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Abstract: In this paper we construct a theory of quantum mechanics based on Shannon

information theory. We define a few principles regarding information-based frames of reference,

including explicitly the concept of information covariance, and show how an ensemble of all

possible physical states can be setup on the basis of the accessible information in the local

frame of reference. In the next step the Bayesian principle of maximum entropy is utilized in

order to constrain the dynamics. We then show, with the aid of Lisi’s universal action reservoir

approach, that the dynamics is equivalent to that of quantum mechanics. Thereby we show

that quantum mechanics emerges when classical physics is subject to incomplete information.

We also show that the proposed theory is relational and that it in fact is a path integral version

of Rovelli’s relational quantum mechanics. Furthermore we give a discussion on the relation

between the proposed theory and quantum mechanics, in particular the role of observation and

correspondence to classical physics is addressed. In addition to this we derive a general form

of entropy associated with the information covariance of the local reference frame. Finally we

give a discussion and some open problems.
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”Information is the resolution of uncertainty.”

- Claude Shannon

1. Introduction

Quantum mechanics constitutes a conceptual challenge as it defies many pivotal classical

concepts of physics. Despite this the theoretical and experimental success of quantum
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mechanics is unparallel [15]. The intuitive construction of classical mechanics and the

perhaps counter-intuitive quantum mechanical formulation of reality has thus amounted

to a problem of interpretation of quantum mechanics. The list of interpretations of quan-

tum mechanics is long, but perhaps the most common interpretations are: Copenhagen

[2], consistent histories [7], many worlds [5] and relational [15]. Many of these approaches

share most central features of quantum mechanics, the difference is mainly the philo-

sophical context in which they are situated. The canonical problem in these approaches

is perhaps the counter-classic, and in many peoples views, counter-intuitive principle

that physics is fundamentally based on probability. The perhaps strongest opponent of

a probability-based theory of physics was Einstein who constructed several unsuccessful

thought experiments and theories in order to disprove the commonly accepted view of

quantum mechanics [4]. As a matter of fact all approaches to create a non-probabilistic

version of quantum mechanics have failed [3]. It has also been proven, via for example

Bell’s theorems, that the construction of such a deterministic or ”local hidden variable

theory” is impossible [3]. Thus one has no choice but to conclude that physics, inevitably,

has quantum properties.

1.0.1 Relational Quantum Mechanics

It was Einstein’s revised concepts of simultaneity and frame of reference that inspired

Rovelli to formulate a theory of mechanics as a relational theory; relational quantum

mechanics. In this seminal approach frames of reference were utilized and only relations

between systems had meaning. This setup gave interesting solutions to several quantum-

related conceptual problems such as the EPR-paradox [15]. It may be concluded that

Rovelli recast physics in the local frame of reference in such a way that the interactions

between systems amounted to the observed quantum phenomena. A particular facet of

Rovelli’s approach was that any physical system could be observed in different states by

different observers ”simultaneously”. This property can be interpreted as an extension

of the concept of simultaneity in special relativity [15]. The theory of relational quantum

mechanics was based on the hypothesis that quantum mechanics ultimately arose when

there was a lack of information of investigated systems.

1.0.2 Universal Action Reservoir

In a recent paper Lisi gave an interesting approach to quantum mechanics based on

information theory and entropy [12]. He showed that given a universal action reservoir

and a principle for maximizing entropy quantum mechanics could be obtained. In his

paper the origin of the universal action reservoir was postulated as a principle and was

given no deeper explanation. This was addressed in recent papers by Lee [10, 11] where

he suggested that it was related to information theory coupled to causal horizons.
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1.0.3 Relational Quantum Mechanics and the Universal Action Reservoir

In this paper we shall recast Rovelli’s relational approach to quantum mechanics on the

concept of information covariance and connect it to Lisi’s canonical information theoretic

approach. In the process of this we show that the universal action reservoir is an inevitable

consequence of incomplete information in physics. This theory is, in spirit of Rovelli’s

approach, a generalization of the special relativistic concept regarding frames of reference.

