..E.D.

We have to prove that there is a Zariski open set U on S such that one may separate

points ofU using sections of3K. Since pg== i, there is one canonical curve F, therefore

|2K|+rc=|3K|.

We take UcS—<^ and A:,J^<^, x-^y such that ^KW^^K^)- Then every

section of 2K vanishing at x vanishes also at y and we get

dim H°(S, ^(2K)®J^®J^) = P^-1 =2.

It follows from this that there exists a non-singular curve Ge|2K| with

x+^eG.

Let S be the blowing up of S at A: andj^ and let L, M be the exceptional lines of

the first kind on S. Let De|7T*2K—[L]—[M] | with 7r(D)==C.

Since ^SKW^^SK^)? Lemma 10 gives

dim^H^S, ̂ (s^K)®^0-^^0

therefore by duality
dim^H^S.J^^M+EM]))^.

We have the exact sequence of sheaves

o->J^®^([L]+[M])^^([L]+[M])->^(M+[j])-^o

where ^=DnL, j /==Dn M, because D is non-singular, and we get the cohomology

sequence

o-^HO(S,^[L]+[M]))^HO(§,^(M+[^))^

->H1(S,^®^([L]+[M]))^H1(S,^[L]+[M])).

The Riemann-Roch theorem implies

dim.H^S.^aLl+LM]))^

because pg==T. and ^==0, hence %(^)=2. It follows from this

dim,H°(S,^(M+^]))==2

and D is hyperelliptic and [x] + [jy] is its hyperelliptic bundle.

Hence the curve G is also hyperelliptic and its hyperelliptic bundle h^ is given by

AC-M+W

Since C has genus 4 the canonical bundle k^ of G is

^c::==3Ac=3Kc•
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On the other hand, K^ has a non-trivial section s and thus

^eH^C.CWc)).

Since \^h^\ is composed of \h^\ we get

s^h^h,

with ^eH°(G,^(Ac)). It follows from this that s is a section of A^, whence

Kc == Ac.
Thus we have an exact sequence

o^(-K) ̂ (K)->^c)->o

and a cohomology sequence

o-^H°(S^(K)) ̂ H°(G, ^(Ao))->o;

since din^H°(C, fi^c))^ and ^=i, we have a contradiction. Q.E.D.

9. Birational maps : K2 = 2 and p^ == i.

Theorem 8. — Let S be a minimal surface of general type such that

K2^, p,=i

and either q==i or q==o and the torsion group of S is Zg.

Then X-^X^ and X-^X^ are birational maps.

Remark. — We shall prove in Section XI that if q==o the torsion group of S is
either (o) or Zg.

Proof.

a) The torsion case. — The proof of Theorem 6 shows that the result follows unless

if for x, y such that ^{x) ==^{y), letting S be the blowing up of S at A: andj^ and L,
M the corresponding exceptional lines, we have:

| 2n* K— 2 [L] — 2 [M] | is not empty,

and if De| 27T*K—2[L]~-2[M] [, then D is not i-connected and

D^Di+Da
with Di^Da—Tr'K—L—M.

Since the torsion group is Zg, we deduce that

Di=Da

if x, y belong to a sufficiently small Zariski open set of S. Moreover, the cohomology
sequence of

o->^®^([L]+[M])^^([L]+[M])-^^®^([L]+[M])-^o
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shows that din^H°(S, ^®6?([L]+[M]))=2, because dim^H^S, ^([L]+[M]))==o
by the Riemann-Roch theorem and

dim^H^S^^^m+EM]))^!

(by duality, this means that the sections of K+ [G], where C==n(D^), do not separate x

and y on S). Hence, restricting the open set U if necessary, we arrive at the following

statement: let [G] be the line bundle on S with

[G]-K, [G]+K.

Then dim^ [ [C] [ == i, and if [ [G] | == | [F] [ + X where X is a fixed part, we have that the

generic element F of |[F]| is irreducible, non-singular and hyperelliptic. The map-

ping OgK identifies pairs of points of F which are zeros of sections of the hyperelliptic

bundle hy of F.

