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CANONICAL MODELS OF SURFACES OF GENERAL TYPE

IN POSITIVE CHARACTERISTIC

by TORSTEN EKEDAHL

Recall that if X is a smooth variety then the canonical bundle, (Ox? ls ^e sheaf

of highest order differentials $ we will use K^ to denote the corresponding divisor class.

Recall further that a smooth, proper and connected surface X is said to be of general

type if the dimension of the space of sections of co^ := ̂ n grows quadratically with n

when n tends to infinity and that X is said to be minimal if it contains no smooth rational

curves with self-intersection — 1.

The proof of the following result is then the principal aim of the present article.

Main theorem. — Let X be a minimal surface of general type over a field k, algebraically

closed of characteristic p > 0. Then

(i) For any i> 0, H^X, co^1) == 0 except possibly when i == 1, p === 2, y^x) == 1

and X is (birationally) an inseparable double cover of a K.3-surface or a rational surface. In any

case A^X, co^1) < 1-

(ii) Ifm ̂  3 or m = 2 and K2 ̂  2, then the linear system \{m + 1) K^ | is base-point free.

(iii) If m^ 4 or m == 3 and K2 ̂  2, then \(m + 1) K^ | is very ample considered as a

linear system on the canonical model of X.

In characteristic zero the corresponding result was proved by Bombieri ([Bo]).

It should be noted that there are minimal surfaces X of general type with H^X, o^1) =(= 0

as we will see.
The technique of proof is very similar to (loc. cit). and let us quickly review Bom-

bieri's basic idea. To begin with (the analogue of) i) was proved by appealing to a

vanishing result ofMumford, whereas the rest was reduced to a vanishing result of Rama-

nujan. This was done, for instance in ii) by noting that it is equivalent to the natural

quotient map ^+1) ̂  co^"^/^ (^+1) inducing a surjective map on global sections,

where x is any closed point on X and m^ is the ideal of functions vanishing at x. Blowing

up x this is equivalent to the natural map n* co^4'^ -> TC* O^^^E inducing a surjection

on sections, where n: X -> X is the blowing up map and E the exceptional curve for TT.

13



98 TORSTEN EKEDAHL

Using the long exact sequence of cohomology this is certainly implied by the vanishing

of H^X, TT* a)^4"1^—E)) which by duality is equivalent to the vanishing of

H^X, (TC* <^(— 2E))~1). After some work Bombieri shows that Ramanujan's vanishing

criterion can be applied to TC* (o^(— 2E). The main difference between Bombieri's proof

and the one to be given here is that there are no vanishing results for cohomology in

positive characteristic of strength comparable to those that exist in characteristic zero.

We will instead obtain various consequences of non-vanishing and combining these we

will eventually reach a contradiction (to the assumption of non-vanishing). The starting

point is the construction, given an example of non-vanishing, of a purely inseparable

covering of degree p, which locally is obtained by taking the p-th root of a function.

(Throughout this paper p will denote the characteristic of the base field which will

assumed to be positive.) The above mentioned consequences are then obtained by

investigating the somewhat paradoxical properties of this covering. By considering the

canonical bundle one is usually able to show that the covering is ruled. Then, if the

Albanese variety ofX is non-trivial, the Albanese map has 1-dimensional image and much

information is obtained by considering the fibers of this map. If the Albanese variety is

trivial then we get by Noether's formula that ̂ (^x) ^ ^ anc^ t^lls gi^8 Ae needed additional
strength to certain inequalities involving the self intersection and intersection number

with the canonical bundle of the line bundle in question.
Besides the extra work involved in showing vanishing our strategy will differ from

that of Bombieri in one other important respect. In order to construct the degree p

covering we need to know—a priori—vanishing for a high power of the line bundle.

This forces us to consider only numerically positive line bundles. The line bundles for
which we need vanishing are the same as those used by Bombieri and it is by no means

clear, and no doubt false in general, that they are numerically positive. Hence some

preliminary work has to be done to show the existence of numerically positive line bundles

such that if vanishing holds for them, then we get the theorem. The idea is that if one of

the original line bundles is not numerically positive, then some curve must have negative

intersection with it. The index theorem shows that this curve must be of a very special

type and the existence of such a curve allows us to construct a new line bundle which

can be tested for numerical positivity and so on. It should be noted, however, that if

m ̂  8 then already the original line bundles are numerically positive and this extra argu-

ment is not needed. From the point of view of characteristic zero this part could be

looked upon as a proof of Bombieri's result assuming only vanishing for numerically

positive line bundles.
In his paper Bombieri proves corresponding results for smaller values of m. If

one tries to apply the methods of the present paper to these cases it will be seen that the

reduction to a numerically positive line bundle needs far stronger bounds on K^ than

are used by Bombieri. Hence, even though one gets the expected results for all but a

bounded family of surfaces, some new idea seems to be needed to obtain the results

known to be true by Bombieri's result, namely that—as we are dealing with a bounded
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family of exceptions—his results as stated will be true for all but a finite of number of

characteristics.
As can be seen already from the theorem, characteristic two plays a special role.

In the proofs this comes from the fact that 2 is the smallest prime number and the ine-

qualities which involve p become less powerful the smaller p is. Indeed, we are saved from

allowing even further exceptions by the fact that when p == 2 a cover of degree p is a

double cover and that, with a slight twist, double covers are as simple in characteristic 2

as in any other characteristic. In the construction of examples showing that the excep-

tions really occur, 2 appears as the characteristic for which one can have more ordinary

nodes than usual. For instance, we use that a KS-surface in characteristic 2 may have

21 disjoint — 2-curves which is impossible in any other characteristic.
Finally, it is my hope that the techniques developed here will be useful in other

situations as well. Therefore the results obtained along the way are often stronger than

needed to simply prove the theorem.
The contents of this paper are as follows. First we recall some terminology and prove

some preliminary results. In section I we will make a general study of inseparable maps

of degree p between smooth and proper surfaces, giving for example formulas for how

the canonical bundle changes under such a map. We will also introduce a special kind

of such cover which is interesting because a failure of Kodaira vanishing will give rise

to this type of cover. Then, some special features of characteristic 2 are considered.

These results are then applied to obtain Theorem 1:2.3 which is the main theorem of

section I. It is a result giving very strong consequences from the assumption that there

exist a line bundle contained in the tangent bundle which fulfills some positivity con-

ditions. Already here we see that p = 2 appears as a special case as several of the exceptions

occur only in characteristic 2. We finish the section by showing that the exceptions to

Theorem 1:2.3 do indeed occur.
In section II we apply the results of section I to obtain different consequences of

the non-vanishing of the first cohomology group H^X, oSf"1) where X still is a smooth

and proper surface and oS? is a numerically positive line bundle. The main general result

is Theorem 11:1.3 which gives a rather odd assortment of such consequences. It seems,

unfortunately, necessary to obtain many different consequences of non-vanishing as

usually one such consequence is not enough to obtain a contradiction (and hence a

vanishing result). A rather direct corollary of this result is that Kodaira vanishing for

a surface not of general type (for numerically positive line bundles) is true except essen-

tially for those counterexamples already found by Raynaud. We are, however, mostly

interested in surfaces of general type and in Theorem 11:1.7 we prove i) of the Main

theorem. As a corollary we obtain (Corollary 11:1.8) some inequalities between the

numerical invariants of a minimal surface of general type.

Section III is the section where the rest of the Main theorem is proved. A large

part of the section is concerned with treating numerous special cases occuring when

m is small and is the result of the author's urge to push his methods to their limit. The
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reader is referred to the introduction of that section where first the case m ̂  8 is discussed

(a case which is relatively simple to follow) and then some indications as to the compli-

cations occurring when m becomes smaller are given.

At last I would like to thank Miguel Ibanez for enabling me to brush up many

of the notions to be found in this article.

CONTENTS

0. Notation and preliminaries.

I. Foliations.

II. Consequences of Kodaira non-vanishing.

III. Pluricanonical systems on surfaces of general type.

0. Notation and preliminaries

Let us begin by recalling the following standard definitions, where X is a proper

(and smooth, where it is needed to make sense) k-variety and k is an algebraically closed

field.

^(X) =dim^H^(X,%,),

A,,(X) ^dim.H^X,^),

5C(X) ^S^l^X),

Xei(X) ==S(-1)^(X),

P,(X) ==dim,H°(X,co^),

P.
 = Pi-

Let us also recall that the sheaf Bi, for X smooth and k of positive characteristic, is defined

by the exactness of the following sequence

(1.1) o-^-^^)^Bi->0,

where F : X^ -> X is the Frobenius map, k-linearised by letting X^ be the pullback

of X by the Frobenius map on k. In particular, as k is algebraically closed, we get

ker(F : W(X, ̂ ) -> HI(X, ̂ )) = HO(X, B^)

if X is proper.
By general point, fiber, etc., we will mean a closed point in some unspecified every-

where dense open subset of the base scheme. The use of these terms is usually meant to

imply that the existence of this open subset follows from standard results. By curve we

will mean an integral 1-dimensional projective scheme, whereas effective divisor will

mean a purely 1-dimensional closed subscheme, without embedded points, of some
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considered surface. The latter notion will usually be confused with the corresponding

formal linear combination, with multiplicities, of its component curves. The genus,

g(C), of a curve G is defined to be dim^ ?(0, 0^) (and not as the genus of its normalis-

ation). A rational (elliptic) curve is a curve whose normalisation has genus 0 (resp. 1)-

At several points we will need to use the results of [Mul], [Bo-Mul] and [Bo-Mu2].

We will use the catch-phrase " by the classification of surfaces " to refer to any of these
articles.

Proposition 1.2. — Let X be a smooth and proper surface and C a 2-connected [cf. [Bo:§3])

effective divisor on X. If C is not a smooth rational curve, then \ co ,̂ | is base-point free.

Proof. — Let x e C. It will suffice to show that h^m^ 6>J = 1, where m^ is the ideal

ofx. By duality this is equivalent to showing that dim^ Hom^{m^ ^c? ^c) == !• Suppose
this dimension ^ 2. Let 9 : m^ Q^ -> 0^ be an (P^-morphism and let Gi < G be maximal

for the condition that 9^ vanishes and put Gg := G — C^. Hence we have an injective

map with cokernel of finite support; 9 : m^ Q^ ->^c.(— ^i)- Taking degrees we get

— 1 ̂  — (GI, G^) and 2-connectedness gives C^ or Gg equal to zero. Suppose now

all such 9 vanishes at x. This means that the finite k-algebra End^(m^fl^, TT^ fl^)

has dimension at least 2. As any non-zero 9 is injective with cokernel of finite support

it is an isomorphism for degree reasons and so any non-zero 9 is invertible, but k, being

algebraically closed, has no non-trivial finite division algebras. Hence there is a 9 which

does not vanish at x and so, by Nakayama's lemma, is surjective at x. This means that

m^ QQ is invertible at x and thus that C is smooth at x and that | (m^ ^c)~1 I ls a degree 1
linear system of dimension at least 1 without basepoints. If there is a component D of C

on which x does not lie then | [m^ ^o)~"1 I ls trivial on D and so has sections vanishing
on D contrary to assumption. Hence C is irreducible and, having a smooth point, also

integral and \(m^0^~
1
 \ gives an isomorphism with P

1
. D

We will give a proof of the following well known result mainly for lack of appro-

priate references. (Note that here ,Sf2 for instance means the self-intersection number

of JSf and not ^f®oSf; to avoid confusion we will throughout use ^®2 for ^?®j§f

whenever there is risk of such.)

Proposition 1.3. — Let oSf be a numerically positive line bundle on a smooth, proper and

connected surface, let D be the divisor of base curves of \ oSf | 4= 0.

(i) If^{- D)
2 = Q.then

j§f2

AO(J^) < -y + 1,

where

b := min{(-S?, C) : | kC | is basepoint free for some k > 0 and C
2

 === 0 }.
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(ii) If the rational map X —> \ H°(X, oS )̂ | has an image of dimension < 1 and

^(-D)2^ 0, then

f~y
2

hW < /— + 1,
^ c

where

c : = mm { G2 : | kC \ has only isolated basepoints, X —> \ kC |

has an image of dimension ^ 1 for some k > 0 and C2 > 0 }.

(iii) Iff: X—> | H°(X, JSf) | has a 2-dimensional image then

oSf2

h°W ^ n— + 2 iflmfis not ruled,
2m

JSf2

h0^) ̂  — +2 in general.
m

where m :== deg/. If equality holds, then | S? \ has no base points.

Proof. — If h°{^) = 1 there is nothing to prove. Assume X -> \ H°(X, ̂ ) |

has 1-dimensional image. Then | H°(X, ̂ ) \ = \ aG \ + D and A°(oSf) ^ a + 1. Thus

JSf2 = a(J§f, C) + (JSf, D) ^ a(JSf, G) and («Sf, C) = aC
2
 + (C, D) ^ flC2. If C2 = 0

then (oSf, G) ^ b and we get i). If C2 + 0 then G
2
^ c and we get ii).

I fX—^ | H°(X, oSf) | has 2-dimensional image, let Y be (the closure of) the image

and let d : = deg Y ̂  JSf2/^. In general, as Y is not contained in a hyperplane,
d^ dim | H°(X, JSf) | - 1 = A°(J^) ~ 2. If T is not ruled, let Y' ->Y be a resolution

and H the inverse image on Y' of a general hyperplane. Thus H is a curve on Y' and
the exact sequence

0 — (9^, -> ̂ y(H) -> ^H^) -> 0

gives A°(-Sf) ^ A°(^H(H)) + 1. As Y' is not ruled (coy^ H) ^ 0 and Clifford's inequality,
which is true not only for smooth curves, and the adjunction formula gives

A°(^(H)) ^ H2^ + 1 = ^ / 2 + 1

since deg^H^ deg cog as (coy, H) ^ 0. Finally, if | JSf | has basepoints, md< ,Sf2. D

Proposition 1.4. (" Purity "). — Let X be a smooth k-scheme and ^ a finite flat X-group

scheme which is an extension of a finite etale X-group scheme by a finite flat infinitesimal X-group

scheme.

(i) Let p : Y -> X be a 9-torsor. If p has a section over an open dense subset of X then it

has a section.

(ii) Let F C X be a closed subset of codimension at least two. If p : V —^ U : == X\F is

a ^^-torsor, then there is an extension of p to X.
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Proof. — Indeed, i) follows directly from Zariski's main theorem (and is thus true

far more generally). As for ii), it is sufficient to find a finite flat TT : W -> X s.t. the pull-

back of p to \V\7i;~1 F is trivial and W is smooth. Indeed, if this is the case then p is

described by descent data for the pullback of p to W\TC~1 F. All schemes involved in the

descent data are finite and flat over W\7r~"1 F and admit finite, flat extensions to W.

Hence everything is controlled by some morphisms over W^""1 F between vector

bundles over W. As n~
1 F has codimension at least two these morphisms extend to W

and so give descent data for an extension of p. By finite flat descent of affine morphisms

these data are effective. Let now ̂  be the infinitesimal normal X-subgroup scheme

of ^ which exists by assumption and consider the associated (^/^)j^j-torsor. This being

^tale we can apply the usual purity theorem to extend it to a Z -> X. Pulling back V

to Z, we can reduce the structure group to^T^ an(! hence we may assume that ^ is infini-
tesimal. This means that p is split by some power of the Frobenius map on U and as the

Frobenius map for X is flat, X being smooth, we get the wanted Z -> X. D

Remark. — I do not know to which extent ii) can be generalised for instance to

more general ^.
We will need a few remarks on the behaviour of some numerical invariants under

resolution of surfaces. Let us begin by noting that the Leray spectral sequence shows

that ^ drops during resolution of singularities and that if it is unchanged, the singularities

are rational. Slightly more involved is the following result.

Lemma 1.5. — Let X and Y be smooth, proper surfaces and n : Y —>- X a purely inseparable

map. Then &i(X) = &i(Y), ̂ W ^ leiW an(^ if equality holds, then n is finite.

Proof. — Indeed, on ftale cohomology TT^ n* == deg TC which shows that TT* is injective

and so 6,(X) < 6i(Y). On the other hand, as n is purely inseparable, TC factors, bira-

tionally, through some power of the Frobenius map on X, so after blowing up X we get

a surjective map X -> Y which gives &i(X) > ^i(Y), as the first Betti number is invariant

under blowing ups. This gives the first equality and inequality. Finally, TC, is zero on the

cycle classes of curves contracted by TT, so if we have equality, then there are no curves

contracted by TT and TC is finite by Zariski's main theorem. D

Finally, for ease of reference we give the following well known rearrangement of

the terms of Noether's formula,

(1.6) 10 + 12^ = K2 + b^ + 8q + 12(A01 - ?),

where the point, of course, is that all the terms are non-negative (except possibly K2).

I. Foliations

In this section we will study maps between varieties of exponent 1 i.e. dominant maps

X ->Y for which l^X)^ c k(Y) where p > 0 is the characteristic ofh. As a derivation
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vanishes on a p-th power such a map can be described by first order information on X

and this is spelled out at the beginning (a more detailed discussion can be found in [Ek]).