2. Physics with Information Covariance

2.1 Principles for Information-based Frames of Reference

Let us assume that we have a set of observations of certain physical quantities of a physical

system. This is the obtained information regarding the system. For all other events that

has not been observed we only know that something possible happened. If we knew with

certainty what happened then we as observers would be in a frame of reference based

on complete information regarding the explored system. However such a theory would

require some form of a conservation law which would require that a physical system has

a predetermined state when not observed. Let us instead consider the opposite: Assume

that no observation is made of the system, then information regarding that system is not

accessible and thus not inferable without more observations. It is then reasonable that

anything physically possible could have occurred when it was not observed. If one can

base the laws of physics on the premise of only what is known in the frame of reference,

in terms of information, regarding any physical system in connection with the observer

and her frame then one has attained a high from of generality in the formulation of the

laws of physics. This amounts to a seemingly tautological yet powerful principle:

If a system in physics is not observed it is in any physically possible state.

We shall call this principle the principle of physical ignorance. In one sense this

principle is intuitive and trivial: the unknown is not known. In another more intricate

sense it violates a number of basic principles of physics such as many of the laws of classical

physics. The law of inertia is one such principle for example; the inertia of a body does not

necessarily hold when we do not observe it. However one cannot assume that Newton’s

laws or any other classical laws hold in a system for which limited information is known.

For all we know regarding classical physics is that it holds in a certain classical limit. The

definition of ”known” here is what information has become accessible in ones frame of

reference obtained through interaction with another system. The laws of physics should

thus be formulated in such a way that they hold regardless of information content in the

local frame of reference; the formulation of the laws of physics should be invariant with

respect to the information content. This amounts to a principle for the formulation of

the laws of physics:

The laws of physics are defined on the basis of the information in the frame of reference.

This principle shall be call the principle of information covariance. It’s scope of gen-

erality is similar to the principle of general covariance, which is the natural generalization
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of the frames of reference used in special relativity. The principle of information covari-

ance suggests that the frame of reference is entirely based on information; thus any new

observations will alter the information content and thus re-constrain the dynamics of the

studied system ”projected” within the frame of reference. One should also keep in mind

that physics cannot, in a frame of incomplete information, ”project” any information

through physical interactions that is not inferable from the accessible information. This

creates a form of locality of physics: Physics only exists in every frame of reference. Thus

there exists no such thing as an objective observer. It should be noted here that there

exists a similar notion of frames of reference in traditional relational quantum mechanics

[15]. The dynamics is derived from a different set of principles and formal setup but

arrives at a similar conclusions [15].

2.2 Formal Setup

Let us assume that we have a set of observations An regarding physical quantities of a

system C from a frame of reference K. The available information regarding the system C

in K is given by the information in the observed physical quantities An and what can be

inferred from them, the rest of the properties of the system are by the principle of physical

ignorance unknown. Formally according to the principle of physical ignorance we may

conclude that the possible configurations of the explored physical system C in the frame

of referenceK has to form a set of all possible physical configurations under the constraint

of the set of observations An for the system. Consider a set of configuration parameters

for each possible physical configuration or path in configuration space path = q(t). The

set of configurations parameters is parameterized by one or more parameters t. Then for

each physical system we may associate an action S[path] = S[q(t)] defined on the basis

of the configuration space path q(t). The structure of the action is here assumed to be

something of a universal quantity of information inherent to every frame of reference, it

is the paths in the configuration space of objects that is unknown to every observer until

observed. The action of a system is defined classically as S =
∫
L(q, q̇)dt, where L(q, q̇)

is the Lagrangian for the system [17]. Traditionally with the aid of a variation principle

the expected action of a classical system is used to derive the dynamics of the system