It is easily seen, using the Algebraic Index Theorem, that either X == o or X is a

fundamental cycle of S.

Suppose first that X=o, so that [F]==[C].

The cohomology sequence of

o-^K- [C]) ->^(3K) -^c(3Kc) ̂ o

shows that the restriction map

re : H°(S,^3K))^H°(G,^(3Kc))

is surjective. Hence 03K|c coincides with Og^ and is not birational. Therefore,

since C has genus 3, the linear system | 3K.c | is composed of the hyperelliptic pencil | h^ |.
Hence

3Kc==3Ac.

Since pg=== i, K^ has a non-zero section s and we obtain

^=^2^3

with ^eH°(C,^c(^)), from which it follows easily that jeH°(G, ^c(^c)) ^d thus

KQ == h^.

This gives an exact sequence

o-^(K- [C]) -^(K) ->^(Ac) ->o

and since H^S, ^(K.—[G]))==o for z = = i , o, the cohomology sequence shows that

the restriction map

ro : H^S.ff^))^^^^^))

is an isomorphism. This contradicts pg == i.

Now suppose that | [C][ = | [F]| +X has a fixed part. Reasoning as before, we

see that the restriction map

r, : H^S^K-tXj^H^F^sKF-pqF))
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is surjective and since OSKJF ls n
o

t birational, we have afortiori that OsK-ralp? ^d hence

°3KF-[X]F? are not birational maps. Since F has genus 2 and sKp— [X]p has degree 4,
we get

3KF-[X]p=2^.

Clearly AF=KF ([F]p is a trivial bundle) therefore

[X]p==Kp.

We deduce the exact sequence of sheaves

o-^ffl{[X]-K)^(!){[X]+[F]-K)^->o

and a cohomology sequence

o^H°(F, ̂ ) -^(S, ff([X]-K)).

By duality, this implies that

dim^H^S.C^K- [X])) ̂  i

and since H^S, fl?(2K))==o, the fundamental cycle X must be a fixed part of |2K|.

This contradicts Theorem 2, Remark 2, and proves Theorem 8 in case the torsion
group is Z^.

b) The irregular case. — Now we assume that <7==i , hence

X(^)=i and P^ =3. PS =7-

Let E==Pic°(S) and let L^ ueE be a Poincar^ family of bundles such that LQ
is a trivial bundle. We have:

LM+L^=L^^.^

for ^ yeE, where % + y is the sum on the elliptic curve E. We define K^=K+Ly
and the Riemann-Roch theorem gives

dim,H°(S, 6?(KJ)= i +^?(8, fi?(KJ)

for z/+o. We cannot have dim^H°(S, ^(KJ)=2, otherwise if^i , ^ were linearly
independent sections of Ky, j^, j^g, ^ would be linearly independent sections of 2K^.

Now the Riemann-Roch theorem and Theorem B give easily

dim,H°(S^(2KJ)=3

and we would get that sections of 2K^ would be products of sections of K^. This is

clearly impossible, because 2K^==K^+K^_^ for every veE and since K, has a section
for every v we readily get a contradiction. Thus we have proved

dim,H°(S,^(KJ)== i for ^eE

i for u==o
dim.H^S.^KJ)^

o for u 4= o.
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We denote by C^ the divisor of zeros of the (unique up to a scalar factor) non-
trivial section of K^.

The general curve Cy is irreducible. If not, we must have

G,=F,+X

where X is a fundamental cycle and where F^ is a curve with

KF,=2, F^o, F,X=2.

There is a surjective morphism

p : S->E

with fiber F^. This is impossible, because since X is made up of rational curves, we have

that p(X) is a point, therefore F^X==o, a contradiction.

Now assume that $3^ is not a birational map. Then the sections of gK do not
separate points on S; since

C,+C,+C,e|3K|

if u+v+w==o, we deduce that if ^W^^KC^) anc! xe
^, then yeG^ and the

restriction ^KJCu cannot be a rational map.

