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Abstract

Let Γ be a compact tropical curve (or metric graph) of genus g. Using the theory of tropical
theta functions, Mikhalkin and Zharkov proved that there is a canonical effective representative
(called a break divisor) for each linear equivalence class of divisors of degree g on Γ . We present
a new combinatorial proof of the fact that there is a unique break divisor in each equivalence class,
establishing in the process an ‘integral’ version of this result which is of independent interest. As an
application, we provide a ‘geometric proof’ of (a dual version of) Kirchhoff’s celebrated matrix–
tree theorem. Indeed, we show that each weighted graph model G for Γ gives rise to a canonical
polyhedral decomposition of the g-dimensional real torus Picg(Γ ) into parallelotopes CT , one for
each spanning tree T of G, and the dual Kirchhoff theorem becomes the statement that the volume
of Picg(Γ ) is the sum of the volumes of the cells in the decomposition.

2010 Mathematics Subject Classification: 05A19, 05C25, 05E45, 14T05

1. Introduction

Let Γ be a compact tropical curve (or metric graph) of genus g. There is a
canonical continuous map π : Divg

+
(Γ ) → Picg(Γ ) taking an effective divisor

c© The Author(s) 2014. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2014.25 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:yangan@math.columbia.edu
mailto:mbaker@math.gatech.edu
mailto:greg@math.ucdavis.edu
mailto:farbod@math.cornell.edu
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1017/fms.2014.25


Y. An et al. 2

of degree g on Γ to its linear equivalence class. Using tropical theta functions,
Mikhalkin and Zharkov [MZ08] showed that there is a canonical continuous
section σ to the map π . In particular, every divisor class of degree g has a
canonical effective representative. (This is in sharp contrast to the situation for
compact Riemann surfaces, where the analogous map π does not admit such a
section.) Although not stated explicitly in the paper, one can deduce easily from
the results in [MZ08] that the image of σ is the set of break divisors in Divg

+
(Γ )

(combine Theorem 6.5, Corollary 6.6, and Lemma 8.3 from [MZ08]).
In this paper, we study break divisors in detail, and give some applications. One

application is a new combinatorial proof of the existence of the section σ which
does not make use of tropical theta functions; this proof has the advantage that it
yields an integral version of the Mikhalkin–Zharkov theorem. Another application
is a ‘geometrization’ of Kirchhoff’s celebrated matrix–tree theorem: we show
that, for each weighted graph model G for Γ , there is a canonical polyhedral
decomposition of the g-dimensional real torus Picg(Γ ) into parallelotopes CT ,
one for each spanning tree T of G; from this point of view, Kirchhoff’s theorem
(or rather its matroid dual) becomes the statement that the volume of Picg(Γ ) is
the sum of the volumes of the cells in the decomposition.

In order to define break divisors, it is convenient to fix a model G for Γ . For
each spanning tree T of G, letΣT (respectivelyΣ◦T ) be the image of the canonical
map

∏
e 6∈T ē → Divg

+
(Γ ) (respectively

∏
e 6∈T e◦ → Divg

+
(Γ )) sending (p1, . . . ,

pg) to (p1) + · · · + (pg). (Here, ē denotes a closed edge and e◦ denotes the
corresponding open edge with the endpoints removed.) We call Σ :=

⋃
T ΣT

the set of break divisors on Γ . It does not depend on the choice of the model G.
Our first main result is a new combinatorial proof of the following theorem of
Mikhalkin and Zharkov.

THEOREM 1.1. Every degree g divisor on Γ is linearly equivalent to a unique
break divisor.

Since Σ is compact, and a continuous bijection between compact
Hausdorff spaces is a homeomorphism, the theorem implies that π induces
a homeomorphism from Σ onto its image. The canonical section σ is the inverse
of this homeomorphism.

Our combinatorial proof of Theorem 1.1 is based on a study of orientable
divisors. If O is a (not necessarily acyclic) orientation of Γ , we define a
corresponding divisor DO of degree g − 1 by the formula

DO =
∑
p∈Γ

(indegO(p)− 1)(p).

https://doi.org/10.1017/fms.2014.25 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.25


Canonical representatives for divisor classes on tropical curves 3

We call divisors of this form orientable. We will show by a constructive procedure
that every divisor of degree g − 1 is linearly equivalent to an orientable divisor.
More precisely, fix q ∈ Γ . We say that an orientation is q-connected if there is a
directed path from q to p for every p ∈ Γ . A divisor of the form DO, with O a
q-connected orientation, is called q-orientable. We will prove the following.

