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The concept of canonical ratings is introduced in which each S describes all the visual sensations
produced by signal and noise trials in the expected spatial and temporal location of the stimulus. After
many practice sessions, the S assigns one and only one numerical rating to each visual sensation. These
canonical ratings are determined by the S, not the E, and are abbreviations for verbal descriptions of
subjectively distinct visual sensations. The data consisted of canonical ratings at absolute visual detection
for dim visual stimuli (signal) and blank (noise) trials containing no light at all. The physical stimulus is
discrete since it is made up of absorptions of quanta of light that result in isomerizations of rhodopsin
molecules or thermal decompositions of rhodopsin which are discrete noise events that mimic the action of
quantal absorptions. Under these conditions, it is known from the laws of physics that these quantum-like
events (absorptions plus thermal decompositions) follow a Poisson distribution. Previously, it had been
shown that the canonical ratings follow the same Poisson distributions that the quantum-like events do. It

was also shown that the data for one S were consistent with the hypothesis that the rating on any trial was
equal to the number of quantum-like events that had occurred and for two other Ss, either one less or two
less than this number. A signal detection theory analysis of these canonical ratings is performed, resulting
in ROC curves and estimates of d'. In addition, it is shown that the Poisson canonical rating distributions
can be approximated by cutoff Gaussian distributions. Hence it is possible to use a probit analysis, which
is computationally simple, to calculate the maximum likelihood solutions for all means, standard
deviations, d', and b, as well as the standard errors of all these estimates. The rating is shown to be a
linear function of the 'internal decision variable. The internal criteria are all greater than the mean of the
noise distribution and they are all separated by steps of equal size. The probit analysis may be used
whenever all the individual rating distributions are Gaussian in order to obtain the maximum likelihood
estimates and standard errors of all parameters for each Gaussian distribution. Thus, this analysis may be
applied to rating experiments, other than the one described here.

In the theory of signal detection, it is usually

assumed that the underlying signal and noise

distributions are Gaussian, and d ' is defined as the

difference between the means of the signal and noise

distributions divided by the standard deviation of the

noise distribution. For Gaussian distributions, if one

plots the ROC curve on double probability paper,

then d ' will be equal to the horizontal intercept (Green

& Swets, 1966).

In practice, one doesn't know if the underlying

distributions are Gaussian, but one can still plot the

ROC curve on double probability paper. If it appears

to be a straight line, then the data are consistent with

the Gaussian hypothesis and one usually estimates the

parameters of the assumed Gaussian distributions

from the horizontal intercept and slope of the ROC

curve. However, it must be remembered that a

straight line on double normal paper does not prove

that both the signal and noise distributions are

Gaussian. Nachmias and Kocher (1970) plotted ROC

curves based on theoretical Poisson distributions and
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found that they appeared to be fitted by straight lines

on double normal paper. This was true even for
Poisson distributions with relatively small means,

where each individual distribution is not that well

approximated by a Gaussian. Thus, the shape of the

ROC curve is not a sensitive test for the underlying

distributions.
I would like to consider the application of ROC

curves to a process whose underlying distributions are

known to be Poisson rather than Gaussian. For

example. suppose that signal detection theory was

applied to an ideal photometer. This photometer

would have some noise since its photosensitive

substance would have some thermal decompositions

and dark current. It would be able to count every

photon absorption plus noise event without being

able to distinguish between the two. Instead of giving
a confidence rating, the photometer would give the

num ber of electrons emitted (current) over a certain

fixed time interval. In the absence of any external

stimulus. there will be a distribution in the number of

electrons emitted (noise distribution). In the presence

of a stimulus. there will be a different distribution in

the number of electrons emitted in the same time

interval (signal distribution). In order to obtain the

ROC curve. one plots the probability that i or more
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electrons were emitted when the stimulus was
presented (hit rate) vs the probability that i or more

electronics were emitted when only noise was present
(false alarm rate). Each value of i produces one point

on the ROC curve.
Because of the quantum fluctuations of the. light

stimulus, the number of quantal absorptions will

follow a Poisson distribution. Most probably the noise
events will also be Poisson distributed (if the noise is
due to a very large number of independent, events like

thermal decompositions of molecules of photo
sensitive substance). So even for an ideal photometer

than can count every quantum absorption plus noise

event, there will be variability in the response due to
the variability of the stimulus itself. If the variability

of the stimulus is sufficient to account for the
variability of the response, then one concludes that

the photometer being tested is perfect in the sense of
counting every event.

If the photometer counted every event (quantum
absorption or thermal noise event) making no

distinction between kinds of events, then one could
say that it is giving canonical counts because it is

counting every event that it is possible to do, given the
physical limitations for even ideal performance. A
photometer could do a lot worse than canonical

counting. For example, it could count only in bunches
of 1,000 quanta. Or it could turn itself off
intermittently and randomly guess during these

periods. The possibilities for error are myriad.
Instead of a photometer, let us consider a human

O. Using conditions of maximum sensitivity of the
human eye, Hecht, Shlaer, and Pirenne (1942)

demonstrated that humans can sec when relatively few
quanta arc absorbed. Their most sensitive 0 had a

criterion offive quantal absorptions in order to "see."
They showed that the variability in seeing could be
completely accounted for by the known quantum

fluctuations of light. Thus the 0 with a: criterion of

five absorptions had a frequency of seeing curve in the
shape of a cumulative Poisson with a criterion of five.

