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CANONICAL POLYADIC DECOMPOSITION OF THIRD-ORDER
TENSORS: REDUCTION TO GENERALIZED EIGENVALUE

DECOMPOSITION∗

IGNAT DOMANOV† AND LIEVEN DE LATHAUWER‡

Abstract. Canonical polyadic decomposition (CPD) of a third-order tensor is decomposition
in a minimal number of rank-1 tensors. We call an algorithm algebraic if it is guaranteed to find
the decomposition when it is exact and if it relies only on standard linear algebra (essentially sets of
linear equations and matrix factorizations). The known algebraic algorithms for the computation of
the CPD are limited to cases where at least one of the factor matrices has full column rank. In this
paper we present an algebraic algorithm for the computation of the CPD in cases where none of the
factor matrices has full column rank. In particular, we show that if the famous Kruskal condition
holds, then the CPD can be found algebraically.
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1. Introduction.

1.1. Basic notation and terminology. Throughout the paper R denotes the
field of real numbers and T = (tijk) ∈ R

I×J×K denotes a third-order tensor with
frontal slices T1, . . . ,TK ∈ R

I×J ; rA, range(A), and ker(A) denote the rank, the
range, and the null space of a matrix A, respectively; kA (the k-rank of A) is the
largest number such that every subset of kA columns of the matrix A is linearly inde-
pendent; ω(d) denotes the number of nonzero entries of a vector d; span{f1, . . . , fk}
denotes the linear span of the vectors f1, . . . , fk; Om×n, 0m, and In are the zero m×n
matrix, the zero m×1 vector, and the n×n identity matrix, respectively; Ck

n denotes
the binomial coefficient, Ck

n = n!
k!(n−k)! ; Cm(A) (the mth compound matrix of A) is

the matrix containing the determinants of all m×m submatrices of A, arranged with
the submatrix index sets in lexicographic order (see section 2 for details).

The outer product a ◦ b ◦ c ∈ R
I×J×K of three nonzero vectors a ∈ R

I , b ∈ R
J ,

and c ∈ R
K is called rank-1 tensor ((a◦b◦c)ijk := aibjck for all values of the indices).

A polyadic decomposition of T expresses T as a sum of rank-1 terms:

(1.1) T =

R∑

r=1

ar ◦ br ◦ cr,

where ar ∈ R
I , br ∈ R

J , cr ∈ R
K , 1 ≤ r ≤ R. If the number R of rank-1 terms in
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(1.1) is minimal, then (1.1) is called the canonical polyadic decomposition (CPD) of
T and R is called the rank of the tensor T (denoted by rT ).

We write (1.1) as T = [A,B,C]R, where the matrices A :=
[
a1 . . . aR

]
∈

R
I×R, B :=

[
b1 . . . bR

]
∈ R

J×R, and C :=
[
c1 . . . cR

]
∈ R

K×R are called the
first, second, and third factor matrices of T , respectively.

Obviously, a ◦ b ◦ c has frontal slices abT c1, . . . , ab
T cK ∈ R

I×J . Hence, (1.1) is
equivalent to the system of matrix identities

(1.2) Tk =

R∑

r=1

arb
T
r ckr = ADiag(ck)BT , 1 ≤ k ≤ K,

where ck denotes the kth column of the matrix CT and Diag(ck) denotes a square
diagonal matrix with the elements of the vector ck on the main diagonal.

For a matrix T = [t1 · · · tJ ], we follow the convention that vec(T) denotes
the column vector obtained by stacking the columns of T on top of one another,

i.e., vec(T) =
[
tT1 . . . tTJ

]T
. The matrix Matr(T ) :=

[
vec(TT

1 ) . . . vec(TT
K)

]
∈

R
IJ×K is called the matricization or matrix unfolding of T . The inverse operation is

called tensorization: if X is an IJ ×K matrix, then Tens(X, I, J) is the I × J ×K
tensor such that Matr(T ) = X. From the well-known formula

(1.3) vec(ADiag(d)BT ) = (B⊙A)d, d ∈ R
R,

it follows that

(1.4) Matr(T ) :=
[
(A⊙B)c1 . . . (A⊙B)cK

]
= (A⊙B)CT ,

where “⊙” denotes the Khatri–Rao product of matrices,

A⊙B := [a1 ⊗ b1 · · · aR ⊗ bR] ∈ R
IJ×R,

and “⊗” denotes the Kronecker product: a⊗ b = [a1b1 . . . a1bJ . . . aIb1 . . . aIbJ ]
T .

It is clear that in (1.1) the rank-1 terms can be arbitrarily permuted and that
vectors within the same rank-1 term can be arbitrarily scaled provided the overall
rank-1 term remains the same. The CPD of a tensor is unique when it is only subject
to these trivial indeterminacies.

1.2. Problem statement. The CPD was introduced by Hitchcock in [14] and
was later referred to as canonical decomposition (Candecomp) [3], parallel factor model
(Parafac) [11, 13], and topographic components model [27]. We refer the readers to
the overview papers [17, 5, 7, 4], the books [18, 34], and the references therein for
background and applications in signal processing, data analysis, chemometrics, and
psychometrics.

Note that in applications one most often deals with a perturbed version of (1.1):

T̂ = T +N = [A,B,C]R +N ,

where N is an unknown noise tensor and T̂ is the given tensor. The factor matrices
of T are approximated by a solution of the optimization problem

(1.5) min ‖T̂ − [A,B,C]R‖ subject to A ∈ R
I×R, B ∈ R

J×R, C ∈ R
K×R,

where ‖ · ‖ denotes a suitable (usually Frobenius) norm [36].
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In this paper we limit ourselves to the noiseless case. We show that under mild
conditions on factor matrices the CPD is unique and can be found algebraically in the
following sense: the CPD can be computed by using basic operations on matrices, by
computing compound matrices, by taking the orthogonal complement of a subspace,
and by computing generalized eigenvalue decomposition. We make connections with
concepts like permanents, mixed discriminants, and compound matrices, which have
so far received little attention in applied linear algebra but are of interest. Our
presentation is in terms of real-valued tensors for notational convenience. Complex
variants are easily obtained by taking into account complex conjugations.

The heart of the algebraic approach is the following straightforward connection
between CPD of a two-slice tensor and generalized eigenvalue decomposition (GEVD)
of a matrix pencil. Consider an R×R× 2 tensor T = [A,B,C]R, where A and B are
nonsingular matrices and the matrix Diag(d) := Diag(c1)Diag(c2)−1 is defined and
has distinct diagonal entries. From the equations Tk = ADiag(ck)BT , k = 1, 2, it
follows easily that ADiag(d)A−1 = T1T

−1
2 and BDiag(d)B−1 = (T−1

2 T1)
T . Hence,

the matrix Diag(d) can be found (up to permutation of its diagonal entries) from
the eigenvalue decomposition of T1T

−1
2 or (T−1

2 T1)
T and the columns of A (resp.,

B) are the eigenvectors of T1T
−1
2 (resp., (T−1

2 T1)
T ) corresponding to the R distinct

eigenvalues d1, . . . , dR. Since the matrices A and B are nonsingular, the matrix C
can be easily found from (1.4). More generally, when A and B have full column rank
and C does not have collinear columns, A and B follow from the GEVD of the matrix
pencil (T1,T2).

1.3. Previous results on uniqueness and algebraic algorithms. We say
that an I × R matrix has full column rank if its column rank is R, which implies
I ≥ R. The following theorem generalizes the result discussed at the end of the
previous subsection. Several variants of this theorem have appeared in the literature
[12, 40, 7, 21, 32, 31]. The proof is essentially obtained by picking two slices (or two
mixtures of slices) from T and computing their GEVD.

Theorem 1.1. Let T = [A,B,C]R, and suppose that A and B have full column
rank and that kC ≥ 2. Then

(i) rT = R and the CPD of T is unique; and
(ii) the CPD of T can be found algebraically.
In Theorem 1.1 the third factor matrix plays a role different from those of the

first and the second factor matrices. Obviously, the theorem still holds when A, B,
C are permuted. In what follows we will present only one version of results. Taking
this into account, we may say that the following result is stronger than Theorem 1.1.

Theorem 1.2. Let T = [A,B,C]R, let rC = R, and suppose that C2(A)⊙C2(B)
has full column rank. Then

(i) rT = R and the CPD of T is unique [6, 16]; and
(ii) the CPD of T can be found algebraically [6].
Computationally, we may obtain from T a partially symmetric tensor W that

has CPD W = [C−T ,C−T ,M]R, in which both C−T and M have full column rank
and work as in Theorem 1.1 to obtain C−T . The matrices A and B are subsequently
easily obtained from (1.4).

Also, some algorithms for symmetric CPD have been obtained in the context
of algebraic geometry. We refer the readers to [30, 20] and the references therein.
Further, algebraic algorithms have been obtained for CPDs, in which factor matrices
are subject to constraints (such as orthogonality and Vandermonde) [39, 37].

Our discussion concerns unsymmetric CPD without constraints. Results for the
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partially and fully symmetric cases may be obtained by setting two or all three factor
matrices equal to each other, respectively.

In the remaining part of this subsection we present some results on the uniqueness
of the CPD. These results will guarantee CPD uniqueness under the conditions for
which we will derive algebraic algorithms. For more general results on uniqueness we
refer the readers to [8, 9]. The following result was obtained by Kruskal, which is
little known. We present the compact version from [9]. Corollary 1.4 presents what
is widely known as “Kruskal’s condition” for CPD uniqueness. The known proofs of
Corollary 1.4 are nonconstructive. It is one of the contributions of this paper that
Kruskal-type conditions not only imply the uniqueness of the CPD but guarantee that
the CPD can be found algebraically (see Corollaries 1.8–1.9).

Theorem 1.3 (see [19, Theorem 4b, p. 123], [9, Corollary 1.29]). Let T =
[A,B,C]R. Suppose that

(1.6) kA + rB + rC ≥ 2R+ 2 and min(rC + kB, kC + rB) ≥ R+ 2.

Then rT = R and the CPD of tensor T is unique.
Corollary 1.4 (see [19, Theorem 4a, p. 123]). Let T = [A,B,C]R, and let

(1.7) kA + kB + kC ≥ 2R+ 2.

Then rT = R and the CPD of T = [A,B,C]R is unique.
In [8, 9] the authors obtained new sufficient conditions expressed in terms of

compound matrices. We will use the following result.
Theorem 1.5 (see [9, Corollary 1.25]). Let T = [A,B,C]R and m := R−rC+2.

Suppose that

max(min(kA, kB − 1), min(kA − 1, kB)) + kC ≥ R+ 1,(1.8)

Cm(A)⊙ Cm(B) has full column rank.(1.9)

Then rT = R and the CPD of tensor T is unique.
Since the k-rank of a matrix cannot exceed its rank (and a fortiori not its number

of columns), condition (1.7) immediately implies conditions (1.6) and (1.8). It was
shown in [9] that (1.6) implies (1.9) for m = R−rC+2. Thus, Theorem 1.5 guarantees
the uniqueness of the CPD under milder conditions than Theorem 1.3. Note also that
statement (i) of Theorem 1.2 is the special case of Theorem 1.5 obtained for rC = R,
i.e., when one of the factor matrices has full column rank.

1.4. New results. To simplify the presentation and without loss of generality
we will assume throughout the paper that the third dimension of the tensor T =
[A,B,C]R coincides with rC, that is, K = rC. (This can always be achieved in a
“dimensionality reduction” step: if the columns of a matrix V form an orthonormal
basis of the row space of Matr(T ) and the matrix A ⊙ B has full column rank (as
is always the case in the paper), then rC = rMatr(T ) = rVT Matr(T ) = rVT C, and

by (1.4), the matrix Matr(T )V = (A ⊙ B)CTV has rC columns, which means that
the third dimension of the tensor TV := Tens(Matr(T )V, I, J) is equal to rC; if the
CPD TV = [A,B,VTC]R has been computed, then the matrix C can be recovered
as C = V(VTC)).

The following theorems are the main results of the paper. In all cases we will
reduce the computation to the situation as in Theorem 1.1.

Theorem 1.6. Let T = [A,B,C]R and m := R− rC +2. Suppose that kC = rC
and that (1.9) holds. Then
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(i) rT = R and the CPD of T is unique; and
(ii) the CPD of T can be found algebraically.
Theorem 1.7. Let T = [A,B,C]R and n := R− kC + 2. Suppose that

(1.10) Cn(A)⊙ Cn(B) has full column rank.