THEOREM 1.2. Fix q ∈ Γ . Every divisor of degree g − 1 on Γ is linearly
equivalent to a unique q-orientable divisor.

There is a close connection between break divisors and q-orientable divisors.
Indeed, we will see that the map sending a degree g divisor D to the degree
g−1 divisor D− (q) induces a bijection between break divisors and q-orientable
divisors. Using this observation, one deduces in a completely formal way that
Theorems 1.1 and 1.2 are in fact equivalent.

One advantage of our approach to Theorems 1.1 and 1.2 is that it enables us
to prove an integral version of Theorem 1.1 for finite unweighted graphs G (or
equivalently, finite weighted graphs in which all edges have length 1). Indeed, if
we define an integral break divisor to be a break divisor supported on the vertices
of G, then the constructive procedure furnished by our proof of Theorem 1.2
shows the following.

THEOREM 1.3. Every degree g divisor supported on the vertices of G is linearly
equivalent to a unique integral break divisor.

As a consequence of Theorem 1.3, the set Picg(G) of divisors of degree g on
G modulo linear equivalence is canonically in bijection with the set of integral
break divisors. In particular, the number of integral break divisors is equal to the
number of spanning trees of G.

We now turn to a more detailed discussion of the connection between break
divisors, polyhedral decompositions of Picg(Γ ), and Kirchhoff’s matrix–tree
theorem. Let G be a weighted graph with associated metric graph Γ . Recall that
Σ :=

⋃
T ΣT , where the union is over all spanning trees T of G. If we define

CT = π(ΣT ), then clearly Picg(Γ ) =
⋃

T CT by Theorem 1.1. It turns out that
each cell CT is a parallelotope and that, if T 6= T ′, then the relative interiors of
CT and CT ′ are disjoint. Thus Picg(Γ ) has a polyhedral decomposition depending
only on the choice of the model G. It is not hard to check that, if G ′ is a refinement
of G, then the cell decomposition coming from G ′ is a refinement of the cell
decomposition coming from G.

EXAMPLE 1.4. Let Γ be the metric graph consisting of two vertices joined by
three edges of lengths 2, 1, and 2, respectively. Fix a model G for Γ in which all
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Figure 1. A fixed model for the metric graph Γ and the corresponding
decomposition of Pic2(Γ ).

edge lengths have length 1. In Figure 1, we have listed all spanning trees of G and
the corresponding cell decomposition of Pic2(Γ ). We have labeled the center of
each cell with its corresponding break divisor.

Since the canonical map from Σ = ∪ΣT to Picg(Γ ) is a homeomorphism and
CT is the projection to Picg(Γ ) of the cube ΣT , it follows easily that, if T, T ′ are
spanning trees of G, then the dimension of CT ∩ CT ′ ⊂ Picg(Γ ) is equal to the
dimension of ΣT ∩ΣT ′ inside

∏
e∈E ē. In particular, CT ∩ CT ′ is nonempty if and

only if
∏

e 6∈T ē ∩
∏

e 6∈T ′ ē is nonempty.
Moreover, recall from [MZ08] that Picg(Γ ) is canonically a principal

homogeneous space for the Picard group Pic0(Γ ) and that there is a canonical
isomorphism (the ‘tropical Abel–Jacobi map’) between Pic0(Γ ) and Jac(Γ ) =
H1(Γ,R)/H1(Γ,Z), which is a real torus of dimension g. The intersection form
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on H1(Γ,Z) gives rise to a canonical translation-invariant Riemannian metric
on Jac(Γ ), and via translation invariance Picg(Γ ) is equipped with a canonical
metric as well. In particular, the volume of Picg(Γ ) and of each of the cells CT is
well defined.

THEOREM 1.5. For each spanning tree T of G, the volume of the parallelotope
CT is w(T )/Vol(Jac(Γ )), where w(T ) :=

∏
e 6∈E(T ) `(e) is the product of the

lengths all edges of G not in T . Moreover, the volume of Jac(Γ ) is
√

det(CCt),
where C is any matrix whose rows form a Z-basis for H1(G,Z).

Since distinct cells CT intersect in positive codimension, we have
Vol(Jac(Γ )) =

∑
T Vol(CT ), and thus Theorem 1.5 implies the following

dual version of Kirchhoff’s matrix–tree theorem.