[17]. In quantum mechanics a probabilistic setup is performed, ideally via a path integral

formulation. In our situation we shall instead look for all possible configurations under

condition of the observations An in accordance with the previously defined principle

of physical ignorance. The possible actions, based on the possible configurations, are

each associated with a probability of occurring, p[path] = p[q(t)]. The sum of these

probabilities need to satisfy the ubiquitous normalization criterion:

1 =
∑
paths

p[path] =

∫
Dqp[q], (1)

Along with this we may conclude that any functional, or observable quantity Q, has

an expected value according to the expression [12]:
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〈Q〉 =
∑
paths

p[path]Q[path] =

∫
Dqp[q]Q[q]. (2)

We have the expected action 〈S〉 according to [12]:

〈S〉 =
∑
paths

p[path]S[path] =

∫
Dqp[q]S[q]. (3)

As a measure of the information content, or rather lack thereof, we can construct the

entropy of the system according to:

H = −
∑
paths

p[path] log p[path] = −
∫
Dqp[q] log p[q]. (4)

So far we have merely utilized information theoretic concepts, we shall deal with

its physical consequences further on in this paper. Although the probabilities for the

events in system C observed from reference system K are yet undefined we have a set of

possible configurations that could occur for a system and we have associated a probability

of occurrence with each based on the ensemble setup above. In order to deduce the

probability associated with each possible event we need some form of restriction on the

ensemble of possibilities. In a Bayesian theory of interference there is a maximization

principle regarding the entropy of a system called the Principle of maximum entropy [8]

which postulates the following:

Subject to known constraints, the probability distribution which best represents the

current state of knowledge is the one with largest entropy.

This principle is utilized in several fields of study, in particular thermodynamics where

it serves as the second fundamental law [8]. We shall assume that this principle holds and

we shall utilize it as a restriction on our framework. In [12] Lisi performed the following

derivation which is worth repeating here. By employing Lagrange multipliers, λ ∈ C and

α ∈ C, the entropy (4) is maximized by:

H ′ = −
∫
Dqp[q] log p[q] + λ

(
1−

∫
Dqp[q]

)
+ α

(
〈S〉 −

∫
Dqp[q]S[q]

)
, (5)

which simplified becomes:

H ′ = λ+ α〈S〉 −
∫
Dq(p[q] log p[q] + λp[q] + αp[q]S[q]). (6)

If we perform variation on the probability distribution we get:

δH ′ = −
∫
Dq(δp[q])(log p[q] + 1 + λ+ αS[q]) (7)

which is extremized when δH ′ = 0 which corresponds to the probability distribution:

p[q] = e−1−λe−αS[q] =
1

Z
e−αS[q] (8)
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which is compatible with the knowledge constraints [12]. By varying the Lagrange

multipliers we enforce the two constraints, giving λ and α. Especially one gets: e−1−λ = 1
Z

where Z is the partition function on the form:

Z =
∑
paths

e−αS[path] =
∫
Dqe−αS[q] (9)

and the parameter α is determined by solving:

〈S〉 =
∫
DqS[q]p[q] =

1

Z

∫
DqS[q]e−αS[q] = − ∂

∂α
logZ. (10)

In order to fit the purpose Lisi concluded that the Lagrange multiplier value; α ≡
1
i�
. Lisi concluded that this multiplier value was an intrinsic quantum variable directly

related to the average path action 〈S〉 of what he called the universal action reservoir.

In similarity with Lisi’s approach we shall also assume that the arbitrary scaling-part of

the constant α is in fact 1/�. Lisi also noted that Planck’s constant in α is analogous

to the thermodynamic temperature of a canonical ensemble, i� ↔ kBT ; being constant

reflects its universal nature - analogous to an isothermal canonical ensemble [12]. This

assumption along with (9) brings us to the following partition function:

Z =
∑
paths

ei
S[path]

� =

∫
Dqei

S[q]
� . (11)

By inserting (11) into (2) we arrive at the following expectation value for any physical

quantity Q:

〈Q〉 =
∑
paths

p[path]Q[path] =

∫
DqQ[q]p[q] =

1

Z

∫
DqQ[q]ei

S[q]
� , (12)