Then
(i) rT = R and the CPD of T is unique; and
(ii) the CPD of T can be found algebraically.
Theorem 1.7 generalizes Theorem 1.6 to the case where possibly kC < rC. The

more general situation for C is accommodated by tightening the condition on A and
B. (Indeed, (1.10) is more restrictive than (1.9) when n > m.) The proof of Theorem
1.7 is simple; we essentially consider a kC-slice subtensor T̄ = [A,B, C̄]R for which
kC̄ = rC̄ so that Theorem 1.6 applies. (Actually, to guarantee that kC̄ = rC̄, we
consider a random slice mixture.)

We also obtain the following corollaries.
Corollary 1.8. Let T = [A,B,C]R. Suppose that

(1.11) kA + rB + kC ≥ 2R+ 2, and kB + kC ≥ R+ 2.

Then rT = R and the CPD of tensor T is unique and can be found algebraically.
Corollary 1.9. Let T = [A,B,C]R, and let kA + kB + kC ≥ 2R+2. Then the

CPD of T is unique and can be found algebraically.
Let us further explain how the theorems that we have formulated so far relate to

one another. First, we obviously have that n = R− kC + 2 ≥ R− rC + 2 = m. Next,
the following implications were proved in [8]:

(1.12)

(1.11) (1.10) min(kA, kB) ≥ n (1.8)

(1.6) (1.9) min(kA, kB) ≥ m

trivial

trivial

if kC=rC (trivial)

The first thing that follows from scheme (1.12) is that Theorem 1.7 is indeed more
general than Corollary 1.8. Corollary 1.9 follows trivially from Corollary 1.8. Next,
it appears that the conditions of Theorems 1.6–1.7 are more restrictive than the
conditions of Theorem 1.5. Also, the conditions of Corollary 1.8 are more restrictive
than the conditions of Theorem 1.3. Hence, we immediately obtain the uniqueness of
the CPD in Theorems 1.6–1.7 and Corollary 1.8. Consequently, we can limit ourselves
to the derivation of the algebraic algorithms. Theorems 1.6 and 1.7 are proved in
subsections 4.1 and 4.4, respectively.

1.5. Organization. We now explain how the paper is organized. Let T =
[A,B,C]R ∈ R

I×J×K with kC = K, implying K ≤ R. In the first phase of our
algorithms, we find up to column permutation and scaling the K × CK−1

R matrix
B(C) defined by

(1.13) B(C) := LCK−1(C),

where

(1.14) L :=

⎡
⎢⎢⎢⎣

0 0 . . . (−1)K−1

...
... . .

. ...
0 −1 . . . 0
1 0 . . . 0

⎤
⎥⎥⎥⎦ .
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The matrix B(C) can be considered as an unconventional variant of the inverse of C:

every column of B(C) is orthogonal to exactly K − 1 columns of C,(P1)

any vector that is orthogonal to exactly K − 1 columns of C

is proportional to a column of B(C),
(P2)

every column of C is orthogonal to exactly CK−2
R−1 columns of B(C),(P3)

any vector that is orthogonal to exactly CK−2
R−1 columns of B(C)

is proportional to a column of C.
(P4)

Recall that every column of the classical Moore–Penrose pseudoinverse C† ∈ R
R×K is

orthogonal to exactly K − 1 rows of C and vice versa. The equality CC† = IK works
along the “long” dimension of C. If C† is known, then C may easily be found by
pseudoinverting again, C = (C†)†. The interaction with B(C) takes place along the
“short” dimension of C, and this complicates things. Nevertheless, it is also possible
to reconstruct C from B(C). In the second and third phases of our algorithms we use
B(C) to compute CPD. The following two properties of B(C) will be crucial for our
derivation.

Proposition 1.10. Let C ∈ R
K×R and kC = K. Then

(i) B(C) has no proportional columns, that is, kB(C) ≥ 2; and
(ii) the matrices

B(C)(m−1) = B(C)⊙ · · · ⊙ B(C)︸ ︷︷ ︸
m−1

, B(C)(m) = B(C)⊙ · · · ⊙ B(C)︸ ︷︷ ︸
m

have full column rank for m := R−K + 2.
Sections 2–3 contain auxiliary results of which several are interesting in their own

right. In subsection 2.1 we recall the properties of compound matrices, provide an
intuitive understanding of properties (P1)–(P4) and Propositions 1.10, and discuss
the reconstruction of C from B(C). (Since the proofs of properties (P1)–(P4) and
Proposition 1.10 are rather long and technical, they are included in the supplemen-
tary materials.) In subsections 2.2–2.3 we study variants of permanental compound
matrices. Let the columns of the Km-by-Cm

R matrix Rm(C) be equal to the vector-
ized symmetric parts of the tensors ci1 ◦ · · · ◦ cim , 1 ≤ i1 < · · · < im ≤ R, and let
range(πS) denote a subspace of RKm

that consists of vectorized versions of mth order
K × · · · ×K symmetric tensors, yielding dim range(πS) = Cm

K+m−1. We prove

(1.15) Proposition 2.13(iii) : ker
(
Rm(C)T ↾range(πS)

)
= range(B(C)(m)),

where the notation Rm(C)T ↾range(πS) means that we let the matrix Rm(C)T act only
on vectors from range(πS), i.e., onKm×1 vectorized versions ofK×· · ·×K symmetric
tensors. Computationally, the subspace ker

(
Rm(C)T ↾range(πS)

)
is the intersection of

the subspaces ker(Rm(C)T ) and range(πS).
In section 3 we introduce polarized compound matrices—a notion closely related

to the rank detection mappings in [6, 29]. The entries of polarized compound matrices
are mixed discriminants [22, 2, 1]. Using polarized compound matrices we construct
a Cm

I Cm
J ×Km matrix Rm(T ) from the given tensor T such that

(1.16) Rm(T ) = [Cm(A)⊙ Cm(B)]Rm(C)T .

Assuming that Cm(A)⊙Cm(B) has full column rank and combining (1.15) with (1.16),
we find the space generated by the columns of the matrix B(C)(m):

(1.17) ker
(
Rm(T ) ↾range(πS)

)
= ker

(
Rm(C)T ↾range(πS)

)
= range(B(C)(m)).
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In section 4 we combine all results to obtain Theorems 1.6–1.7 and we present
two algebraic CPD algorithms. Both new algorithms contain the same first phase, in
which we find a matrix F that coincides with B(C) up to column permutation and
scaling. This first phase of the algorithms relies on key formula (1.17), which makes
a link between the known matrix Rm(T ), constructed from T , and the unknown
matrix B(C). We work as follows. We construct the matrix Rm(T ) and compute the
vectorized symmetric tensors in its kernel. We stack a basis of ker

(
Rm(T ) ↾range(πS)

)

as columns of a matrix Matr(W) ∈ R
Km×C

K−1

R , with which we associate a K ×
Km−1 × CK−1

R tensor W . From Proposition 1.10 and Theorem 1.1 it follows that
the CPD W = [B(C), B(C)(m−1),M]

C
K−1

R
can be found algebraically. This allows us

to find a matrix F that coincides with B(C) up to column permutation and scaling.
In the second and third phases of the first algorithm we find the matrix C and the
matrices A and B, respectively. For finding C, we resort to properties (P3)–(P4).
Full exploitation of the structure has combinatorial complexity and is infeasible unless
the dimensions of the tensor are relatively small. As an alternative, in the second
algorithm we first find the matrices A and B and then we find the matrix C. This
is done as follows. We construct the new I × J × CK−1

R tensor V with the matrix
unfolding Matr(V) := Matr(T )F = (A⊙B)CTF. We find subtensors of V such that
each subtensor has dimensions I × J × 2 and its CPD can be found algebraically.
Full exploitation of the structure yields Cm

R C2
m subtensors. From the CPD of the

subtensors we simultaneously obtain the columns of A and B, and finally we set

C =
(
(A⊙B)†Matr(T )

)T
.

We conclude the paper with two examples. In the first example we demonstrate
how the algorithms work for a 4 × 4 × 4 tensor of rank 5 for which kA = kB = 3. In
the second example we consider a generic 6× 6× 7 tensor of rank 9 and compare the
complexity of algorithms. Note that in neither case does the uniqueness of the CPDs
follow from Kruskal’s theorem (Theorem 1.3).

1.6. Link with [6]. Our overall derivation generalizes ideas from [6] (K = R).
To conclude the introduction, we recall the CPD algorithm from [6] using our notation.
We have K = R, which implies m = 2. First, we construct the C2

IC
2
J × R2 matrix

R2(T ), whose ((i − 1)R+ j)th column is computed as

Vec ( C2(Ti +Tj)− C2(Ti)− C2(Tj) ) , 1 ≤ i ≤ j ≤ R,

where T1, . . . ,TR ∈ R
I×J denote the frontal slices of T . The entries of the ((i −

1)R + j)th column of R2(T ) can be identified with the C2
IC

2
J nonzero entries of the

I × I × J × J tensor Pij [6, p. 648]. Then we find a basis w1, . . . ,wR ∈ R
R2

of E :=
ker

(
R2(T ) ↾range(πS)

)
and set W = [w1 . . . wR]. We note that E can be computed as

the intersection of the subspaces ker(R2(T )) and range(πS), where range(πS) consists
of vectorized versions of symmetric R×R matrices. In [6], the subspace E is generated
by the vectors in range(πS) that yield a zero linear combination of the R2 tensors
Pij . In the next step we recover (up to column permutation and scaling) C from E.
This is done as follows. By (P3)–(P4), the columns of B(C) are proportional to the
columns of C−T ; i.e., B(C)T is equal to the inverse of C up to column permutation
and scaling. Hence, by (1.17), range(W) = range(C−T ⊙C−T ). Hence, there exists
a nonsingular matrix M such that W =

(
C−T ⊙C−T

)
MT . Therefore, by (1.4),

W = [C−T ,C−T ,M]R, where W denotes the R × R × R tensor such that W =
Matr(W). Since all factor matrices of W have full column rank, the CPD of W can
be computed algebraically. Thus, we can find C−T (and hence C) up to column
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permutation and scaling. Finally, the matrices A and B can now be easily found
from Matr(T )C−T = A⊙B using the fact that the columns of A⊙B are vectorized
rank-1 matrices.

2. Matrices formed by determinants and permanents of submatrices
of a given matrix. Throughout the paper we will use the following multi-index
notation. Let i1, . . . , ik be integers. Then {i1, . . . , ik} denotes the set with elements
i1, . . . , ik (the order does not matter) and (i1, . . . , ik) denotes a k-tuple (the order is
important). Let

Sk
n = {(i1, . . . , ik) : 1 ≤ i1 < i2 < · · · < ik ≤ n},

Qk
n = {(i1, . . . , ik) : 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n},

Rk
n = {(i1, . . . , ik) : i1, . . . , ik ∈ {1, . . . , n}}.

It is well known that card Sk
n = Ck

n, card Qk
n = Ck

n+k−1, and card Rk
n = nk. We as-

sume that the elements of Sk
n, Q

k
n, and Rk

n are ordered lexicographically. In what fol-
lows we will use both indices taking values in {1, 2, . . . , Ck

n} (resp., {1, 2, . . . , Ck
n+k−1}

or {1, 2, . . . , nk}) and multi-indices taking values in Sk
n (resp., Qk

n or Rk
n). For exam-

ple,

S2
2 = {(1, 2)}, Q2

2 = {(1, 1), (1, 2), (2, 2)}, R2
2 = {(1, 1), (1, 2), (2, 1), (2, 2)},

S2
2(1) = Q2

2(2) = R2
2(2), Q2

2(3) = R2
2(4).

Let also P{j1,...,jn} denote the set of all permutations of the set {j1, . . . , jn}. We
follow the convention that if some of j1, . . . , jn coincide, then the set P{j1,...,jn}

contains identical elements, yielding card P{j1,...,jn} = n!. For example, P{1,2,2} =
{{1, 2, 2}, {1, 2, 2}, {2, 1, 2}, {2, 2, 1}, {2, 1, 2}, {2, 2, 1}}. We set Pn := P{1,...,n}.

Let A ∈ R
m×n. Throughout the paper A((i1, . . . , ik), (j1, . . . , jk)) denotes the

submatrix of A at the intersection of the k rows with row numbers i1, . . . , ik and the
k columns with column numbers j1, . . . , jk.

2.1. Matrices whose entries are determinants. In this subsection we briefly
discuss compound matrices. The kth compound matrix of a given matrix is formed
by k × k minors of that matrix. We have the following formal definition.

Definition 2.1 (see [15]). Let A ∈ R
m×n and k ≤ min(m,n). The Ck

m-by-Ck
n

matrix whose (i, j)th entry is detA(Sk
m(i), Sk

n(j)) is called the kth compound matrix
of A and is denoted by Ck(A).