COROLLARY 1.6. For any weighted graph G,

det(CCt) =
∑

T

w(T ).

The usual version of Kirchhoff’s matrix–tree theorem is (a special case of) the
dual statement that, for any weighted graph G, we have

det(BBt) =
∑

T

w′(T ),

where w′(T ) :=
∏

e∈E(T ) `(e) is the product of the lengths all edges of G in T and
B is any matrix whose rows form a Z-basis for the cocycle lattice of G (which
is the intersection of C1(G,Z) with the orthogonal complement of H1(G,R) in
C1(G,R)).

Note that the dual version of Kirchhoff’s theorem, like the cycle lattice
H1(G,Z), is unchanged if we replace G by a different model G ′ for the same
metric graph Γ . This is not true of the usual version of Kirchhoff’s theorem, or of
the cocycle lattice.

2. Definitions and background

2.1. Metric graphs.

DEFINITION 2.1. A metric graph (or abstract tropical curve) Γ is a compact
connected metric space such that every point p ∈ Γ has a neighborhood isometric
to a star-shaped set.
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For the purposes of this paper, we define a weighted graph to be a finite
connected graph G with no loop edges, together with a collection of positive
weights Le (which we also call lengths), one for each edge.

A weighted graph G gives rise to a metric space Γ in the following way. To
each edge e, associate a line segment of length Le, and identify the ends of distinct
line segments if they correspond to the same vertex of G. The points of these line
segments are the points of Γ . We call G a model for Γ . The distance between two
points x and y in Γ is defined to be the length of the shortest path between them.

It is easy to check that every metric graph arises from this construction, though
the weighted graph model is not unique. Write G ∼ G ′ if the two weighted
graphs G,G ′ admit a common refinement, where we refine a weighted graph
by subdividing its edges in a manner that preserves the total length. This yields
an equivalence relation on the collection of weighted graphs, and two weighted
graphs are equivalent if and only if their associated metric graphs are isometric.
There is thus a bijective correspondence between metric graphs and equivalence
classes of weighted graphs (see [BF11] for details).

2.2. Reduced divisors. Let Div(Γ ) (the group of divisors on Γ ) be the free
abelian group on Γ . An element of Div(Γ ) is of the form D =

∑
p∈Γ ap(p),

where ap ∈ Z and all but finitely many of the ap are zero. The degree of D is by
definition deg(D) =

∑
p∈Γ ap. Let Div0(Γ ) be the subgroup of divisors of degree

zero on Γ . A divisor D =
∑

ap(p) is called effective if ap > 0 for all p, and is
called effective outside q if ap > 0 for all p 6= q. The support of D is by definition
Supp(D) = {p ∈ Γ | D(p) 6= 0}.

Let R(Γ ) be the group consisting of continuous piecewise affine functions with
integer slopes. This can be viewed as the space of tropical rational functions on Γ ;
see [GK08, MZ08]. Let ∆ be the Laplacian operator on Γ ; for f ∈ R(Γ ), we
have

∆( f ) =
∑
p∈Γ

σp( f )(p),

where −σp( f ) is the sum of the slopes of f in all tangent directions emanating
from p. (A tangent direction at a point p ∈ Γ is an equivalence class of paths
emanating from p, where two paths are equivalent if they share a common initial
segment.) Let Prin(Γ ) be the subgroup {∆( f ) | f ∈ R(Γ )} of Div0(Γ ) consisting
of principal divisors. We write D ∼ D′ if D − D′ belongs to Prin(Γ ), and say
that D and D′ are linearly equivalent. For D ∈ Div(Γ ), we define the complete
linear system |D| to be the set of all effective divisors E equivalent to D; that is,
|D| = {E ∈ Div(Γ ) | E > 0, E ∼ D}. Similarly, we define |D|q to be the set of
divisors equivalent to D which are effective outside q:

|D|q = {E ∈ Div(Γ ) | E(p) > 0,∀p 6= q, E ∼ D}.
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REMARK 2.2. Given an effective divisor D, it is customary to think of D(v) as
the number of ‘chips’ placed at the point v ∈ Γ . For a subset X of Γ consisting of
a finite union of closed intervals, one can construct a rational function f ∈ R(Γ )
which is 0 on X and ε outside an ε-neighborhood of X (for some sufficiently
small ε), with slope 1 in each outgoing direction from X . Replacing D with D +
∆( f ) has the effect of moving a chip a distance of ε along each outgoing direction
from X , and is often called ‘firing’ the subset X . Every element of R(Γ ) can
be written as a finite integer-affine combination of functions of this form, and
therefore one can describe linear equivalence of divisors on Γ in terms of chip
firing.