This suggests that a consequence of the incomplete information regarding the studied

system is that physics is inevitably based on a probabilistic framework. Conversely, had

physics not been probabilistic in the situation of incomplete information then information

of the system could be inferred. But a process of inferring results from existing limited

information does not provide more information regarding that system than the limited

information had already provided. That would have required, as we previously argued, an

additional principle of perfect information. Instead it is only interaction that can provide

new information. We may conclude that by the principle of information covariance

physics is local and based only on the available information in the local information-based

frame of reference. In turn this this creates an ensemble of possible states with a definite

and assigned expectation value for each physical quantity in the studied system according

to (12). This formalism, which might be called information covariant, is then directly

compatible with the general principle of relativity wherein All systems of reference are

equivalent with respect to the formulation of the fundamental laws of physics.
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Fig. 1 This illustration shows the path of a particle from one point to another in a complete
information frame of reference K (essentially a particle that is observed along its path). It also
shows some of the possible paths a particle takes in the incomplete information frame of reference
K ′.

3. Connections to Quantum Mechanics

3.1 Path Integral Formulation

The path integral formulation, originally proposed by Dirac but rigorously developed by

Feynman [6], is perhaps the best foundational approach to quantum mechanics avail-

able [12]. It shows that quantum mechanics can be obtained from the following three

postulates assuming a quantum evolution between two fixed endpoints [6]:

1. The probability for an event is given by the squared length of a complex number

called the probability amplitude.

2. The probability amplitude is given by adding together the contributions of all the

histories in configuration space.

3. The contribution of a history to the amplitude is proportional to eiS/�, and can be

set equal to 1 by choice of units, while S is the action of that history, given by the

time integral of the Lagrangian L along the corresponding path.

In order to find the overall probability amplitude for a given process then one adds up

(or integrates) the amplitudes over postulate 3 [6]. In an attempt to link the concept of

information-based frames of reference - developed in this paper - to quantum mechanics

we shall utilize Lisi’s approach wherein the probability for the system to be on a specific

path is evaluated according to the following setup (see [12] for more information). The

probability for the system to be on a specific path in a set of possible paths is:

p(set) =
∑
paths

δsetpathp[path] =

∫
Dqδ(set− q)p[q]. (13)

Here Lisi assumed that the action typically reverses sign under inversion of the pa-

rameters of integration limits:
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St′ =

∫ t′

dtL(q, q̇) = −
∫
t′
dtL(q, q̇) = −St′ . (14)

This implies that the probability for the system to pass through configuration q′ at
parameter value t′ is:

p(q′, t′) =
∫
Dqδ(q(t′)− q)p[q] =

(∫ q(t′)=q′

Dqpt
′
[q]

)(∫
q(t′)=q′

Dqpt′ [q]

)
= ψ(q′, t′)ψ†(q′, t′),

(15)

in which we can identify the quantum wave function:

ψ =

∫ q(t′)=q′

Dqpt
′
[q] =

1√
Z

∫ q(t′)=q′

Dqe−αS
t′
=

1√
Z

∫ q(t′)=q′

Dqei
St′
� . (16)

The quantum wave function ψ(q′, t) defined here is valid for paths t < t′ meeting at q′

while its complex conjugate ψ†(q′, t′) is the amplitude of paths with t > t′ leaving from q′.
Multiplied together they bring the probability amplitudes that gives the probability of the

system passing through q′(t′), as is seen in (15). However, just as Lisi points out [12], this

quantum wave function in quantum mechanics is subordinate to the partition function

formulation since it only works when t′ is a physical parameter and the system is t′

symmetric, providing a real partition function Z. Indeed, the postulate of an information

covariant setup on the laws of physics according to the previous section suggests that

physics is ruled by the general complex partition function (9):

Z =
∑
paths

ei
S[path]

� =

∫
Dqei

S[q]
� . (17)

How does this relate to the path integral formulation? The sum in the partition func-

tion (17) is a sum over paths. Let us take the common situation when the path is that

of a particle between two points. We can then conclude that each term is on the form

eiS[path]/� which is equivalent to postulate 3. Furthermore all paths are added, thus postu-

late 2 is also checked. Also, at least for the situation where p(q′, t′) = ψ(q′, t′)ψ†(q′, t′) the
sum adds up to the probability density, checking postulate 1 as well. Thus we may con-

clude that the information covariant approach is equivalent to the canonical path integral

formulation of quantum mechanics under the circumstances provided for it.