Then a particular class of such maps is considered. Starting from Y they are obtained

locally by adjoining a. p-th root of a function f which is not itself a p-th root. Changing

yby an affine transformation f\-> of -{- b leads to an isomorphic covering and globally X

is obtained from local p-th root coverings related in this way by affine transformations

of the functions of which one takes p-th roots. As global data one obtains a line bundle oSf

from the multiplicative factor a and then the additive factors give rise to an a^-torsor

where a^» is a certain group scheme of order p locally isomorphic to the group scheme Op

of p-th roots of zero. Finally, using the previous results on the relation between first

order data (i.e. a subsheaf of the tangent bundle) and maps of exponent 1, a formula

for the change of the canonical bundle in an exponent 1 covering of degree p between

surfaces and the classification of surfaces many consequences are obtained from the

assumption of a <( sufficiently positive " line bundle contained in the tangent bundle

of a smooth and proper surface. It should be compared with the far stronger results

obtained by Miyaoka [Mi] in the case of characteristic 0. Some examples are given to

show that the obtained results approach the optimal.

1. Let X be a variety over an algebraically closed field k of characteristic p > 0.

We will denote by X^, n e Z, the base change of X by the p^th power map k ->U.

Hence the n-th iterated Frobenius morphism is a k-morphism F" : X^ -> X, n positive,

or F" : X -> X^, n negative. Unless otherwise mentioned X will, from now on, be smooth.

A first order integrable distribution, smooth 1-foliation for short, is a subbundle y

of T^ which is a sub-p-Lie algebra i.e. closed under Lie brackets and p-th powers.

We let Y = X/^" denote the scheme with the same underlying space as X and whose

structure sheaf consists of those elements of (9^ killed by the derivations of ^r. By defi-

nition there is a k-morphism/: X -> Y and F : X -> X^^ factors as

X-iY-^X^

for some g : Y ->• X^^.

Proposition 1 . 1 . — i) f and g are finite flat morphisms and Y is smooth.

(ii) Locally on X there are coordinates t^ ^, ..., t^ such that

n o

^= S^-.(-1 x^,

(iii) There is an exact sequence

(1.2) 0 -> ̂  -> T /̂k ^F T^ -> P(o* ̂ ) -> 0,

where a '. X"' -> X is the base change morphism, and in particular

(1.3) /*coy=(0x®(det^')1-3 '.
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Proof. — This is proved in [Ek:§3]. D

If U is an open dense subset ofX and ^C T^ is a smooth 1-foliation, then there

is a unique ^-submodule yc
 ̂ w

 S9t
' ^\v =

 y and T^x/k/^ is torsion free. Further-
more, y is closed under Lie brackets and p-th powers. Such an y will be called a

1-foliation. It is always smooth outside a closed subset of codimension at least 2. We will

let X/<^ denote the normal variety whose underlying space is that of X and such that

the sections of Q-^y are those of 0^ killed by the derivations of ^. We will freely use

the fact that a 1-foliation is determined by its restriction to a dense open subset and

that giving a 1-foliation on X is equivalent to giving a finite map Y -> X of exponent 1
i.e. l^Y^CI^X).

Lemma 1.4. — Let ^"CT^ be a submodule.

(i) The Lie bracket induces an 0^-linear map

A^-^T^.

(ii) If y is closed under Lie brackets then the p-th power map induces an (Bilinear map

F^-^^T^.

(iii) In particular, if T^/^ is torsion free and

Hom^(A ̂  T^/jF) = Hom^F^cr-1* j^), T^) = 0,

then y is a l-foliation.

Proof. — See [Ek:4.2]. D

A particular kind of 1-foliation is obtained as follows. Let oSf be a line bundle and

consider it and oSf^ as smooth X-group schemes. The relative Frobenius morphism is

a surjective group scheme morphism JSf -> ,2 .̂ Let o^ be its kernel so that we have an

exact sequence (in the flat topology) of group schemes

(1.5) 0 -> o^ -> S -> JS^ -^ 0.

Then og, is a finite flat group scheme, in fact

p-i
o^ == Spec( © JSf-1)

i==0

where the multiplication is the obvious one.

Let (3 : Y -> X be a non-trivial o^-torsor. Taking cohomology of the exact sequence

(1.5) shows that, locally in the Zariski topology, (B is obtained by applying the boundary

map to a section s e oSf^. Thus

Y == Spec( © ^-
i
)

i=0

14
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where multiplication JSf"4® oSf "j
-> JS^"^ equals the identification map when

i -{-j^p and the composite

^-^^-j == ̂ -i-i^ ^-i-,+p

when i +^^ ^. Even more locally (still in the Zariski topology) Y = Spec ^xM/(^ ~/)
for some/e 0^. If ^ e S? is a local generator and ^ is as above we obtain an element

rf(^/F) eilx- This S111^ together to a globally defined tfx-3^01?11^111 osfp
 -

> ̂ x- This

morphism is non-zero. In fact, if it were not, then over some dense open subset U C X

where ̂  ̂  0^ and H^U, ̂ ) = 0 we would get Y | U == Spec <9^\tW -f)
 for

some/e (Py. Then cS^ ->• jQ^ would be given by 1 l-> ̂ and thus/would be a^-th power.

Therefore (3 would have a section over U and by purity (0:1.4) so would (B itself.

Hence the annihilator Ji C T^ of the image of ̂  is a saturated (i.e. the quotient

sheaf is torsion-free) subsheaf and, as we have just seen, it is locally the annihilator of

an exact 1-form thence a 1-foliation. It is also clear that the morphism X -> X/^ is

birationally equivalent to X -^Y^" (they differ ifY is not normal).

The morphism (B : Y -> X can be described more concretely as follows. To give

an o^-torsor is, using (1.5), the same thing as giving the associated o§f-torsor and a tri-

vialisation of the associated -S^-torsor. In other words, an extension

(1.6) Q ->0^->S -> ̂ -1 -> 0

and a splitting p : ̂ -p = F* «Sf~1 -^ F* S of F* S -> F* JS^-1, where F : X -> X is the

absolute Frobenius morphism. From this we can construct the affine algebra of p: In the

symmetric algebra S"^) consider the ideal ^ generated by (c 1 " — 1, where " 1 "

is the identity element of S^^) == S which contains (9^ and 1 is the identity element

ofS°(<?). Put 31 :== S*(<^)/J^. It is the affine algebra of the o^-torsor associated to (1.6)

and has a filtration 0 C SS° C 3S
1 C 8^ C ..., where ^ : = Im S\ <s?), by sub-

^x-modules s.t. S^
i
^

j
CSS

i+} and ^/^i-1 ̂  oSf-^ To get the affine algebra of p

we now divide 3i by the ideal generated by the image of p. Hence we see that P, (9^

has a filtration, the image of { 3^ }, with succesive quotients S'~\ 0 ̂  i < p (the rest

being zero).
I also claim that Y, as a non-trivial torsor, is a reduced scheme. Indeed, we have

seen that at any generic point Y is obtained by adding a p-th root of a non-^-th power

element and hence it is reduced in codimension zero. On the other hand, by the local

description we see that Y is everywhere a local complete intersection and in particular

fulfills condition Sr By Serre's criterion Y is then reduced. Finally, by using the adjunc-

tion formula twice, first to the JSf-torsor inside Spec S*( <f) and then to Y inside the JSf-torsor

we get that o>y = (B,(cox® -Sf"1).

Example. — Consider the case of smooth curves. Then it is easy to see that giving

F: G^ -> G the structure of an o^-torsor is the same as giving C the structure of a

Tango curve (cf. [Ra]).

Summing up we get
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Proposition 1.7. — Let ^ e Pic X and let (B : Y -> X ^ a non-trivial ^-torsor. Then

Y is reduced^ there is a filtration

(1.8) oc^r°c^ric^r2 c. . . c^-1 = p^y

w^A successive quotients c/F1/^1'"1 = £?~i and

(1.9) coy-p^®^-1).

Proo/*. — It is not true that any finite purely inseparable map Y ->• X of degree p

is an o^-torsor for a suitable oSf. The situation is different for p == 2, however. In fact,

by slightly generalising the construction ofo^ we will be able to give a uniform description

of all double covers in characteristic two. Let therefore -S? e Pic X and s e I^^-1).

Let F : ,Sf -> ̂ p be the Frobenius morphism and define the X-group scheme a, as the

kernel of F — s : oSf -> oSf^. Hence a, is isomorphic to ay at the geometric points where

s = 0 and to Z/j&Z at the geometric points where s + 0. Therefore any a,-torsor is ramified

exactly where s is 0. Checking fiber by fiber one sees that F — s is flat and we therefore
have an exact sequence in the flat topology

(1.10) 0 -̂  a, -> S ^—i ̂  -> 0.

We can now describe double covers in characteristic two (the situation is of course even
simpler in any characteristic different from two). D

Proposition 1 . 1 1 . — Any finite morphism of degree two TT : Y -> X, where Y is Cohen-

Macaulay and char(k) == 2, is an (x.,-torsorfor a suitable line bundle -S? and s e r(o§f).

Proof. — As Y is Cohen-Macaulay, X is smooth and -K finite, TT^ ^y is locally free.

Furthermore, the natural map Oyi ->7r* 6
x

 ls injective on fibers being a ring homo-
morphism. Hence there is a line bundle eSf on X and an exact sequence

L : 0 -> 6x -^ 7r* ^Y -̂  o§f"1 -> °-

Consider now the trace map Tr : ̂  (Py -> 0^. As n is of degree p this map vanishes

on Q^ and hence gives a map £'~
1
 -> 0^ i.e. an s e F(JSf). If t e ̂  ^y then, by Cayley-

Hamilton's theorem, t
2
 — Tr{t) t e 63:- Hence, the morphism ^h> ^2 — Tr(<) ^ gives a

splitting of (F — s)* (i). By (1.10) we hence get an a,-torsor and a concrete description

of the affine algebra of an oCg-torsor, completely analogous to the one given above for
o^-torsors, shows that Y is indeed this a,-torsor, D

Remark. — The proposition contains as a special case the well known fact that in
characteristic two all smooth curves are Tango curves.

2. Let us return to a general 1-foliation. From now on we will assume that X is

purely 2-dimensional. In this case it is possible to explicate what happens to the canonical

divisor when we resolve the singularities ofX/^'. This result will be of utmost importance
to us in what will follow.
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Proposition 2.1. — (i) Let ^ be a l-foliation of rank 1 on a smooth variety X of pure

dimension 2, let n: (X/^)^ -^X be the natural map and let T : Z -> (X/^)^ ̂  a ;mwW

resolution of singularities. Then there is an effective divisor C on Z contracted by T J^A ̂

(2.2) ^ == (7TTT (O^®^1-^) (- G).

Furthermore, C is characterised by the formula

p{K^ E) = - (G, E)

for all curves E contracted by T.

(ii) Z^ JS^ E Pic X, X as in (i), let (B : Y -> X ̂  a non-trivial ^-torsor and T : Z -> Y

a minimal resolution of the normalisation of Y. TA^ r̂<? z'j ̂  effective divisor C on Z such that

(2.3) ^ = ((BTT (co^OO^-1) (- C).

Proof. — Outside the singularities of^, (i) follows from (1.3) by applying, in the

notation of Theorem 1.1, ^(1)*. Hence we get (2.2) for some divisor G, possibly non-
effective. However, if E is a curve contracted by T then

p{^ E) = ((TIT)* (o^®^1-^), E) - (G, E)

= (c^®^1-^, (TTT), E) - (G, E) == - (G, E).

By negative definiteness of the intersection form, G is characterised by this. As the reso-

lution is minimal (K^, E) ^ 0 for every E exceptional for T and so the effectiveness ofC

follows from [Bou: §3, Lemme 6]. As for (ii), we can apply the argument of (i) to the

normalisation of Y. On the other hand we get the canonical bundle of Y from (1.9).

It then only remains to note that to get the canonical sheaf of the normalisation one

tensors with the conductor ideal so one just adds more to C (which thus may not be
contracted by r). D

To simplify announcements let us say that X is almost 8ft, where ̂  is a class of
surfaces, if there exists a surface Y e 2ft and a dominant inseparable rational map of

degree p, Y —> X. (Almost rational surfaces are also known as Zariski surfaces.)

Remark. — Almost ruled (or rational) is stronger than uniruled or even " purely

inseparably uniruled 5?. In fact, letf{x,jy, z) be a general form of degree 3p
2 and Y -^ P

2

the /^-th root fibration off so that
p«-i

Y == Spec( © ^p.(- 3z)).
< = = o

Hence, the standard Cech cocycle (cf. [Ha: III, Thm. 5.1]) \fxyz gives a non-zero element

of H2(Y, 0^). The Frobenius map applied to it gives the Cech cocycle \fx
v
y

1s>
 z

9 which

again is non-zero. Hence, the Frobenius map is non-zero on H2(Y, ^y). As/ is general,

the only singularities of Y are Ay. ̂ -singularities, which in particular are rational,

and therefore a resolution Y also has a non-zero Frobenius map on H2. This shows that ̂

can not be almost rational; on an almost rational surface the Frobenius map is zero

on H1, i == 1, 2, as the Frobenius morphism factors birationally through a rational

surface which has zero H1, i = 1,2.
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The following result shows that we get some geometric consequences of having

a line bundle which is contained in the tangent sheaf and is in some sense positive enough.
It should be compared with [Mi].

Theorem 2.4. — Let J§f be a line bundle on X such that H°(X, -S'?~'1®T^) 4= 0 and

Ji a line bundle on X such that (^, G) ^ Ofor every curve G on X. Suppose also that X is not

(birationally) ruled.

(i) If (cox^) + (1 -p) {^,JK) < 0 then X is almost ruled.

(ii) IfJi is ample and (o)x^) + (1 — P) (°^^) = 0 and X is not almost ruled

then one of the following four conditions hold

a) X is minimal of Kodaira dimension 1, an abelian surface, hyper elliptic or quasi-hyper elliptic.

There is a minimal hyper'elliptic, quasi-hyper elliptic or abelian surface Y and a smooth \-foliation

^•CT^ such that X^Y/^ and JSf ^ T^y(-x) where X -^Y^ is the natural map.

Furthermore, co^ ̂  J Î̂ -D.

b) p = 2 and. X is a non-classical (i.e. pg == 1) possibly blown up Enriques surface such that the

canonical double cover is birational to a K3-surface. Furthermore, oSf is trivial.

c) p = 2 and X is of Kodaira dimension 1, %(X) = 1 W ̂  minimal model of X has an

^-torsor 7C: Y' -> X z^A on/)/ rational double points as singularities, whose minimal reso-

lution Y is a ̂ 3-surface. The map n induces a smooth l-foliation on Y whose quotient admits X

as a blowing down. Furthermore, co^ ̂  oSf2.

d) p == 2 <W X is of general type, oSf ^ the canonical bundle, ^(X) = 1 and the minimal model

of^ X has an y.^-torsor n: Y' -> X with only rational double points as singularities, whose

minimal resolution Y is a K3-surface. The map n induces a smooth l-foliation on Y whose

quotient admits X as a blowing down. Furthermore, co^ ̂  JS .̂

(iii) If there exists a pencil on X with a curve F as a general fibre then

- 2 ̂  - (cox® ̂ "^ F) + F2.

(iv) (F as in (iii)). If

- (cox® ̂ l-p, F) + F2 < 0 (< 0)

^TZ the normalisation ofF has genus 0 (resp. genus 0 or \).

Remark. — It is known that the general non-classical Enriques surface has a surface

birational to a KS-surface as its canonical double cover, so case (ii) b) really occurs.
We will see that cases (ii) a), c), d) also occur.

Proof. — If^Tis an ample line bundle on X we may, by replacing JK in (i) by

^
% ® ̂ T, i > 0, assume that Ji is ample throughout. As X is not ruled we also have

(co^?*^)^ 0. Let us consider (i). By assumption there is an embedding -Sft-^T^.
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If oS?' <-^ T^/k is its saturation (i.e. 2?' is the inverse image of the torsion in T^/<^)

then ,S '̂ == ^(D) with D ̂  0. As ( ,̂ D) ^ 0 we may replace JSf by «Sf' and hence

assume that -Sf is saturated in T^- I claim that -Sf is a 1-foliation. By (1.4) (iii) it will

suffice to prove that Hom^oS^, T^/J^) = 0. However, T^/^ embeds in its double

dual which is computed by taking determinants to be cox100^"1- Thus it will suffice

to show that (oSf14^® (Ox)"1 can not have non-zero global sections. However, from

((Ox>^) ^ 0 and the condition of (i), we get (J29,^) > 0 and so ((«^?l+p®cox)"'l^) < 0.

Consider now X/J§f, let Y -^ (X/JS?)^ be a minimal resolution of singularities

and let TT : Y -.X be the composite Y -> (X/oSf)^ — X. Then TT*^ is numerically

positive and by (2.2)

^(o)y,7T^) ̂ p^®^-^^) - (7T,D,^) =p{^®^l-p^)<0.

By the classification of surfaces Y is then (birationally) ruled, so X is almost ruled.

For (ii) we proceed similarly. First any embedding o§f <-> T^ is saturated because

ifJ§f(D) <-> T^/k with D > 0 then we could apply (i) to get X almost ruled. We are going

to show that there is an embedding -Sf <->- T^ which is a 1-foliation. Assume not. Then

^i+p0^^ ^ o, and as (co^,^) ^ 0, we get (,2f,^) < 0. The assumptions then

give (J?7,^) = (co^^) ==0 and so any non-zero section gives an isomorphism

^x ->
 ̂

v+l ® <*>x- ^s (^x?*^) == O? by the classification of surfaces X is then minimal
of Kodaira dimension 0. The obstruction morphism oSf^ -> Tx/k/-S? composed with

the embedding T^k/oS? <-> (cox® oSf)"1 gives a non-zero map ^p -> (cox® ^f)~1.