Example 2.2. Let A = [I3 a], where a = [a1 a2 a3]
T . Then

C2(A) =

⎡
⎢⎢⎢⎢⎢⎢⎣

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

(1, 2)
∣∣∣1 0
0 1

∣∣∣
∣∣∣1 0
0 0

∣∣∣
∣∣∣1 a1
0 a2

∣∣∣
∣∣∣0 0
1 0

∣∣∣
∣∣∣0 a1
1 a2

∣∣∣
∣∣∣0 a1
0 a2

∣∣∣

(1, 3)
∣∣∣1 0
0 0

∣∣∣
∣∣∣1 0
0 1

∣∣∣
∣∣∣1 a1
0 a3

∣∣∣
∣∣∣0 0
0 1

∣∣∣
∣∣∣0 a1
0 a3

∣∣∣
∣∣∣0 a1
1 a3

∣∣∣

(2, 3)
∣∣∣0 1
0 0

∣∣∣
∣∣∣0 0
0 1

∣∣∣
∣∣∣0 a2
0 a3

∣∣∣
∣∣∣1 0
0 1

∣∣∣
∣∣∣1 a2
0 a3

∣∣∣
∣∣∣0 a2
1 a3

∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣

1 0 a2 0 −a1 0
0 1 a3 0 0 −a1
0 0 0 1 a3 −a2

⎤
⎦ .
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Definition 2.1 immediately implies the following lemma.
Lemma 2.3. Let A ∈ R

I×R and k ≤ min(I, R). Then
(1) Ck(A) has one or more zero columns if and only if k > kA;
(2) Ck(A) is equal to the zero matrix if and only if k > rA; and
(3) Ck(A

T ) = (Ck(A))T .
PD representation (1.2) will make us need compound matrices of diagonal matri-

ces.
Lemma 2.4. Let d ∈ R

R, let ω(d) denote the number of nonzero entries of d, let

k ≤ R, and let d̂k := [d1 · · · dk d1 · · · dk−1dk+1 . . . dR−k+1 · · · dR]T ∈ R
Ck

R . Then

(1) d̂k = 0 if and only if ω(d) ≤ k − 1;

(2) d̂k has exactly one nonzero entry if and only if ω(d) = k; and

(3) Ck(Diag(d)) = Diag(d̂k).
The following result is known as the Binet–Cauchy formula.
Lemma 2.5 (see [15, pp. 19–22]). Let k be a positive integer, and let A and B be

matrices such that Ck(A) and Ck(B), are defined. Then Ck(ABT ) = Ck(A)Ck(BT ). If
additionally d is a vector such that ADiag(d)BT is defined, then Ck(ADiag(d)BT ) =

Ck(A)Diag(d̂k)Ck(B)T .
The goal of the remaining part of this subsection is to provide an intuitive under-

standing of properties (P1)–(P4) and Proposition 1.10.
Let K ≥ 2, and let C be a K × K nonsingular matrix. By Cramer’s rule and

(1.13), the matrices det(C)C−1 and B(C) are formed by (K − 1) × (K − 1) minors
(also known as cofactors) of C. It is easy to show that B(C) = (det(C)C−1)TL,
where L is given by (1.14). It now trivially follows that every column of B(C) is a
nonzero vector orthogonal to exactly K − 1 columns of C. Indeed,

CTB(C) = CT det(C)C−TL = det(C)L,

which has precisely one nonzero entry in every column. The inverse statement holds
also. Namely, if x is a nonzero vector that is orthogonal to exactly K (= CK−2

K−1 )

columns of B(C) (i.e., ω(xTB(C)) ≤ 1), then x is proportional to a column of C.
Indeed,

ω(xTB(C)) = ω(xT det(C)C−TL) = ω(xTC−T ) = ω(C−1x) ≤ 1

⇔ x is proportional to a column of C.
(2.1)

Properties (P3)–(P4) generalize (2.1) for rectangular matrices and imply that if we
know B(C) up to column permutation and scaling, then we know C up to column
permutation and scaling. This result will be directly used in Algorithm 1 further:
we will first estimate B(C) up to column permutation and scaling and then obtain
C up to column permutation and scaling. Statements (P1)–(P3) are easy to show.
Statement (P4) is more difficult. Since the proofs are technical, they are given in the
supplementary materials.

Let us illustrate properties (P1)–(P4) and Proposition 1.10 for a rectangular ma-
trix C (K < R).

Example 2.6. Let

C =

⎡
⎣
1 0 0 1
0 1 0 1
0 0 1 1

⎤
⎦ , L =

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦ ,
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implying kC = K = 3 and R = 4. From (1.13) and Example 2.2 it follows that

B(C) = LC2(C) =

⎡
⎣

0 0 0 1 1 −1
0 −1 −1 0 0 1
1 0 1 0 −1 0

⎤
⎦ .

One can easily check the statements of properties (P1)–(P4) and Proposition 1.10.
Note in particular that exactly four sets of three columns of B(C) are linearly depen-
dent. The vectors that are orthogonal to these sets are proportional to the columns of
C.

In our overall CPD algorithms we will find a matrix F ∈ R
K×C

K−1

R that coincides
with B(C) up to column permutation and scaling. Properties (P3)–(P4) imply the
following combinatorial procedure to find the third factor matrix of T . Since the
permutation indeterminacy makes it that we do not know beforehand which columns
of F are orthogonal to which columns of C, we need to look for subsets of CK−2

R−1

columns of F that are linearly dependent. By properties (P3)–(P4), there exist exactly
R such subsets. For each subset, the orthogonal complement yields, up to scaling, a
column of C.

2.2. Matrices whose entries are permanents.
Definition 2.7. Let A =

[
a1 . . . an

]
∈ R

n×n. Then the permanent of A is
defined as

perm A =
+

|A
+

| =
∑

(l1,...,ln)∈Pn

a1l1a2l2 · · · anln =
∑

(l1,...,ln)∈Pn

al11al22 · · ·alnn.

The definition of the permanent of A differs from that of the determinant of A in
that the signatures of the permutations are not taken into account. This makes the

permanent invariant for column permutations of A. The notations perm A and
+

|A
+

|
are due to Minc [26] and Muir [28], respectively.

We have the following permanental variant of compound matrix.
Definition 2.8 (see [25]). Let C ∈ R

K×R. The Cm
K -by-Cm

R matrix whose (i, j)th
entry is perm C(Sm

K (i), Sm
R (j)) is called the mth permanental compound matrix of C

and is denoted by PCm(C).
In our derivation we will also use the following two types of matrices. As far as

we know, these do not have a special name.
Definition 2.9. Let C ∈ R

K×R. The Cm
K+m−1-by-C

m
R matrix whose (i, j)th

entry is perm C(Qm
K(i), Sm

R (j)) is denoted by Qm(C).
Definition 2.10. Let C ∈ R

K×R. The Km-by-Cm
R matrix whose (i, j)th entry

is perm C(Rm
K(i), Sm

R (j)) is denoted by Rm(C).
Note that Qm(C) is a submatrix of Rm(C), in which the doubles of rows that

are due to the permanental invariance for column permutations have been removed.
The following lemma makes the connection between Qm(C)T and Rm(C)T and

permanental compound matrices.
Lemma 2.11. Let C = [c1 . . . cK ]T ∈ R

K×R. Then Qm(C)T (resp., Rm(C)T )
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has columns PCm([cj1 . . . cjm ]), where (j1, . . . , jm) ∈ Qm
K (resp., Rm

K).
Example 2.12. Let C = [ 1 2 3

4 5 6 ]. Then

R2(C) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 2) (1, 3) (2, 3)

(1, 1)

+∣∣∣1 2
1 2

+∣∣∣
+∣∣∣1 3
1 3

+∣∣∣
+∣∣∣2 3
2 3

+∣∣∣

(1, 2)

+∣∣∣1 2
4 5

+∣∣∣
+∣∣∣1 3
4 6

+∣∣∣
+∣∣∣2 3
5 6

+∣∣∣

(2, 1)

+∣∣∣4 5
1 2

+∣∣∣
+∣∣∣4 6
1 3

+∣∣∣
+∣∣∣5 6
2 3

+∣∣∣

(2, 2)

+∣∣∣4 5
4 5

+∣∣∣
+∣∣∣4 6
4 6

+∣∣∣
+∣∣∣5 6
5 6

+∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

4 6 12
13 18 27
13 18 27
40 48 60

⎤
⎥⎥⎦ .

The matrix Q2(C) is obtained from R2(C) by deleting the row indexed with (2, 1).

2.3. Links between matrix Rm(C), matrix B(C), and symmetrizer. Re-
call that the matrices πS(T) := (T+TT )/2 and (T−TT )/2 are called the symmet-
ric part and skew-symmetric part of a square matrix T, respectively. The equality
T = (T+TT )/2+(T−TT )/2 expresses the well-known fact that an arbitrary square
matrix can be represented uniquely as a sum of a symmetric matrix and a skew-
symmetric matrix. Similarly, with a general mth-order K × · · · × K tensor T one
can uniquely associate its symmetric part πS(T )—a tensor whose entry with indices
j1, . . . , jm is equal to

(2.2)
1

m!

∑

(l1,...,lm)∈P{j1,...,jm}

(T )(l1,...,lm)

(that is, to get πS(T ) we should take the average of m! tensors obtained from T by all
possible permutations of the indices). The mapping πS is called the symmetrizer (also
known as the symmetrization map [24] or the completely symmetric operator [23]; in
[33] a matrix representation of πS was called the Kronecker product permutation
matrix).

It is well known that mth-order K×· · ·×K tensors can be vectorized into vectors
of RKm

in such a way that for any vectors t1, . . . , tm ∈ R
K the rank-1 tensor t1◦· · ·◦tm

corresponds to the vector t1 ⊗ · · · ⊗ tm. This allows us to consider the symmetrizer
πS on the space R

Km

. In particular, by (2.2),

(2.3) πS(t1 ⊗ · · · ⊗ tm) =
1

m!

∑

(l1,...,lm)∈Pm

tl1 ⊗ · · · ⊗ tlm .

The following proposition makes the link between B(C) and Rm(C) and is the main
result of this section.

Proposition 2.13. Let C ∈ R
K×R, K ≤ R, m = R −K + 2, and kC ≥ K − 1.

Let also B(C) be defined by (1.13), and let Rm(C)T ↾range(πS) denote the restriction

of the mapping Rm(C)T : R
Km

→ R
Cm

R onto range(πS). Then the following hold:
(i) The matrix Rm(C) has full column rank. Hence, dim range(Rm(C)T ) = Cm

R .
(ii) dim

(
ker

(
Rm(C)T ↾range(πS)

))
= CK−1

R .

(iii) If kC = K, then ker
(
Rm(C)T ↾range(πS)

)
= range(B(C)(m)).
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In the remaining part of this subsection we prove Proposition 2.13. Readers who
are mainly interested in the overall development and algorithms can safely skip the
rest of this section. We need auxiliary results and notation that we will also use in
subsection 3.3.

Let {eKj }Kj=1 denote the canonical basis of R
K . Then {eKj1⊗· · ·⊗eKjm}(j1,...,jm)∈Rm

K

is the canonical basis of RKm

and by (2.3),

(2.4) πS(e
K
j1
⊗ · · · ⊗ eKjm) =

1

m!

∑

(l1,...,lm)∈P{j1,...,jm}

eKl1 ⊗ · · · ⊗ eKlm .

Let the matrix G ∈ R
Km×Cm

K+m−1 be defined as follows:

(2.5) G has columns {πS(e
K
j1
⊗ · · · ⊗ eKjm) : (j1, . . . , jm) ∈ Qm

K}.

The following lemma follows directly from the definitions of πS and G and is well
known.

Lemma 2.14 (see [33]). Let πS and G be defined by (2.4)–(2.5). Then the columns
of the matrix G form an orthogonal basis of range(πS); in particular, dim range(πS) =
Cm

K+m−1.
The following lemma explains that the matrix Rm(C) is obtained from C by

picking all combinations of m columns and symmetrizing the corresponding rank-1
tensor. Note that it is the symmetrization that introduces permanents.

Lemma 2.15. Let C =
[
c1 . . . cR

]
∈ R

K×R. Then

(2.6) Rm(C) = m!
[
πS(c1 ⊗ · · · ⊗ cm) . . . πS(cR−m+1 ⊗ · · · ⊗ cR)

]
.