If C^ is non-singular, as in the torsion case we obtain that the restriction homo-
morphism

^ : HO(S,^(3K))-^HO(C„^(3KJ)

is surjective. Since G^ has genus 3 and ^s^Cu
 = ^sKc ls not birational, we find that C^

is hyperelliptic and, exactly as in the torsion case, that

^ = ^Cu

where Gy is the hyperelliptic bundle of G^.

Now we obtain the exact sequence of sheaves

o^(K-KJ ->^(K) ̂ (A) ->o;
since by duality

dim.H^S, ̂ (K-KJ) == dim.H^S, <P(KJ) = o

the cohomology sequence gives an isomorphism

HO(S,^(K))^HO(G„^(AJ),

contradicting that pg = i.

Hence the general curve C^ must the singular.

Proposition 4 (Van de Ven). — Let S be a surface of general type. Then S does not

contain an algebraic system of dimension ^ i of elliptic curves.

Proof. — Let F be the parameter curve of an algebraic system of dimension i of

elliptic curves {EJ, zeF, on S. Let S be the graph in FxS of the correspondence

^l->Eg. If S is a desingularization of S, it is easily seen that the general curve -^xE^
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on S becomes non-singular on S, even if the general curve E^ is singular. Let E^ be

the corresponding elliptic curve on S. By the construction of S, we have E^==o, there-

fore S—^r defines a pencil of elliptic curves on S and S is of special type, by classification
of surfaces.

On the other hand, the projection

p : S-^S

is surjective. Hence we obtain a proper surjective morphism

/: S->S

of a surface of special type onto a surface of general type. This is impossible, because
one would get

PJS)^PJS)

by lifting tensor 2-forms of S to 2, contradicting Theorem 2, Corollary and the fact

that PJS)==0(m). Q.E.D.

By Proposition 4, Gy has genus 2 and only one double point p, which is either an
ordinary double point or a cusp.

We blow up S at p and obtain a surface S, with an exceptional line L. We denote

by C the proper transform ofCy; clearly G is non-singular of genus 2.
/^/

If TT:S->S is the contraction of L we have

[G]+2[L]=n^

Ks^K+[L],

L2^-!, C
2
=-2, GL=2.

We also know that Og^ | c is not a birational map and afortiori we obtain that O^/gR - K^) | S

is not birational for every yeE. We have the exact sequence of sheaves on S:

o^(7r-(3K-KJ- [6]) ->^(3K-KJ) -^cWsK-KJc) -^o.

Now 7r*(3K—KJ—[C!]=7i:*K_^_^-~2[L] and if v is a general point of E we have

H°(S,^K_,_,,---2[L:]))=o

otherwise p would be a multiple point of G_^_^ and C^^_,,. Gy ̂  4, which is impossible.
Also

dim,HO(S,^(7^+(3K-KJ))=dim,HO(S^(3K-KJ)=3;

since G has genus 2 and TT^K—K,,) .€==4 we conclude that the restriction map

re : ?(8^(^(3^ KJ))^H°(G,^(^(3K-K,)c))

is an isomorphism. Hence ^(SK-K^ ls not birational, and we conclude that

^(3K-Kjc=2Ac,
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where h^ is the hyperelliptic (canonical) bundle of C. Hence if v, w are general points
of E we conclude that

^(K,-KJ,

is a trivial bundle. Now we obtain the exact sequence of sheaves on S:

o->^(7^#(K,-KJ-[C])-^^(7^+(K,-KJ)-^^->o.

The cohomology sequence gives

dim^S, ̂ -(K,-K,)-[G])) ̂  i

and since ^(K^KJ-[G]=-^K^_,+2[L]

we get dim^H^S, fi?(-7r*K^+2[L])) ̂  i

if t is a general point of E. By duality, this implies

dim^H^S^^^K+K,)-^]))^!,

therefore we conclude that p is a base point of the linear system | K+KJ on S.