3.2 Quantum Properties

The path integral formulation is canonical for quantum mechanics and covers the wide

variety of special features inherent to quantum mechanics [6, 12]. Since the approach in

this paper is equivalent to the path integral formulation in most aspects, some properties

are be worth discussing. A pivotal component of quantum mechanics is the canonical

commutation relation which gives rise to the Heisenberg uncertainty principle [3, 6]. For
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Fig. 2 This illustration shows on the left hand side the uncertainty of path of a particle from
one point to another and on the right hand side that the particle takes all possible paths from
one point to another. These two interpretations are equivalent under the general interpretation
that information is incomplete. Uncertainty in path means in practice that it takes any possible
path until we observe it, a superposition of states is inevitable when information is incomplete.

example the famous commutation relation between position x and momentum p of a

particle is defined as:

[x, p] = i�. (18)

This can be obtained through the path integral formulation by assuming a random

walk of the particle from starting point to end point [6]. This works with this theory as

well under the same considerations since a random walk is equivalent to a walk with no

information about direction. In the path integral formulation it is also possible to show

that for a particle with classical non-relativistic action (where where m is mass and x is

position):

S =

∫
mẋ2

2
dt, (19)

that the partition function Z in the path integral formulation turns out to satisfy the

following equation [6]:

i�
∂Z

∂t
=
[
− 1

2
∇2 + V (x)

]
Z. (20)

This is the Schrödinger equation for Z = ψ and where V (x) is a potential [3]. It

is also possible to show the conservation of probability from the Schrödinger equation

(20) [3]. Here we can see that the traditional usage of operators on a Hilbert space in

quantum mechanics is a useful tool when information is incomplete. Another interesting

aspect of quantum mechanics is the superposition principle which states that a particle

occupies all possible quantum states simultaneously [3]. That the dynamics of a system

is fundamentally unknown or occupying all states simultaneously are both parts of the

same concept that information is incomplete regarding the system. The popular quantum

superposition thought experiment Schrödinger’s cat in which the alive/dead state of a

cat in a hazardous closed box is also evidently based on the lack of information regarding

the state of the cat. The superposition is intuitively equivalent to the lack of information.

The resolution of this problem in this theory is that the state of the cat is fundamentally
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unknown in our system of reference until we open the box and observe it, thus obtaining

information. The situation is also relational because even when information is obtained

the information is only inherent to our frame of reference which might not necessarily

be the same for any other frame of reference. For a complete verification that quantum

mechanics can be interpreted as a relational theory see [15]. The proof that quantum

mechanics can be interpreted as relational is constructed with Bra-kets in Hilbert spaces

and is directly related to a linearity inherent to quantum mechanics. Another interesting

topic worth mentioning here is the famous double slit experiment. The setup is as follows:

one has two slits and behind them a detection screen is setup. Some form of beam of

particles is then sent through the slits and a statistical pattern is shown on the detection

screen [3]. The result is an interference pattern equivalent to that described by the path

integral formulation of quantum mechanics. Such a pattern is not expected in classical

mechanics. The interpretation from the theory developed in this paper goes as follows:

due to the lack of information in the local information-based frame of reference a particle

takes any possible path, a similar interpretation was given by Lee [10]. This situation

is equivalent to the path integral formulation. The particle is, in our frame of reference,

wave-like until we observe it. This shows how the ubiquitous wave-particle dualism arises

under the lack of information. As far as observation goes, we will discuss that in section