The experiments to be discussed in this paper were

done on human Os under conditions similar to those
of Hecht, Shlaer, and Pirenne, using the concepts and

techniques of signal detection developed and
investigated by Tanner and Swets (1954), Barlow
(1956), and Nachmias and Kocher (1970). Some

analysis of these experiments has been previously
reported (Sakitt, 1972). It was shown there that an 0

can, in the best case, detect a single quantum of light
and that subjectively distinct visual sensations result
when 1, 2, 3, ... , etc., quantum events occur.

Furthermore, the probabilities of these distinct
sensations occurring followed cumulative Poisson

curves with criteria of 1, 2, 3, ... , etc. Thus human
Os acted as ideal photometers, as discussed above. In
order to get these results, Os were asked to use

canonical ratings, whereby a separate rating must be
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used for every subjectively distinct visual sensation so
that tliel:c is a one-to-one correspondence between

ratings and sensations. The concept of canonical
ratings assumes that the possible sensations are
discrete, not continuous, as the stimuli were. The fact

that the probabilities of the different sensations
occurring were equal to the probabilities of different
numbers of quantum events occurring lends support
to this assumption. The canonical ratings arc
discussed in detail under Methods.

It is the pu rpose ofthis paper to analyze the data of
Sakitt (1972) at absolute visual detection from the

point of view of signal detection theory. First it will be
assumed that the underlying signal and noise
distributions are Gaussian. All ROC curves will be
drawn, and d ' and the slope, b, will be extracted on

the basis of the usual Gaussian assumptions. The
motivation for this is to push the Gaussian hypothesis
as far as one can and then reconcile it to the Poisson

distributions of quantum events that were previously
obtained.

A new type of analysis of rating data is introduced

which is based on canonical ratings. The individual
rating distributions are analyzed with a probit
analysis. This leads to more information than ROC

curves provide. Also, a relatively simple computation

can be used to get the maximum likelihood solutions
and standard errors for d ' and for the parameters of
each signal and noise distribution. This analysis will

work under circumstances where the rating

distributions can be approximated by Gaussians.

METHODS

The data used for the present paper were previously analyzed in a

non-SDT context (Sakitt, 1972). Since the methods are descrihed in

that paper, 1 will only briefly describe the essentials here.

Stimulus

The stimulus was a 29-min disk located about 7 deg in the
temporal retina of the left eye. It was a 16-msec blue-green nash

(470-520 nm) corresponding to either 66 or 55 photons. on the

average. at the cornea. hereafter called the strong and weak stimuli.

as dark-adapted for about 1 h before each experiment, and no

background illumination was used at all. In addition to the strong

and weak stimuli were blank trials which corresponded to no light.

Apparatus

The experiments were done on a Maxwellian view optical system

illustrated and described elsewhere (Sakitt, 1971, 1972). A wheel

containing two neutral density filters was placed in the beam which

allowed the E to set either the strong or the weak stimulus. In the

target plane (conjugate to the retina) was a wheel which permitted

the E to insert either a 29-min disk or an opaque stop. Both wheels

were moved for every trial, even if they had to be returned to their

original positions. They were very quiet and could not be heard

above the sounds of fans of power supplies in the room. A shutter

was placed in the beam which was electronically controlled by a

switch held by the a and opened within milliseconds of the release

of the switch.

Observers

None ofthe as needed corrective lenses. The author (B.S.) and a

hired a (L. F.) were used as the basic as. They were both very
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experienced in visual psychophysical experiments. A third hired 0,
K.D.. who was relatively inexperienced in vision experiments, was
used in the preliminary runs but was unable to remain an 0 for
reasons unrelated to the experiment. During the preliminary run

with K.D., the wheels controlling the target and intensity were noisy
but the noises were uniform and did not seem to give any cues to the
O. These auditory noises were eliminated before the runs using the
other two Os. The data for all three Os were used for this study. A
fourth 0 gave erratic data and was not used further.

Calibration

Briefly, an SEI meter was used which was calibrated against a

standard source whose calibration was traceable to the National
Bureau of Standards. All tilters were calibrated with either a
Perkin-Elmer spectrophotometer or with a Gamma photometer.

The absolute values for the average intensities of the strong and
weak stimuli were estimated to be scotopically equivalent to 66 and
55 photons of wavelength 507 nm incident at the cornea per flash.
The ratio of the two intensities is known with more accuracy than
the absolute values. It was estimated to be 1.20 within a few
percent. The blank stimulus corresponded to zero quanta at the
cornea.

Procedure

An experimental run consisted of a block of 160 trials composed
of 80 blank trials. 40 strong stimuli and 40 weak stimuli. The 0
knew these a priori probabilities, but these trials were presented in
a random order. The order was selected before the experiment
according to random-number tables. The E looked at the
instructions, moved both wheels as described above, and then
signaled "okay" to the O. The 0 released the shutter only after
carefully fixating. Brief breaks were taken occasionally during the
run. After a block was finished, the 0 rested for 5-10 min and
another block was run. Two blocks were done ach day.