Proof. By (2.3), the (i1, . . . , im)th entry of the vector m!πS(cj1 ⊗ · · · ⊗ cjm ) is
equal to

∑

(l1,...,lm)∈Pm

ci1jl1 · · · cimjlm
= perm

⎡
⎢⎣
ci1j1 . . . ci1jm
...

...
...

cimj1 . . . cimjm

⎤
⎥⎦

= perm C((i1, . . . , im), (j1, . . . , jm)).

Hence, (2.6) follows from Definition 2.10.
Example 2.16. Let the matrix C be as in Example 2.12. Then

R2(C)T = 2!

⎡
⎢⎣

1
2! ([1 4]⊗ [2 5] + [2 5]⊗ [1 4])
1
2! ([1 4]⊗ [3 6] + [3 6]⊗ [1 4])
1
2! ([2 5]⊗ [3 6] + [3 6]⊗ [2 5])

⎤
⎥⎦ =

⎡
⎣
4 13 13 40
6 18 18 48
12 27 27 60

⎤
⎦ .

Let {e
Cm

K+m−1

(j1,...,jm)}(j1,...,jm)∈Qm
K

denote the canonical basis of RCm
K+m−1 . Define the

Cm
K+m−1-by-K

m matrix H as follows:

(2.7) H has columns
{
e
Cm

K+m−1

[j1,...,jm] : (j1, . . . , jm) ∈ Rm
K

}
,

in which [j1, . . . , jm] denotes the ordered version of (j1, . . . , jm). For all Km entries of
a symmetric mth order K × · · · ×K tensor, the corresponding column of H contains
a “1” at the first index combination (in lexicographic ordering) where that entry can
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be found. The matrix H can be used to “compress” symmetric K×· · ·×K tensors by
removing redundancies. The matrix G above does the opposite thing, so G and H act
as each other’s inverse. It is easy to prove that indeed HG = ICm

K+m−1
. The relations

in the following lemma reflect the same relationship and will be used in subsection
3.3.

Lemma 2.17. Let C ∈ R
K×R, and let the matrices G and H be defined by (2.5)

and (2.7), respectively. Then
(i) Rm(C)T = Qm(C)TH; and
(ii) Rm(C)TG = Qm(C)T .
Proof. As the proof is technical, it is given in the supplementary materials.
Proof of Proposition 2.13. (i) Assume that t̂ = [t(1,...,m) . . . t(R−m+1,...,R)]

T ∈

R
Cm

R exists such that Rm(C)t̂ = 0. Then, by Lemma 2.15,

(2.8)
∑

(p1,...,pm)∈Sm
R

t(p1,...,pm)πS(cp1
⊗ · · · ⊗ cpm

) = 0.

Let us fix (i1, . . . , im) ∈ Sm
R and set {j1, . . . , jK−1} := {1, . . . , R} \ {i1, . . . , im−1}.

Then im ∈ {j1, . . . , jK−1}. Without loss of generality we can assume that jK−1 = im.
Since kC ≥ K−1, it follows that there exists a vector y such that y is orthogonal

to the vectors cj1 , . . . , cjK−2
, and y is not orthogonal to any of ci1 , . . . , cim . Let

α(p1,...,pm) denote the (p1, . . . , pm)th entry of the vector Rm(C)T (y⊗ · · · ⊗y). Then,
by Lemma 2.15,

α(p1,...,pm) = πS(cp1
⊗ · · · ⊗ cpm

)T (y ⊗ · · · ⊗ y)

=
1

m!

∑

(l1,...,lm)∈P{p1,...,pm}

(cTl1y) · · · (c
T
lm
y) = (cTp1

y) · · · (cTpm
y).(2.9)

By the construction of y, α(p1,...,pm) �= 0 if and only if {p1, . . . , pm} = {i1, . . . , im}.
Then, by (2.8)–(2.9),

0 =
∑

(p1,...,pm)∈Sm
R

t(p1,...,pm)πS(cp1
⊗ · · · ⊗ cpm

)T (y ⊗ · · · ⊗ y)

=
∑

(p1,...,pm)∈Sm
R

t(p1,...,pm)α(p1,...,pm) = t(i1,...,im)α(i1,...,im).

Hence, t(i1,...,im) = 0. Since (i1, . . . , im) was arbitrary, we obtain t̂ = 0.
(ii) From step (i), Lemma 2.14, and Lemma 2.17(i)–(ii) it follows that

Cm
R = dim range(Rm(C)T ) ≥ dim range(Rm(C)T ↾range(πS))

= dim range(Rm(C)TG) = dim range(Qm(C)T )

≥ dim range(Qm(C)TH) = dim range(Rm(C)T ) = Cm
R .

Hence, dim range(Rm(C)T ↾range(πS)) = Cm
R . By the rank-nullity theorem,

dimker (Rm(C)T ↾range(πS)) = dim range(πS)− dim range(Rm(C)T ↾range(πS))

= Cm
K+m−1 − Cm

R = CR−K+2
R+1 − CR−K+2

R = CK−1
R .

(iii) Let y denote the (j1, . . . , jK−1)th column of B(C). It is clear that the vector
y ⊗ · · · ⊗ y︸ ︷︷ ︸

m

is contained in range(πS). Hence, range
(
B(C)(m)

)
⊆ range(πS). By step
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(ii) and Proposition 1.10(ii),

dimker (Rm(C)T ↾range(πS)) = CK−1
R = dim range

(
B(C)(m)

)
.

To complete the proof we must check that Rm(C)T (y ⊗ · · · ⊗ y) = 0 for all (j1, . . . ,
jK−1) ∈ SK−1

R . From the construction of the matrix B(C) it follows that y is orthog-
onal to the vectors cj1 , . . . , cjK−1

. Since (K − 1) + m = R + 1 > R, it follows that
(cTp1

y) · · · (cTpm
y) = 0 for all (p1, . . . , pm) ∈ Sm

R . Hence, by (2.9), Rm(C)T (y ⊗ · · · ⊗
y) = 0.

The following corollary of Proposition 2.13 will be used in subsection 4.3.
Corollary 2.18. Let the conditions of Proposition 2.13 hold, and let kC = K−1.

Then the subspace ker
(
Rm(C)T ↾range(πS)

)
cannot be spanned by vectors of the form

{yp ⊗ zp}
C

K−1

R

p=1 , where yp ∈ R
K and zp ∈ R

Km−1

.
Proof. The proof is given in the supplementary materials.

3. Transformation of the CPD using polarized compound matrices. In
this section we derive the crucial expression (1.16). The matrix Rm(T ) is constructed
from polarized compound matrices of the slices of the given tensor T . The entries of
polarized compound matrices are mixed discriminants. The notions of mixed discrim-
inants and polarized compound matrices are introduced in the first two subsections.

3.1. Mixed discriminants. The mixed discriminant is a variant of the deter-
minant that has more than one matrix argument.

Definition 3.1 (see [1]). Let T1, . . . ,Tm ∈ R
m×m. The mixed discriminant,

denoted by D(T1, . . . ,Tm), is defined as the coefficient of x1 · · ·xm in det(x1T1 +
· · ·+ xmTm), that is,

(3.1) D(T1, . . . ,Tm) =
∂m (det(x1T1 + · · ·+ xmTm))

∂x1 . . . ∂xm

∣∣∣∣
x1=···=xm=0

.

For convenience, we have dropped the factor 1/m! before the fraction in (3.1).
Definition 3.1 implies the following lemmas.

Lemma 3.2 (see [1]). The mapping (T1, . . . ,Tm) → D(T1, . . . ,Tm) is multilin-
ear and symmetric in its arguments.

Lemma 3.3 (see [10]). Let d1, . . . ,dm ∈ R
m. Then D (Diag(d1), . . . ,Diag(dm)) =

perm
[
d1 . . . dm

]
.

Proof.

D(Diag(
[
d11 . . . dm1

]
), . . . ,Diag(

[
d1m . . . dmm

]
))

=
∂m ((x1d11 + · · ·+ xmd1m) · · · (x1dm1 + · · ·+ xmdmm))

∂x1 . . . ∂xm

∣∣∣∣
x1=···=xm=0

=
∑

(l1,...,lm)∈Pm

d1l1 · · · dmlm = perm
[
d1 . . . dm

]
.

Mixed discriminants may be computed numerically from (3.1). A direct expression in
terms of determinants is given in the following lemma.

Lemma 3.4 (see [22, 2]). Let T1, . . . ,Tm ∈ R
m×m. Then

(3.2) D(T1, . . . ,Tm) =

m∑

k=1

(−1)m−k
∑

1≤i1<i2<···<ik≤m

det(Ti1 + · · ·+Tik).

The way in which (3.2) obtains the mixed discriminant from the determinant is
an instance of a technique called polarization [20].
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3.2. Polarized compound matrices. Let m ≥ 2. In this subsection we discuss
a polarized version of compound matrices, in which the mixed discriminant replaces
the determinant.

Definition 3.5. Let min(I, J) ≥ m ≥ 2, and let T1, . . . ,Tm ∈ R
I×J . The

Cm
I -by-Cm

J matrix Fm−1(T1, . . . ,Tm) is defined by

(3.3) Fm−1(T1, . . . ,Tm) =
∂m (Cm(x1T1 + · · ·+ xmTm))

∂x1 . . . ∂xm

∣∣∣∣
x1=···=xm=0

.

In the following lemmas we establish properties of Fm−1(T1, . . . ,Tm).
Lemma 3.6. Let T ∈ R

I×J and d1, . . . ,dm ∈ R
R. Then

(i) the mapping (T1, . . . ,Tm) → Fm−1(T1, . . . ,Tm) is multilinear and symmet-
ric in its arguments;

(ii) an equivalent expression for Fm−1(T1, . . . ,Tm) is

Fm−1(T1, . . . ,Tm) =

m∑

k=1

(−1)m−k
∑

1≤i1<i2<···<ik≤m

Cm(Ti1 + · · ·+Tik);

(iii) Fm−1(T, . . . ,T) = m!Cm(T);
(iv) rT ≤ m− 1 if and only if Fm−1(T, . . . ,T) = O; and
(v) Fm−1 (Diag(d1), . . . ,Diag(dm)) = Diag

(
PCm

([
d1 . . . dm

]))
.

Proof. From Definitions 2.1 and 3.5 it follows that the (i, j)th entry of the matrix
Fm−1(T1, . . . ,Tm) is equal to D(T1(S

m
I (i), Sm

J (j)), . . . ,Tm(Sm
I (i), Sm

J (j))). Hence,
statements (i) and (ii) follow from Lemmas 3.2 and 3.4, respectively. Statement (iii)
follows from (3.3). Statement (iv) follows from (iii) and Lemma 2.3(2). Finally, (v)
follows from Lemma 2.4, statement (ii), and Lemma 3.3.

Example 3.7.

F2(T1,T2,T3) = C3(T1 +T2 +T3)

− C3(T1 +T2)− C3(T1 +T3)− C3(T2 +T3) + C3(T1) + C3(T2) + C3(T3).
(3.4)

Remark 3.8. The polarized compound matrix is a matrix representation of the
higher-order tensor obtained by the low-rank detection mapping in [6, 29]. More specif-
ically, in [6] a rank-1 detection mapping (m = 2) was used to compute the CPD and
in [29] a rank-(L,L, 1) detection mapping (m arbitrary) was used to compute the
decomposition in rank-(L,L, 1) terms. Statement (iv) of Lemma 3.6 explains the ter-
minology.

The following counterpart of Lemma 2.5 holds for polarized compound matrices.
Lemma 3.9. Let A ∈ R

I×R, B ∈ R
J×R, d1, . . . ,dm ∈ R

R, and m ≤ min(I, J,R).
Then

Fm−1

(
ADiag(d1)B

T , . . . ,ADiag(dm)BT
)

= Cm(A)Diag
(
PCm

([
d1 . . . dm

]))
Cm(B)T .

(3.5)

Proof. From Lemma 3.6(ii) and Lemma 2.5 we have

Fm−1

(
ADiag(d1)B

T , . . . ,ADiag(dm)BT
)

= Cm(A)Fm−1 (Diag(d1), . . . ,Diag(dm)) Cm(B)T .
(3.6)

Now (3.5) follows from (3.6) and Lemma 3.6(v).
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3.3. Transformation of the tensor. We stack polarized compound matrices
obtained from the slices of a given tensor in matrices Rm(T ) and Qm(T ). In Rm(T )
we consider all slice combinations, while in Qm(T ) we avoid doubles by taking into
account the invariance of polarized compound matrices under permutation of their
arguments. In our algorithms we will work with the smaller matrix Qm(T ), while in
the theoretical development we will use Rm(T ).