This map is then necessarily an isomorphism and therefore Tx/k/oSf-^ ((o^0 0^)-1

and oSf is a subbundle ofT^. Taking Chern classes and using that -Sf and co^ are numeri-

cally trivial we get that c^X.) == 0 and by the classification of surfaces X is abelian,

hyperelliptic or quasi-hyperelliptic.

If X is abelian, then T^ ̂  0^
e ^x anc^ as o§f is a subbundle of T^/k and nume-

rically trivial, it is trivial. Hence there is another embedding of 2? in T^/k which is a
1-foliation.

If X is hyperelliptic or quasi-hyperelliptic then Alb X is 1-dimensional. If oSf is

trivial then either Im JSf is contained in the saturation ofT^^x ̂ d so is a 1-foliation

or the composite oSf -> T^ -> n* T^ ̂ /k ^ ^x is non-zero and hence an isomorphism.

In the latter case T^ ̂  ̂  T^x/k® T^x and either A°(T^x) + 0 and JSf

embeds in Tx/^ibx or ^°(Tx/k) == 1 in which case the unique embedding of oS^ gives
a foliation as the set of global vector fields are stable under the p-th power. If J§f is not

trivial, then, as JS^~1 has no sections, the composite JS? -> T^ -> TT* T1 Alb X/k ^ 0^

is zero and o§f is contained in T^bx 2Ln
^ therefore gives a 1-foliation.

We may therefore assume that there is \-foliation ^^T^. Let Y' be (X/JSf)^,

T : Y -> Y' a minimal resolution of singularities and n: Y —^ X the composite Y -^ Y' -> X.

As before, TC*^ is numerically positive and ( r ^ J K , coy) ==P{^, ̂ x0 -Sf1"'3') = 0.
Hence Y has Kodaira dimension ^ 0 and as X is not almost ruled, Y has in fact Kodaira

dimension 0. Let p : Y - > Y be the mapping of Y onto its minimal model. Then
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^Y = P*^?^)) where E^ 0 and whose support is precisely the exceptional set of p.
As c»)y, and therefore p* (Oy, is a torsion line bundle we get

0 = (<oy, ̂ JK) = (E, T^JK) == (TC, E,^).

As JK is ample this means that the support of E is contained in the exceptional set of

Y -> Y'. Thus the exceptional curves of p are contracted by T and as T is minimal this

means that Y is minimal. The following lemma now shows that the singularities of X/JSf
are rational double points.

Lemma 2.5. — Let Y be a smooth, proper and connected minimal surface of Kodaira dimen-

sion 0. If\ —> Y' is the resolution of a singular normal surface Y', then Y' has only rational double

points as singularities. Furthermore, Y is a KS-surface or an Enriques surface.

Proof. — Indeed, if C is any exceptional curve for Y -> Y' then, as <0y is numerically

trivial, (coy, C) == 0. This condition characterises rational double points ([Ar]). If Y

is not K3 or Enriques then it is abelian, hyperelliptic or quasi-hyperelliptic and then it

contains no smooth rational curves G : If Y is abelian this is clear, if not C must lie in a

fiber of the Albanese map, but any such fiber is irreducible of genus 1. As the exceptional

curves for a resolution of a rational double point are smooth rational curves we

conclude. D

Returning to the proof of the theorem, a first consequence of the lemma is that

<0y = 7r*(G>x® oSf1""1') by (2.2) (i). Now, by the classification of surfaces, coy is a torsion

line bundle and applying TT, so is (o^^ «^l~p• Let us now suppose that p = 2. By (1.11)
there is a line bundle ̂  on X such that p : Y' -> X is an o^-torsor (note that a 2-dimen-

sional normal scheme is Gohen-Macaulay). This gives us a morphism c/T"2 ->n^/k,

the annihilator of which is ̂  <-^ T^/k. From the local description ofjB as Spec ̂ xM/(^ ~~/)

we see that the zero set F of^T"2
 -> ti^/k equals p (Sing Y'). As Y' is normal, F is finite

and hence ^T~2
 -> ti^/k ls saturated.

If now Y is abelian, hyperelliptic or quasi-hyperelliptic then by the lemma Y'

is smooth and hence ̂ ~
2 -> Q^ is a subbundle as it is not a subbundle exactly where

Y' is singular. We are then in case a). We will prove the rest of the statements in a)

below and we hence assume that Y is K3 or Enriques. As J§f -^ T^/k is the annihilator

of ^~2
 -> Q^/k which is saturated we get (by taking determinants outside F)

^ ^ ̂ ~
2 ® cox1. As we saw above <i)x differs from 2? only by a torsion line bundle and

thus^F and co^1 also differ by a torsion line bundle. By (1.7) we have an exact sequence

0 -^ Q^ -> TC, ^y ->^r-1 -. 0

and as^T-1 /-^ <x>x we get the equality ^y) == x(^x) + X^x) = 2/(^x) and as Y'
has only rational singularities, /(^y) == x(^Y7)- This excludes the possibility that Y is

an Enriques surface as then ^(^y) = 1. Let us first suppose that X is of general type. I claim

that we may then suppose that X is minimal. Indeed, an open subset of X is isomorphic

to the minimal model of X minus a finite number of points. Therefore ̂  and hence o^
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extends to the minimal model. By purity (0:1.4) so does Y, as well as the equality of^

and GO modulo torsion line bundles which is what is needed. Now, Y is a KS-surface and

Y' has only rational double points as singularities (which do " not affect adjunction ")

so coy' ^ fiy- From (1.9) it then follows that (B*^ ^ (B* (o^ and so ̂  ^ co^. We also
get ^(X) = |^(Y) == 1. The rest ofd) will be proved in the next section (11:1.7).

We are then left with the case where X is ofKodaira dimension 0 or 1. Now as Y' has only

rational double points as singularities and is locally a square root fibration one gets

the minimal resolution Y by successively blowing up points on X (including infinitely

close points) lying under singularities ofY' and normalising inl^Y') (cf. [B-P-V:III, §7]

the case of characteristic 2 needs only minor modifications). Hence we get a finite mor-

phism from Y to some blowing up 9 : X' -> X and by following each step one sees that

ifoSf'-^T^/k is the corresponding foliation then JSf' ® o)^1 ̂  y^-Sf® ^x1) so
 ^

f

fulfills the conditions of JSf with the extra property that the foliation is smooth. Finally,

as Y is a KS-surface we get ^(^x) == ix(^Y) = 1-
Let us now suppose that p + 2. Suppose that oSf <-^ T^ has a zero at x e X so that

-Sf <-> m^ T^/k where m^ is the maximal ideal of x. We are going to show that this leads

to a contradiction. Let p : X
7
 -> X be the blowing up at x. As p*^ T^) C Ty/k we

get p^c^T^k. If JS^^T^ then we get p* JS? ̂  p* m^T^^ T^(- E),
where E is the exceptional divisor. Thence p* o^(E) <-> T^/k'» but

(o^P^E)1-^ = p-^®^-^ ((2 ^R) E)

so by applying (i) to S ' := p* ^f(E) and ̂ / := p*^^ (— E) with m > 0 we get that

X would be almost ruled. Hence the foliation has no double zero at a point on X (inclu-
ding infinitesimally close points as the argument shows). The same argument shows

that, as long as we blow up zeroes of the foliation, the inverse image of ,Sf must be satu-

rated in T^/k- The following lemma then gives a contradiction.

Lemma 2.6. — Let U be a smooth ^-surface (char k == p > 0) and 2? <-̂  T^ ^ non-

smooth \~foliation. Then there is a succession U^ -> U^_i -> ... -> U of blowing ups, each

time at a zero of the induced 1-foliation, such that the induced 1-foliation on U^ contains p* oSf(E)

where p : U^ -> U and E ̂  the exceptional divisor for the last blowing up.

Proof. — By picking a zero and choosing coordinates we may replace U by

T = Speck[[A?,j/]] and assume that S has a zero at w, the maximal ideal ofk[[A:,j/]].

Now mTy^ (where T^ is the module of continuous derivations) is a sub-^-Lie algebra

of T^ and m
2 T^ is a ^-Lie-ideal in wT^. Furthermore,

mT^lm2 Ti,/k = mfm2® (mjm^Y == Endk(m/m2)

with the usual p-Lie algebra structure. Finally, a linear coordinate change induces the
adjoint action on Endk(w/w2). We may, by the argument above, assume that JSf does

not have a double zero at m. Then the image of JS? in mT^m
2
 T^ is generated, as

a k-vector space, by a non-zero element D for which D^ = X D for some X e k, which
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we may assume to be 0 or 1. Making a suitable change of coordinates we may assume

that D, a lifting to oSf of D has one of the forms

A) D = — ix a/By +y 8l8y (mod m
2 T^) where i e Fy,

B) D == x 8l8x (mod m
2 T^),

G) D == x 8l8y (mod w2 T^).

If we are in case A, then writing

D = - ix 8l8x +y 8l8y +f{x^) 8f8x + g[x,y) 8l8y

withy, g e m2, blowing up at m to get p : T' —> T and looking at the patch where we have

coordinates s, t with y == s, x = st we get 8l8x = •y~1
 818t and B/^ = ^/a? — s~

1
1 818t,

and thus

D = (- (z + i) t +/(o, ^)A) 818t + ^ a/a^ (mod (^ ^)2 T^).

After a linear coordinate change this becomes

D =s - {i + 1) t 818t + s 818s (mod (.?, ^)2 T^),

so that if i 4= — 1 in Fy, then D generates the saturation of p* oSf at s = t == 0 and the

1-foliation has a zero there. Blowing up at s = t == 0 and continuing thus we end up

at the case i == — 1, in which case we have

D = s ' a/By' (mod (^ t')
2 T^)

after the next blowing up and then either D vanishes along the exceptional divisor

{ s ' == 0 } or we are in case B). In case B), blowing up gives after a linear change of

coordinates

J ) = = s 8 l 8 s (mod^)2!^),

so that either D vanishes along the exceptional curve or we are again in case B). Hence

we may assume that there is an infinite sequence of blowing ups for which we stay in

case B). Now, oSf, as a 1-foliation is the annihilator of a function f, and by [Gi] we may

assume that, at some point in the blowing up process, / has the form u* v
3 + g

9 tor local

coordinates u and v. As we are in case B) we necessarily have i or j = 0 {modp) and

so D vanishes at some divisor, which is necessarily exceptional.

In case G) we get D = OLS 8l8t (mod(J, t)2 Tj^) f01* a scalar a. Hence we are again

in the situation that we either get vanishing along an exceptional divisor or we stay

in G. We then finish as in B). D

We have now shown that oSf <-^ T^ is a smooth 1-foliation. I claim that X is

minimal. If not there is a curve E on X s.t. (co^? E) = — 1 and as 0)3:00 oS?1"'^ ^num ^x

we get 0 = (o)x> E) + (1
 — P) (°^ E) == — 1 + (1

 ~ P) (^ E) which contradicts the
fact that p =t= 2.

15
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As -y <-^ T^ is a subbundle we have an exact sequence

0 -> ,Sf -> Tx/k -> cox1 ® ̂ -1 -> 0.

Taking Chern classes gives ^(X) == — (»6f, co^® ̂ ) = — j&jSf2, as ^x^umi^"3-

Now, X is minimal so that (x^, and hence oSf, has non-negative self-intersection and there-

fore ^(X) ^ 0. As Y —^ X is finite, radicial it is a homeomorphism in the ^tale topology

and the Cg's, the dtale Euler characteristics, are equal so c^(Y) == c^(X.) < 0 and by the

classification of surfaces Y is abelian, hyperelliptic or quasi-hyperelliptic. As then also

^(X) = 0 we get < = {p - I)2
 ̂  = - {p - 1)2/^(X) = 0 and as X is minimal

it has Kodaira dimension 0 or 1.

The same argument goes through in the case left open above i.e. p == 2, JS? <-^ T^

is a smooth 1-foliation and Y abelian, hyperelliptic or quasi-hyperelliptic, as soon as

we can show that X is minimal. However, i fX->X' is some blowing down, then ifY"

is the normalisation ofX' in k(X) the map Y -> Y" is not finite contradicting lemma 2.5.

We can now show that Y cannot be quasi-hyperelliptic. Indeed, considering the diagram

Y ————> X

i i1
AlbY ——> AlbX

we see that the Albanese map ofX has 0- or 1-dimensional image; but 0-dimensional is

excluded as X maps onto V"^. Also the diagram shows that the fibers of the Albanese

map of X are rational, being images of the fibers of the Albanese map of Y and they are

all singular as X is not ruled. Hence as ffl^ ̂  X* ^iibx/k -^ ^x/k is not a subbundle along

the set of singularities of \ if we let ^(B) -^ ^x/k be its saturation then the effective
divisor E contains a curve not lying in a fiber of X. Dualising, we get a map

Y : Tx/k -> ^x(— E) ^d composing with £C -> T^ we get a map ,Sf -> ^x(— E)
which is zero as JS^-1 ̂ ^ c*)x. Hence the image of J§f is contained in ker y, in fact

equals it being saturated. However, by taking determinants we see that ker y ̂  ^x^E) and

thus ^li^Dum6^17'), but this contradicts the fact that X is of Kodaira dimension 0

or 1 and that co^ therefore has zero intersection with the fibers of X whereas E has horizontal
components.

Finally, by the classification of surfaces (o^2 ^ Oy and so TC*((c^x0 ̂ l-p)12) ^ (Py

and, as n has degree j&, we get co^ ^ ^fi2p(»-i)^

Let us now turn to (iii) and (iv). We begin by reducing to the case F2 == 0. Indeed,

we proceed by induction on F2 supposing the result true for F2 == 0. If F2 > 0 then there

is a basepoint x e X for the given pencil. Let TC : X' -> X be the blowing up at x and E

the exceptional divisor. For some r ^ 1 we get n* F = F' + rE, where F' is the strict

transform of F and as such a general member of a pencil on X'. We also have

n- J?(- E) == (̂m, JSf) -> n\m, T^) ̂  T^
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if we start with some embedding ^f^T^/k- Hence h°(T^® JSf'-1) 4= 0 with

^ ' == TC' oS?(— E). As F'2 == F2 — r
2
< F2 and o>x' == ^ ^(E) we get by induction

- 2 ^ 1 (<0x0 W^ F') + F'
2

^

^((Ox®^1"'^) +F2+r-r2^ ^ ((o^® "Sf1"^ F) + F2

and similarly for (iv) as F' is birational to F.

From now on we assume that F2 = 0. Now ((Ox? F) ^ 0 as X is not ruled and if

(oS?, F) ^ 0 there is nothing to prove in (iii), the first case of (iv) would be contradicted

and in the second we would get ((Ox? F) == 0- Hence (co^:, F) + F2 would be zero and
by the adjunction formula F would be of genus 1. Hence we may assume (o§ ,̂ F) > 0.

As then (o>x1
 ® 'S

>
~

1
~

V
^ F) < 0, arguing as above we may assume that there is a

1-foliation J§f -> T^. Let TT : Y -> (X/JSf)^ -> X be a resolution of (X/oSf)^. Hence,

by (2.2), co^ = Tc^cox®-^1"1') (— D) and as F is a general member of the given
pencil, which has no basepoints as F2 == 0, and n (Supp D) is finite, F is disjoint from -K

(SuppD). If we put F' := ^"^(F)^, we therefore get that F' is irreducible (being

homeomorphic to F) and that F' is disjoint from Supp D. Furthermore, as F'2 == 0 we

get from the adjunction formula

- 2^ (co^F') + F'
2 == ^(c^®^1-^ (- D),P)

-((^^-^F').

Now T ^ F ' = F or j&F, so we get l/^((0x(x) «Jsfl-^ F) ^ — 2 or — 2 / ^ ^ — 2 and

hence (iii). IfF' is not rational (resp. of genus > 1) then F'2 + (<^x5 F') ^ 0 (> 0) and

as n : F' -> F is surjective we get (iv). D

We want to finish this section by showing that the exceptions in (ii) do occur.

Let us first consider the obviously particular case of characteristic two and let us construct

examples for cases (ii) b-d). We have in fact already discussed the case of Enriques sur-

faces, where any non-zero vector field gives us an example. Let us now construct examples

ofKodaira dimension 1. Take a Lefschetz pencil of cubic curves on P
2 and letf: Y -> P

1

be the map obtained by blowing up the nine base points of the pencil. Then/has 12 sin-

gular points and we may, and shall, assume that they lie in different fibers of/. Blowing

up those to get Y' ->Y, with exceptional curves F^, and pulling back by the Frobenius

on P
1 and normalising to get g : X -> P

1
, a simple calculation shows that X is a KS-surface

and that the 12 exceptional curves on Y' become — 2-curves, E,, say (the new — 2-curves

is the phenomenon peculiar to characteristic two; it is based on the fact that the Fro-

benius map is everywhere ramified, while in any other characteristic a map of degree

two from P
1 to P

1 is ramified in two points and hence at most two of the exceptional

curves can become — 2-curves).
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Lemma 2.7. — There is an JK e Pic X j^. ^2 ̂  ^(^Ei)-

Proof. — As Pic X is torsionfree we may work in Pic X® %. Let p : Y'^ -> X

be induced from X ->• Y'. Applying the relative Riemann-Roch formula [SGA6: Exp VIII,

Thm 3.6] to it we get ^(p, ̂ ) = l/2(p, ^(Y^)) in Pic X® % i.e. JSf2 ^ p, ^(Y'^)

where J§f := ^(p,^y(,)). Now, if/ /(1): Y'^-> P1 is the natural morphism and F^

corresponds to F,, then coy(x) ==//(l)'ll ^pi(— 1) (SF^) and applying p^ we get

p, ^(Y'^) = ̂  Oy{- 2) (SE,). This gives the existence of^, in fact Ji := oSf®^ ^p,(l)
will do. D

Put nowJ^ := ̂  ^px(l) and Q^ :== e^®^.