Canonical Ratings

Contidence ratings have been used in signal detection
experiments by Pollack and Decker (1958) in speech
communication, by Egan, Schulman, and Greenberg (1959) in
audition, by Swets, Tanner, and Birdsall (1961) in vision, and by

many other workers. It is a well-known and well-used procedure by
now. Although the instructions vary from one experiment to
another, the usual practice is for the E, not the 0, to determine the

number of categories. Also, different ratings are meant to represent
different subjective estimates of the confidence that the signal was
presented.

Canonical ratings differ from the usual confidence ratings
because there is a one-to-one correspondence between canonical
ratings and subjectively distinct sensations. The system of canonical
ratings used in the present study is new and is the key to the entire
experiment. It is a system that takes practice to use successfully.
Hence, it will be described in detail.

First of all, Os attempted to rate their sensory impressions only in
the area where the stimulus was anticipated and only at the time

that they opened the shutter. After rating each trial, the 0 was told
what the trial was-strong, weak, or blank. This was done during
all the practice sessions as well as during the actual experimental
sessions.

During the practice sessions, the task of each 0, including the
author, was to consciously think about one's own process of rating
stimulus and noise trials. We tried to develop as many categories of
sensory impressions as possible that we felt we could reliably use.
After much practice, we assigned numerical ratings to these
different visual sensations. The ratings are called "canonical
ratings" because each rating corresponds to one, and only one,

visual sensation. No rating was used for more than one sensation

and no sensation was given more than one rating. Different ratings
corresponded to subjectively distinct sensations.

It is difficult to verbalize the quality of these sensations,
especially those that correspond to the lowest ratings. At first, the

Os were instructed to use verbal descriptions for the different trials.
A typical 0 would begin with only the three classes of "nothing
there," "not sure if I saw anything," and "a little light." However,
the initial task was to maximize the number of subjectively distinct
categories. Using feedback and hundreds of trials over many days,
Os felt able to make further distinctions. Typical descriptions then
became "a tiny pinpoint of light," or "a vague feeling," or "a sort
of feeling of something," etc.

In order to shorten the time for each trial, the verbal descriptions
were eventually shortened and standardized to not seen, very
doubtful.slightly doubtful, dim, moderate, bright, and very bright.
Then these categories were replaced by the numerical ratings of 0,
I, 2, 3, 4, 5, and 6, respectively. The shorthand words were
probably not the best choices, but it should be remembered that
they are, indeed, only shorthand for the original verbal descriptions
which werc themselves only feeble attempts to use ordinary English
to describe visual sensations that are not ordinarily described.

Nevertheless, it would probably have been better to have used a
different personalized verbal shorthand for each 0 and to have
encouraged Os to 'keep retining their categories until they felt they
had reached their limits.

Two Os (B.S, and L.F.) had a large number of practice sessions
(thousands of trials), and data were taken when a final stable rating
system was developed. Another 0 (K.D.) had few practice sessions

(for reasons unrelated to the study) but seemed to give stable
ratings. A fourth 0 (eL.) had a rating system that was so unstable
it was not included in the final data, although the other three Os
who were used all seemed able to give stable ratings from day to
day. Data were taken for this experiment on 5 days. However, in
another rating study, in which B.S. and L.F. participated (to be
discussed elsewhere), it was found that they continued to use the

same rating systems.

Notation
The usual notation in SDT is to use the letters Sand N to refer to

the signal and noise distributions. This is inconvenient here because
there are three stimulus conditions corresponding to 0, 55, and 66
photons, on the average, at the cornea per flash. The first stimulus
condition will be called the blank or noise condition since it
corresponds to no external input. The other two stimuli will be
called the weak and strong stimuli, respectively. The letters S, W,
and B will be used to denote the strong, weak, and blank
conditions,

P(i I S) probability of saying i or greater when the strong
stimulus is presented.

P(i I W) = probability of saying or greater when the weak

stimulus is presented.
P(i I B) = probability of saying or greater when the blank

stimulus is presented.

For each 0, three ROC curves are obtained by plotting these
cumulative probabilities on double probability paper: P(i I S) vs

P(i I B), P(i I W) vs P(i I B), and P(i I S) vs P(i I W). Foreach
curve, the different points are obtained from the different values of

i.
When referring to any ROC curve, the symbols SoB, W-B, and

S-W will be used to designate which conditions are being compared.
For exa~le, b(S ~JJ) is the slope of the ROC curve obtained from
plotting P(i I S) vs P(i I B) on double-probability paper. It will also

be convenient to use Pi and Zi as the cumulative probability of
saying i or more and the normal deviate of Pi without specifying a
particular stimulus condition.

RESULTS AND ANALYSIS

ROC Curves

The data for each 0 consisted of 400 responses for
both the strong and weak stimuli and 800 responses
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Fig. L ROC curves on double-normal paper. Experimental
points are X for strong vs blank,. for weak vs blank, and 0 for
strong vs weak.

curves obtained in many previous studies. The ratio of
d'(S-B) to d'(W-B) was between 1.24 and 1.26 for all

as, whereas the ratio of the intensities of the strong
and weak stimuli was 1.20. The standard errors of d '

are too large to determine, whether or not d' was

linear with intensity, which would not be typical.
The results from these ROC curves are consistent

with the usual Gaussian hypothesis. The hypothesis
will be pushed further in the next section.