This is clearly impossible, because for every ^ we have

G,+C<_,e|K+KJ

and this would imply that every curve G^ would pass through p. Since p was the double

point of a general curve G^, all curves G^ would have a double point at p, contra-

dicting G^=2. d.E.D.

10. Irregular surfaces of general type.

In this section we study irregular surfaces of general type and prove that their
genus is small.

We begin with an upper bound for the geometric genus

^dim^S^),

first obtained by Noether (see for example [5]).

Theorem 9. — Let S be a minimal surface of general type. Then we have:

^^1^+2, K2
 even

P^^+^^odd.

Proof. — Let

|K|=|[C]|+X,

where X is a fixed part, possibly X = o. We consider two cases depending on whether

or not | [C] | is composed of a pencil.
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Case 1. — |[C][ is composed of a pencil, possibly with base points.

Now we have G^^[F] for some integer a^ i and some line bundle [F], F irre-
ducible.

We have pg ̂  a + i and if equality holds then

dim,H°(S^([F]))=2.

We have KX ̂  o therefore K2 ̂  aKF and since F2 ̂  o we have KF ̂  2, because

K^2. Hence K^2a and

P^^+i.

Case 2. — |[C]| is not composed of a pencil.

We follow here an argument of Deligne.

The general element G of |[C][ is reduced and irreducible. We have the exact

sequence
o -> fi?(K) -> ^(K+[G]) -^ coc -> o

where o^ ls tlle dualizing sheaf of G. Since C is connected and G^o, we have by
Theorem A, Corollary

dim^S^K + [C])) = o,

therefore the cohomology sequence implies

dim^H°(G, 0 = dim^c H°(S, ^(K + [C])) + ?.

By the Riemann-Roch theorem, we have

dim^H°(G, 0 =^(G2+KC)+ i.

Also it is clear that

dim,reHO(S^(K+[C]))^2dim,reHO(S^([G]))-I =2dim,H°(S, ^([C]))-3 =2^-3,

the last equality because |[C]| is the non-fixed part of |K|. Hence

^A-S+^^G'+K^+i.

We have C^KC^sI^-sKX-GX and since KX^o and GX^o we obtain

G2+KC^2K2

and finally pg ^ ^ K2 + 2 - ^ q. Q..E.D.

Remark. — We have in fact proved that if [ K [ is not composed of a pencil plus

a fixed part then if |K[=[[G]|+X we have

A^+^^KX-^CX;

note that if X>o we have GX^2 by Lemma i.
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Lemma 13. — If q ̂  2 ^ if \ K ] ^ composed of a pencil plus a fixed part we have
^

^^.P,=
Proof. — A simple analysis shows that in Case i of the proof of Theorem 9 we have

A^K2

unless |K|=|^[F][+X, a^pg-i, KF=2, F^o, FX=2 and dim^H°(S, ^([F]))=2,

in which case J^^K^+I, K2 even, ^==- IK2+- I , K2 odd. Since |[F]| is SL rational

pencil, we have

dim.H^S,^-^]))^

by Theorem A, therefore the natural map

H^S.^-^S,^)

is injective. Since the general fiber F has genus 2 we have that

^=dm^H l(S,^)=2.

Now for every fiber F the homomorphism

Pic°(S)->Pic(F)
has finite kernel, therefore

either F is irreducible and non-singular of genus 2;

or F has two distinct components A, A' which are elliptic curves.

It follows that the special fibers of the pencil F are of the type

A^A'^-i,

and where the other components are non-singular rational curves Ee^, with

E^^;

all components have multiplicity i in the fiber (see Ogg [13], who has classified the possible
special fibers in a pencil of curves of genus 2).

Let us denote by F^ a special fiber of the pencil with v rational components and

let m^ be the number of such fibers. Computing the Euler-Poincare characteristics

(coefficients in Q^or Q^) we obtain (see for instance [15], Chapter IV, Theorem 6)

^S)^[S]=^(P1) x(F)+^bc(FJ-^(F)]
00

==—4+ S m^+i)
v=0

486



CANONICAL MODELS OF SURFACES OF GENERAL TYPE

because (see [15], Chapter IV, Lemma 4 and its proof) :

xCF^-v-i.