Proposition 2.S. — If n> 0, the Zariski open subset o/H^X, a^J consisting of smooth

torsors is non-empty. If n : Z ->X is a smooth a^-torsor then TT'̂ E,)^ is a — 1-curve for

all i. If we contract those we get Z' a minimal surface ofKodaira dimension 1, infact^ P^(Z') ~ mn.

Furthermore, Z' is not almost ruled, %(Z') == 1 and A^Z') = 0 or 1 and both cases may

occur.

Proof. — Indeed, H^X, (XQ^) is naturally a finite dimensional k-vector space, in

fact, (1.5) is a sequence of ^""^dules, where oSf has the natural O^-module structure,

(PX acts on JS?^ by j&-th powers and the ^-module structure on a ,̂ is defined by it being

a subsheaf of oS? stable under 0^. Hence it has a natural Zariski topology and it makes

sense to speak about open subsets. We have seen that the singular locus of an a^ -torsor

is the zero set of a map Q^2 -^ Q^ and it is easily seen that the associated map

H^X, (XQ^) -^Hom^(Q^2, £2x/k) ls linear and hence continuous. Hence the openness
part is clear. To continue we will need the following lemma.

Lemma 2.9. - (i) A°(QJ == 0, ^(QJ = ̂ (Q^) = 1 and h°((^\) = 2n + 1.

(ii) We have an exact sequence

(2.10) 0 -> H°(X, Q2,) -> H^X, aj -> H^X, QJ -̂  0.

Proo/. — As /(QJ == — 6/2 + 2 = — 1, by the Riemann-Roch formula, we
see that ^(QJ = 1 if A°(QJ = 0, as clearly A2(QJ = A°(Q^1) = 0. Suppose

SGfc e | Q^ |, where the G^ are curves. Then as (Q^, F) == 0, where F is a fiber of g,

we see that the G^ are contained in fibers of g. However, it is clear that any E, has even

intersection number with any curve contained in a fiber, but (Q^, E,) = — 1. There-

fore A°(Q^) = 0. The equality A°(Q2^) = 2 ^ + 1 follows from the case n = 0 and induc-
tion using the exact sequence

(2.11) 0 ->^2®^ri -.^a®^4-1 ->0y -.0

and n = 0 follows from this exact sequence for i = ~ 1. Now, (ii) follows from (i)

and (1.5) if we can show that H^X, QJ -> H^X, Q^) is zero. Let therefore s e H°(X,^r)
and consider the commutative diagram
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HI(X,QJ ———. H^X,^)

[
8
 [

8t

Hi(X,Q^) —> Hi(X,Q2^)

If we can choose s s.t. ^ : H^X, QJ -> H^X, Q^+i) is zero and

^:HI(X,Q^)->HI(X,Q^)

is injective then we are through. Now using (2.11) for i == n, n + 1, we see that

s
2
: H^X, (yj -> W(X, Q^+i) is injective for any s =(= 0 as no fiber is a base curve for

JK
2
®^. On the other hand, the exact sequence, for s + 0 and F := { s = 0 },

(2.12) 0 ̂ Q, -^Q^, ->^F -^0

and (i) shows that s : H^X, QJ -^ H^X, Q^,) is zero if A^p) + 0. As^jp ^ ^

we get A°(^jp) = 1 if F is a supersingular elliptic curve as Pic F then contains no 2-torsion.

However, g is semistable and non-constant and thus every isomorphism class of elliptic

curves occur as fibers and in particular a supersingular fiber occurs as supersingular

elliptic curves exist (there is, up to isomorphism one in characteristic 2). D

Let now F^, F^, . .., F^ be distinct irreductible fibers of g and let n: Z -> X be

the aQ^-torsor associated to the canonical section of 6x(^E, + SF .̂) ^> Q^. Assume now

that for all choices of F^, F^, ..., F^, Z is singular. Let Z -> Z be the normalisation

of Z. By (1.11) Z -> X is an aQ/-torsor for some Q' and as Z maps to Z, the functoriality

of (1.6) shows that Q; <-^ Q^ i.e. Q' = Q^(— D) for some D > 0. At points on

UE^ u UF^., Z is given as adjoining a square root of a function vanishing along a smooth

curve and is therefore smooth and so D is disjoint from the E, and the F,.. Hence the
components of D lie in fibers (as n > 0) and being disjoint from the E, they lie in integral

fibers and hence are fibers. This means that D e | ̂ ri
 \ for some i ̂  0. Assume, for the

moment that we know that for a general choice ofF^.Fg, .. ., F^, i = 0. We then quickly

reach a contradiction as follows. Let T : Z -> Z be a resolution of singularities. Now

Z is normal and ^(^z) = 1, the latter by (i). Also, as &i(Z) = &i(X) = 0, ^(^) ^ 1.

This implies, by (0:1.5), that /(^z) == 1 and that Z has only rational singularities,

which then are rational double points as Z has only hypersurface singularities. Thus

Oz = T* o)z = T* TT* Q^, the last by (1.9), and so ^(Z) = — 12 and by Noether's formula

^(Z) = 24. On the other hand, Z -> X is purely inseparable and ^(z) = 24 = ^(X)
so Z is smooth by (0:1.5).

We therefore want to show that the assumption that i > 0 for general F^, Fg, . . . , F^

leads to a contradiction. Now Z -> X represents an element a e H^X, (XQ ) and Z -> X

represents an element y! e H^X, (XQ .). The relation between these elements is that

a == s * y! for some s e H^X,^1) with D = { s = 0 } and where

* : Hi(X, a^J ® HO(X,^1) -^ Hi(X, aj

is induced from

^=^-,®^-
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Hence we see that a = t * p for some t e H°(X, c/T) and (B e H^X, OCQ^.), as j is the com-

posite of i sections of H°(X,^T). By counting dimensions we will show that this is not

possible for a general choice of F^, Fg, . . ., F^. In fact, from (2.7) (i) it follows that

dim H°(X,^) • H°(X, Q?^_i) ^ 2n. On the other hand I claim that if t * a e H°(X, Q2^)

for some a e H^X, aQ^)\H°(X, O^.i) then ^ belongs to a finite number of

lines in H°(X, J^). Indeed, if t * a e H°(X, Q?J and a ^ H°(X, Q^_i), then

^ * : H^X, CL-i) -> H^X, QJ is not injective and it follows from (2.12) that ^K^^Q}

has a non-zero section and it is sufficient to show that the restriction of ̂  to a general

fiber ofg has no sections. Now, if F is an irreducible fiber, the restriction ofJK to F has

degree zero so if it has a section it is trivial. Hence if it had a section for a general F we

would have ^K ^ ^x^ + E) where E is contained in fibers. This gives a contradiction

as any E, has even intersection number with curves in fibers and intersection — 1

with ̂ . Hence we see that

dim(H°(X,^) » (ff(X, a^J\H°(X, Q2,.,))) n H°(X, Q?J ^ 2n

and so altogether

dim(H°(X,^) * (H^X, oc^J) n H°(X, Q2,) ^ 2n < dim H°(X, Q^).

We have now proved that there is an open dense subset U of H^X, (XQ ) consisting of

smooth torsors and in the course of the argument that U n H°(X, (yj 4= 0. Let

TT : Z -> X be a smooth (XQ -torsor. As deg Q^ | E, = — 1 we see that TT^E,) ->- E(

is an a^_^-torsor and as H°(P1, Q[— 2)) == H^P^ (B{— 1)) == 0 this torsor is trivial,

so if F^ := TC^E^)^, then 2F,' = TC* E, as divisors and TT : F,' -> E, is an isomorphism.

Hence F,'2 == 1/4 (TT* E,, TT* EJ = — 1 and so the F,' are — 1-curves and can be blown

down to get T : Z -> Z'. Now co ;̂ = 7^(0, J and (r* co^) (SF^) == o)z, so we get

T'(o)z)02 ^ TT*^^02. This means that i fA :Z ' ->P 1 is the map s.t. h o T == ^ o n (which

exists as ^ o TC maps the F^ to points), then co^;' and A* ^pi(%) differ by a line bundle of

order 1 or 2. This shows that Z' is minimal elliptic. Furthermore, the general fiber of h

is integral because if it were not the Stein factorisation of h would be non-trivial, which

means that Z' -> P
1 factors through the pullback of g by the Frobenius map on P

1
, but

this pullback is normal and therefore equals Z' and has 24 A^-singularities, which Z'

certainly doesn't have. Hence we get that P^(Z') ̂  mn. We have an exact sequence

0 -> ̂  -> ̂  ̂  ̂  Q^i -> 0.

From (2.9) (i) it then follows that h\(9^} = 1, h\0^} = 2 or h\Q^} = 0, A2^,) = 1

depending on whether the boundary map H^X, Q^1) -> H2(X, <?x) ls zero or not- This

map is, by duality, dual to the classifying map H°(X, 0^ -> H^X, Q^) = Ext^(Q^1, ̂ )-

Hence ^(Z), and therefore A01(Z'), equals 1 if and only if TT : Z -> X belongs to

H°(X, Q2^) and as noted above there are smooth (XQ -torsors in H°(X, Q2^). Finally,

let W be (X')^ where X7 is the pullback of Y by the Frobenius map on P
1
. Then there

is a radicial map p : W -> Z' of degree p and as W is normal, p is an o^-torsor for some

Jf e Pic Z'. Furthermore, W has 12 A^-singularities and has X^ as its minimal resolution.
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Hence co^ ^ 0^ and so p*(<x)^®jT) is trivial. Pushing down by ?„ we get that <o^

and Jf~1 differ by a linebundle of order 1 or 2. We can now show that Z' is not almost

ruled. If it were, then by (0:1.5) it is almost rational. Suppose that 9 : P2—^ Z' is a

dominant rational map. We are going to show that 9 factors through p and then deg 9 > p

as W is not rational. Suppose therefore that 9 does not factor through p. Then by purity

(0:1.4) (p^p) is a nontrivial o^-torsor, where JT' is the extension of <p*(^) to the points

where 9 is not defined. Now, as co^' an^ ̂ ~
1 differ by a torsion line bundle, a negative

power of jf' has sections so Jf' ^ ^p«(^) for some n ̂  0, but the long exact sequence

of (1.5) and the known cohomology of line bundles on P
2 shows that there are no non-

trivial o^-torsors. D

We now want to show that there are examples of general type. Consider therefore

once again the surface X. The map g : X -— P
1 has nine sections, G, say, coming from

the nine base points of the original pencil. These curves are — 2-curves, all disjoint

from each other and also from the E, as no member of the original pencil has a singula-

rity at a basepoint. Put ^, :==^{G^ + .. . + G,) and St, :== ̂ ®^T(Gi + ... + GJ.

Lemma 2.13. — (i) If s^ 1, then ̂ , is numerically positive and G is a curve for which

(̂  G) == 0 iff C is one of the E, or G,.

(ii) There is a smooth and irreducible curve in \ S^y\ if s > 2.

(iii) Let s^ 1. Then A°(^) = s + 2, A°( ,̂) == h2^,) == A°(^-1) = h2^1) == 0

and h1^,) == h1^1) == 1.

(iv) There is an exact sequence

0 -> HO(X, ̂ ) -^ W(X, o^) -> HO(X, ,̂) -> 0.

Proof. — Suppose that G is a curve on X and that (^,, C) ^ 0. As ^, contains

divisors of the form Fi + Fg + Gi + ... + G,, where Fi, Fg are any two fibers of g,

we see that C either lies in a fiber of g and is disjoint from the G, or is one of the G,.

However, any Gj has intersection 0 with ^y and if G is disjoint from the G, and lies in

a fiber, it is one of the E, which has zero intersection with ̂ ,. Finally (^,, ^g) = 2s > 0.

Hence ̂ , is numerically positive. Now, A°(^) > 0, H^X, (B^ == 0 and ^, is numeri-

cally positive. Therefore, A^^,) = A1^;"1) == 0 and so by the Riemann-Roch theorem

A°(^) == 2s/2 + 2 == s + 2. Let us now prove that, if s ^ 2 then | ̂ , | has no basepoints.

Indeed, if we apply (0.3) then we get into problems only in case (i) and if we can prove

that b ̂  2 then we are clear. Let therefore G be a curve with C2 = 0. If (^T, C) > 0,

then (^,, G) ^ 2 and if not C is contained, and hence equals, a fiber of g but then

(^,, G) ^ 2 as s ^ 2. We get that a general member of | ̂ J is a curve from [Jo] and that

we have just proved that \^s\
 ls not composed with a pencil. Let now G be a general

member of | ̂ J and suppose that G is not smooth. Now in any case the map from the
normalisation of G to G is radicial and so, as G is not smooth, the Frobenius map on

H^C, 6^) is not injective, as the F-semi simple part of H^—, (0) is unchanged under

radicial maps. By a specialisation argument this is also true for any special member D
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of | ̂ J for which H°(D, ̂ ) == k However, F^ + Fg + Gi + . . . + G, is a graph
of P^s with transversal intersection so for this member we have that F is semi simple

on H1. Hence (i) and (ii) are proved. Now as ̂  has negative intersection with any G,,

it is a base curve of | ̂  |. Hence h°{^,) = 0 follows from (2.9) (i). Now, h°{^
1
) == 0

is obvious, A2^) == 0 and h2
^

1
) = 0 follows by duality and A1^) == h1

^
1
) = 1

follows from this and the Riemann-Roch formula. This gives (iii). Finally, (iv) is now

clear except for the surjectivity to the right. However, we have an exact sequence

0->Q.2->^-^1G^...4-G.-^0,

and as deg St^ = — 1 the long exact sequence of cohomology shows that

^(X.Q^) -^HI(X,^)

is an isomorphism. As the map Q^ ~^^s induces a map between the two sequences
coming from (1.5) we conclude by (2.9). D

Let us now embark on the construction of the examples, a construction altogether

similar to the construction of special type examples. Let C e [ ̂ J be a smooth, irreducible

curve and let n : Z -> X be the oc^-torsor associated to the image of 1 in the isomorphism

fl^(C + SE, + GI + . . . + G,) h 3t\. By (2.13) (i) G is disjoint from the E, and
the G, and so their union T is smooth. Hence Z is smooth above T and, again by (2.13) (i),

Z has only isolated singularities and hence is normal, being Cohen-Macaulay. As above

one shows then that Z is smooth. Hence the smooth a^-torsors form a dense open

subset and intersects H°(X, ̂ ) non-trivially. We now have

Proposition 2.14. — Let n : Z -> X be a smooth a^ -torsor 2 ̂  s ̂  9. Then the inverse

images of the E^ and Gj are disjoint — l-curves on Z and can therefore be blown down to get Z'.

Then Z' is a smooth surface with ample canonical sheaf, ^c(Z') = 1 and ^(Z') = 0 or 1 and

both possibilities may occur. Furthermore, ^(Z') == s, H^Z', co^1) 4= 0 and Z' is not almost

rational.

Proof. — Indeed, everything is completely similar to (2.8) but the ampleness and

H^Z', <o^1) =t= 0. The ampleness follows however from (2.13) (i). Also,

h°W = A°(<4) ^ h°W ^ AW = s + 2,

where we used that co^ = TT* ̂ . On the other hand, by the Riemann-Roch theorem,

X(<4) == s + 1 and so ^(Z', c^1) = h\T, o|,) ^ 1. D

Remark. — (i) The case of s = 9 is particularly interesting. In this case the map of

degree 4 down to P
2 is radicial so that Z' is homeomorphic in the ^tale topology to P

2
,

hence deserves the name fake P
2 in a very strong sense. As we have just constructed a

10-dimensional family of such examples we see that rigidity on the line c\ == 3^ fails
miserably in characteristic two.

(ii) The 1-foliation induced by Z' —> X embeds co^ in T^/k, so Z' has vector
fields if py 4= 0.
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Let us now consider case (ii) a) (so that nowp is arbitrary). It turns out that smooth

foliations on abelian or hyperelliptic surfaces can be completely classified. The hyperel-

liptic case reduces to the abelian by descent (I leave to the reader to work out the details)
so we will consider only the abelian case.

Proposition 2.15. — Let A be an abelian surface. Then the following data give rise to a

smooth 1-foliation of rank 1 on A (the correspondence will be given in the proof):

An abelian 1-dimensional subvariety E of A. and a non-zero rational 1-form <o on A/E s.t.

G((o) = Xco, where X = 1 ifE is ordinary and \ = 0 z/E is supersingular and G is the Cartier

operator.

Two such pairs (E, co) and (E', co') give rise to the same 1-foliation if E == E' and co

and <o' are ̂ -proportional modulo global l-forms and any smooth 1-foliation which is not an isogeny

is obtained by this construction.

Remark. — Rational l-forms <o with C(co) == 0 (resp. co) are exactly the l-forms

of the form df (resp. f~1
 df) for some (non-zero) rational function / (cf. [Ill: 0:2.1.9,

2.1.17]). Hence non-isogeny smooth 1-foliations exist as soon as A is not simple.