005 05

P,

for the blank stimulus. The cumulative probabilities,

PO I S), PO I W), and PO I B). for giving a rating of i
or more for the strong, weak, and blank stimuli were

calculated for each a and are plotted against each
other as ROC curves on normal-normal graph paper
in fig. I. Straight lines were fitted by eye to the data

and d ', and the slope b was extracted from each ROC
curve in the usual manner (see Green & Swets, 1966).
That is, it was assumed that the underlying
distributions were Gaussian so that d ' is the

horizontal intercept. Table I gives these results under

the heading "ROC curves."
The results in Table 1 are fairly typical of ROC

The Internal Decision Variable
The advantage of using ROC curves is that they give

some information about the signal and noise
distributions even though the critical sensory and
decision variables are not known. In a certain sense,
the \-{OC curve eliminates the most interesting

information: the unknown internal decision variable,

x. Although it is useful because usually one does not
know what x is, it is often useless in trying to discover
the underlying physiological mechanisms that

prod ucc it.
The purpose of this section is to analyze the

individual rating distributions. Figure 2 consists of
sonic unusual curves. For each stimulus (strong,
weak, and blank), the cumulative probabilities l'i for

Table 1
Values of d' and b as Obtained from ROC Curves of Figure 1 and as Obtained from the Probit Regression Analysis of Figure 2

ROC Curves Probit Analysis

B. S. L. F. K.D. B. S. L. F. K.D.

d'(S - B) = [p(S) - p(B)] (a(B) .16 1.61 1.93 2.11 ± .16 1.57 ± .13 2.03 ± .27
b(S - B) = a(B)(a(S) .60 .76 .96 0.67 ± .05 0.84 ± .06 0.71 ± .10

d'(W - B) = [p(W) - p(B)] (a(B) 1.71 1.28 1.56 1.74 ± .14 1.25 ± .12 1.57± .23
b(W - B) = a(B)(a(W) .68 .81 .88 0.70 ± .05 0.80 ± .06 0.83 ± .11

d'(S - W) = [p(S) - p(W)J ja(W) .26 .23 .27 0.26 ± .05 0.26 ± .05 0.38 ± .07
b(S - W) = a(W)ja(S) .88 1.04 1.08 0.96 ± .05 1.05 ± .06 0.86 ± .11

d'(S - B)jd'(W- B) 1.26 1.26 1.24 1.21 ± .08 1.26 ± .11 1.29 ± .17

Note-Standard errors are given after estimates from the probit analysis.
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saying i or greater are plotted on probit paper against
the contidence rating i.

Probit paper transforms a cumulative Gaussian
into the straight line

(1)Y -5 = (i -J.l)la,

where i is the independent variable, Y is the probit, J.l

is the mean of the distribution, and a is the standard
deviation of the distribution. Hence the mean is that
value of i that makes Y = 5 (same as P = .5) and a is
the reciprocal of the slope of the line.

lt can be seen that the experimental points in Fig. 2
seem to be titted by straight lines, which 'means that

the underlying strong, weak, and blank distributions
arc Gaussians. This is a much more stringent test

than straight lines on double-normal paper, since
ROC curves based on non-Gaussian functions can
sometimes be titted by straight lines on

double-normal paper. It should be pointed out that
the Gaussian distributions obtained here are
dependent on the use of canonical ratings, as will

become more obvious later.
Although one can extract some information by an

"eye" tit in Fig. 2, there exists an objective method of

analyzing such graphs. This straightforward

technique, called probit analysis, is described by
Finney (1964) in the tirst four chapters of his book.
The advantages of a probit analysis are: (1) it gives an

objective statistical test of how well the points are
fitted by Gaussians; (2) it provides the best titting
regression line which determines the maximum

likelihood solutions for the estimates of the mean and
standard deviation of the Gaussian distribution; and
(3) it enables one to calculate the standard errors of
both these estimates.

The probit analysis of the data of Fig. 2 was done
with the aid of a 6400 CDC computer. However, a
computer is not necessary. In the appendix of
Finney's (1964) book, he shows a detailed numerical
example of a complete probit analysis using a desk
calculator. The results of the probit analysis, rounded

oil to three signiticant figures, are given in Table 2.
The results include the best estimates of the mean and
standard deviation of each distribution with the

standard errors of these estimates. From the values
of chi squared, it is seen that Gaussian distributions
give a moderate tit to the data. It should be noted here

that, when doing a probit analysis, one can drop
categories that have less than five expected
occurrences. Finney points out that if one uses such
classes, the chi-squared distribution may give
misleading results. Eliminating such a class does not
necessarily "improve" the tit, since it means that

chi squared has less degrees of freedom. The number
of degrees of freedom, N, in Table 2 is two less than

the maximum rating used. K.D. never used the
ratings 5 and 6 and had so few occurrences of the

8
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Table 2
Results from the Probit Analysis Where Y is the Probit and i is the Independent Variable