Definition 3.10. Let T be an I ×J×K tensor with frontal slices T1, . . . ,TK ∈
R

I×J . The (j1, . . . , jm)th column of the Cm
I Cm

J -by-Km (resp., Cm
I Cm

J -by-Cm
K+m−1)

matrix Rm(T ) (resp., Qm(T )) equals vec (Fm−1(Tj1 , . . . ,Tjm )), where (j1, . . . , jm) ∈
Rm

K (resp., Qm
K).

Let Rm(T ) ↾range(πS) denote the restriction of the mapping Rm(T ) : R
Km

→

R
Cm

I Cm
J onto range(πS). In the following lemma we express the matrices Rm(T )

and Qm(T ) via the factor matrices of T and make a link between the kernel of
Rm(T ) ↾range(πS) and Qm(T ). These results are key to our overall derivation.

Lemma 3.11. Let A ∈ R
I×R, B ∈ R

J×R, C ∈ R
K×R, and T = [A,B,C]R.

Then, for m ≤ min(I, J,K,R),
(i) Rm(T ) = [Cm(A)⊙ Cm(B)]Rm(C)T ;
(ii) Qm(T ) = [Cm(A)⊙ Cm(B)]Qm(C)T ; and
(iii) ker(Rm(T ) ↾range(πS)) = G ker(Qm(T )), where G is defined in (2.5).
Proof. (i) Let c1, . . . , cK be the columns of the matrix CT . Recall that the frontal

slices of T can be expressed as in (1.2). Then, by Lemma 3.9 and identity (1.3),

vec
(
Fm−1

(
ADiag(cj1 )BT , . . . ,ADiag(cjm )BT

))

= vec
(
Cm(A)Diag

(
PCm

([
cj1 . . . cjm

]))
Cm(B)T

)

= [Cm(A)⊙ Cm(B)]PCm

([
cj1 . . . cjm

])
.

Now (i) and (ii) follow from Definition 3.10 and Lemma 2.11.
(iii) From (i), (ii), and Lemma 2.17(ii) it follows that Rm(T )G = Qm(T ). Since,

by Lemma 2.14, range(πS) = range(G), we obtain (iii).

4. Overall results and algorithms.

4.1. Algorithm 1 and Theorem 1.6. Overall, Algorithm 1 now goes as fol-
lows. We first compute Qm(T ) from T and determine its null space, which, after
symmetrization, yields ker

(
Rm(T ) ↾range(πS)

)
, as explained in Lemma 3.11(iii). The

following lemma now makes, for a particular choice of m, a connection with B(C).
Lemma 4.1. Let T = [A,B,C]R, let m := R−K + 2, and let Rm(T ) be defined

as in Definition 3.10. Assume that kC = K and that Cm(A)⊙Cm(B) has full column
rank. Then

(i) ker(Rm(T ) ↾range(πS)) = range(B(C)(m)); and

(ii) dimker(Rm(T ) ↾range(πS)) = CK−1
R .

Proof. Since Cm(A)⊙Cm(B) has full column rank, it follows from Lemma 3.11(i)
that ker(Rm(T ) ↾range(πS)) = ker

(
Rm(C)T ↾range(πS)

)
. Statements (i) and (ii) now

follow from Proposition 2.13(iii) and (ii), respectively.
So far, we have obtained from T a basis for the column space of B(C)(m). The

following lemma explains that the basis vectors may be stacked in a tensor that has
B(C) as the factor matrix. Moreover, the CPD may be computed by a GEVD as in
Theorem 1.1.

Lemma 4.2. Suppose that the conditions of Lemma 4.1 hold. Let W be a Km ×
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CK−1
R matrix such that

(4.1) ker(Rm(T ) ↾range(πS)) = range (W),

and let W be the K ×Km−1 × CK−1
R tensor such that W = Matr(W). Then

(i) there exists a nonsingular CK−1
R × CK−1

R matrix M such that

(4.2) W =
[
B(C),B(C)(m−1),M

]
CK−1

R

; and

(ii) rW = CK−1
R and the CPD of W is unique and can be found algebraically.

Proof. (i) From Lemma 4.1(ii) and (4.1) it follows that there exists a nonsingular
CK−1

R × CK−1
R matrix M such that W = B(C)(m)MT =

(
B(C)⊙ B(C)(m−1)

)
MT .

Hence, by (1.4), (4.2) holds.
(ii) From Proposition 1.10 it follows that kB(C) ≥ 2 and that the matrix B(C)(m−1)

has rank CK−1
R . The statement now follows from Theorem 1.1.

After finding B(C) up to column permutation and scaling, we may find C as
explained in subsection 2.1. The following lemma completes the proof of Theorem
1.6(ii). Its proof shows how the other factor matrices may be determined once C has
been obtained. The computation involves another CPD of the form in Theorem 1.1.
The result is a variant of [38, Theorem 3.8]; in this step of the derivation we do not
assume that the decomposition is canonical.

Lemma 4.3. Let T = [A,B,C]R, and let the K×R matrix C be known. Assume
that kC = K ≥ 2 and that min(kA, kB) + kC ≥ R + 2. Then the matrices A, B can
be found algebraically up to column scaling.

Proof. We obviously have kC = rC = K. LetX =
[
c1 . . . cK

]
. By multiplying

with X−1 we will create a CPD with K − 2 fewer terms than R. It is clear that the
matrix formed by the first two rows of X−1C has the form

[
I2 O2×(K−2) Y

]
,

where Y is a 2 × (R − K) matrix. Define Ã :=
[
a1 a2 aK+1 . . . aR

]
, B̃ :=[

b1 b2 bK+1 . . . bR

]
, and C̃ =

[
I2 Y

]
. Let also T̃ denote the I×J×2 tensor

such that Matr(T̃ ) coincides with the first two columns of the matrix Matr(T )X−T .

From (1.4) it follows that Matr(T )X−T = (A ⊙ B)CTX−T . Hence, Matr(T̃ ) =

(Ã⊙ B̃)C̃T or T̃ = [Ã, B̃, C̃]R−K+2, which is of the desired form.

It is easy to show that T̃ satisfies the conditions of Theorem 1.1, which means
that its rank is R−K + 2, that its CPD is unique, and that the factor matrices may
be found algebraically. The indeterminacies in T̃ = [Â, B̂, Ĉ]R−K+2 are limited to
the existence of a permutation matrix P and a nonsingular diagonal matrix Λ such
that C̃ = ĈPΛ and Ã⊙ B̃ = (Â⊙ B̂)PΛ−1.

So far we have algebraically found the columns of the matrices A, B, and hence
A⊙B, with indices in I := {1, 2,K+1, . . . , R}. Let Ā, B̄, and C̄ be the submatrices
of A, B, and C, respectively, formed by the columns with indices in {3, . . . ,K}. We
now subtract the rank-1 terms that we already know to obtain T −

∑
r∈I ar ◦br ◦cr =[

Ā, B̄, C̄
]
K−2

=: T̄ or (Ā⊙ B̄)C̄T = Matr(T̄ ). Since the matrix C̄ has full column

rank, the columns of the matrix A ⊙ B with indices in {3, . . . ,K} coincide with
the columns of Matr(T̄ )C̄†. Now that also the columns of A ⊙ B with indices in
{3, . . . ,K} have been found, ar and br are easily obtained by understanding that
ar ⊗ br = vec(bra

T
r ), r = 1, . . . , R.

The overall procedure that constitutes the proof of Theorem 1.6(ii) is summarized
in Algorithm 1. Phase 2 is formulated in a way that has combinatorial complexity
and quickly becomes computationally infeasible. The amount of work may be reduced
by exploiting the dependencies in F only partially.
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Algorithm 1 (Computation of C, then A and B)

Input: T ∈ R
I×J×K and R ≥ 2 with the property that there exist A ∈ R

I×R,
B ∈ R

J×R, and C ∈ R
K×R such that T = [A,B,C]R, kC = K ≥ 2, and

Cm(A)⊙ Cm(B) has full column rank for m = R−K + 2.
Output: Matrices A ∈ R

I×R, B ∈ R
J×R, and C ∈ R

K×R such that T = [A,B,C]R

Phase 1 (based on Lemma 4.2): Find the matrix F ∈ R
K×CK−1

R such that F
coincides with B(C) up to (unknown) column permutation and scaling

Apply Lemma 3.11(iii) to find the Km × CK−1
R matrix W such that (4.1) holds

1: Construct the Cm
I Cm

J -by-Cm
K+m−1 matrix Qm(T ) by Definition 3.10

2: Find w̄1, . . . , w̄C
K−1

R
, which form a basis of ker(Qm(T ))

3: W ← G
[
w̄1 . . . w̄

C
K−1

R

]
, where G ∈ R

Km×Cm
K+m−1 is defined by (2.5)

Apply Theorem 1.1(ii) to find F
4: W ← Tens(W,K,Km−1)
5: Compute the CPD W = [F,F2,F3]CK−1

R
(F2 and F3 are a by-product) (GEVD)

Phase 2 (based on properties (P3)–(P4)): Find the matrix C

6: Compute R subsets of CK−2
R−1 columns of F that are linearly dependent

7: Compute c1, . . . , cR as orthogonal complements to sets found in step 6

Phase 3 (based on Lemma 4.3): Find the matrices A and B

Apply Theorem 1.1(ii) to find the columns of S := A⊙B with indices in {1, 2,K+
1, . . . , R}

8: Z =
[
z1 . . . zK

]
← Matr(T )

[
c1 . . . cK

]−T

9: T̃ ← Tens(
[
z1 z2

]
, I, J)

10: Compute the CPD T̃ = [Â, B̂, Ĉ]R−K+2 (GEVD)

11: C̃ ←
[
I2 Y

]
, where Y is the 2×R submatrix in the upper right-hand corner of[

c1 . . . cK
]−1

C

12: Compute permutation matrix P and diagonal matrix Λ such that C̃ = ĈPΛ
13:

[
s1 s2 sK+1 . . . sR

]
← (Â⊙ B̂)PΛ−1

Find the columns of S with indices in {3, . . . ,K}

14: Z ← Matr(T )− (Ã⊙ B̃)
[
c1 c2 cK+1 . . . cR

]T

15:
[
s3 . . . sK

]
← Z

[
c3 . . . cK

]†
16: Find the columns of A and B from the equations ar ⊗ br = sr, r = 1, . . . , R

4.2. Algorithm 2. We derive an algorithmic variant that further reduces the
computational cost. This algorithm is given in Algorithm 2. While Algorithm 1 first
determines C and then finds A and B, Algorithm 2 works the other way around.
The basic idea is as follows. Like in Algorithm 1, we first find a matrix F that is
equal to B(C) up to column permutation and scaling. If C is square, we have from
subsection 2.1 that B(C) = det(C)C−TL and multiplication of T with FT in the third
mode yields a tensor of which every frontal slice is a rank-1 matrix, proportional to
arb

T
r for some r ∈ {1, . . . , R}. On the other hand, if C is rectangular (K < R), then

multiplication with FT yields a tensor of which all slices are rank-(R−K+1) matrices,
generated by R −K + 1 rank-1 matrices arb

T
r . If we choose slices that have all but
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Algorithm 2 (Computation of A and B, then C)

Input: T ∈ R
I×J×K and R ≥ 2 with the property that there exist A ∈ R

I×R,
B ∈ R

J×R, and C ∈ R
K×R such that T = [A,B,C]R, kC = K ≥ 2, and

Cm(A)⊙ Cm(B) has full column rank for m = R−K + 2.
Output: Matrices A ∈ R

I×R, B ∈ R
J×R, and C ∈ R

K×R such that T = [A,B,C]R

Phase 1 (based on Lemma 4.2): Find the matrix F ∈ R
K×CK−1

R such that F
coincides with B(C) up to (unknown) column permutation and scaling

1–5: Identical to Algorithm 1

Phase 2 (based on Lemma 4.4): Find the matrices A and B

6: V ← Tens(V, I, J), where V = Matr(T )F
Let V1, . . . ,VC

K−1

R
denote the frontal slices of V

Let Vij denote the tensor with frontal slices Vi and Vj

Find Cm
R C2

m pairs (i, j) such that rVij
= m

7: J ← {(i, j) : r[Vi Vj ] = r[VT
i

VT
j
] = m, 1 ≤ i < j ≤ CK−1

R }

Apply Theorem 1.1(ii) to find Cm
R C2

m sets of m columns of A and B each
8: Find the CPD Vij = [Aij ,Bij ,Cij ]m for each (i, j) ∈ J

(Cij are a by-product) (GEVD)

9: Ã ← the (I ×mCm
R C2

m) matrix formed by the columns of the matrices Aij

10: B̃ ← the (I ×mCm
R C2

m) matrix formed by the columns of the matrices Bij

11: Choose r1, . . . , rR such that the sets {ãr1 , . . . , ãrR} and {b̃r1 , . . . , b̃rR} do not
contain collinear vectors

12: A ← [ãr1 . . . ãrR ], B ← [b̃r1 . . . b̃rR ]

Phase 3: Find the matrix C

13: C ←
(
(A⊙B)†Matr(T )

)T

one rank-1 matrix in common, these form a tensor that is as in Theorem 1.1 and of
which the CPD yields R−K+2 columns of A and B. The result is formalized in the
following lemma. The second statement implies that we do not have to compute the
CPD to verify whether a slice combination is suitable.