Proof. — Let ^-1 <-> T^ be a smooth 1-foliation and excluding the case of an

isogeny we may assume that oSf is nontrivial. As the 1-foliation is smooth we have an
exact sequence

0 -^ JSf-1 -> T^ -> S -> 0,

and as T^ is trivial JSf is generated by two global sections. This means that there is, a

unique, 1-dimensional abelian subvariety E o f A s.t. JSf is the pullback of a linebundle

on A/E. Indeed, ^ has sections but is not ample as it is generated by two sections. Hence

by [Mu2: § 16, 2nd thm] K(o§f) (in the notation ofloc. cit.) is positive dimensional but not

equal to A, as oS? has sections but is non-trivial. Put E := K(,S^d, an abelian subvariety

which, by assumption, is non-zero and different from A, hence 1-dimensional. The res-

triction of oS^ to E has degree zero and is generated by sections and is hence trival. There-

fore oSf descends to oSf' on B := A/E. We can choose a basis of the global k-derivations

of A, DI and Dg, such that Di is an B-derivation and either

I) Df = X Di and D^ = p. D^, where X, (A = 0 or 1,
or

II) D^ == Di.

This follows from the fact that T\^ is trivial, as T^/T^B = p* T^, where
p : A -> B, which is trivial, and hence that the global B-derivations form a 1-dimensional

sub-^-Lie algebra of the global k-derivations. Now, as p equals its own Stein factorisation

all global sections of oSf come from sections of oSf' and in particular we get two global

sections/^ and/g ofoE?' corresponding to the images in oSf ofDi and Dg. Both/i and/g

are non-zero as o^ is non-trivial. Let U C B be the open subset where /g is non-zero and

put/:=/i//2 which then is a non-zero rational function on B, regular on U. Hence

16
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DI ~/D2 as a vector field on p'^U) belongs to the 1-foliation «2?-l and thus so does

its p'th power. As/ek(B), Di and Dg commute and Di is an B-derivation we get

(Di —fDy = Df — (/D^ and using the formula of [Ka: 5.3] (making a sign change

to make the formula true) this equals Df —/^Df +f'DS~
l
{f

v
~

l
) Dg. Assume now

that we are in case I) above and map this element into -Sf to check that we stay in ,Sf~1.

This gives us the equality \f, - (W, +/D^1(/P~1)/2 = 0 and dividing by ff^

we get [Lf^
1
 - D^-V^) = ̂  Now as T^/T^ = p* T^ is trivial, D^ stabilises ̂

and hence induces a global k-derivation on B, D say. Let 73 be the 1-form dual to D
and apply the identity (cf. [Ill: 0:2.1.12])

< D, CCT-1 T))^ = < DV2--1 T] > - D^-1 < DJ^-173 >.

This gives, as D2^ = ^ D, < D, G^-1 73) ̂  = \ which amounts to G^-1 73) = ^73.

Multiplying this equality with/"1 and putting <o :==/~1 73 gives G(co) == >,co. We can

also reverse each step, the only point being that by (1.4) (ii) it suffices to check closedness

under p-th powers for one single non-zero rational section and that Di —fT>^ cannot

be zero as Di and D2 are two A-invariant k-linearly independent vector fields. Case II

is altogether similar, and by varying the choices made one gets the uniqueness
assertion. D

II. Consequences of Kodaira non-vanishing

We will now develop a number of criteria for the vanishing of H^X, -S?"1), where

X is still a smooth, proper and connected k-surface and -Sf is a numerically positive
line bundle. Often, however, a more natural condition is the following

(*) H^X, JSf^1) = 0 for all i> 0.

Let us note that by [Sz: Exp 2, Prop. 2], which gives vanishing for i > 0, and (1:1.5)

this is equivalent, when oS^ is numerically positive, to the non-existence of non-trivial

a^-^'-torsors for all i> 0. We will usually tacitly pretend, when assuming that (*)

is not fulfilled for a line bundle J§f, that it is fulfilled for JSf, as the argument becomes
even simpler if oS? is replaced by JS?^.

Proposition 1 . 1 . — Let £f be a numerically positive line bundle on X, let n : Y —> X

be a birational map, where Y is smooth and proper, and let i€ oSf denote the extension over the points

where TT is not defined of the pullback of oSf. Then (*) for ,Sf and TT* oSf are equivalent and n* S

is also numerically positive.

Proof, — By factoring TT as a composite of blowing ups and downs one sees that

n* oS? is numerically positive. Hence we can conclude by the remark just made and an
appeal to purity (0:1.4). D

Another useful preliminary result is the following.
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Proposition 1.2. — Let X and Y be smooth, proper and connected ^-surfaces, n : X -> Y

a surjective morphism and let £" be a numerically positive line bundle on Y. Assume (*) for n* 3^.

(i) There exists a smooth and proper h-surface Z and a factorisation X —> Z -^ Y .̂̂ . (*)

is true for p* oSf a^rf p ^ purely inseparable.

(ii) 7/' TT z'j purely inseparable of degree p and (*) is false for ^ then there is an i> 0

s.t. A°(^0 JS?- '̂) + 0, where JKC 0^ "• ̂  annihilator of the l-foliafion on Y zW^rf by TT.

Proo/'. — Indeed, we may assume that there exists a non-trivial a^-^-torsor

T : Z' -> Y for some i > 0. By assumption its pullback to X is trivial which means that

there exists a factorisation TT = T o (B. By normalising and resolving singularities we get

a purely inseparable map p : Z -> Y with Z smooth and proper and a factorisation as

in (i). If (*) is true for p* oSf we get (i), if not we continue, which is possible as p* ,Sf

is also numerically positive, and as TT has finite degree the process stops. As for (ii), for

reasons of degree p is birational. This means that the 1-foliation on Y induced by Z'

coincides with the one induced by X. We saw in (1:1) that the 1-foliation on Y induced

by Z' is the annihilator of a map oS^1 -> tiy/k? t
^

e image of which has to lie in ̂ . D

The following theorem is the first major result giving strong geometric consequences

of non-vanishing for a, in some sense, sufficiently positive line bundle oS^ as measured by

its intersection number with different line bundles.

Theorem 1.3. — Let X be a smooth^ proper and connected It-surface^ let oSf, ̂  e Pic X

and assume that H^X, a^-i) =t= 0.

(i) We have the following inequality

(^ + '2 (Q) ̂  + (0 ((-^ - \(^ Kx)) + {p - 1) x

< (̂ 2 + j(^2 - (K,^)) + h\^)

- A2^") + h\JK- " ® < ® ̂  - v)).

(ii) A°(^) < A°(Bi) and if A°(Bi) < ̂ (ay-,), then h°{^} = 0 or ^(a^-,) = 1.

(iii) Suppose that (̂ , G) ^ Oybr eoery curve G a»6? <Aaf X is not ruled. If

(^-1)(^,^)>(^,^),

then X M almost ruled.

(iv) -y X !'.? raof almost ruled, ̂  is ample and

{p-\)(S',^) =^JK),

then either of the following is true

a) X is minimal and abelian, hyperelliptic or of Kodaira dimension 1 and X is of the form Y/,̂ "

where y is a smooth filiation on Y, a minimal abelian or kyperelliptic surface. Further-

more, (o^S ;S?12^-1'.
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b) p == 2 and X ^ a non-classical {i.e. py == 1) possibly blown up Enriques surface such that

the canonical double cover is birational to a K3-surface. Furthermore, oSf2 is trivial.

c) p = 2 and X ^ o/ Kodaira dimension 1, ^(X) = 1 and the minimal model of X has an

v.^-torsor n: Y' -> X z^A OTZ/^ rational double points as singularities and whose minimal

resolution Y is a K3-surface. The map TT induces a smooth \-foliation on Y whose quotient

admits X as a blowing down. Furthermore, co^2 ̂  oSf®2.

d) p == 2 W X is of general type, S is the canonical bundle, /(X) == 1 and the minimal model

of X has an v.^-torsor TC : Y' -> X z^A (m/y rational double points as singularities and whose

minimal resolution Y is a KS-surface. The map n induces a smooth \-foliation on Y whose

quotient admits X as a blowing down. Furthermore, co^2 ̂  ,Sf®2.

(v) Let F be a curve which is the general fiber of a pencil on X. Then

- 2 < (<^, F) + (1 -p) (^, F) + F
2

(resp. 0 < (co^, F) + (1 - p) (JSf, F) + F
2

and 0 < (6)^ F) + (1 - p) {^, F) + F2)

(resp. if the normalisation ofF is not rational, not rational or elliptic).

(vi) If«Sf andJ( are numerically positive linebundles and there exists an embedding ,Sf <-^ ,̂

^ (*)/or J§f ^j&Z^ (^forJt.

Proof. — A non-zero element of H^X, o^-i) gives a non-zero morphism oSf^ -^ Qx/k

and so a non-zero morphism (Ox100^ -^ T^x/k using that the wedge product gives

an isomorphism T^ == ^x/k® <°x1- we then
 ^PP^Y Theorem 1:2.4 to get (iii)-(v).

To get (i) we use (1:1.7), applied to a non-trivial o^-i-torsor Y and the two mappings

X^ —^ Y -> for which T o n is the Frobenius. As Y is integral and n dominant we get

that A°(T'^) ^ h°{n*^^) = h
0
^). On the other hand, h2

^^) equals by (1:1.9)

and duality h\^\J(-
1 ® ̂  ® JSf1 - p) < A°(^- p ® co^ ® JSf^1 - p)) as before. Hence

h\Jt^ +AO(^-P®<®^2) (1-^)^ ^(T'^). Now, tensoring (1:1.8) with ̂  we get

a filtration on JK®^ (Py = T, T*Ji and using additivity of ^ and the Riemann-Roch

formula we get (i). As for (ii), let us note (cf. [Ar-Mi]) that the exact sequence

(1.4) 0 ->J2^-1 -^F,^-^ ->^-1®^ ->0

obtained by tensoring the defining sequence for B^ by o§f~1, shows that

(1.5) H°(X, ^-1®B^) = H\X, a^-x).

Thus, a non-zero element of H^X, a^-i) gives an embedding JSf <-> B^ and so

A°(^) ^ A°(Bi). More precisely, if P :== | H°(X, oSf-1 ® Bi) |, we have a canonical sec-

tion c ofoS?-1 ® Bi(l) on P X X and therefore an embedding J§f(— 1) -> Bi. Projecting

down to P gives us an embedding

^p(- 1) ®i, H°(X, ̂ ) -> fl?p®i, H°(X, Bi).
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By the injectivity above this is a subbundle and so gives a mapping to G, the Grassman

variety of A°(oSf)-dimensional subspaces in H°(X, B^). By [Tal: Cor. 3.2] and the assump-

tion this is a constant map. Hence ^p(— 1) ®^ H°(X, oSf) is a trivial subbundle of

^p ®k H°(X, Bi) and is, in particular, trivial. This implies that dim P = 0 or A°(,S^) == 0,

which gives (ii). (I would like to give my thanks to E. Ballico who drew my attention

to [Tal] thus enabling me to improve on an earlier version of the theorem. Note also

that in the limit case one can use [Ta2] to obtain further conclusions.) Finally, to get (vi)

we note that h°{^~
1 ® Bi) + 0 implies A°(oSf~1 ® Bi) + 0 and the same is true for any

j^-th power so we conclude by (1.5). D

We can now use all this to investigate Kodaira vanishing for surfaces of special

type. It turns out that in that case we almost always have vanishing.

Theorem 1.6. — Let X be a smooth^ proper and connected surface over k, not of general

type. If -Sf is a numerically positive line bundle on X, then H^X, oSf"1) = 0 except (possibly)

when X is a quasi-elliptic surface of Kodaira dimension 1. If in the latter case 9 : X -> C is the

canonical quasi-elliptic fibration then

a) ifp = 2 then h°{^® £'~1) =t= 0, where ̂  is the saturation in B^x °f^* B^ c. Conversely,

if h\^®^-1) + 0 then H^X,^-1) +0.

b) If p = 3 then h°{^ 0 JSf3) =1= 0, where JK is the saturation of 9* co^ in ^x/k-

Proof. — Indeed, by (1.1) the problem is birational. If X has Kodaira dimen-

sion — oo we may therefore assume that there is a morphism X -> C with P
1 as general

fiber. By the remark before (1.1) we may assume that there is a non-trivial ocj^-^'-torsor

for some i > 0 and then we get a contradiction by (1.3) (v). If X is of Kodaira dimen-

sion 0 or 1, we may assume that X is minimal. IfX is abelian we use either (I: after 1.5)

and the fact that the cotangent bundle is trivial or [Mu2: § 16]. IfX is K3 we use (1.3) (ii)

and the fact that A°(oSf) 4= 0 by the Riemann-Roch formula. If X is an Enriques surface

we use (1.3) (ii) and the fact that A°(oSf) ^ 2 by the Riemann-Roch formula, whereas

A°(Bi) < A01 < 1. If X is elliptic we use (1.3) (v) and the elliptic pencil as in the ruled

case. Finally, if X is quasi-elliptic consider the canonical map 9 : X -> G. Pulling back

by the Frobenius map on G, normalising and resolving singularities gives us a ruled

surface. Applying (1.2) and the result already obtained for ruled surfaces we get an

inclusion of JSf^ in the annihilator in ^/k °^ t^le associated 1-foliation. This annihilator

is birationally equal to the image of 9* tl^/k? ihe quotient of this 1-foliation being (the

pullback by a~
1 of) the relative Frobenius F^/o '- X^ -> G, and hence equals its satu-

ration on all of X. This gives the p == 3 case and we get similarly the p = 2 case

using (1:1.11). D

Remark. — By [Ra] the exceptions do occur.

We have now come to one of the main results of this paper.
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Theorem 1.7. — Let X be a minimal surface of general type and let S he a line bundle

on X, numerically equivalent to ^for some i> 0. Then H^X, ̂ f-1) ==0 except possibly when

P == 2, i == 1 flwrf ̂ '̂ r X zj ̂ wo^ rational or almost K3, co^ ̂  JSf2, A1^1) = h1^-1) == 1

flTzrf ^ = 1 or <x)x ̂  < ,̂ X ^ fl/wo^ nzferf W X ̂  0.

Proo/. — We are clearly aiming to show that (*) is true for ,Sf. Assume therefore

that it is false. By replacing JSf by the last positive power of it for which H1 4= 0 we may

assume that there is a non-trivial a^-i-torsor. As X is minimal, JSf is numerically

positive and so all results obtained so far are applicable. In particular (1.3) (iii)-(iv)

shows that X is almost ruled or almost K3 (the last is possible only when i == 1 and
p == 2) where we take as J(, co^ resp. any ample sheaf.

Assume now b^X) + 0. Then X is almost ruled and functoriality of the Albanese

maps shows that X has 1-dimensional image in its Albanese variety. Hence we get a

pencil on X without basepoints. Let F be a general fiber and let us assume that p 4= 2.

Then by (1.3) (v) we get (1 + i{l - p)) (K, F) ^ - 2. As F2 = 0 we have (K, F) ^ 2
and we get a contradiction unless i == 1, p == 3 and (K, F) = 2, so we assume these

equalities. Let F : X -> G be the Albanese fibration and let TT : X -> X be a non-trivial

a^-i-torsor which exists by assumption. If T] = Spec(k(G)) -> C is the generic
point of C, then K :=== H^T], (97^), (P^)C'k(X) and K is a field which is algebraic

over k(G). As [k(X) : k(X)] = 3 and k(C) is algebraically closed in k(X), we get

dim^c) H°(T), (97:), 0^) ̂  3. By generic base change we get A°((7r, C^ir) ^ 3. The
filtration {^} of (1:1.8) restricted to F gives exact sequences

0->^ -^^-^j^ ^o

0-^^->^->^/->0.

As^Tjp = (TC, 6^)|F» we get ^(^p) ^ 3. Now^(F) = 2 so the Riemann-Roch formula
gives A°(^^) - h\^) = 0 and A°(JSf®p2) = 4. The second exact sequence now gives
4 = A°(J§^2) ^ h\^) - h°^) + A°(J^) ^ 3.

Let us now assume p = 2 {and still &i(X) + 0) and let 9 and C have the meaning of

above. We may also assume that ^(X) > 32. In fact, if p : Y -> X is an ^tale cover of
degree prime to two with H^Y, p* ̂ -

1
) = 0 then, as H^X, jf-1) is a direct factor

ofH^Y, p* ̂ -1) by the trace map, it is also zero and p* Jif and Y fulfills the conditions

ofeSf and X. As &i(X) 4= 0 such coverings with arbitrarily high ^(X) exist. Assume first

that oSf ^ o>x- From (1.3) (ii) we get A°(^) ^ H°(X, B^) and as always h°{^) ̂  h°(^),

we get din^kerF.-H^X,^) -> H^X, 6?x)) ^ A- Clifford's theorem applied to B^,
which is a line bundle, gives, as has noted Serre [Se], A°(Bi, G) ^ {g + 1)/2, {g := g{C)).