211

We have
12 (^+^)[S]=xW

^--7+A

i K2 even

——^-K^ i
K2 odd

therefore

and thus

o K2 even

-6 K2 odd
c^]=5K2+

2
v / , \ T^P ^ 4 K2 even
S^(v+I)=5K2+ ^

2 K2 odd.v=0

Let F^ be a special fiber and write

F^=A+Ei+. . .+E,+A' ,

where A, A' are the elliptic components and E^(=<?.

The curves A, E^, . . ., E^ are linearly independent in Num^S), for if

^A+S^E^o,
i

intersecting with A and Ei, . . ., E, we get n==n^= ... ==n,==o. Clearly if we take

the union of these curves for all special fibers F, they are still linearly independent in
Num^S). It follows that

00

rank^Num^S)^ 2; m^+i).
v==0

and

On the other hand, since char(A;)=o, we have

rank^Num^S) ̂  dim^H^S, a1),

dim, ?(8, ii1) = ̂ [S] + 2?-2xW

=4K2+
4 K2 even

-i K2 odd.

Hence 4K2+
4 K2 even

-i K2 odd

=dim„Hl(S, Q1) ̂ rank^Num^S)

S m^(v+i)
v=0

:5K2+
4 K2 even

-2 K2 odd.

It follows that K2^!, a contradiction. Q.E.D.

457



212 E. B O M B I E R I

Lemma 14. — Let S be a minimal surface of general type with irregularity

^din^H^S. î.

Then we have ^{(P) ̂  ̂ K2.

In particular, if q = i we have pg ^ - K2.

Proof. — Since S is irregular, for every integer m ̂  2 there is a cyclic unramified
covering

TT : §-^S

with group Z^ acting freely on §. We have

Ks=^Kg, K|==77zK|, x(^s)=m^s)

and S is again a minimal surface of general type, with irregularity

?(S)^(S).

We have ^(S)==m^(^g)+^(S)—i therefore by Theorem 9

^x(^s)+?(S)-i^mK|+2;

the result follows by letting m->oo. Q.E.D.

Theorem 10.—If p^^K^ 2 or if ̂ =^K2+3, ̂  y==o.

Proo/'. — This follows from Lemmas 13 and 14 and the Remark to Theorem 9.

In what follows, we use repeatedly the fact that /(<P) ̂  i, which implies

?^-

Theorem 11 (Kodaira). — If K^i, then q=o.

Proof. — By Lemma 14, if y>o, we would have

i<^(0) ̂ iR2^,
-^ 1 - 2 2'

a contradiction. Q.E.D.

Theorem 12. — If K2 = 2 and if pg == 2 ^T? y = o.

Proo/̂ . — Lemma 14 shows that if q>o then we must have

?(S)==2,

hence x(^s)=1-

We shall assume ^(^g) = i and derive eventually a contradiction. Let S be an
unramified covering surface of S with covering group Z^. We have

K|=8, x(^s)=4

hence ^(S)=3+?(§); moreover y(S)^2.
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By Lemma 13 Kg is not composed of a pencil and by Theorem 9, Remark it cannot

have a fixed part. Since the base point set of Kg is invariant by the group Z^ acting

freely on §, we have either no base points or 4 base points.

By Theorem 10, y(S)=2. The canonical image X^ ofS is a surface of degree 8

or 4 in P^A;), not contained in any hyperplane of P4^). Hence there are at most

2 linearly independent hyperquadrics of P4^) containing X^. This means that

if s ^ y . . .3.55 are linearly independent sections of Kg then there are at most 2 linearly

independent relations between the 15 sections ̂ ., i ̂ i^j^^ of 2Kg. It follows that

P2^i5-2==i3.

On the other hand,

P^Kl+^g)-^,

a contradiction. Q.E.D.

We end this section by proving that, if S is a surface of general type, then jJ^B) ̂  i.