Lemma 4.4. Let T = [A,B,C]R, the matrix F ∈ R
K×C

K−1

R coincide with B(C)
up to column permutation and scaling, V = [A,B,FTC]R, kC = K, m := R −
K +2, and Cm(A)⊙Cm(B) have full column rank. Let also y1, . . . ,yCK−1

R
denote the

columns of CTF and V1, . . . ,VC
K−1

R
denote the frontal slices of V. Then the following

statements are equivalent:
(i) The matrix [yi yj ] has exactly K − 2 zero rows.
(ii) The matrices [Vi Vj ] and [VT

i VT
j ] have rank m.

(iii) The tensor Vij formed by the frontal slices Vi and Vj has rank m.

The CPD Vij =
[[
ap1

. . . apm

]
,
[
bp1

. . . bpm

]
, Ĉ

]
m

can be found algebraically
by Theorem 1.1(ii), and the indices p1, . . . , pm are uniquely defined by the pair (i, j).

Proof. As the proof is technical, it is given in the supplementary materials.

To summarize, we first find a matrix F ∈ R
K×C

K−1

R that coincides with B(C) up
to column permutation and scaling. We construct a tensor V from the tensor T and
the matrix F as in Lemma 4.4 and choose slice combinations for which [Vi Vj ] and
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[VT
i VT

j ] have rank m. For each such slice combination the CPD of the corresponding
tensor yields m columns of A and B. In this way we obtain all columns of A and B.
Overall, there exist exactly Cm

R C2
m pairs (i, j) such that (i)–(iii) hold. The amount of

work can be reduced by finding enough, instead of all, tensors Vij that yield columns

of A and B. The matrix C is finally obtained by C =
(
(A⊙B)†Matr(T )

)T
.

4.3. Discussion of working conditions. One may wonder what happens if the
conditions in Theorem 1.6 are not satisfied, or, the other way around, under which
circumstances the algorithms will fail. It turns out that, at least if the tensor rank is
known, the crucial steps are steps 2 and 5 of Phase 1. If these do not pose problems,
then the overall algorithms will work. Step 2 poses a problem when dimker(Qm(T )) ≥
CK−1

R . This indicates that kC < K−1 and/or that Cm(A)⊙Cm(B) does not have full
column rank. If step 2 does not pose a problem, but step 5 does, then kC = K − 1.
This is formalized in the following lemma.

Lemma 4.5. Let T = [A,B,C]R be a CPD of T , and let m = R −K + 2. Let
the matrix Qm(T ) be defined by Definition 3.10, and let the tensor W be constructed
in steps 3–4 of Phase 1:

(i) If dimker(Qm(T )) = CK−1
R , then kC ≥ K−1 and the matrix Cm(A)⊙Cm(B)

has full column rank.
(ii) If, additionally, rW = CK−1

R and W = [F,F2,F3]CK−1

R
, where kF ≥ 2 and

the matrices F2 and F3 have full column rank, then kC = K.
Proof. (i) The proof is by contradiction. Assume that kC ≤ K − 2. Then C

has K − 1 columns that are linearly dependent. Without loss of generality we can
assume that these columns are cm, . . . , cR. Then the columns {πs(c1 ⊗ · · · ⊗ cm−1 ⊗
ck)}Rk=m of the matrix Rm(C) are also linearly dependent. Hence, by Lemma 2.17(ii),
the Cm

R × Cm
K+m−1 matrix Qm(C)T has linearly dependent rows, which implies that

dim
(
ker

(
Qm(C)T

))
≥ Cm

K+m−1 − Cm
R + 1 = CK−1

R + 1. On the other hand, by

Lemma 3.11(ii), dim(ker(Qm(T ))) ≥ dim
(
ker

(
Qm(C)T

))
, which is a contradiction

with dim(ker(Qm(T ))) = CK−1
R .

We have proved that kC ≥ K − 1. By Proposition 2.13(i), the matrix Rm(C)
has full column rank. Since, by Lemma 2.17(i), Rm(C) = HTQm(C), it follows
that the matrix Qm(C) also has full column rank. Hence, dim

(
ker

(
Qm(C)T

))
=

Cm
K+m−1 − Cm

R = CK−1
R . Hence, by Lemma 3.11(ii),

dim(ker(Qm(T ))) = dim(ker(Cm(A)⊙ Cm(B))) + dim
(
ker

(
Qm(C)T

))
.

Since, by assumption, dimker(Qm(T )) = CK−1
R , the matrix Cm(A)⊙ Cm(B) has full

column rank.
(ii) It is clear that the columns of the matrix F⊙ F2 form a basis of range(W).

By construction of W, range(W) = ker(Rm(T ) ↾range(πS)), and by Lemma 3.11(i),

ker(Rm(T ) ↾range(πS)) = ker
(
Rm(C)T ↾range(πS)

)
. Therefore, by Corollary 2.18, kC =

K.

4.4. Theorem 1.7. It remains to prove Theorem 1.7(ii). In the proof we con-
struct a new tensor T̄ that has the same first two factor matrices as T and the CPD
of which can be found by Algorithm 1 or Algorithm 2. Although, by construction of
T̄ , its frontal slices are random linear combinations of the frontal slices of T , we still
call the overall procedure “algebraic” because the proof of Theorem 1.1 is also based
on the same random slice mixture idea (see [21] and the references therein).

Proof. Let the matrix C have K rows, let X be a kC ×K matrix, and let T̄ :=
[A,B,XC]R. Then XC ∈ R

kC×R and, by (1.4), Matr(T )XT := (A ⊙ B)CTXT =



656 IGNAT DOMANOV AND LIEVEN DE LATHAUWER

(A ⊙B)(XC)T = Matr(T̄ ). Thus, the multiplication of the third factor matrix of T
by X from the left is equivalent to the multiplication of the matrix unfolding Matr(T )
by XT from the right.

(i) Assume that X is such that rXC = kXC = kC. Then, by Theorem 1.6, the
CPD of T̄ is unique and can be found algebraically. In particular, the matrix A⊙B
has full column rank and can be found up to column permutation and scaling. Hence,

C =
(
(A⊙B)†Matr(T )

)T
, and the proof is completed.

(ii) It remains to present a construction of the matrix X such that kXC = kC. It
is clear that kXC ≤ kC. We claim that kXC = kC for generic X. Namely,

(4.3) µ{vec(X) : X ∈ R
kC×K , kXC < kC} = 0,

where µ denotes the Lebesgue measure on R
kCK . It is well known that the zero set

of a nonzero polynomial has Lebesgue measure zero. Hence, for a nonzero vector

f ∈ R
C

kC
K , we obtain

(4.4) µ{vec(X) : X ∈ R
kC×K , CkC

(X)f = 0} = 0.

From Lemma 2.3(1) it follows that the matrix CkC
(C) has all columns nonzero. By

Lemma 2.5, kXC < kC if and only if the vector CkC
(X)CkC

(C) = CkC
(XC) has a zero

entry. Hence, by (4.4),

{vec(X) : X ∈ R
kC×K , kXC < kC}

= {vec(X) : X ∈ R
kC×K , CkC

(X)CkC
(C) has a zero entry}

=
⋃

f is a column of CkC
(C)

{vec(X) : X ∈ R
kC×K , CkC

(X)f = 0}.
(4.5)

Now (4.3) follows from (4.5) and (4.4).
Let the conditions of Theorem 1.7, Corollary 1.8, or Corollary 1.9 hold. The

following procedure for computing the CPD follows from the proof of Theorem 1.7(ii).
First, we generate a random kC ×K matrix X and set T̄ = Matr(T )XT . Then the
I × J × kC tensor T̄ := Tens(T̄, I, J) satisfies the conditions of Theorem 1.6(ii) with
K replaced by kC. Hence, the CPD T̄ = [A,B,XC]R can be found by Algorithm 1

or Algorithm 2. Finally, the matrix C is obtained by C =
(
(A⊙B)†Matr(T )

)T
.

4.5. Examples.
Example 4.6. Let T = [A,B,C]5 with

A =

⎡
⎢⎢⎣

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
0 1 0 0 0

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

1 1 0 0 0
1 0 2 0 0
1 0 0 3 0
1 0 0 0 1

⎤
⎥⎥⎦ .

Since condition (1.6) does not hold, the rank and uniqueness of the CPD do not follow
from Kruskal’s theorem (Theorem 1.3). One can easily check that the conditions of
Theorem 1.6 hold for m = 5−4+2 = 3. Hence, the factor matrices of T can be found
by Algorithms 1 and 2.

Phase 1 of Algorithms 1 and 2. The frontal slices of T are

T1 =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 0
1 1 1 0
0 0 0 0

⎤
⎥⎥⎦ , T2 =

⎡
⎢⎢⎣

1 1 1 0
1 1 1 0
1 4 1 0
0 0 0 0

⎤
⎥⎥⎦ , T3 = TT

1 , T4 =

⎡
⎢⎢⎣

1 1 1 0
1 1 3 0
1 1 1 0
0 0 0 0

⎤
⎥⎥⎦ .
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We construct the C3
4C

3
4 -by-C

3
6 (or 16-by-20) matrix Q3(T ) by Definition 3.10. For

instance, the (1, 2, 3)rd (or the 6th) column of Q3(T ) is equal to vec(F2(T1,T2,T3)),
where F2(T1,T2,T3) is computed by (3.4) and equals

F2(T1,T2,T3) = −

⎡
⎢⎢⎣

0 −3 0 3
0 1 1 0
3 4 1 0
3 0 0 0

⎤
⎥⎥⎦ .

The full matrix Q3(T ) is given in the supplementary materials. It can be checked that
ker(Q3(T )) = range(W), where

W = [e201 e2011 e2017 e2020 e202,−5 e204,−10 e203,−8 e2013,−16 e2012,−14 e2018,−19]

and e20i,−j := e20i − e20j . Let G be the 64 × 20 matrix defined by (2.5). We denote by

W the 4× 16× 10 tensor such that Matr(W) = GW. We find algebraically the CPD
W = [F,F2,F3]10 with

F =

⎡
⎢⎢⎣

1 −1 0 −1 0 0 0 −1 0 0
0 1 0 0 −1 1 0 0 0 −1
0 0 0 1 0 −1 −1 0 −1 0
1 0 1 0 0 0 0 0 1 1

⎤
⎥⎥⎦ ,

F2 = F ⊙ F, and some nonsingular matrix F3. In what follows we will use only the
fact that F coincides with B(C) up to column permutation and scaling.

Phases 2 and 3 of Algorithm 1. There are 210 4 × 6 submatrices of F. In
Phase 2 of Algorithm 1 we pick the five submatrices that have rank 3. One can easily
see that these submatrices are [f1 f2 f3 f5 f8 f10], [f1 f2 f4 f6 f9 f10], [f1 f3 f4 f7 f8 f9],
[f2 f4 f5 f6 f7 f8], [f3 f5 f6 f7 f9 f10]. Their left kernels have dimension 1 and are
spanned by the norm one vectors ĉ1 = [0 0 1 0]T , ĉ2 = [0.5 0.5 0.5 0.5]T , ĉ3 =
[0 1 0 0]T , ĉ4 = [0 0 0 1]T , ĉ5 = [1 0 0 0]T , respectively. The matrix formed by these
vectors coincides with the matrix C up to column permutation and scaling.

Let us demonstrate how Phase 3 of Algorithm 1 works. One can easily see that
the vectors z1 = [−1 0 1 0]T and z2 = [2 0 0 0]T coincide with the first two columns
of the matrix [ĉ1 ĉ2 ĉ3 ĉ4]

−T . We have

Matr(T̃ ) = Matr(T )[z1 z2] = (A⊙B)CT [z1 z2] = (A⊙B)

[
0 −1 0 3 0
2 2 0 0 0

]T
.

or

T̃ =

[
[a1 a2 a4], [b1 b2 b4],

[
0 −1 3
2 2 0

]]

3

.