As ?(0, ̂ ) ̂  H^X, ̂ ) we get

p, ̂  dim(ker F : H^X, 0^)) ̂  dim(ker F : ?(0, ̂ )) + A01 - g,

and so (g - 1)/2 < A01 - p, = - ̂ (X) + 1.
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Furthermore, as X is almost ruled, the general fibers of 9 are rational (singular) and so

&i(X) = 2g, which gives ^(X) ^ - 4(^ - 1) since ^(X) > 2. As ^(X) > 0, Noether's

formula gives ^ > (— g + 1)/3 and so — / + 1 < {g + 2)/3, which together with the

above gives {g + 2)/3 > {g — 1)/2 i.e. g < 7. This in turn gives ^(X) ^ — 20 and,

as h
01
 ̂  A°(Bi) ^ ̂ , ̂  1. Therefore, c\ == 12^ - ̂  < 12 + 20 == 32.

If now only S? ^num <x)x (an(! so l ^ 2), then

AO(^) - x(^) + AW = x(^x) + A1^) - hW + hW,

the last equality as ^(cox) = ^(^x^""^) == 0 by what has just been proved. Hence

we get as above h°(K^ ^ A°(oSf) ^ A°(<0x) ^ ^(^x) an^ we continue as before.
We are thus left with the case &i(X) =0. Noether's formula then gives %^ 1.

Applying (1.3) (i), with ^K trivial we get,

(i2 (^) + \ (i2 - t) (^)) K2 + /a ̂  1 + A°«® ̂ ^-^.

As ^"(co^e)^^1"^) ^ 1 for numerical reasons with equality iff co^ ® oS?^ ~p) is trivial,

in which case i = 1 and p == 2, we get a contradiction unless z = = l , j & = 2 , ^ = = l and
^j)2 ^ ^®2^ ̂  ̂  therefore assume i == 1, p = 2 ^rf ^ == L Applying (1.3) (i), with

^ == o)^^ gives a contradiction unless A^co^2) 4= 0 and for this we have only used

-^ ̂  1. Let TT : Y -> X be a non-trivial a^-i-torsor and let T : Z ~> Y be the normali-

sation. By (1:1.11) Z is an a^r-i-torsor for some ^K == JSf(D), where D is an effective

divisor. As Z is birational to a ruled surface or a K3-surface we can apply (1.2) and

(1.6) to conclude that any non-trivial a^-i-torsor Y' -> X has Z as its normalisation.

This means that if p : Jl -> B^ is the map corresponding to Z through (1.5) then the map

corresponding to Y' factors through p. Therefore

h1^-1) = ̂ (oc^-.) = A°(JSf-1®^) == A°(fix(D)).

Suppose we can show that h\0^) = 0. Then it follows that h^Oy) = 0 for any 0 4= D' ̂  D

as we have a surjection of structure sheaves of 1-dimensional schemes. Therefore

(K, D') + D'2 ̂  — 2 by the adjunction formula and so | D | can have no moving part,

thence h°{(P^(D)) = 1. To show that A^^) == 0 we note that by (1:1.9) coy has order 1

or 2 and by (1:1.8) /(Y) = 2 and so ^(coy) ^ I? which means that Oy ls trivial and

hence A^y) = O- This shows that h°{^ ^z/^v) == °- on the other hand, the following
diagram with exact rows

0 —> 0^ ——> TT, fl?Y ———^ cx>x ———> 0

l l
0 —^ ^ —^ (^T).^ —^ o>x(D) —^ 0

shows that TC.(T. ^z/^v) = o)x(D)|D = "D- Therefore, A^^) = ̂ ((rip) = 0. D

Remark. — We have seen (1:2.14) that there exists minimal surfaces with ̂ (to^1) 4= 0

with K^ taking any value between 2 and 9. This leaves open the case K^ = 1. I do not
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know ifA^cox1) =t= 0 is possible in that case but can show that an example must fulfill
extremely stringent conditions.

Corollary 1.8. — Let X be a minimal surface of general type. Then

P^K^+^2,

Aoi^K 2 - ! ifp,=0,

Aoi^K2+2-^ .

Proof. — Indeed, by the Riemann-Roch formula, Pg ̂  K2 + ^. If % ̂  1 then

K2 + X ̂  1 + 1 = 2. If ^ < 0 then Pg = K2 + ^ by the theorem and by the classifica-

tion of surfaces, Pg ̂  1. The second inequality follows from the first. Also by the Clifford

argument, 2{p, - 1) ^ P^ - 1 == K2 + X - 1 (^sp. K2 + X if A1^1) + °) as we have
just seen, which gives the third inequality except when A^co^1) 4= 0. Hence we are left

with the possibilities that K2 + ^ == 1 and then ^ ̂  0 and Pg == 1 or that A1^1) =1= 0.

Assume the first possibility. Hence pg ^ 1 and by (0:1.6) this implies that A01 ̂  2. On the

other hand, as ^ ̂  0, ^ ̂  0 a11^ this gives &i ̂  4, the possibility &i = 2 giving b^ ̂  2
as the Albanese mapping has 1-dimensional image. This gives only the possibility that

yi = y = 2. If X -> Alb X is surjective we get ^(X) ^ ^(Alb X) === 6 and then

^(X) ^ 0. Hence the Albanese mapping gives a map X —>• G where G is a smooth curve

of genus 2. Let G' -> G be an ^tale connected covering of degree m, which is prime

to p. The induced covering X'-> X is also connected and A01(X') ^ ^(G'). As

^(C') - 1 = m{g{G) - 1), we get A^X') - 1 ̂  m{g{C) - 1) == m^X) - 1) and
as ^(X') == w^(X), we get ̂ (X) ^ j&^X'). Now ^(X') ^ 0, so by what we have already

proved, ^(X') ^ K^ + 2 ~^(X') and as K^ = wK|^, we get

m[h°\X) - 1) ^ ^^(X') - 1 ̂  K^, + 1 - ̂ (X') ^ mK^ + 1 - mp^X'}

i.e. A01 ̂  K2 + \\m + 1 — p g . Asm can be arbitrarily large, this gives A01 ̂  K2 + 1 — ̂

i.e. 2^< K2 + % = 1 which implies pg = 0 and so / == — 1. On the other hand as
^ == 4, we get ^2 ̂  — 5 and so by Noether's formula — 1 ^ — 5 / 1 2 .

We are therefore left with the possibility that A1^1) + 0 ̂  A01 == K2 + 2 —^,
A01

 ==p, and P2 - 1 = 2{p, - 1). Hence p, == K2^ + 3/2 and | 2K | == 2 | K |, as we

get equality from the Clifford argument. If | K | is not composed with a pencil this gives

a contradiction as then X —> \ 2K [ has 2-dimensional image and so the general member

of the moving part is integral by Bertini's theorem [Jo] which contradicts | 2K | = 2 | K |.

Therefore, by (0:1.3), K2 = 1 and | K | is a pencil with a single basepoint x and as

K2 = 1 all members of [ K | intersect transversally at x. Blowing up x to get ^ : X -> X

we have a morphism TT : X -> P
1
. Furthermore, as x is a smooth point on all members

of | K |, (A is an isomorphism on all fibers ofjr. By [Bo: 4.1] these fibers are 2-connected

and so [Ram: Lemma 3], TT is cohomologically flat and (0:1.2), we have an everywhere
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defined morphism T : X ->P(TC, (Of/pi). Now, by duality and cohomological flatness,

R1 TC, Q)x/p1 == ^p1 ^d by the formula (Ox == ^x/p1 ̂  ^p1 2Ln(
^
 tlle projection formula,

7T, (O^ == 7r* ^X/P* <g) ̂ (— 2)

and R1 ̂  (Ox = ^pi(— 2).

Hence, putting § : == TT, (Ox/p1 anc^ using the Leray spectral sequence for TC, we get

2 == A<>(cox) == A°(<?(~ 2)) and 2 == h1
^) = Al(^(- 2)) + AO(^(- 2)) = Al(^(- 2)).

As rk<s? = 2, we can write S ^ ^pi(^) @ <0y(v}, with M ̂  v and so

2 == h^O^u - 2)) + A°(^(y - 2))

and 2 = A^px^ - 2)) + h^^v - 2)).

This immediately gives u == 3 and y = — 1, as h°{(Py{w)) A^fl^w)) == 0 for any w.

Now, if s e P
1
, then co^ = p»* <^x/x an(^ so T contracts exactly the — 2-curves, as no

— 2-curve on X contains x. In fact, if it did it would meet all members of | K | and hence

be contained in them having zero intersection with K. Hence we get a diagram

PW

where \ blows down the — 2-curves not meeting the exceptional divisor, X is the canonical

model of X with a smooth point blown up and ? now is a finite map. As ^ is fiber by

fiber of degree 2 it is of degree 2 and as P(<^) is regular and X is Gohen-Macaulay, we

get, by (1:1.11), that ? is an a^-torsor for a line bundle oS^ on P(<?) and a global section s

of J§?. Hence we have an exact sequence

O^^^^^x-^^-'-^O,^x-W)

giving rise to a long exact sequence

o -> p, ̂  ̂  fc^x -^ p.^-1 -^ R'p^w ̂  R^x ~> R1^-1 ̂  o

^ ^1 p»
17
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giving ?„ oSf~1 == 0 and R1 p, -Sf"1 ̂  R1 TT, 0^ ̂  R1 ̂  6^? tbLe
 ̂

st as x only contracts
— 2-curves. On the other hand, by duality,

R
1 TC, (P^ = Hom^^ co£,p., fl?px) ^ ̂ (- 3) © ^px(l)

and if JSf-1 S Q^(t) ® p* ^pi(r), then

0 if^- 1,
R

1
 o ^

-1
 ̂

P, - (s-<-2<gy®^_2) if ^-2.

Hence we get JSf-1 ̂  ̂ W- 3) 0 p* 6^(2). By (1:1.10) we have a. == Gone(JSf F^ -Sf2).

Taking direct images and noting that R1 TT^ .Ŝ  = R1 TT, -Sf2 == 0, we get

Rp, a, == Cone(p^ ̂ ^ p,^2).

Now we have

p, JS? ^ W) v
3 ® 6?p,(3) y2

 w C ̂ p,(- 1) yw2 © ̂ px(- 5) w3

and p, »^2 S ^pi(14) o6 © ̂ (10) »5 w © ^px(6) ^ w
2 © ^p.(2) »3 w3

© <Py(- 2) »2 w4 © ̂ px(- 6) yw5 © (Py(- 10) w6,

where we have written S == ^pi(3) v@0y{— 1) ^ to keep track of fiberwise

homogeneity. Hence we can write s = av
3 + ^2 ̂ . We now want to prove that

the map induced by F - s, 9 : H^P^ p, ^) -> H^P^ p, J^2) is injective. Indeed,

H1(P1, p, JS?) == H1(P1, ^pi(— 5)) w3 and the composite of 9 with the projection on

H^Pl, ^pi(lO)) w6 is the Frobenius map as s == av
3 + bv

2
 w is divisible by v. However,

F : HI(PI, flW) -> HI(PI, ^(^))

is always injective, which is immediately seen on the standard Cech cocycles.

We thus see, using the Leray spectral sequence, that

Hi(P(<?), a,) = coker(9 : HO(PI, p, JSf) -^ HO(PI, p, ̂ )).

Let r e H°(P1, p, oS^2) be a representative for X. Writing r = cv^ + dv
6
 w + ev^ w

2
 +fv

3
 w

3
,

the equation for X is z
2 + sz == r. However, as v divides s and v

2 divides r, we see that X

is singular over { v = 0 } and so is non-normal, contrary to assumption. D

Corollary 1.9. — Let X be a minimal surface of general type and £f a numerically positive

line bundle on X. Ifh1^-1) + 0 then

((^l^^)^)^-1'^)1^''
where a is zero if h1^^1) = 0 and 1 if not. If we have equality, then there is a non-trivial

oi^torsor p : Y -> X s.t. \ pK^ | == T* | p^^ Kx(-x) | where T : X -> ̂ -1) and ^1) o T

is the Frobenius map.
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Proof. — This follows from (1.3) (i) applied to co^ ̂ d (^ • 7) and the case of equality
follows by analysing the proof of (1.3) (i). D

In the next section we will use the following result which, however, seems to fit

in most naturally here.

Lemma 1.10. — Let X he a minimal surface of general type and assume that ^((o^1) + 0

andpy = 1. Then the bicanonical system has no basepoints, H°(X, <o^)|c = H°(C, (o^) ^here C

is a canonical curve and X -> | 2K | factors as X -> Y -> \ 2K | where Y(l) -> X is a non-

trivial (x.^_i-torsor and X -^Y --X^^ the Frobenius map.

Proof. — Pick G e | K^ | and consider the exact sequence

0 —> o^ ->• (^ -> (^Q —> 0.

Now, ^((4) = A°(<0x1) = 0 and ^(co^) = A°(^) == 1 as G is 1-connected [Bo: 4.1],

so the long exact sequence gives that ?(0, co^) -^ H^X, <x>x) is surjective and hence
injective. As ^(co^) = 1 = h

1
^^), the first by Theorem 1.7, the second also by

Theorem 1.7 and the assumption pg == 1, we get H^X, co^) -^H^X, co^) surjective

and hence injective and so H°(X, co^)jc == H°(G, co^;). Now, C is 2-connected (loc. cit.)

and so by (0:1.2) [ <*>c | is without base points as is then | <o^ |. The second statement

has already been proved and as for the third we use (1.9). D

HI. Pluricanonical systems on surfaces of general type

We are now going to apply our vanishing criteria to the study of pluricanonical

systems on surfaces of general type. Quite some preliminary work will be needed to get

numerically positive line bundles to which section II can be applied. A large part of

this work is necessary only to cover the case of small m. Let us therefore begin with

sketching a proof of (iii) (and consequently (ii)) of the Main theorem in the case when

m^ 8. Let us first prove that \(m + 1) K^ | separates 2 points x and y not lying on a

— 2-curve. If we blow up these two points to get n : X -> X with exceptional divisors L

and M then the long exact sequence of cohomology shows that this result is implied

by the vanishing of H^X, Q^(m + 1) n* K^ — L — M)) which by duality is equiva-

lent to the vanishing of H^X, Q^{— (mn* Kx — 2L — 2M))). As the pullback of

^x(~ (
mn

* ̂ x — 2L — 2M)) to X equals ^x(~~ m1
^^) ^^ vanishing is implied

by (11:1.1) and (11:1.7) as soon as we know that (P^(mn* K^ — 2L — 2M) is numeri-

cally positive. If this is not the case then, as the self intersection of it certainly is positive,

there is a curve G on JC with negative intersection with mn* K^ — 2L — 2M. Clearly 6

cannot be one of the exceptional curves L and M so it is the strict transform of some

curve C on X and the condition that C have negative intersection with mi€ K^ — 2L — 2M

translates to w(K, G) < 2(r + s) where r :== mult, C and s := multy G. Using the index

formula which gives K^G2^ (K, C)2 and the adjunction formula

- 2 ̂  2g{C) - 2 = (K, G) + C2 - r(r - 1) - s{s - 1)
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one quickly gets a contradiction (the appropriate inequalities are given in (1.1) (i)).

One then proves in a similar fashion that | (m + 1) K^ | separates tangents at points

not on a — 2-curve. The case of points on — 2-curves is a little more difficult. As in [Bo]

to separate two different fundamental cycles Z^ and Z^ one needs to know that

H^X, fl^(- (^Kx - Z^ - Z^))) = 0. First one shows that mK^ - Z^ - Z^ is nume-
rically positive. If not there is a curve G with negative intersection with mK^ —- Z^ — Z^

and this time one reaches a contradiction by applying the index formula to the group

in NS(X) spanned by K, Z^ + Z^ and C (the appropriate inequalities are to be found

in (1.1) (iii)). In trying to show that IP(X, ̂ (- (wK^ - Z^ - Z^))) == 0 one can

now try to apply the same techniques we used to show the vanishing of H^X, co^"1).

The case when &i(X) == 0 is almost exactly the same and for the case when &i(X) =(= 0

one notes that as Z^ and Z^ are unions of rational curves they necessarily lie in fibers

of the Albanese mapping and so has zero intersection with a fiber; one then continues

as in the mK^-case. The rest of part (ii) of the Main theorem for m ̂  8 then proceeds
in a similar way.

More complications arise when we want to consider the case of smaller m. The

inequalities we obtain from the index theorem and the adjunction formula are then not

enough to exclude the possibility of there being a curve C with negative intersection

with one of the line bundles above; we get instead that there are at most a finite number

of possibilities for the pairs (K, G), G2 (the possibilities are enumerated in Definition 1.12

and the arguments leading up to that enumeration are given in 1.13). If we consider

for instance the case of separating tangents of a point x not on a — 2-curve, then we

are saved by the fact that any such curve G contains A: as a point of multiplicity 2 and
that it hence suffices to show that | (m + 1) K^ | restricts to the complete linear

system [(coS^lc I ^d that | ((o^'1"1)^ | separates tangents of x on C. That the latter
statement is true is proved in Lemma 1.16 and it then remains to investigate the truth

of the former. Clearly it is implied by the vanishing of H^X, (D^{(m + 1) K.x — C))

and so by duality by the vanishing of H^X, S^{— {wK-s. ~~ G))- To show that this
group vanishes it is as before desirable to have that mK^ — C is numerically positive.

In Proposition 1.14 it is shown that this is almost always true except for the ever present

possibility that there is a — 2-curve with (strictly) positive intersection with G. In any

case we can add any curve D contradicting the numerical positivity of mK^ — G to G

and ask if wK.^ — C' is numerically positive where G' := C + D which is the same

problem only that C' is now an effective divisor. It is shown in (1.17) that this process

eventually stops and so there is an effective divisor G such that to finish the proof it

would suffice to show the vanishing of H^X, (P^{— (wK^ — C)) and mK^ — G is

numerically positive. To show the required vanishing we apply the results of section II;

this is done in (1.18) which gives almost all the results needed to finish the proof of

the Main theorem. In Theorem 1.20 we finally gather together all the results and finish

the few cases left open from (1.18) by more explicitly invoking the hypothesis that the

Main theorem is false in order to arrive at a contradiction.