3.5 below. Quantum entanglement is also a particular feature of quantum mechanics

that has spurred interpretational complications regarding quantum mechanics. Quantum

entanglement implies, among other things, that information can travel at a superluminal

speeds in most interpretations of quantum mechanics [4]. This violates the principle of

invariant speed of light inherent to special relativity [4]. However it has been solved

for relational quantum mechanics by postulating that physics is local, and then it can

be shown that no superluminal transfer of information occurs [11]. Since the theory

presented in this paper by design is relational the same conceptual solution holds. We will

discuss the connection between the theory developed in this paper and Rovelli’s version

of relational quantum mechanics in section 3.3 below. Since the theory developed in this

paper does not violate quantum mechanics it ought also to be completely compatible

with the Bohm-De Broglie pilot-wave approach [1] to quantum mechanics.

3.3 Connections to Relational Quantum Mechanics

Relational quantum mechanics is a theory of quantum mechanics based on the notion

that only systems in relation have meaning [15]. The observer and the partially observed

system makes out such a system typically. This addresses the problem of the third person

or Wigner’s friend as it is also called in which an observer observes another observer ob-

serving. The problem is solved by assuming that the two observers may ”simultaneously”

observe different states regarding the same object under observation. This is shown to be

a legal construction in quantum mechanics and is, as Rovelli points out, non-antagonistic

towards the most common formulations of quantum mechanics [15]. Furthermore, in his

seminal paper introducing relational quantum mechanics Rovelli postulates that quantum
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mechanics arises from the lack of information in classical physics. Given these facts one

might ask the following question: what is the similarity and what is the difference between

Rovelli’s approach and the theory developed in this paper? First of all our approach is

relational and based on a local frame of reference, which is similar to the concept used

by Rovelli. Second, this theory of quantum mechanics is based on information which is

similar to that used in Rovelli’s approach. There are two main differences. First of all this

theory is based on a few principles - different than those used by Rovelli - that sets the

foundation for a information covariant relational theory of physics. Second, it utilizes an

ensemble setup of Shannon information theory, developed by Lisi, which equips relational

quantum mechanics with an information-based path integral formulation.

3.4 Correspondence Principle

The correspondence from quantum mechanics, or any quantum field theory, to classical

physics is when � → 0 or more generally when S >> �. Since this theory is equivalent

to the canonical path integral approach to quantum mechanics under reasonable consid-

erations we may state tautologically that the correspondence to classical physics follows

the same limits as for regular quantum mechanics. The meaning of the correspondence is

also reasonable: If � descends to zero the partition function will ”collapse” and give only

one expected value for each quantity: The most expected one which by the Ehrenfest

theorem is the classical [3]. If the action is very large (S >> �) the situation is the

same; the larger the ratio between the classical action and Planck’s reduced constant is

the more likely the classical outcome is.

3.5 Observations and Wave Function Collapse

Observation is by definition obtaining information from a studied object [13, 12]. In order

to obtain information regarding a system one has to interact with it. This suggests that

observation of a system in practice is interacting with it, a view of observation that is

also held within the field of relational quantum mechanics [15]. In quantum mechanical

terms when an observation is performed then a wave function collapse occurs [3]. In the

theory developed in this paper the probability for a specific path (or state) becomes one.

Naturally the quantum expectation value for a quantity Q simply becomes the one for

the observed path A:

〈Q〉 =
∑
paths

p[path]Q[path] =

∫
Dqp[q]Q[q] =

1

Z

∫
DqQ[q]ei

S[q]
� = Q[A]. (21)

Observation of a system limits the possibilities of that system by obtaining information

about it. The kinematics of a system, as viewed from our frame of reference, is based on

the local information about it by the principle of information covariance.
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4. Notes on Relativistic Invariance

The theory developed in this paper is by definition implicitly relativistic. The relativistic

kinematics inherent to special relativity should hold in this theory under at least the

same conditions for which the canonical path integral formulation is relativistic. In the

situation of complete information (or S >> �) the laws of (special) relativity hold in the

classical sense. We shall not detail the relativistic concepts further in this paper, nor

shall we attempt at constructing a general relativistic, or a general information covariant

theory of gravitation for the information-based frames of reference. Instead, this is left

for future investigation. However one might presume that such an approach might share

certain properties with the relational approach to quantum gravity [15].