DEFINITION 2.3. Fix q ∈ Γ . A divisor D on Γ is called q-reduced if it satisfies
the following two conditions.

(R1) D is effective outside q .

(R2) For every closed connected set X ⊆ Γ not containing q , there exists a point
p ∈ ∂X such that D(p) < outdegX (p).

The following is the metric graph analog of [BS13, Lemma 4.11].

LEMMA 2.4 (Principle of least action). If D is q-reduced and f ∈ R(Γ ) is a
tropical rational function with D + ∆( f ) ∈ |D|q , then f has a global minimum
at q.

Proof. Consider the set of points where f achieves its (global) minimum value.
If this set is not {q}, then we may find a closed connected component X
not containing q . By Definition 2.3, there exists p ∈ ∂X such that D(p) <
outdegX (p). On the other hand, we have ∆( f )(p) < −outdegX (p), and thus
(D +∆( f ))(p) < 0, contradicting the assumption that D +∆( f ) ∈ |D|q .

The importance of reduced divisors is given by the following theorem (see, for
example, [HKN13, Luo11]).

THEOREM 2.5. Fix q ∈ Γ . There is a unique q-reduced divisor in each linear
equivalence class of divisors on Γ .

2.3. Tropical Picard group, Jacobian, and Abel–Jacobi map. The (degree 0)
Picard group of Γ is by definition the quotient

Pic0(Γ ) := Div0(Γ )/Prin(Γ ).
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More generally, for d > 0, let Divd(Γ ) be the subset of divisors of degree d on Γ ,
and define

Picd(Γ ) := Divd(Γ )/Prin(Γ ).

The set Picd(Γ ) is canonically a Pic0(Γ )-torsor.
The tropical Abel–Jacobi theory identifies (as topological groups) Pic0(Γ )with

the Jacobian torus
Jac(Γ ) = Ω∗(Γ )/H1(Γ,Z).

Here, Ω(Γ ) denotes the space of harmonic 1-forms on Γ . A harmonic 1-form
on Γ is obtained by assigning a real-valued slope to each edge in Γ in such a
way that the sum of the incoming slopes is zero at every vertex. The homology
group H1(Γ,Z) embeds as a lattice in Ω∗(Γ ) (the dual vector space of Ω(Γ ))
by integration of 1-forms along 1-cycles. There is a canonical identification of
Ω(Γ )∗ with the singular cohomology space H1(Γ,R), so we will often write

Jac(Γ ) = H1(Γ,R)/H1(Γ,Z).

The vector space H1(Γ,R) is equipped with a natural translation-invariant
Riemannian metric which induces a canonical metric, and in particular a
canonical volume form, on the quotient torus Jac(Γ ).

For each positive integer d , the corresponding Abel–Jacobi map

S(d) : Divd
+
(Γ )→ Picd(Γ )

sends a divisor D ∈ Divd
+
(Γ ) to the divisor class [D] ∈ Picd(Γ ).

We will denote S(g) by π .
Fixing a basepoint q ∈ Γ , the torus Picd(Γ ) is identified with the group Pic0(Γ )

and S(d) is identified with the map

S(d)q : Divd
+
(Γ )→ Pic0(Γ )

taking a divisor D ∈ Divd
+
(Γ ) to the divisor class [D − d(q)] ∈ Pic0(Γ ).

All maps S(d) are piecewise linear in the appropriate sense; fixing the basepoint
q , the real vector space Ω∗(Γ ) is identified with the universal cover of Picd(Γ ),
and the restriction of the Abel–Jacobi map to any contractible subset factors
through a piecewise-linear map to Ω∗(Γ ). Note that Divd

+
(Γ ) is endowed with

a natural integral affine structure induced from Γ (see, for example, [Ami13,
Section 2.1]).

3. Spanning trees and divisors

3.1. Break divisors, break pairs, fundamental domains, and orientations.
Recall from Section 1 that a break divisor on Γ is a divisor of the form
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Figure 2. Examples of break divisors.