Strong
B. S. Weak

Blank

Strong
L. F. Weak

Blank

Strong
K. D. Weak

Blank

Probit Line
y=

3.34 + 0.64 i
3.52 + 0.66 i
4.61 + 0.95 i

3.61 + 0.61 i
3.94 + 0.58 i
4.92 + 0.73 i

3.88 + 0.48 i
4.09 + 0.56 i
5.46 + 0.68 i

iJ_~~(p )~ __~ a ± S(a2 ~Q'l) p _

2.62 ± .051 1.57 ± .057 14.2(4) .1%- 1%
2.23 ± .052 1.51 ± .058 4.7(4) 30%-50%
0.41 ± .075 1.05 ± .066 4.5(1) 2%- 5%

2.28 ± .056 1.64 ± .063 5.0(4) 10%-30%
1.83 ± .065 1.73 ± .074 4.6(4) 30%-50%
0.11 ± .105 1.38 ± .085 6.5(2) 2%- 5%

2.30 ± .081 2.07 ± .197 0.1(1) 70%-90%
1.63 ± .073 1.78 ± .150 1.5(1) 10%-30%

-0.677 ± .228 1.47 ± .151 0.6(1) 30%-50%

Note-For each rating distribution, iJ and a are the estimates of the mean (corresponds to mean P = .50) and the
standard deviation; S(iJ) and S(a) are the standard errors of these estimates. The last two columns give the chi-squared
test for N degrees of freedom.

rating 4 that only rating categories up to 3 were used.

However, B.S. and L.F. used all the ratings up to 6,

and no points were dropped for them.

Figure 3 shows the best fitting Gaussian

distributions obtained for the weak and blank

distributions for a B.S. The abscissa is the variable i

and is a continuous extension of the ratings i. The

probit regression analysis indicated a moderately good

tit of the experimental points to the Gaussians shown

in Fig. 3. According to signal detection theory, the

rating of i is given when x is between the ith and

(i + l)st criterion. Therefore, the abscissae of Fig. 3

can also be marked with the values of x. The rating 0

will be given when x is less than the lowest criterion Xl;

the rating 1 will be given when x is between Xl and xz;
the rating 2 will be given when Xis between Xz and x3;

etc. The ratings i must be a linear function of the

internal criteria, Xi, since the only difference between i

and x on Fig. 3 can be a scale change and/or a

horizontal shift. Therefore, since the ratings are

equally spaced apart, the internal criteria must also

be equally spaced apart, beginning with Xl'

It is not necessary to draw all the distributions for

all the as in order to make this point. The straight

lines in Fig. 2 and the probit analysis indicate that the

.4

rating distributions for each of the three stimulus

conditions are Gaussians.

According to SDT, the criteria can be chosen

arbitrarily. From Fig. 3 and Table 2, it is seen that,

for all as, all the criteria were above the mean of the

noise distribution and all the criteria were equally

spaced apart. It is difficult to believe that all as chose

equally spaced criteria from a continuum of

possibilities. The more likely hypothesis is that the

decision variable itself is discrete. A very likely

candidate would be the number of action potentials in

a critical neuron, or the number of discrete bursts of

action potentials. Perhaps the rating i is given when

k + ni pulses occur in the critical neuron, k and n

being integers.

It is important to remember that the as used

canonical ratings (see Methods section). Each

canonical rating described one and only one visual

sensation. This was a difficult task and took much

practice. This is not the usual procedure in rating

experiments where as may, in principle, use

categories they feel they cannot always subjectively

distinguish, or use a single category for more than one

subjective sensation. For example, in the present

study, it would have been possible to combine the

o ':.L-~~==--------.----r---""::::::::"_-,----.--':::;==:::-'-
2 3 4 5 6

i (Rating)

i i i i i I

XI x
2

x
3

x
4

x
5 Xli

x (Internal decision variable)

Fig. 3. Best fitting Gaussians for the blank
and weak distributions for the B.S. data
obtained from the probit analysis. The means
are I-I(B) = 0.41 and I-I(W) = 2.23. The
standard deviations are alB) = LOS and
o(B) = LOS and o(W) = LSI.



where y is the average number of noise events

occurring over the retinal region being considered

standard errors of d ' and b are given in Table 1.

The analysis described here is only applicable

whenever all the individual rating distributions are

Gaussian. In that case, the probit analysis could be

applied to each individual distribution. and then from

those results, the best estimates and standard errors

of d ' and b can be calculated.

Recently, Fortran programs have been developed

for finding the maximum likelihood estimates of

parameters of ROC curves generated by rating data
(Dorfman & Alf, 1969; Dorfman, Beavers, & Saslow,

1973). Their method has the advantage of being quite

general. It is not necessary that the individual rating

distributions be Gaussians. However, where the

analysis of the present paper can be used, it has the

advantage of being computationalJy simple, requiring
only a desk calculator.

The Physical Interpretation of the Ratings
Up to this point, the data have been shown to be

consistent with the Gaussian hypothesis, The ROC

curves in Fig. 1 are straight lines. Even the indi

vidual canonical rating distributions are straight
lines on probit paper, as seen in Fig. 2.