CANONICAL MODELS OF SURFACES OF GENERAL TYPE 133

1. For x eR put [x] :== the largest integer ^ x, {A;}:= the largest integer < x

and M := | x — closest integer).

Lemma 1 . 1 . — Let X be a smooth^ proper and connected surface with K2 > 0.

(i) Let x,y eX and. D be a curve on X s.t. (K,D)^ 0. Put r:=mult^D and

a : = mult, D + multy D. Z^ X e R+ Afl^ the property that (K, D) < Xa. Tfen, i/O < (3 ̂  K2,

(1.2) 2+{^+p^]-^+.^-j)'.

Jw particular^

(1.3) 2+{^}+[<^j_^+.,2|]',

flwrf ^1 > 2x2/(3,

(1.4) .<[^1±^±^/»^].

(ii) Let x e X, D and r be as in (i). Let X e R+ ̂  .y.f. (K, D) < Xr. TAw, ifO < p < K2,

(1.5) 2+{rX}+^ { - r ^ } 2 1-r 2 +r>0
L P J

and, if 1 > X2/?,

(16 ) r < [x + 1 + V5TX2(1 - 4/p) + 2X]
l - 7 "[ 2(1-X2 /?) J-

(iii) Let C be a divisor and D a curve on X s.t. (K, D) > 0. For any m'5f (K, C)/K2

for which (G, D) > m(K, D) + 1 zw Aaw

(1.7) - (wK - C)2 (K, D)
2 + ((K, G)2 - K

2 G2 + 2(K, G) - 2wK2) (K, D)

+ 2(K, C)2 - 2K2 C2 - K2 > 0.

In particular, if

(wK - C)2 > 0

and 1/2(K, C)2 - G2 + {2m + 1) (K, G) < (w2 + m + 1/2G2) K2
,

then

(1.8) K^- OT2 - 3G2 - 2m - 1) + 2{m + 1) (K, G) - G
2 + 3(K, G)2 ̂  0.

If equality holds in (1.7), then (G, D) == m{K, D) + 1 and either (K, D) + D2 = — 2 or

K2 G2 = (K, C)2, and K, G and D are in any case linearly dependent in Num(X). If equality

holds in (1.8), then also (K, D) = 1.
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(iv) Let C be a divisor and D a curve on X. Let x eX W r:= mult^D. Suppose

0 < X < (K, D) fl^rf m(K, D) < (G, D) + 2r, /or ^om^ X and m. Then either

^(K.DX,,(t.9) ^_^(K,D)<2,

or

/! 10) a2 - 1/X((K> c)2 - K2 C2) - 4(K. G) + 4mK2

4K2 + (K, C)2
 - K

2
 G

2 a

.̂ (X + 2) ((K, C)2 - K2 G2) + 2OTX2(K, C) - K^m2 - X2
 C

2

X^K2 + (K, G)2 - K2 C2)

where a:= r/(K,D).

Proof. — Indeed, to prove (i) we note that (K, D) < { a X } and that by the index
theorem D2^ [(K, D)2/!^] ̂  [{a),}2/?]. If s := mult^D, the adjunction formula gives

(K,D) + D
2
 = r(r - 1) + s(s - 1) + g(-D') - 2

> r(r - 1) + s{s - 1) - 2,

where D' is the strict transform of D on the blowing up at x and y. This gives

2 + { oA } + [{ aX }2/p] ̂  r(r — 1) + (a — r) (a — r — 1) i.e. (1.2) and (1.3) follows
as r is an integer. Estimating the right hand side of (1.3) by 0, { oA } by oA and [{ a^ }2/^]
by (X2/^) a2 and completing the square gives (1.4). To get (ii) we simply letj'^D and
hence a = r in (i). As for (ii), we first note that the index theorem applied to the space
spanned by K, G and D gives, as K2 > 0,

K
2 (K,G) (K,D)

(1.11) 0 < (K, G) G
2 (G, D) = - D^K, G)2 - K

2 G2)

(K,D) (C,D) D
2

+ 2(K, G) (K, D) (C, D) - K^C, D)
2
 - C^K, D)

2
.

The adjunction formula gives (K, D) +D 2 ^ — 2 and as (K,C)2^ K2 G2, by the
index theorem, we get

- I)2((K, G)2 - K2 C2) <s ((K, D) + 2) ((K, G)2 - K2 C2).

Furthermore, as K2 > 0, x h> 2(K, C) (K, D) x — K2
 x

2 has a maximum at

x = (K, C^K^R., D) and decreases after this point. Hence the assumptions imply that

2(K, G) (K, D) (G, D) - K^G, D)2

< 2(K, G) (K, D) (m(K, D) + 1) - K^K, D) + I)2.

These two inequalities together with (1.11) give (1.7). The additional inequalities

in (iii) imply that the left hand side of (1.7) has a single maximum as a function of (K, D)

and that (K, D) = 1 lies to the right of it. Hence as (K, D) > 1, we can replace (K, D)
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by 1 in (1.7) and then we get (1.8). Finally, the conditions implied by equality are easily

found by following the proof and noting that by the index theorem again, equality
in (1.11) implies linear dependence in Num(X).

To prove (iv) we divide by (K, D)2 in (1.11) and then use

(K .O+D^^r - l ) -^

which gives

D
2
 1 2 g a

""" (K,D)2^ X^^ +
^

We then proceed as in (iii). D

Definition 1.12. — Let G be a curve (effective divisor) on a minimal surface of general type.

We say that G is a

— 3-curve (divisor) if (K, C) = 1, C2 == — 3,

(- 2, 2)-curve (divisor) if (K, G) = 2, G2 = - 2,

- 1-curve (divisor) if (K, C) = 1, G2 = - 1,

0-curve (divisor) if (K, G) ==2, C2 == 0,

1-curve (divisor) if (K, C) =1, C2 = 1,

2-curve (divisor) if (K, G) =2, G2 = 2,

3-curve (divisor) if (K, G) ==3, G2 == 3,

4-curve (divisor) if (K, C) =2, C2 = 4.

We will call any such curve (divisor) distinguished.

Remark. — This disagrees with standard terminology as far as " — 1 "curve " is
concerned. As our — 1-curves are defined for minimal surfaces no confusion should

arise. Note also that " — 2-curve " will have its usual meaning.

Proposition 1.13. — Let X be a minimal surface of general type.

(i) Let x =f= y e X, let n : X -> X be the blowing up of x andy and let L resp. M be the

exceptional divisors. Suppose that mi€ K — 2L — 2M is not numerically positive. Then, ifm ̂  4,

there is an elliptic or rational — 1-, 1- or 4-curve passing through both x and y or a — 2-curve

on which x or y lies. IfK.2 ̂  2 and m = 3 there is an elliptic or rational — 3-, — 1-, 0-, 2- or

3-curve passing through both x andy or a — 1-curve having x ory as singular point, or a — 2-curve

on which x ory lies. In all cases the curve in question is a base curve ofmK. — 2x — 2y.

(ii) Let x e X, let n: X -> X be the blowing up of x and let L be the exceptional divisor.

Suppose mn* K — 2L is not numerically positive. Then if m ̂  3 there is an elliptic or rational

— 1-, 1- or a — 2-curve passing through x. If K2 ̂  2 and m = 2 there is a — 1- or elliptic or

rational 2-curve having x as singular point or a — 2-curve on which x lies. In all cases the curve

in question is a base curve ofmK. — 2x.
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(iii) Let x e X, let n : X -> X A^ ̂  blowing up of x and let L ̂  /^ exceptional divisor.

Suppose mn* K — 3L is not numerically positive. Then if m^ 4 there is an elliptic or rational

— 1-, 1-, 2- or 4-curve having x as singular point or a — 2-curve passing through x. If K2 ̂  2

and m = 3 ̂ r^ ̂  a — 1- or elliptic or rational 2-curve having x as singular point or a — 2-curve

on which x lies. In all cases the curve in question is a base curve of mK. — 3x.

(iv) Let Z^ and Z^ be two disjoint fundamental cycles {i.e. maximal — 2-divisors). If

m ̂  4 or m == 3 and K2 ̂  2, ̂  mK — Z^ — Z^ ^ numerically positive.

(v) Z^ Z be a fundamental cycle. Then 2K — Z ^ numerically positive and so^ in

particular, if m ̂  4, mK — 2Z ^ numerically positive. If K2 ̂  2 W 3K — 2Z u not

numerically positive then there is a — 3-curve G with (Z, G) = 2 and G is a base curve

0/3K-2Z.

(vi) Let Z be a fundamental cycle, let x e X, x ^ a — 2-curve, let TT : X -> X be the

blowing up of x and let L he the exceptional divisor. If m ̂  4 then mn* K — TC* Z — 2L is nume-

rically positive. If K2 ̂  2 ^w ^A<?r 3TC* K — TC* Z — 2L ^ numerically positive or x lies on

a — 1-curve G with (C, Z) == 0 or 1, or on a — 2-curve C with (G, Z) = 2 and G is a base curve

of3K^Z-2x.

Remark. — (i) It follows from the proof that the curves contradicting numerical

positivity must fulfill stronger properties than stated. For instance, in (i) a 4-curve

contradicting numerical positivity would have x as a point of multiplicity 3 and y as a
point of multiplicity 2 or vice versa.

(ii) It also follows from the proof that if m^ 8 then rm€ K — 2L — 2M and
m-vC K — 3L are always numerically positive.

Proof. — Let us start with (i) and m ̂  4. As (mn* K — 2L — 2M)2 = m
2 K2 — 8 > 0,

if mn* K — 2L — 2M is not numerically positive, there is a curve 8 on X s.t.
0 > (m^ K - 2L - 2M, C). Now,

2 = (m7T* K - 2L - 2M, L) = (m-^ K - 2L - 2M, M)

so C is the strict transform of a curve C on X. If r := mult^ C and s := mult C, then

r = ( L , C ) and s = (M, C), so w(K, G) < 2(r + s). We now apply (1.1) (i) with

\ == 1/2 and [3=1. From (1.4) we then get a ̂  7. On the other hand, as X is minimal of

general type, (K, G) > 0 so a ^ 1. Using (1.3) and (1.2) and going through the cases

a = 1, 2, ..., 7 we get (i) for m ̂  4. The case m = 3, K2 ̂  2 is done in the same way,

(ii) and (iii) is done using (1.1) (ii) (iv) and (v) using (1.1) (iii) or in some cases going

back to (1.11) and, finally (vi) using (1.1) (iv) (1.11) and the technique used in (i)

and (ii) to reduce the problem to conditions on a curve on X plus the fact that a funda-

mental cycle has non-positive intersection with any — 2-curve. Finally, in each

case one sees that G or G has genus 0 or 1 and G is certainly a base curve of the

appropriate linear system as otherwise the condition of negative intersection would not be

fulfilled. D
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Proposition 1.14. — Let X be a minimal surface of general type.

(i) Let C be a — 1-divisor on X and m^ 3 or m == 2, K2 ̂  2. If mK — G

is not numerically positive then C has positive intersection with some — 2-curve D and

h°{mK - C) = h°{mK - G - D).

(ii) Let C be a — 3-divisor on X and K2 ̂  2. If 3K — G is not numerically positive then

either C has positive intersection with a — 2-curve or there is a — 3-curve D with (C, D) = 4

and A°(3K - G) = A°(3K - G - D).

(iii) Let C be a 0-divisor on X. If 3K — G is not numerically positive then C has positive

intersection with a — 2-curve D and A°(3K — C) = A°(3K — G — D).

(iv) Let C be a l-divisor on X. Then 2K — G is numerically positive.

(v) Let C be a 2-divisor on X and m > 4 or m ̂  2, K2 ̂  2. If mK — C is

not numerically positive then G has positive intersection with a — 2-curve D, K2 == 1 and

h°{mK ~ C) = A°(wK - G - D).

(vi) Let G be a 4-divisor on X. Then 3K — G is numerically positive,

(vii) Let G be a — 1-divisor on X, K2 ̂  2 and x a point not on C. Let n: X -> X be

the blowing up at x and L the exceptional divisor. If 3-n* K — TC* G — 2L is not numerically

positive then there is a curve D passing through x s.t. either D is a 2-curve with (C, D) == 1 or

a - ^curve with (C, D) == 0, 1 or 2 and A°(3K - G - 2x) = A°(3K - C - D).

(viii) Let C be a (— 2, 2) -divisor on X and K2 ̂  2. Then 3K — C is numerically positive

unless there is a — 3-curve D with (G, D) = 4 and A°(3K — C) = A°(3K — C — D).

(ix) Let C be a 3-divisor on X and K2 ̂  2. rA^ 3K — G is numerically positive unless

there is a - 2-curve D with (G, D) = 1 and A°(3K - C) = A°(3K - G - D).

Proof. — Indeed, this is completely analogous to the proof of (1.13). D

Lemma 1 .15. — Let D be a divisor on a minimal surface of general type. Then there is no

infinite sequence Z^, Zg, Zg, . . . of — 2-curves s.t.

V i^ 1 : (D + Zi + Zg + . . . + Z,_i, Z,) > 0.

Proof. — Assume such a sequence exists. As the basis dual to the basis consisting

of — 2-curves of the space spanned by those is negative [Bou: § 3, Lemme 6], there is

an effective divisor E consisting of — 2-curves s.t. D + E has negative intersection with

all — 2-curves. We prove by induction that Z^ + Zg + • • • + Zi ̂  E. In fact, as

(D, Zi) > 0 and 0 ̂  (D + E, Zi) we get (E, Zi) < 0 and so Zi ̂  E. At the i-th step

we have (D + Zi + Zg + ... + Z,_i, Z,) > 0 and

0^ (D + Zi + Z^ + ... + Z,_, + (E - (Zi + Z^ + ... + Z^,)), Z,),

so Z,^ E - (Zi + Z^ + ... + Z,_i). D

Lemma 1.16. — Z^ Vi be a minimal surface of general type.

(i) Z^ C ̂  an effective divisor on X with (K, G) < 3. Let p := ̂  + m wA^ ̂  ?,?

^ ideal defining C and m is an ideal of codimension 2ifm^4:orm=3,K2^- 2 and codimen-

18
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sion 1 ifm = 2, K2 ̂  2, (K, C) < 2 or m == 3 ̂  Supp(^x/m) rfo^ no^ m^^ fl — 2-curve.

Then the reduction map

HO(C, Q^m + 1) K)) -^ HO(C, ̂ ((^ + 1) K)/p^((^ + 1) K))

is surjective.

(ii) Z^ G be an effective divisor on X with (K, G) < 2 W ̂  Z^ W Z^ ̂  too /tWa-

w<?wW cycles s.t. Z^ + Z^ G. P^ p := ̂ .̂ . A^w^ w ̂  4 or w = 3, K2 > 2. Then

HO(G, ^((m + 1) K)) -> HO(G, ̂ ((^ + 1) K)/p^((m + 1) K))

is surjective.

(iii) Z^ G be an effective divisor on X with (K, G) < 2 W let Z Z^ a fundamental cycle

s.t. Z ̂  G. P^ p := J .̂ ĵ̂ o^ m ̂  3 or m = 2, K2 > 2. TA^

HO(C, ̂ ((^ + 1) K)) -> HO(G, 0^(m + 1) K)/p^((m + 1) K))

is surjective.

(iv) Let C &<? ̂  effective divisor on X z^A (K, G) < 2 and let Z &<? a fundamental cycle

s.t. Z < C. Put p := ̂  + m, wA^ m u ayi iAa/ of codimension 1 .̂̂ . Supp((Px/m) does

not meet a — 2-curve. Suppose m ̂  4 or m == 3, K2 ̂  2. TA^w

HO(C, ^((m + 1) K)) ^HO(G, ̂ ((m + 1) K)/p^((m + 1) K))

s surjective.

Proof. — Indeed, it will suffice to show that H^G, p^c^ + 1) K)) = 0.
By duality it will be enough to show that Hom^(p^((w + 1) K), co^) == 0. Sup-

pose there is a non-zero ^̂ ^P1118"1 h: P^o^ + 1) K) -> ̂  let G^ ^ G be
maximal for A^. = 0 and let Ci := C — Gg. Then h induces a non-zero map
p^((^ + 1) K) -> (Oc(- Ga). As o)c(- G^) == ̂  and (K, G^) ^ (K, C), we may
replace C by Gi and so assume that h is injective and coker h has finite support. Hence

deg^P^c^ + l
)

 K)) ^ degc ^c i•e.

dego P^o + ^(K, G) < G
2
.

Let us now consider (i). Thendegcpfi^ — 2 (resp. — 1) so we get 0^ G
2 + 2 — m(K, G)

(resp. G2 + 1 - m(K, G)). The index theorem gives G
2
 ̂  (K, G) ̂ K2 and (K, G) ̂  1, 2 or 3

gives by substitution a contradiction. If (K, G) == 0, C consists of — 2-curves so by assump-

tion degc p^o == 0 and we again get a contradiction.