Figure 3. Examples of break sets.

(p1) + · · · + (pg), where pi ∈ ēi and Γ \T =
⋃g

i=1 e◦i for some spanning tree
T of G. (Here, G is any fixed model of Γ ). See Figure 2.

Here is another way to characterize break divisors, following [MZ08]. If p is
a vertex of some model G for Γ , there is a natural bijection between tangent
directions at p and edges of G incident to p. For ε > 0 sufficiently small, there is
a well-defined point p+εη at distance ε from p in the direction η. Let p1, . . . , pg

be (not necessarily distinct) points on Γ , and for each i let ηi be a tangent direction
at pi . If Γ \{q1, . . . , qg} is a tree (that is, is connected and simply connected) for
ε > 0 sufficiently small, where qi = pi + εηi , we call the collection {(p1, η1),

. . . , (pg, ηg)} a break set for Γ . See Figure 3.

LEMMA 3.1. If {(p1, η1), . . . , (pg, ηg)} is a break set, then (p1)+ · · · + (pg) is a
break divisor. Conversely, if (p1) + · · · + (pg) is a break divisor, then there exist
(not necessarily unique) tangent directions ηi at pi such that {(p1, η1), . . . , (pg,

ηg)} is a break set.

Proof. Let {(p1, η1), . . . , (pg, ηg)} be a break set, and let ε > 0 be sufficiently
small that Γ \{q1, . . . , qg}, where qi = pi + εηi , is a tree and all the qi have
valence 2. Fix a model G for Γ such that pi ∈ V (G) and qi 6∈ V (G) for all i .
It follows that Γ \{q1, . . . , qg} contains a spanning tree T of G, and that pi ∈ ēi ,
where Γ \T =

⋃g
i=1 e◦i .
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Figure 4. Examples of fundamental domains.

Conversely, assume that G is a model of Γ and that, for some spanning tree T of
G, we have Γ \T =

⋃g
i=1 e◦i and that we are given a break divisor (p1)+· · ·+(pg),

where pi ∈ ēi . If pi ∈ e◦i , we may choose ηi to be either of the two tangent
directions at pi . If pi ∈ ∂ei = ēi\e◦i , then we choose the tangent direction directed
toward e◦i .

Because of the lemma, we will sometimes denote a break set by (D, η), where
D = (p1)+· · ·+(pg) is a break divisor and η = {η1, . . . , ηg} is the corresponding
set of break directions.

REMARK 3.2. If we think of a metric graph as made of wires, we can think
of a break set as a rule for snipping the wires so that the resulting network is
connected and simply connected. More formally, define a fundamental domain
for Γ to be a pair (F, ψ) consisting of a (not necessarily compact) connected
and simply connected topological space F and a continuous bijection ψ : F →
Γ . We identify two fundamental domains (F, ψ) and (F ′, ψ ′) if there is a
homeomorphism φ : F → F ′ such that ψ = ψ ′ ◦ φ. Then one can show that
there is a natural bijection between fundamental domains for Γ and break sets.
(This is the point of view taken in [MZ08, Section 4.5].) See Figure 4.

An orientation O of a metric graph Γ is an equivalence class of pairs (G, O),
where G is a model for Γ and O is an orientation of the edges of G, where the
equivalence relation is generated by the operation of replacing G by a refinement
G ′ and letting O ′ be the orientation induced by O .

For q ∈ Γ , we say that an orientation O is q-connected if there is a directed
path from q to p for every p ∈ Γ .

Given q ∈ Γ , there is a canonical way to associate a q-connected orientation O
to any break set {(p1, η1), . . . , (pg, ηg)}, as follows. Choose ε > 0 small enough
so that, setting qi = pi + εηi , we have (i) Γ \{q1, . . . , qg} is a tree, (ii) all the
qi have valence 2, and (iii) q 6= qi for any i . We get an associated q-connected
orientation Oε by orienting all edges away from q in this tree, and letting ε→ 0
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gives the desired q-connected orientation O. (In terms of the corresponding
fundamental domain (F, ψ) described in Remark 3.2, O corresponds to orienting
all paths away from ψ−1(q) in the connected and simply connected space F .)

Conversely, there is a canonical way to associate a break divisor D(O,q) to a
q-connected orientation O:

D(O,q) := (q)+ DO = (q)+
∑
p∈Γ

(indegO(p)− 1)(p).