Thus, computing algebraically the CPD of T̃ we find the vectors a1⊗b1, a2⊗b2, and
a4 ⊗ b4. The vectors a3 ⊗ b3 and a5 ⊗ b5 are found by

[a3⊗b3 a5⊗b5] =
(
Matr(T )− [a1 ⊗ b1 a2 ⊗ b2 a4 ⊗ b4][c1 c2 c4]

T
)
[c3 c5]

†,T .

Phases 2 and 3 of Algorithm 2. We construct the 4× 4× 10 tensor V with matrix
unfolding Matr(V) = Matr(T )F. Let V1, . . . ,V10 denote the frontal slices of V, and
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let Vij denote the 4× 4× 2 tensor with frontal slices Vi and Vj. We construct the set

J := {(i, j) : the matrices [Vi Vj ] and [VT
i VT

j ] have rank 3, 1 ≤ i < j ≤ 10}

= {(1, 2), (1, 3), (1, 4), (1, 8), (1, 9), (1, 10), (2, 4), (2, 5), (2, 6), (2, 8), (2, 10),

(3, 5), (3, 7), (3, 8), (3, 9), (3, 10), (4, 6), (4, 7), (4, 8), (4, 9),

(5, 6), (5, 7), (5, 8), (5, 10), (6, 7), (6, 9), (6, 10), (7, 8), (7, 9), (9, 10)} .

For (i, j) ∈ J , Vij has rank 3 and the CPD can be computed algebraically. For
instance, Matr(V12) = Matr(T )[f1 f2] = (A⊙B)CT [f1 f2]. Since

CT [f1 f2] =

[
2 1 0 0 0
0 −1 2 0 0

]T
,

we have

V12 =

[
[a1 a2 a3], [b1 b2 b3],

[
2 1 0
0 −1 2

]]

3

.

In this way for each pair (i, j) ∈ J we estimate up to column scaling three columns
of A and the corresponding columns of B. If we store all the estimates of columns
of A and B in 4 × 90 matrices Ã and B̃, then Ã ⊙ B̃ will contain five clusters of
18 collinear columns. Taking the cluster centers we get a matrix Z which coincides

with A⊙B up to column scaling and permutation. Finally, the matrix
(
Z†Matr(T )

)T
coincides with C up to column scaling and the same permutation.

Example 4.7. It was shown in [9] that the conditions of Theorem 1.6 hold for a
generic 6× 6× 7 tensor of rank 9. This case is beyond Kruskal’s bound. Let F be the
7 × 84 matrix produced by Phase 1 of Algorithms 1 and 2. Each column of the third
factor matrix of the tensor is orthogonal to exactly 42 columns of the matrix F. Since
C42

84 is of order 1024, Phase 2 as presented in Algorithm 1 is computationally infeasible.
On the other hand, in Phase 2 of Algorithm 2 we check the rank of 2C2

84 = 3486
matrices of size 6×12 each. Then we have to find algebraically the CPD of C4

9C
2
4 = 756

rank-4 tensors with dimensions 6×6×2, which is equivalent with the computation of the
GEVD of the associated matrix pencils. Moreover, one may further limit the amount
of work by only determining subsets of J . We implemented Algorithm 2 in MATLAB
2008a, and we did experiments on a computer with Intel Core T9600 Duo 2.80GHz
CPU and 4GB memory running Windows Vista. The simulations demonstrate that
with a suboptimal implementation, it takes less than 9 seconds to compute the CPD
of a generic 6× 6× 7 tensor of rank 9.

5. Conclusion. We have proposed two algorithms to compute CPD. Both al-
gorithms are algebraic in the sense that they rely only on standard linear algebra
and reduce the problem to the computation of GEVD. The reduction exploits prop-
erties of (polarized) compound matrices and permanents. The derivation spans the
possibilities from [19] to [6, 16] and covers cases beyond Kruskal’s bound.

In this paper we have limited ourselves to exact CPD. In applications, CPD most
often only approximates the given (noisy) tensor. A first observation is that the “ex-
act result” could be used to initialize iterative algorithms for problem (1.5). We also
note that (4.2) may be interpreted as the CPD of a partially symmetric tensor of order
m+1 of which the first m factor matrices are equal and parameterized by C. This is
a structure that can be handled by current algorithms in Tensorlab [35]. These algo-
rithms are optimization-based and are not formally guaranteed to find the solution.
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However, they show excellent performance in practice. So far, we have computed
ker(Rm(T ) ↾range(πS)) and then we have fitted the CPD structure to the result. Nu-
merically, we could go a step further and take the Khatri–Rao structure into account
in the computation of the kernel itself, with the kernel vectors parameterized by C
and M. One may also investigate whether the Khatri–Rao structure and the structure
of Rm(T ) may be exploited to avoid the computation of the mixed discriminants so
that one obtains an algorithm that works directly on T . Since numerical aspects lead
to a different type of study, we choose to defer them to another paper.
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supplementary materials

S.1. Supplementary material related to Proposition 1.10.
Recall that the K × CK−1

R matrix B(C) is defined by

B(C) := LCK−1(C), (S.1.1)

where

L :=




0 0 . . . (−1)K−1

...
... . .

. ...
0 −1 . . . 0
1 0 . . . 0


 . (S.1.2)

We start with a trivial Lemma.
Lemma S.1.1. Let x ∈ R

K , C ∈ R
K×R, kC ≥ K − 1, and let B(C) be defined by

(S.1.1). Then
(i)

xTB(C) =
[
det

[
c1 . . . cK−1 x

]
. . . det

[
cR−K+2 . . . cR x

]]
;

(ii) B(C) has no zero columns;
(iii) the (i1, . . . , iK−1)-th column of B(C) is orthogonal to span{ci1 , . . . , ciK−1

} for

(i1, . . . , iK−1) ∈ SK−1
R ;

(iv) if kC = K, then B(C) has no proportional columns, that is kB(C) ≥ 2.
Proof. (i) From (S.1.1) it follows that the (i1, . . . , iK−1)-th column of B(C) is

equal to LCK−1

[
ci1 . . . ciK−1

]
. By the Laplace expansion theorem

yTLCK−1

[
ci1 . . . ciK−1

]
= det

[
ci1 . . . ciK−1

y
]
, y ∈ R

K . (S.1.3)

Now, the statement (i) follows from (S.1.3) by setting y = x.
(ii) Since the vectors ci1 , . . . , ciK−1

are linearly independent in R
K , it follows

that there exists a vector y such that det
[
ci1 . . . ciK−1

y
]
6= 0. Hence, by (S.1.3),

the (i1, . . . , iK−1)-th column of B(C) is nonzero.
(iii) follows from (S.1.3) and the fact that det

[
ci1 . . . ciK−1

y
]
= 0 if and

only if y ∈ span{ci1 , . . . , ciK−1
}.

(iv) Assume that the (i1, . . . , iK−1)-th and the (j1, . . . , jK−1)-th column of B(C)
are proportional to a nonzero vector t. Set E := span{ci1 , . . . , ciK−1

, cj1 , . . . , cjK−1
}.

Since kC = K, it follows that E = R
K . On the other hand, by (iii), the nonzero

vector t is orthogonal to E, which is a contradiction.
Lemma S.1.2. Let C ∈ R

K×R, K ≤ R, and kC = K. Let also B(C) be defined
by (S.1.1). Then

(i) every column of the R×CK−1
R matrix CTB(C) has exactly K−1 zero entries.

Namely, if d =
[
d1 . . . dR

]
is the (j1, . . . , jK−1)-th column of CTB(C),

then dr = 0 if and only if r ∈ {j1, . . . , jK−1};

1
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(ii) every row of the R × CK−1
R matrix CTB(C) has exactly CK−2

R−1 zero entries.

Namely, if d̂ =
[
d(1,...,K−1) . . . d(R−K+2,...,R)

]
is the r-th row of CTB(C),

then d(j1,...,jK−1) = 0 if and only if r ∈ {j1, . . . , jK−1};
(iii) the matrix

B(C)(l) := B(C)⊙ · · · ⊙ B(C)︸ ︷︷ ︸
l

has full column rank for l ≥ R−K + 1.

Proof. (i)-(ii) By Lemma S.1.1 (i),

CTB(C) = CTLCK−1(C) =


det

[
c1 . . . cK−1 c1

]
. . . det

[
cR−K+2 . . . cR c1

]

...
...

...
det

[
c1 . . . cK−1 cR

]
. . . det

[
cR−K+2 . . . cR cR

]


 .

(S.1.4)

Since kC = K, it follows that

det
[
cj1 . . . cjK−1

cr
]
= 0 ⇔ r ∈ {j1, . . . , jK−1}. (S.1.5)

The results now easily follow from (S.1.4)-(S.1.5).

(iii) It is sufficient to consider the case l = R−K+1. The result for l ≥ R−K+1
then follows directly from the definition of the Khatri-Rao product.

Suppose that B(C)(R−K+1)t̂ = 0 for t̂ =
[
t(1,...,K−1) . . . t(R−K+2,...,R)

]
∈

R
C

K−1

R . We show that t(j1,...,jK−1) = 0 for all (j1, . . . , jK−1) ∈ SK−1
R . We fix

(j1, . . . , jK−1) ∈ SK−1
R and set {i1, . . . , iR−K+1} = {1, . . . , R} \ {j1, . . . , jK−1}. Since

kC = K, (S.1.5) holds. In particular,

α(j1,...,jK−1) :=
R−K+1∏

l=1

det
[
cj1 . . . cjK−1

cil
]
6= 0. (S.1.6)

Let f := ci1 ⊗ · · · ⊗ ciR−K+1
. Then by (S.1.5), we have

0 = fT0 = fT
(
B(C)(R−K+1)t̂

)
=

(
ci1 ⊗ · · · ⊗ ciR−K+1

)T (
B(C)⊙ · · · ⊙ B(C)︸ ︷︷ ︸

R−K+1

)
t̂ =

[
R−K+1∏

l=1

det
[
c1 . . . cK−1 cil

]
. . .

R−K+1∏
l=1

det
[
cR−K+2 . . . cR cil

]]
t̂ =

[
0 . . . 0

R−K+1∏
l=1

det
[
cj1 . . . cjK−1

cil
]

0 . . . 0

]
t̂ =

α(j1,...,jK−1) · t(j1,...,jK−1).

Hence, by (S.1.6), t(j1,...,jK−1) = 0. Thus, t̂ = 0. Therefore, the matrix B(C)(R−K+1)

has full column rank.

Proof of Proposition 1.10.

(i) follows from Lemma S.1.1 (iv).
(ii) follows from Lemma S.1.2 (iii).
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S.2. Supplementary material related to properties (P1)–(P4).
We will say that condition (K,R) holds if for any K ×R matrix C with kC = K and
for any nonzero vector x ∈ R

K , the implication in the following scheme holds

ω(xTB(C)) ≤ CK−1
R − CK−2

R−1 = CK−1
R−1 ⇔

x is orthogonal to at least CK−2
R−1 columns of B(C) ⇒

x is proportional to a column of C.

(S.2.1)

Note that the equivalence “⇔” and the implication opposite to “⇒” in (S.2.1) follow
from the definition of ω(·) and Lemma S.1.2 (ii), respectively. It can be easily checked
that (2,R) holds for R ≥ 2 and that (K,K) holds. Our goal is to show that (K,R)
holds for R ≥ K. We need the following lemma.

Lemma S.2.1. Suppose that both conditions (K-1,R-1) and (K,R-1) hold. Then
condition (K,R) holds.

Proof. Let x ∈ R
K be a nonzero vector such that ω(xTB(C)) ≤ CK−1

R−1 and let

J := {(j1, . . . , jK−1) : (j1, . . . , jK−1) ∈ SK−1
R , det

[
cj1 . . . cjK−1

x
]
= 0},

J1 := {(1, j2, . . . , jK−1) : (1, j2, . . . , jK−1) ∈ J }, J 1 := J \ J1.

Then by Lemma S.1.1 (i) and (S.2.1), card J ≥ CK−2
R−1 . We consider two cases:

card J 1 ≥ CK−2
R−2 and card J 1 < CK−2

R−2 . If card J 1 ≥ CK−2
R−2 , then

ω(xTB(
[
c2 . . . cR

]
)) ≤ CK−1

R−1 − card J 1 ≤ CK−1
R−1 − CK−2

R−2 = CK−1
R−2 .