Since

X(^=^+^)[S]

and since ^J[S] ̂  i if S is minimal, the result will follow if we show that c^[S] ̂  o. This

is well-known, but we give the following theorem for completeness.

Theorem 13. — Let S be a surface with c^\S\<.o. Then S is birationally equivalent to

a ruled surface.

Proof (Gastelnuovo). — Since ^[S]<o, S has irregularity

^din^H^S,^!.

Let TT:S-^S be an unramified abelian covering with covering group Z^; we have

C^ [S] = mC^ [S]^— 77!.

Since ^[S]=2—4?(S)+^(S)

^2-4?(S)+i+^(S)

we deduce that pg(S) ̂  2y(§)—4 ifTTZ is sufficiently large, say w^5. Now let V be the

vector space of regular i-forms of § and let W be the vector space of regular 2-forms.

The exterior product now defines a homomorphism

a : A^-^W

and since dim^W===j^(§) we see that ker(a) has codimension ^^(§). The simple

2-vectors in A^ form a cone of dimension 2 dim^V—3=2y(S)—3, therefore if

A(S)^(S)~-4
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we see that the kernel of a contains a non-zero simple 2-vector. Now this means that

there are two regular differentials o>, o/ such that

co, <*)' are linearly independent,

COACO' = o,

therefore there is a non-constant rational function 9 on S such that

(0==(pCO'.

Now consider the linear system |[C]| of level curves 9= const. ofcp. Since the non-

zero i-form

o)—9(G) <x>'

vanishes identically on G, we deduce that

dim^ker^S, 0) -^(C, ̂ )}^ i

and thus, by Theorem A, |[C]| is composed of an irrational pencil. Let

/: S->B

be the corresponding morphism onto a curve B of genus p ^ i. Taking Euler-Poincare

characteristics we get

^[S]=x(S)-x(F)x(B)+S^(F,)-x(F)]
Z6B

^%(F)/(B)

where F is a general fiber and F^=/-l(^). Since B has genus ^ i we have ^(B) ^o

and since ^[S]<o we must have

X(F)>0.

Hence F is a rational curve and S is birationally equivalent to a ruled surface.

Finally, since the group Z^ acts freely on S it is immediate that S=§/Z^ has again

an irrational pencil

/: S^B/Z,
with rational fibers. Q.E.D.

Remark. — A closer analysis of this proof shows that a minimal surface S has

^[S] <o if and only if S is a P^bundle over a non-singular curve of genus p ^ 2.

ii« The torsion group.

Theorem 14. — Let S be a regular minimal surface of general type, with torsion group of

order m. Then we have

A ^ 1
 V2 i 3ASs-K^-i.
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Proof (Deligne). — IfS has torsion group of order m, there is an unramified covering

surface S of S with

7C : S->S

of order m, We have

K|==mK|, z^-^W.

If S has irregularity ^(S)^i , Lemma 14 gives ^((Pg) ^-Kg, therefore

i+^(S)^K2.

If instead S is a regular surface, we obtain

m(i+^(S))=i+^(S)^K|+3

by Theorem 9.
Q.E.D.

Corollary. — If K2 == i, pg == i ^ torsion group is either (o) or Zg. 7/' K2 == 2, ^ == i

^zrf ^ == o ^ torsion group has order ^3. jy K2 == 2, ^ == 2 ^ surface S Aaj %<? torsion.

Theorem 15. — If K2 = i, ̂  = i ^TZ S A^J TZO torsion. If K2 == 2, ^ === i ^yza? y = o

^ torsion group of S is either (o) or Zg.

Proof. — Assume K2 == i, pg = i. By Theorem 11, we have q==o. Now suppose

the torsion group is Zg. There is a line bundle [G] with

[G]-K, C+K, 2[G]=2K

and the Riemann-Roch theorem shows easily that

dim|[G]|==i.

Since P2==3 and 2[G]=2K, we deduce that 2K is composed of the linear system |[C]|.