5. Entropy

A great deal of this paper has consisted of meshing together mathematical structures

derived by previous authors under a new set of principles. In contrast to this we shall

here provide an explicit calculation of the entropy associated with an information-based

frame of reference. We defined the entropy as follows (4):

H = −
∑
paths

p[path] log p[path] = −
∫
Dqp[q] log p[q]. (22)

The entropy (22) is based purely on information theory and has thus no obvious direct

connection to physical quantities. Let us for this sake allow a scaling constant between

the information entropy H and the thermodynamical entropy H:

H ≡ kH. (23)

It was shown that after maximizing the entropy the probability of a specific path

becomes (8):

p[path] =
1

Z
ei

S[path]
� . (24)

Despite the fact that the probability (24) is a complex entity and thus ill-defined in

traditional probability theories it might still have meaning when used to calculate the

entropy. Insert (24) in (22):

H = −k
∑
paths

p[path]

(
i
S[path]

�
− logZ

)
(25)

We also have the normalization (1):

1 =
∑
paths

p[path], (26)

and the expression for the expected action (3):
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〈S〉 =
∑
paths

p[path]S[path] (27)

Together (25), (26), (27) and the fact that the partition function Z is path-independent

brings the following general expression for the entropy of the system:

H = −k
(∑

paths

p[path]i
S[path]

�
−
∑
paths

p[path] logZ

)
= −k

(
i
〈S〉
�
− logZ

)
. (28)

Let us now further assume the special case when the following identity holds:

ψ = Z. (29)

This identity holds at least when ψ = ψ(q′, t′) and t′ is a symmetric physical param-

eter, just as described in section 3.1. Let us also assume that the structure of the wave

function is as follows:

ψ = Rei
Sc
� (30)

where R = |ψ| and Sc is the classical action [3]. This brings the following expression:

logψ = log |ψ|+ i
Sc

�
. (31)

Together (28) and (31) amounts to the following special case of the entropy:

H = −k
(
i
〈S〉
�
− i

Sc

�
− log |ψ|

)
. (32)

If we assume the equivalence between the classical action SC and the expected action

〈S〉, which is in accordance with the Ehrenfest theorem [3], then we get the following

expression for entropy:

H = k · log |ψ|. (33)

An expression similar to (33) was suggested as a basis for the holographic approach

to gravity [18] in a somewhat more speculative paper recently [13]. In that approach

the constant was suggested to be k = −2kB, where kB was Boltzmann’s constant. The

expression for entropy (33) is strikingly similar to Boltzmann’s formula for entropy in

thermodynamics:

H = kB · log(W ), (34)

where H is the entropy of an ideal gas for the number W of equiprobable microstates

[14]. The suggested entropy (33) and it’s more general version (28) are, up to a scalable

constant, measures of the lack of information in the information-based frame of reference.
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6. Discussion

This paper proposes a conceptual foundation for quantum mechanics based on informa-

tion brought on by the concept of information covariance. This approach supports the

notion that physics is largely based on information, a concept that among others Wheeler

strongly endorsed [19]. The suggested framework in this paper, building on Lisi’s universal

action reservoir and Rovelli’s relational quantum mechanics, gives an intuitive description

of physics; Physics in the quantum realm is a consequence of the incompleteness of infor-

mation in the local frame of reference. By setting up an information covariant foundation

in the local frame of reference by means of a maximization of Shannon entropy on the

possible paths of a system we managed to - by using Lisi’s theorem - establish a canonical

formulation of relational quantum mechanics. This implies that Lisi’s proposed universal

action reservoir is the inevitable result of the observer ignorance of a system. We also

explicitly calculated the entropy associated with any quantum mechanical system.