Since condition (K,R-1) holds, it follows that either x is zero vector, or x is propor-
tional to one of the vectors c2, . . . , cR. Let us consider the case card J 1 < CK−2

R−2 . We
have

card J1 = card J − card J 1 > CK−2
R−1 − CK−2

R−2 = CK−3
R−2 . (S.2.2)

By Lemma S.1.1 (i) and (S.2.1), there exist numbers αp1
, αpj2

, . . . , αpjK−1
such that

x = αp1
c1 +

K−1∑

q=2

αpjq
cjq , p ∈ {1, . . . , card J1}, (1, j2, . . . , jK−1) ∈ J1.

(S.2.3)
Let T : R

K → R
K−1 be a linear mapping with ker(T) = span {c1}. We set

x̃ := Tx ∈ R
K−1, C̃ := T

[
c2 . . . cR

]
=

[
c̃1 . . . c̃R−1

]
∈ R

(K−1)×(R−1).

If Tx = 0, then either x = 0, or x is proportional to c1. Hence, we can assume
that x̃ is a nonzero vector. Since kC = K and ker(T) = span {c1}, it follows that
k
C̃
= K − 1. Let us apply T to (S.2.3)

x̃ =
K−1∑

q=2

αpjq
Tcjq =

K−1∑

q=2

αpjq
c̃jq−1, p ∈ {1, . . . , card J1}, (1, j2, . . . , jK−1) ∈ J1.

Hence,

det
[
c̃j2−1 . . . c̃jK−1−1 x

]
= 0, (1, j2, . . . , jK−1) ∈ J1.



4 IGNAT DOMANOV AND LIEVEN DE LATHAUWER

By Lemma S.1.1 (i) and (S.2.2),

ω(x̃TB(C̃)) ≤ CK−2
R−1 − card J1 ≤ CK−2

R−1 − CK−3
R−2 = CK−2

R−2 .

Since condition (K-1,R-1) holds and x̃ 6= 0, it follows that x̃ is proportional to a

column of C̃. Hence, x is proportional to one of the vectors c2, . . . , cR.
Lemma S.2.2. Let R ≥ K. Then condition (K,R) holds.
Proof. The proof is by induction on k = 2, . . . ,K. For k = 2 the result is trivial.

Suppose that condition (k,R) holds for R ≥ k. We prove that condition (k+1,R) holds
for R ≥ k + 1. Since (k,k) holds for k ≥ 2, by Lemma S.2.1, we have

conditions (k,k+1) and (k+1,k+1) imply condition (k+1,k+2),

conditions (k,k+2) and (k+1,k+2) imply condition (k+1,k+3),

...

conditions (k,R-1) and (k+1,R-1) imply condition (k+1,R).

Proof of properties (P1)–(P4).
(P1) follows from Lemma S.1.2 (i).
(P2) follows from Lemma S.1.1 (iii).
(P3) follows from Lemma S.1.2 (ii).
(P4) We prove that

x is orthogonal to CK−2
R−1 columns of B(C) ⇔

x is proportional to a column of C.

The result follows from Lemma S.1.2 (ii) and Lemma S.2.2, respectively.

S.3. Supplementary material related to Lemma 2.17.
Proof of Lemma 2.17.
(i) From the definitions of the matrices Qm(C)T and Rm(C)T (see Definitions 2.9
and 2.10) it follows that the matrix Qm(C)T is obtained from Rm(C)T be removing
columns that are repeated. Thus, (i) just expresses the following fact: (j1, . . . , jm)-th
column of the matrix Qm(C)T coincides with the (l1, . . . , lm)-th column of the matrix
Rm(C)T whenever (l1, . . . , lm) ∈ P{j1,...,jm}.

(ii) From Lemma 2.15 and definition of the matrix G (2.5) it follows that the
((i1, . . . , im), (j1, . . . , jm))-th entry of the matrix Rm(C)TG is equal to

m! (πS(ci1 ⊗ · · · ⊗ cim))
T (

πS(e
K
j1
⊗ · · · ⊗ eKjm)

)
=

1

m!

∑

(q1,...,qm)∈P{i1,...,im}

∑

(l1,...,lm)∈P{j1,...,jm}

(cTq1e
K
l1
) · · · · · (cTqmeKlm) =

1

m!

∑

(q1,...,qm)∈P{i1,...,im}

perm C((j1, . . . , jm), (q1, . . . , qm)).

Since perm C((j1, . . . , jm), (q1, . . . , qm)) = perm C((j1, . . . , jm), (i1, . . . , im)) for all
(q1, . . . , qm) ∈ P{i1,...,im}, it follows that

(πS(ci1 ⊗ · · · ⊗ cim))
T (

πS(e
K
j1
⊗ · · · ⊗ eKjm)

)
= perm C((j1, . . . , jm), (i1, . . . , im)).

The equality in (ii) follows now from Definition 2.9.
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S.4. Supplementary material related to Corollary 2.18.
Proof of Corollary 2.18.
By Proposition 2.13 (ii), dim

(
ker

(
Rm(C)T ↾range(πS)

))
= CK−1

R . We prove that the

equation Rm(C)Tx = 0 has at most CK−1
R −(K−1) solutions of the form x := y⊗z ∈

range(πS). Denote by X them-th order symmetricK×· · ·×K tensor whose vectorized
version coincides with x. Since X is symmetric, all its K ×Km−1 matrix unfoldings
coincide with the rank-1 matrix yzT and hence are rank-1. It is well known that this
is possible if and only if X is itself a rank-1 tensor. Hence, the vector x is proportional
to the vector y⊗· · ·⊗y and Rm(C)Tx = Rm(C)T (y⊗· · ·⊗y) = 0. Hence, by (2.9),
(cTp1

y) · · · (cTpm
y) = 0 for 1 ≤ p1 < · · · < pm ≤ R. Consequently, y is orthogonal

to at least R − (m − 1) = K − 1 columns of C. Since kC = K − 1, the orthogonal
complement of these K − 1 columns is one-dimensional and, hence, by Lemma S.1.1
(iii), y is proportional to a column of B(C). On the other hand, since kC = K − 1, C
has K columns that are linearly dependent, and, hence, it follows from Lemma S.1.1
(iii) that at least K columns of B(C) are pairwise proportional. Hence, there exist at
most CK−1

R − (K − 1) nonzero solutions of the equation Rm(C)T (y ⊗ · · · ⊗ y) = 0,
which completes the proof.

S.5. Supplementary material related to Lemma 4.4.
We need the following Lemma.

Lemma S.5.1. Let Â be any set of m̂ columns of A, let B̂ be the corresponding
set of columns of B. Assume that the matrix Cm(A) ⊙ Cm(B) has full column rank.
Then

(i) min(kA, kB) ≥ m.
(ii) max(r

Â
, r

B̂
) ≥ min(m̂,m+ 1).

Proof. Since Cm(A) ⊙ Cm(B) has full column rank it follows that all columns of
Cm(A) and Cm(B) are nonzero. Hence, (i) follows from Lemma 2.3 (1). If m̂ ≤ m, then
(ii) follows from (i). If m̂ > m, then, by Lemma 2.5, rCm(Â) = Cm

r
Â

and rCm(B̂) = Cm
r
B̂

.
Hence,

Cm
r
Â

Cm
r
B̂

= rCm(Â)rCm(B̂) = rCm(Â)⊗Cm(B̂) ≥ rCm(Â)⊙Cm(B̂) = Cm
m̂ > 1, (S.5.1)

where the last equality holds since the matrix Cm(Â)⊙ Cm(B̂) has full column rank.
The statement (ii) for m̂ > m now follows from (S.5.1).

Proof of Lemma 4.4.
Without loss of generality we may assume that F coincides with B(C). In the
proof we will associate indices i, j ∈ {1, . . . , CK−1

R } with their multi-index analogues
(i1, . . . , iK−1), (j1, . . . , jK−1) ∈ SK−1

R . By definition set

{p1, . . . , pm̂} = {1, . . . , R} \ {{i1, . . . , iK−1} ∩ {j1, . . . , jK−1}} .

Since

card {{i1, . . . , iK−1} ∩ {j1, . . . , jK−1}} ≤ K − 2,

{p1, . . . , pm̂} ⊂ {{1, . . . , R} \ {i1, . . . , iK−1}} ∪ {{1, . . . , R} \ {j1, . . . , jK−1}}

it follows that

m = R− (K − 2) ≤ m̂, (S.5.2)

m̂ ≤ min(R, 2(R− (K − 1))) = min(R, 2m− 2). (S.5.3)
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We will show that the statements (i)–(iii) are all equivalent to the condition m̂ = m.

(i) ⇔ m̂ = m: follows from Lemma S.1.2 (i).

(ii) ⇔ m̂ = m: let the vectors ŷi and ŷj (resp. the matrices Â and B̂) be formed
by the entries of the vectors yi and yj (resp. by the columns of the matrices A and
B) with indices p1, . . . , pm̂. Then

Vi = ADiag(yi)B
T = ÂDiag(ŷi)B̂

T , Vj = ADiag(yj)B
T = ÂDiag(ŷj)B̂

T .
(S.5.4)

Hence,

[Vi Vj ] = Â[Diag(ŷi)B̂
T Diag(ŷj)B̂

T ] = Â(Ĉ⊙ B̂)T , (S.5.5)

[VT
i VT

j ] = B̂[Diag(ŷi)Â
T Diag(ŷj)Â

T ] = B̂(Ĉ⊙ Â)T , (S.5.6)

where Ĉ := [ŷi ŷj ]
T . We claim that

the matrices Ĉ⊙ B̂ and Ĉ⊙ Â have full column rank. (S.5.7)

From the construction of the matrix Ĉ it follows that there exists an m̂× m̂ permu-
tation matrix P such that

(Ĉ⊙ B̂)P = (ĈP)⊙ (B̂P) =

[
∗ . . . ∗ ∗ . . . ∗ 0 . . . 0

︸ ︷︷ ︸
m̂−m+1

0 . . . 0
︸ ︷︷ ︸
2m−m̂−2

∗ . . . ∗
︸ ︷︷ ︸
m̂−m+1

∗ . . . ∗

]
⊙ (B̂P) =

[
∗ · b̃1 . . . ∗ · b̃m̂−m+1 ∗ · b̃m̂−m+2 . . . ∗ · b̃m−1 0 . . . 0

0 . . . 0 ∗ · b̃m̂−m+2 . . . ∗ · b̃m−1 ∗ · b̃m . . . ∗ · b̃m̂

]
,

where ∗ denotes a nonzero value, b̃1, . . . , b̃m̃ denote the columns of the matrix B̂P,
and where we use the dimensionality constraints in (S.5.2)–(S.5.3). By Lemma S.5.1

(i), k
B̂

≥ kB ≥ m. Hence, the matrix (Ĉ ⊙ B̂)P has full column rank. Since the

matrix P is nonsingular, it follows that the matrix Ĉ⊙ B̂ also has full column rank.
In a similar fashion one can prove that the matrix Ĉ⊙ Â has full column rank. From
(S.5.5)–(S.5.7) it follows that r[Vi Vj ] = r

Â
and r[VT

i
VT

j
] = r

B̂
. Using Lemma S.5.1

we have

m̂ ≥ max(r[Vi Vj ], r[VT
i

VT
j
]) = max(r

Â
, r

B̂
) ≥ min(m̂,m+ 1), (S.5.8)

min(r[Vi Vj ], r[VT
i

VT
j
]) = min(r

Â
, r

B̂
) ≥ min(k

Â
, k

B̂
) ≥ min(kA, kB) ≥ m. (S.5.9)

The equivalence (ii) ⇔ m̂ = m now easily follows from (S.5.8)–(S.5.9).

(iii) ⇔ m̂ = m: by (S.5.4), Vij = [A,B, [yi yj ]
T ]R = [Â, B̂, Ĉ]m̂. Hence, m̂ ≥

rVij
. On the other hand, from (S.5.5)-(S.5.6) it follows that rVij

≥ max(r[Vi Vj ],
r[VT

i
VT

j
]). Hence, by (S.5.8), rVij

≥ min(m̂,m+ 1). The equivalence (iii) ⇔ m̂ = m

now follows from the inequalities m̂ ≥ rVij
≥ min(m̂,m+ 1).
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S.6. Supplementary material related to Example 4.6.
The full matrix Q3(T ) is given by

Q3(T ) = −




0 0 0 0 0 0 6 0 0 0 0 0 12 0 6 12 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0−2 0 0−4−4 0
0 0 0 0 0 3 0 0 0 0 0−6 0−6 3 0 0 0 0 0
0 0 0 0 0 3 0 0 2 0 0 6 0 6 11 0 0 4 4 0
0−6 0 0−6−3−3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 4 0 2 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 2 0 2 4 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 2 3 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 6 0 4 6 3 11 0 2 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.