On the other hand, since ^==15 there is a canonical curve r, therefore

2F==C,+C,

where C^e|[C]|. Since Kr==i , we must have

r==A+z
where A is irreducible with KA == i and where KZ = o, therefore G, == A + Z^, where

the Z, are effective and KZ^==o. Since Gj^Cg^r, we get also

z^^^z^/^'z

therefore Z^ === Zg == Z

by Proposition i. This gives C!i==C2==r and [G]==K, a contradiction, and the

result follows from Theorem 14, Corollary.

Next assume K2=2, ^==15 q==o and let [G] be a line bundle on S with

[G]-K, [G]+K.
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We have

dim,H°^(P{[C]))=2, dim.H^S^aG])) .̂

Assume 2[C]=(=2K. Since Pa =4 and

dim^H°(S, 0(2K- [C])) = 2,

we see that if ^5 ^23 <T!) °2 are linearly independent sections of [G] and 2K— [C] then
^Op i ^z, j^ 2, are linearly independent sections of 2K and a basis ofH°(S, ^(2K)).

By Theorem 2, Remark 2, |2K| has no fixed part in ̂  therefore |[C]| has no fixed

part, and by the argument of Lemma 12 the general element of | [G] | is irreducible

and non-singular, of genus 3.

The cohomology sequence of the exact sequence

o->6?(2K-2 [G]) ̂ (2K-- [C]) ->^((2K- [G])c) -^o

now shows that the restriction map

re : HO(S^(2K-[G]))->HO(C^c((2K-[G])c))

is an isomorphism. It follows that C is hyperelliptic and

(2K-[G])o=Ac,

where h^ is the hyperelliptic bundle of G. Since 2^c is the canonical bundle of C, we

deduce that
2(2K-[C])o=(K+[C])c

whence S^^SEGJc. ^d 3Kc=3(2K-[G])c=3Ac.
Since the restriction map

re : H^S^K^H^G^Kc))

is an isomorphism, we have that

dim,H°(C,^(Kc))=i

and KC has a non-trivial section s. Now since G is hyperelliptic of genus 3 we have

that |3AJ is composed of the pencil IAJ, therefore

^==h^hs

where ^eH°(C, ^c(^c))- Since the sections ̂  have only two zeros, the previous equation

implies that

^H°(G,^(Ac))

and thus Kc==A;c. This contradicts the fact that dim^H°(G, ̂ (Kc))= i-
Thus we have proved that if [G] is a line bundle on S with [C]^K, [C]+K

we have:
2[G]=2K,

therefore the torsion group ofS has exponent 2. Since its order is ^ 3 by Theorem 15,

Corollary, it must be either (o) or Z^. Q.E.D.
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12. Birational maps by projective methods.

Theorem 16. — Let S be a minimal surface of general type, with

^=3, xW=i.

Then X-^X^3 is a birational map.

Proof.—We have P2==4, P3==io and the 3-canonical model X133 is embedded

in P9^) but not in a projective space of lower dimension. Since |3K| has no base

points, the degree of the surface X^ must be a divisor of (gK^^sy, therefore if

Og^S-^X^ is not a birational map we must have

degX^-9.

We shall prove that in this case X133 is a projective plane P2^) embedded in
P9^) by means of the sections of the sheaf <Pp«(3).

X^ cannot contain a i-dimensional algebraic system of lines. Otherwise, if

A were such a line, L == O^GA) would be a divisor on S with gKL == 3, hence KL == i.

Since K2 = 3, the Algebraic Index Theorem gives L2 ̂  — i and there would be only
a finite number of divisors L.

Now we consider general projections

X^V^Vs-^...-^

as follows. V^ is a surface of degree h in P^(A;) without an algebraic system of lines,

and V^_^ is a general projection of V^ into P^"1^), from a general simple point of V^.