As for (ii) we have then deg^; pfl^ = — (Z^ + Z^, G). Assume first Z^ = Z^ ==: Z.
From (1.11) it follows that

- 2G
2
 K

2 - K^C, Z)2 + 2(K, G)2
 ̂  0

i.e. G^^K^-^Z)2.

Hence we get

0
 ̂  2̂ (

K
-
 c)2 - J (G- z)2 + 2(0, Z) - ̂ (K, G).
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The function (G, Z) H- - 1/2(0, Z)2 + 2(0, Z) takes on its maximum for (0, Z) = 2,

so we get

o < i^ ( K ^ G ) 2+ 2 -w (K 5 c l ) 5

which gives a contradiction if (K, 0) = 1 or 2. If(K, 0) == 0 then 0 consists of — 2-curves

so (0, Z) ^ 0 as Z is a fundamental cycle, but — (0, Z) = deg^ p^c ̂  C2 < 0. If

instead Z^ + Z^ we put Z :== Z^ + Z^ and use (1.11) again to get a contradiction.

Similarly, we obtain (iii) and (iv). D

Lemma 1.17. — (i) Let x e X, TT : X -> X ̂  blowing up at x and L :== Tr"^). Suppose

that x does not lie on a — 2'curve. If m ̂  3 or m == 2, K2 ̂  2, ^A^ '̂/A r̂ TTZTC* K — 2L is

numerically positive or there is a distinguished divisor G all of whose components are rational or

elliptic s.t. A: e G, (K, G) ^ 2 and mK — G is numerically positive. If m = 2 then C may be

assumed to be either a — 2-curve with mulfp G ̂  3, a — I'divisor or a 1 -divisor and in any case

h°{K^x) =A°(K-G).

(ii) With x, TT and L as in (i). If m ̂  4 or m == 3, K2 ̂  2 ̂  ̂ A^r WTT* K — 3L is

numerically positive or there is a distinguished divisor G all of whose components are rational or

elliptic s.t. ^c^^x an^ G is a — 1-, 1-, 2- or ^-divisor if m^ 4 and a — 1- or 2-divisor if

m = 3 for which mK — G is numerically positive and h°(mK — 3x) = A°(mK — C).

(iii) Let Z be a fundamental cycle. Ifm ̂  4 or m == 3, K2 ̂  2, ̂ z rifA^r wK — 2Z is

numerically positive or there is a distinguished divisor C all of whose components are rational or

elliptic s.t. Z ̂  G, (K, G) ^ 2 and mK — G is numerically positive.

(iv) Let Z^ and Z^ be fundamental cycles. If m ̂  4 or m = 3, K2 ̂  2, ^A^ ^A^r

mK — Z^ — Z^ ̂  numerically positive or there is a distinguished divisor C all of whose components

are rational or elliptic s.t. Z^ + Z^ ̂  G, (K, C) ̂  2, m = 3 and mK — C is numerically positive.

(v) Let . y + j y e X . T c r X — ^ X (r̂ . p : X -> X) ̂  blowing up at x andy (resp. at y )

and L:== •n;"1^), M:= Tr"1^) (r .̂ M :== p"1^)). Suppose that x and y do not lie on

a — 2-curve. If m ̂  4 or m = 3, K2 ̂  2, ^A<w ^A<?r WTT* K — 2L — 2M u numerically positive

or there is a — 1-curve G s.t. x eG and wp* K — p* G — 2M is numerically positive or there

is a distinguished divisor G all of whose components^ except possibly for one 2-curve, are rational

or elliptic s.t. x^y e G, G is a — 1-, 1- or 4-curve if m ̂  4 and mK — C is numerically positive

and h°{mK - 2x - 2y) = A°(mK - G - 2y) resp. A°(mK - 2x - 2y) == h°(mK - C).

(vi) Let Z be a fundamental cycle and let A: e X, where x does not lie on a — 2-curve, let

n: X -> X be the blowing up at x and L := n"1^). If m ̂  4 or m == 3, K2 ̂  2, then either

mn* K — TT* Z — 2L ^ numerically positive or there is a distinguished divisor G all of whose

components are rational or elliptic s.t. Z ̂  G and x e G, (K, C) ^ 2, m = 3 and mK — C is

numerically positive.

Proof. — Assume the lemma false. Then (1.13) provides us with a distinguished

curve containing the required subscheme. Put G either equal to this distinguished curve

or the distinguished curve plus the (sum of) fundamental cycles if we are in part (iii),
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(iv) or (vi). Thus C is a distinguished divisor and as the lemma is false mK — G is not

numerically positive. Hence (1.14) gives us a new distinguished curve or a — 2-curve.

Adding this to G gives us a new distinguished divisor. We then have the following flow
chart: ^—-s.

Here the type of the curve whose addition gives a new distinguished divisor is

written beside the arrow. Also the possibility of the addition of a — 2-curve giving the

same type has not been displayed. Now (1.15) assures us that we can not add only

— 2-curves indefinitely and the chart shows us, as it contains no loops, that eventually

we will reach a contradiction. We get the precisions on the types by using the conditions

in (1.13) to see where we enter the flow chart in the different cases. Furthermore,

by (1.13) we start with rational or elliptic curves and we see that those we add are rational

or elliptic except for one possible 2-curve in part (v). Finally, the condition on the
dimension of linear systems follows from (1.14). D

Proposition 1.18. — Let X be a minimal surface of general type.

(i) Let G be a — 3-, (— 2, 2)-, — 1-, 1-, 2-, 3- or 4-divisor containing at most one

non-rational or non-elliptic component which is a 2-curve, or an effective divisor with

(K, C) == 0, G2 == — 4 or — 8 and let m ̂  3 be s.t. mK — G is numerically positive.

Then H^X, 6^(— (^K — G))) =0 except possibly when

(K,G) G2 K2 m A(<^1)

3 3 1 ^ 5 0,1

3 3 2 3 1

2 2 1 4 1
2 ^ 0 1 4 0,1
2 ^ 2 1 3 0,1
1 - 1 1 3 1
1 - 3 1 3 0,1
0 - 8 1 3 1

and in any case X is almost ruled, % ̂  1 and G contains no 2-curve ifK.2 ̂  2.
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(ii) Let C be a — 1- or 2-divisor s.t. 2K — G is numerically positive and K2 ̂  2. If

W(X, ̂ (~ (2K - G))) + 0 then p = 2, x(X) < 0, HO(X, ̂ (K - C)) = 0 and X ^
almost ruled or G î  a 2-divisor.

Proof. — Assume that the proposition is false and first that ^(X) < 0 and hence

q^ 2. Now, as (K + (1 - p} (mK - C), K) < 0 (11:1.3) (iii) shows that X is almost
ruled. Let/: X -> T be the Albanese fibration so that T is a curve of genus q. Assume

that all components of G are rational or elliptic. They then lie in fibers of/ as q ̂  2 so

ifFisafiber (G, F) == Oand (K + (1 - p) (mK - G), F) = (K + (1 -j&) mK,F) < ~ 2

except when m = 2, p == 2, which contradicts (11:1.3) (v). If not, there is at most one

component D of G which is not elliptic or rational and it is a 2-curve. As we may assume
that K2 ̂  2 a 2-curve is numerically equivalent to K and so we get

(m- l )K-^wK-D^ mK^C

and we obtain a contradiction from (11:1.3) (vi) and (11:1.7).

We are therefore left with the case m == 2, p = 2 (still assuming ^ < 0)
and we have just shown that X is almost ruled and so it only remains to verify

that H°(X, ̂ (K — C)) = 0. If not, we get an embedding ̂  ̂  ^x(2K — G) contra-
dicting (11:1.3) (vi) and (11:1.7).

Assume now ̂  1. From (1.9) and (1.10) we get

(1.19)
((Q+^(9) ( W 2 K 2-2 W ( K 5 G )+C 2 )

+ j g) (mK2 - (K, G)) + {p - 1) x < g) K2 + 1 + A(oi1).

As n l-> (^) is increasing we can put p == 2 in (1.19) if

l/2(w2 K2 - 2w(K, G; + C2 + mK
2 - (K, G)) - K2 > 0.

This inequality is easily seen to be fulfilled so we get

(r^+m- 2) K2 + 2x ̂  (2m + 1) (K, C) - G2 + 2 + 2Al((Oxl)•

A case by case study then gives the proposition, if we use the argument above to exclude

containment of a 2-curve. D

We should now be amply prepared for the proof of the main theorem of this paper.

Theorem 1.20. — Let X be a minimal surface of general type and consider \(m + 1) K^ |

as a linear system on the canonical model of X.

(i) If m > 3 or m == 2 and K2 > 2 then \{m + 1) K^ | has no base points.

(ii) If m ̂  4 or m == 3 and K2 ̂  2 then \(m + 1) K^ | is very ample.
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Proof. — Indeed, assume that x e X is a base point of | (m + 1) K^ | and assume

first that x does not lie on a ~ 2-curve. Let w : X -> X be the blowing up at x and L the

exceptional divisor. The assumption just made implies that ?(50, fi^(— mn
* K + 2L)) 4= 0

and we thus get from (11:1.1) and (11:1.7) that m-sC K — 2L is not numerically positive.

This implies, by (1.17), (1.18) and (1.16) and using the factorisation

HO(X, 0^(m + 1) K)) ^HO(G, Q^m + 1) K)) ->^((m + 1) K),

that m == 2 and that there is a — 1-divisor or a 2-curve C with x e C s.t.

AI(^(- (2K - G))) + 0,

A°(K ~ C) = A°(K - x) = A°(K) as A: is a base point of | 3K | and mult^ G ̂  3 if G is

a 2-curve. Now if C is a — 1-divisor then, again by (1.18), ^< 0 and so, by (0:1.6),

A°(K) =)= 0 which contradicts (1.18) (ii). Hence we may assume that C is a 2-curve

with mult, C ̂  3. As K2 ̂  2 we get K2 == 2 and K -^ G. We first show that K = C.

In fact, if&i(X) =f= 0, then as mult, G ̂  3 and g{C) = 3 implies that C is rational C lies

in a fiber of the Albanese mapping and so 2 == C2 ̂  0. Hence &i(X) == 0 and so ̂  1.

Now, as C -^ K we get h°{C - K) + A°(2K - C) ^ ^ ̂  1 and so either C == K

or A°(2K - C) > 0. In the latter case we get, by (11:1.3) (ii), ^(K) > 0 and thus

A°(K - C) = A°(K ~ x) = A°(K) > 0 and therefore G = K and A°(K) = 1. As then

^(^x1) =t= 0 we get from (11:1.10) that | 2K | is without base points and that X -> | 2K |

factors as X -^ Y -^ | 2K |, where Y 4. X^ is a non-trivial o^-torsor where J§f := co^i)

and T o p is the Frobenius map. This means that exactly one of the maps C -> p(G) and

p(G) ->TO p(G) is of degree 1 and the other of degree 2. As (K, C) = 2, the pullback
ofr^ to the normalisation of C(^ P1) is an a^.^-torsor and hence is trivial. Therefore,

p(C) -> T o p(G) is of degree 1 and so C -> p(G) is of degree 2. Furthermore, from (11:1.10)

it follows that X -> \ 2K | restricts to the canonical map G -> | K^, |. Therefore C is

hyperelliptic and so all its singularities have multiplicity ^ 2, contradicting mult^ C ̂  3.

If x lies on a — 2-curve (1.13) (v) and (1.18) give a contradiction and thus (i)
is proved.

As for (ii) let first x andj/ be two distinct points none of which lie on a — 2-curve

and assume that \{m + 1) K | does not separate them. Assume first m ̂  4. Then (1.16),

(1.17) and (1.18) gives an immediate contradiction. If m == 3, then we get K2 == 2,

A1^1) == 1 and A°(3K - 2x - 2y) = A°(3K - G) ^ h\0^ = A°(K), the last as ^ == 1.
Now, as x and y are not separated by | 4K |, A°(K — x — y ) ^ A°(K) — 1 and
AO(2K - x -j0 ^ A°(2K) - 1 = K 2 + X + 1 - 1 = 3 . Therefore,

A°(K) ^ A°(3K -2x- 2y) ̂  A°(K - x -y) + A°(2K - x -y) - 1

^ A°(K) + 1.

Let now x be a point not on a — 2-curve and assume that \(m + 1) K | does not

separate tangents at x. This means that there is a codimension 2 ideal moffl^ w1
^

1 support
at x s.t. the restriction map H°(X, Q^{ (m + 1) K)) ->(P^{{m + 1) K)lm(P^{m + l)K)isnot
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surjective. Assume that m ̂  4. We get a contradiction as before unless m == 4, K2 == 1
^((Ox1) == 1 and A°(4K - 3x) ̂  A°(K). We also get

A°(4K ~ 3x) ̂  ^(2K) + 2A°(K) - 5 == 3 + 2A°(K) - 5 i.e. AO(K) ^ 2.

On the other hand, A°(4K - 3x) ̂  A°(4K) - 6 == 1 by the Riemann-Roch formula.

Hence we see that A°(K — x) = A°(K) — 1 as otherwise the argument above would

give A°(K) ^ 0. This means that there is a canonical curve not passing through x and

so | 4K [ cannot fill up everything up to order 3 at x, as [ 5K [ does not fill up everything

even up to order 2 by assumption. Hence, A°(4K — 3x) > A°(4K) — 6 = 1 and so

A°(K) ^ 2 contradicting (11:1.8). If instead m == 3, then, as K2 ̂  2, we see from (1.17) (ii)
and (1.18) (i) that there are no problems.

Suppose now that \{m + 1) K | does not separate two singular points or fails to

separate tangents at a singular point. Then from (1.17) (iv), (1.18) and [Bo: 5.10]

we get a contradiction. Similarly for separation of a smooth and a singular point. D

BIBLIOGRAPHY

[Ar] M. ARTIN, On isolated singularities of surfaces. Am. J. of Math., 88 (1966), 129-136.

[Ar-Mi] M. ARTIN, J. S. MILNE, Duality in the flat cohomology of curves. Invent. Math., 35 (1976), 111-129.
[B-P-V] W. BARTH, C. PETERS, A. VAN DE VEN, Compact complex surfaces, Berlin, Springer Verlag, 1984.

[Bo] E. BOMBIERI, Canonical models of surfaces of general type, Publ. Math. IHES, 42 (1973), 171-220.

[Bo-Mul] E. BOMBIERI, D. MUMFORD, Enriques* classification of surfaces in char. p, II, in Complex analysis & alge-

braic geometry, Cambridge, Cambridge Univ. Press, 1977, pp. 23-42.

[Bo-Mu2] E. BOMBIERI, D. MUMFORD, Enriques' classification of surfaces in char. p. III, Invent. Math., 35 (1976),
197-232.

[Bou] N. BOURBAKI, Groupes et algebres de Lie, Chap. V, Paris, Hermann, 1968.

[Ek] T. EKEDAHL, Foliations and inseparable morphisms. Proceedings of Symposia in Pure Math., 46, Part 2
(1987), 139-150.

[Fu] T. FUJITA, Vanishing theorems for semipositive line bundles. Springer Lecture Notes in Math., 1016 (1983),
519-528.

V*
1
] 3

s GIRAUD, Forme normale d'une fonction sur une surface de caracteristique positive. Bull. Soc. Math.

Fr., Ill (1983), 109-124.

[Ha] R. HARTSHORNE, Algebraic geometry, Berlin, Springer-Verlag, 1977.

[Ill] L. ILLUSIE, Complexe de de Rham-Witt et cohomologie cristalline, Ann. scient. £c. Norm. Sup., 12 (1979),
501-661.

[J°] J--P- JOUANOLOU, Theoremes de Bertini et applications. Progress in mathematics, vol. 42, Boston, Birkhauser,
1983.

[Ka] N. KATZ, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin,
Publ. Math. IHES, 42 (1970), 175-232.

[Mi] Y. MIYAOKA, Deformations of a morphism along a foliation. Proceedings of Symposia in Pure Math., 46,

Part 1 (1987), 245-268.

[Mul] D. MUMFORD, Enriques* classification of surfaces in char. p, I, in Global analysis, Prmceton, Princeton
University Press, 1969, pp. 325-341.

[Mu2] D. MUMFORD, Abelian varieties, Oxford, Oxford University Press, 1974.

[Ra] M. RAYNAUD, Contre-exemple au st vanishing theorem " en caracteristique p > 0, in C.P. Ramanujam

— A tribute, Berlin, Springer-Verlag, 1978, pp. 273-278.



144 TORSTEN EKEDAHL

[Ram] C. P. RAMANUJAM, Remarks on the Kodaira vanishing theorem. Journal of the Indian Math. Soc., 36

(1972), 41-51.

[Se] J.-P. SERRE, Course at the College de France, 1983-1984.

[SGA6] P. BERTHELOT, A. GROTHENDIECK, L. ILLUSIE, SGA 6, Springer Lecture Notes in Math., Berlin, Springer-
Verlag, 1977.

[Sz] L. SZPIRO et al., Seminaire sur les pinceaux de courbes de genre aux moins deux, Asterisque, 86 (1981),
1-145.

[Tal] H. TANGO, On (n— l)-dimensional projective spaces contained in the Grassmann variety Gr(n, 1),
J. Math. Kyoto Univ., 14 (1974), 415-460.

[Ta2] H. TANGO, On morphisms from projective space P
n
, J. Math. Kyoto Unio., 16 (1976), 201-207.

University of Stockholm

Department of Mathematics

Box 6701

S-11385 Stockholm

Manuscrit refu Ie 22 mai 1987.