Yet, in the introduction it was mentioned that a

previous analysis of this data (Sakitt, 1972) fitted the

rating distributions approximately to Poissons. The

same data for B.S. as used in this paper were

consistent with the hypothesis that the rating on each

trial was the number of effective quantum absorptions

plus noise events. For as L.F. and K.D., the same

data as used in this paper were shown to be consistent

with the hypothesis that the rating on each trial was

either one less or two less than the number of effective

quantum absorptions plus noise events. Both the

ratings and quantum events folJowed the same
Poisson distributions.

In 1956, Barlow suggested that, in the dark,

thermal decompositions of rhodopsin molecules, or

other noise events, mimic the action of quantal

absorptions. Therefore, the total number of

quantum-like events would be those due to quantal

absorptions plus those due to noise events. If there are

an average of Q quanta incident at the cornea per

nash, only some of the incident quanta will be

transmitted to the retina, be absorbed by rhodopsin,

and result in an isomerization of a rhodopsin molecule

which is necessary in order to produce a rod signal. If

a is the average number of quantum-like events (or

rod signals) and f is that fraction of the quanta

incident at the cornea which result in a rod signal,
then
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categories corresponding to the ratings 2 and 3 into

one category even though these were subjectively

different sensations. If an a did that, the curves in

Fig. 2 would not be straight lines and the above
analysis would be inappropriate. But the motivation

in the present study is to see the best that as may do
and compare that behavior to an ideal device.

Each individ ual rating distribution could be

moderately well tit to a Gaussian when canonical

ratings were used. This seems to lend support to the

Gaussian hypothesis. However, it is more accurate to

say that the rating distributioris were fit to the

ordinates of Gaussians at equalJy spaced abscissae.
Furthermore, as seen in Fig. 3, the ratings are quite

asymmetrical with respect to the means of the

underlying Gaussian distributions.

Maximum Likelihood Estimates and
Standard Errors of d' and b .

In the previous section, it was shown how the

maximum likelihood estimates and standard errors of

all the means and standard deviations could be

calculated. The analysis was dependent upon the

equal spacing of the experimental points on probit

paper. From these estimates, it is possible to calculate

d ' and b, as well as their standard errors. An example

will illustrate how the quantities were calculated.
From the probit analysis, the estimates of the means

of the weak and blank distributions for L.F. were

1.833 .and 0.111, respectively. The estimate of the

standard deviation of the blank distribution was 1.38.

Hence the estimate ofd(w-B) is [1.833 -0.111]/1.38

= 1.722/1.38 = 1.25. Similarly, all other quantities
were calculated and tabulated in Table 1 under the

"probit analysis" heading. It is seen that the values of

d ' and b. as calculated from the probit analaysis,

agree with those estimated from the ROC curves. This

lends support to the argument that the ratings were

linear with the internal decision variable, x.

The probit analysis yielded not only the best

estimates of the mean, u, and the standard deviation,
a, for each distribution, but also the standard error of

the mean, S(jJ.). and the standard error of the

reciprocal of the standard deviation, SOl a), for each

distribution. The 95% confidence limits (or any other

limits) can be calculated exactly for jJ. and 1I a. Since
d ' and b are derived from jJ. and 11a, it is possible to

calculate the 95% confidence limits for d ' and b for

each distribution. This calculation can be done

exactly, although numerically. However, when a

random variable has a narrow distribution (if the

variance is small compared to the square of the mean)

and has a moderately well-behaved distribution (no

peculiar discontinuity, etc.), then one can derive

analytic expressions for the standard error of

functions of this random variable. This procedure was,

employed here. The derivations and calculations are

given in the appendix, and the values obtained for the

a=fQ+y (2)
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(5)

2 3 4 5 6

2 ~ 4 5 6

2 3 456
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o

o

PO I B) = P(C,y)

Strong

Using the B.S. data for the ratings I, 2. 3, 4, and 5
produced 15 equations which could be approximately

solved with the same value off (.0274), the same value

of y (0.36), and with the value of c always being the

rating i. Thus the 15 experimental points were fitted

to successive Poisson curves with only two parameters,

f and y. Furthermore, the estimate of .0274 found for

f. the fraction of quanta at the cornea that are

effective in producing a rod signal. is consistent with

previous estimates made by workers using

independent physical methods. In a similar manner,

it was found that the data of L.F. and K.D. were

consistent with counting either one less or two less

than the number of rod signals. The reader who is

interested in the details of the quantum counting

analysis is referred to Sakitt, 1972.

Figure 4 shows the experimental cumulative

probabilities of giving a rating of i or greater, the(4)

(3)
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during a certain time period. The number of effective

quantum absorptions follows a Poisson distribution

because of the quantum fluctuations of the light itself.

It is probable that the noise events also do so.

Therefore, the number of quantum-like events

probably has a Poisson distribution, with the average

number determined by Eq. 2.

Suppose that the rating i is given whenever c or

more quantum-like events (or rod signals) occur

(effective quantum absorptions plus noise events).