6.1 Open Problems

This theory primarily serves as a conceptual framework for quantum mechanics. How-

ever it also brings new concepts like for example the particular entropy (33) of a quantum

mechanical system. The role and the application of the new entropy is not yet fully inves-

tigated. It could, for example, perhaps be related to holographic theories of gravitation

[13, 18]. In addition to this the theory might give interesting effects in quantum statisti-

cal mechanics. Another open issue is how to construct a general relativistic approach to

this theory. Such a theory ought to arrive at some similar problems that many quantum

gravity theories have stumbled upon because this theory is merely a relational version of

the canonical path integral formulation of quantum mechanics.

6.2 Final Comments

When cast in a local frame of reference physics has only a limited amount of information

with which to function. When physics is fundamentally bound by a limited amount of

information probabilistic effects will occur. By maximizing entropy probabilistic effects

of quantum physics arise. The result of subjecting classical mechanics to incomplete

information is quantum mechanics.

Acknowledgments

This work would not have been possible without the inspiration and the valuable ideas

shared in the great works of G. Lisi, C. Rovelli and J-W. Lee. I would also like to thank

prof. Lee for a review of the paper and for giving valuable comments.



Electronic Journal of Theoretical Physics 8, No. 25 (2011) 93–108 107

References

[1] D. Bohm, Quantum Theory, New York: Prentice Hall. 1989 reprint, Dover (1951).

[2] N. Bohr, Quantum mechanics and physical reality, Nature 136 pp 65 (1935).

[3] B.H.Bransden, C.J.Joachain, Quantum Mechanics, Pearson Education Limited,
Second ed. (2000).

[4] A. Einstein, B.Podolsky, N.Rosen, Can Quantum-Mechanical Description of Physical
Reality be Considered Complete?, Phys. Rev. D. 47 pp 777-780 (1935).

[5] H. Everett, Relative State Formulation of Quantum Mechanics, Rev. Mod. Phys. vol
29, pp 454-462 (1957).

[6] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, New York,
McGraw-Hill (1965).

[7] R.B. Griffiths, Consistent histories and the Interpretation of Quantum Mechanics, J.
Stat. Phys. 36 (1984).

[8] E.T. Jaynes, Information Theory and Statistical Mechanics, Phys. Rev. 106: 620
(1957).

[9] E.T. Jaynes, Information Theory and Statistical Mechanics II, Phys. Rev. 108: 171
(1957).

[10] J-W. Lee, Quantum mechanics emerges from information theory applied to causal
horizons, Found. Phys. DOI 10.1007/s10701-010-9514-3 (2010) : arXiv:1005.2739v2.

[11] J-W. Lee, Physics from information, arXiv:1011.1657v1 [hep-th] (2010).

[12] G. Lisi, Quantum mechanics from a universal action reservoir,
arXiv:physics/0605068v1 [physics.pop-ph] (2006).

[13] J.D.Munkhammar, Is Holographic Entropy and Gravity the result of Quantum
Mechanics?, arXiv:1003.1262 (2010).

[14] F. Rief, Fundamentals of statistical and thermal physics, McGraw-Hill (1985).

[15] C. Rovelli, Relational Quantum Mechanics, arXiv:quant-ph/9609002 (1997).

[16] C.E. Shannon, The Mathematical Theory of Communication, Univ. Illinois Press,
(1949).

[17] J.B.Marion, S.T.Thornton, Classical Dynamics of Particles and Systems, Harcourt
(1995).

[18] E.Verlinde, On the Origin of Gravity and the Laws of Newton, arXiv:1001.0785v1
[hep-th] (2010).

[19] J.A.Wheeler, Information, physics, quantum: The search for links, W. Zurek (ed.)
Complexity, Entropy, and the physics of information, Addison-Wesley (1990).