We end up with a cubic surface VgCP3^) with 6 exceptional curves of the first kind

on it, in general position. Hence V^ is a non-singular cubic surface and Vg is also

non-singular. Clearly, since the mapping V^->V^_i blows up the point of projection

but does not contract anything, we have

W)=Wo)+6,

where b^ is the second Betti number of the surface. However, ^(¥3) =7, therefore

Wo)=i

and it follows easily from this that V^ is a projective plane P2^), embedded in P9^)

by means of ^p«(3).

The linear system of lines on P2^) gives a linear system of skew cubics on Vg,

of dimension 2 and degree i. Hence we get on S, by lifting up this linear system, a

linear system |[L][ of curves with

KL==3, L2^

and dimJ[L]|^2.
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Clearly | [L] | is not composed of a pencil and if ^, ^, .$3 are linearly independent

sections of [L] we have that s^, i ̂  i^j^ 3, are linearly independent sections of 2[L],
Hence

dim^H°(S^(2[L]))^6.

On the other hand, K2 = 3, KL ==3, L2 = 3 implies, using the Algebraic Index

Theorem, that

[L]-K.

Now Theorem B and the Riemann-Roch theorem show that

dim,H°(S,ff(2[L]))=P,=4,
a contradiction. Q.E.D.

13. Conclusions, comments and problems.

In order to prove our Main Theorem, we note that: statements (i) and (ii) follow

from Theorem 3; statement (iii) follows from Theorems 4, 6, 7, 8, n, 12, 14 Corollary,

15 and 16 and the analysis of the cases K2 == i, pg=2 and K2
 == 2, pg==3 in Kodaira [8];

using Theorems 10 and n, this can be obtained also from Enriques [5]. Finally sta-

tement (iv) follows from Theorem 5.

The question of whether the exceptions with 'K?=i, pg==o and K.^2, A==°

really occur is still open. We have proved that if K^i, pg==o then X-^X^ is

a birational map; the main difficulty here is to show that a surface S with K
2
^ i, pg==o

does not contain a pencil of curves of genus 2 (1).

We can also show that if K2==2, pg=o, then X-^X^ is a birational map,

except possibly if S contains a pencil of curves of genus 2 or 3 or if S can be represented
as a double covering

S-^P2

with branching locus a curve of degree 10. Such surfaces have been constructed by

Gampedelli [4] (we note, however, that a similar construction proposed in [4] for surfaces

with K?== i, pg==o is not correct) but I have been unable so far to prove that X-^X133

is a birational map for these surfaces. We note also that the analysis in Enriques [5]

of surfaces with K^i or 2, pg==o is oversimplified. Enriques5 statement that |3K|

has no base points if K2^!, pg==o is not correct, counterexamples being known (I

can show that this is related to the torsion of the surface S), and his treatment of surfaces

with K.^2, pg==o holds only if the 2-canonical system |2K| has no fixed parts.

It would be interesting to elucidate the structure of surfaces with K
2
=I, pg==o.

Examples constructed by Godeaux (see [3] for a modern treatment) have Zg as torsion

group. I can show that the order of the torsion group is always ^ 5, and the question

is whether there are surfaces with K2^!, pg^o other than the Godeaux surfaces.

(1) Our proof is too long to be inserted here; we hope to return to this argument in another paper.
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Concerning surfaces with K2 =2, pg == o, the only examples I know of are those

of Godeaux with torsion group Zg and a double plane of Gampedelli [4]; it is not clear

what the torsion group of Gampedelli's surface is.

From (iii) of our Main Theorem^ we see that there are finitely many algebraic

families of surfaces S for which Og^ ls not birational, but S does not contain a pencil of
curves of genus 2; it would be of interest to have other examples of these surfaces, beyond

those given here.

We have proved that X^3 is always a normal model of S, and Kodaira [8] has

proved that X^ is a projectively normal model of S. It is still an open question whether

X^ is a projectively normal model.

Other interesting problems about surfaces of general type are the problem of the

structure of the canonical map X-^X^ and the problem of inequalities between

K2 and %(^). From Theorem 9 we have

^^E^+s

and this is best possible; it is conjectured that

K2^^)

but this remains unsolved (see Van de Ven [16] for results in this direction).
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