Then the probability of giving a rating of i or greater

when a is the average number of rod signals is equal to

P(c,a), the cumulative Poisson probability that c or

more rod signals occur when a is the average number

occurring. Thus, using Eq. 2, for each value of i, one

gets

Rating

Fig. 4. Cumulative probabilities for giving the rating i or greater vs the rating I. The black bars are the experimen~l values and are

slightly offset to the left for clarity. The white bars are the predictions fro.m the qu~ntum counting ~ y p o t h e s ~ s and are slIghtly offset to the
right for clarity. The continuous curve is the prediction from the Gausslans obtamed by the problt analysis.
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predictions of these probabilities from the Gaussian
hypothesis, and the quantum counting predictions, all
on the same graph. The Gaussian predictions for the
cumulative probabilities are from the probit analysis
of an earlier section of this paper, and the moderate
goodness of their fit can be seen by the chi-squared
test listed in Table 2. The quantum counting
predictions are the cumulative Poisson probabilities
that i or more rod signals occur as described above
and in Sakitt (1972). The quantum counting
predictions have a poor chi-squared fit (p < .01).
That means that the departure of the experimental
probabilities from quantum counting is greater than
would be expected by purely sampling error. In
addition to quantum counting, an 0 might be
inattentive on some trials and just guess on those
occasions, or an 0 might have a bias against giving
the rating 1 and not always use it when it might be
appropriate. It would not require a large amount of
such bias to account for the small discrepancy
between the quantum counting predictions and the
actual experimental points, as can be seen by looking

at Fig. 4.
Both the Gaussian and Poisson distributions give

plausible tits to the data, with the Gaussians giving a
better tit. However, the Poisson distributions are
based on fewer parameters. But more important, the
Poisson distributions are based on the physical
stimulus, not an abstract model. The Poisson
distributions resulted from the hypothesis that each
distinct visual sensation was a result of a different
number of quantum-like events and that canonical
ratings report all visual sensations.

Thus, a human 0 can almost act as an ideal
photometer, counting the number of quantum-like
events that occurred. Although one knows the
stimulus has a Poisson distribution, it is theoretically
possible that the transduction process is such that a
Gaussian represents the distribution of the decision
variable. Theother possibility is that the Poissons
derived from the quantum counting model are the
true sensory distributions but that inattention and
bias cause deviations of the data.

In the latter case, the Gaussian distributions can
still be used as convenient approximations. But the
Gaussian distribution which best approximates a
Poisson distribution is not obtained by using the mean
of the Poisson but by doing the probit analysis, except
when the mean is large. When the Poisson to be
approximated by a Gaussian has a small mean. the
mean of the best fitting Gaussian will be appreciably
different from the mean of the Poisson but be closer to
the median of the original Poisson.

This can be best seen by an example. Consider a
Poisson distribution of mean 1.70. From .Poisson
tables. the median of this distribution is 2.0. In fact,
for a Poisson of mean 1.70. the probabilities of 1, 2, 3,
4, and 5 or more events occurring are .82, .51, .24,
.09, and .03. respectively. If one takes a Gaussian of

mean and variance equal to 1.70, the cumulative
probabilities are .71, .41, .16, .04, and .01,
respectively-not a very good match. However, if one
takes a Gaussian of mean and variance equal to 2.00,
the cumulative probabilities are. 76, .50, .24, .08, and
.02-a much better fit. Of course, the best Gaussian
is not found by using the median but by doing the
probit analysis, although intuitively one can see that
the median will be more important than the mean
since the horizontal intercept is defined in terms of a
50% response.

For 0 B. S., the best fitting Poissons to the data had
means of 2.19, 1.82, and .36 for the strong, weak, and
blank distributions. The best fitting Gaussians had
means of 2.62,2.23, and 0.41. Figure 4 indicates that
these Poissons and Gaussians are fairly well matched
(white bars vs smooth curves). although their means
all differ. Similar results occurred for all Os.

Canonical Ratings

Using the canonical rating system, each sensation
corresponded to some fixed number of quantum-like
corresponded to some fixed number of quantum-like
events. Os could therefore reliably distinguish, for
example, between three quantum-like events
occurring as opposed to four such events, etc.

Barlow, Levick, and Yoon (1971) recorded from
individual ganglion cells in the cat retina and found
that the information about the number of
quantum-like events was preserved, essentially
completely. By using different numbers of impulses as
criteria, they obtained results on the cat that are very
similar to the human results obtained from canonical
ratings. (The reader who is interested in the detailed
comparisons is referred to Sakitt, 1972).

In summary, canonical ratings produced by
subjectively distinct visual sensations in humans
produce data similar to those obtained by using
different numbers of impulses in an individual
ganglion cell of the cat. The simplest explanation of
the human data from canonical ratings is that each
quantum-like event produced one action potential in a
critical neuron and that the canonical ratings were a
shorthand for the subjectively distinct visual
sensations generated by different numbers of action
potentials occurring in this neuron over a certain time
period.

There will be some conditions under which the
distribution of impulses will not even be
approximately Poisson. Barlow and Levick (1969)
have shown that in the cat ganglion cell, the
distribution of number of impulses follows a Gaussian
at moderately high light levels but looks like the
human distribution for blanks in the dark. They show
that the mean divided by the variance of the
distribution, for an on-center unit, increases from
about one in the dark (like a Poisson) to higher values
when the luminance level is increased. Hence. at high
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Take the natural logarithm of both sides and then. taking the

variances and using Eq. 7. one gets

Since the probit analysis yielded V(I/o). Eqs. 6 and IOwere used to

calculate Sto), and these values are listed in Table 2.
Three examples will illustrate the method of calculating the

standard errors for band d. Consider

V(I/y) = V(y)!y"

V[f(y)] = V(y)[t'(y)j2. (9)

(12)

(10)

V(lny) = V(y)!?

b(W - B) = o(B)/o(W).

(II)

In particular. Eq. 9 can be applied to I/y and In y to get

and

luminance levels, a Poisson wil1 never tit the data.
In the human, the number of impulses must be a

highly compressive function of the number of
quantum absorptions in order to see over the
enormous range that we do. Therefore, the
distribution of the number of impulses must be scaled
from the distribution of absorptions and cannot be
Poisson at high luminances. Since the distributions
for single cat ganglion cells are similar to human
rating distributions at absolute visual detection, it is
possible that the distributions will also be similar at
high luminance levels. If that is so, human canonical
rating distributions at high luminance levels will be
Gaussian, so a probit analysis may be helpful.

CONCLUSION

V[I n b(W - B)] = V[ln o(B)] + V[ln o(Wl]. (13)

From Eq. 6. the variance is approximated by the square of the

standard error. Hence all the quantities in Eq. 10 have already been

calculated except V[b(W Br]. For example. using Tables 1 and 2

and doing the calculation for the L.F. data yields

V[b(W - B)] (.085)' (.074)2
--'----- =--- +---

(.80)' (1.38)2 (1.7 3)'

= .005590 = (.075)'

The concept of canonical ratings has been
introduced where each rating corresponds to one and
only one subjective sensation. The present study has
shown how canonical ratings can be used to find the
underlying neural distributions at absolute visual
detection. Hopeful1y, this technique can be applied to
other visual conditions and to other sensory

modalities.
When the canonical rating distributions are

approximately Gaussian, it was shown that a simple
probit analysis can determine the maximum
likelihood estimates and the standard errors of all
parameters. There is some reason to believe that this
statistical analysis can be applied to other canonical

rating experiments.

Using Eq. II yields

V(b(W - B)] V[a(B)) V[a(W)]
-'------ = --- + ---~
[b(W - BW [a(B))2 [a(W)] 2

(14)

APPENDIX

In order to calculate the standard errors, it is necessary to use the

following relationships:

V(y) = [S(y)]2. (6l

Therefore. S[b(W B)I = (.80)(.075) = .060. In Table 1, under

the heading "probit analysis." there appears the entry 0.80 ± .060

as the estimate of b(W - B) plus or minus S[b(W- Bj], the

standard error of b(W - B) for L.F. In a similar manner. the

standard errors for all the estimates of b were calculated and

tabulated.
Next consider another example.

Take the natural logarithm of both sides and use Eqs. 7 and 11 to

get

where V(y) is the variance of the random variable y and S(yl is the

standard error of the random variable y, and it is assumed that the

sample size. n, is large enough so that n - I is approximated by n. If

x and yare random independent variables (for example. the means

of the weak and blank rating distributions). then

d' (W - B) = ~(Wl I'(Bl]lo(B). (IS)

as shown in any elementary statistics book. Another useful

relation is

V[x - y] = Vtx) + V(Yl, (7) V[d'(W - B)] V(J.L(W)] + V [J.L(B)] V(a(B)]
--'-----= +---
[d'(W - BW (J.L(W) -J.L(B)]' (a(B)]'

(16)

V[f(yl] = V(y)[nyl]' + terms of order [S(yl/:Y]', (8l

where f(y) is a moderately well-behaved function of y and :Y is the

mean value ofy. Equation 8 can be derived by expanding y about j

in a Taylor series.

The random variables that are of interest here are all the

differences in mcans-for example. ~ ( W l I'(B)]-and the

quantities I/o for each rating distribution. The ratio of the

standard error to. the mean for all these quantities is always less

than 0.2. and hence the correction term in Eq. 8 is at most 40/0 and

usually is much less. Therefore. Eq. 8 can be approximated by

Since the variance is just the square of the standard error, all the

quantities in Eq. 16 have already been calculated, except for

V(d'(W B)I, which can now be done. Looking up all the values in

Tables I and 2 for the L.F. results yields S[d'(W - Bl] = .118. This

is listed for L.F. under the probit analysis heading after the
estimate ofd'(W - B) in the form 1.25 ± .12. In a similar manner.

the standard errors of all other estimates of d were calculated and

tabulated. The other quantity of interest is the ratio, R,

R = d'(S B)/d'(W-B) = ~(S)I'(B)]I~(W)-I'(B)] (17)
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Taking the natural logarithm of both sides and using Eqs. 7 and 11

yields

VCR) V[M(S) I + V[M(B)) V[M(W)] + V [M(B))

]i2= [M(S)-M(B)p + [M(W)-M(B))' (18)

All the quantities in Eq. 16 have been previously calculated except

for VCR). Looking up all the values for L.F. in Tables 1 and 2 yields

S(R) = 0.113. This is tabulated in the last row of Table 1 as
1.26 ± .11. which is of the form R ± S(R).
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