LEMMA 3.3. Fix q ∈ Γ . The map φq : Divg(Γ ) → Divg−1(Γ ) sending D to
D − (q) induces a bijection between break divisors and q-orientable divisors.

Proof. Let D = (p1)+ · · · + (pg) be a break divisor, and consider an associated
break set {(p1, η1), . . . , (pg, ηg)} as in Lemma 3.1. Let O be the associated q-
connected orientation as above.

Let p ∈ Γ . If p 6= q then indegO(p) = 1+ s(p), where s(p) is the number of
tangent directions ηi with pi = p, and if p = q then indegO(p) = s(p). Thus, for
every p ∈ Γ , the coefficient of (p) in DO + (q) is equal to s(p), which is equal
to D(p) by construction. This proves that φq induces a map from break divisors
to q-orientable divisors.

The map φq is clearly injective. To see that it is surjective, suppose that DO
is a q-orientable divisor corresponding to a q-connected orientation O. We will
equip the effective divisor DO + (q) with a set of tangent directions η so that
(DO + (q), η) is a break set. By breaking an edge e adjacent to p, we will mean
adding the tangent direction at p which corresponds to the edge e to the set η.
If indegO(q) > 1, break all the incoming edges at q . For each p 6= q with
indegO(p) > 2, break all but one of the incoming edges at p. (The unbroken edge
can be chosen arbitrarily.) Then one easily checks that |η| = g and (DO + (q), η)
is a break set.

Note that the set of break directions is not uniquely determined by O, so we do
not get a bijection between q-connected orientations and break sets (see Figure 5).

As a formal consequence of Lemma 3.3, we have the following.

COROLLARY 3.4. Theorems 1.1 and 1.2 are equivalent.

3.2. The canonical cell decomposition of Picg(Γ ). Let G be a model for Γ .
Given any spanning tree T of G, we let Σo

T ⊂ Σ be the product of the interiors
of all edges of Γ not in T :

Σo
T :=

∏
e 6∈E(T )

eo.
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Figure 5. Two different break sets, their associated fundamental domains, and
their identical associated q-connected orientation.

An element ofΣo
T determines the spanning tree T of G uniquely. Therefore for

distinct spanning trees T and T ′ of G we have Σo
T ∩ Σ

o
T ′ = ∅. Since {eo

}e 6∈E(T )

consists of mutually disjoint segments, no two elements of Σo
T are identified

under the action of the symmetric group, and we may consider Σo
T as an (open)

parallelotope inside Divg
+
(Γ ) = Γ (g).

We let Σo
⊂ Divg

+
(Γ ) be the (disjoint) union of the sets Σo

T for all spanning
trees T of G:

Σo
:=

⋃
T

Σo
T .

Note that Σo, unlike Σ , depends on the choice of the model G.
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Divisors in Σo have the following useful property.

LEMMA 3.5. For any D ∈ Σo, we have |D| = {D}.

Proof. The proof is an application of the least action principle (Lemma 2.4). Let
D ∈ Σo

T for some spanning tree T of the model G. Pick p, q ∈ Γ . Then one sees
easily that D is both p-reduced and q-reduced. If E = D + ∆( f ) ∈ |D| then
by the least action principle we get f (p) 6 f (q) and f (q) 6 f (p). Thus f is
constant, and E = D.

Recall that the map π : Divg
+
(Γ ) → Picg(Γ ) is piecewise linear. It follows

that the open cell Co
T := π(Σ

o
T ) is also an (open) parallelotope inside the torus

Picg(Γ ). By Lemma 3.5, the restriction of π to each Σo
T is injective with image

Co
T . Moreover, for distinct spanning trees T and T ′ of G, we have Co

T ∩ Co
T ′ = ∅

because Σo
T ∩ Σ

o
T ′ = ∅. It follows that the restriction of the map π to Σo

⊂

Divg
+
(Γ ) is injective.

Let Co
⊂ Picg(Γ ) be the (disjoint) union of the sets Co

T for all spanning trees
T of G. Let C := Co =

⋃
T CT and CT := Co

T denote the topological closures of
Co and Co

T , respectively, inside Picg(Γ ). By Theorem 1.1 (stated in Section 1 and
proved in Section 4 below), we have C = Picg(Γ ). Since Σ = ∪ΣT and Picg(Γ )

are compact Hausdorff spaces, it also follows from Theorem 1.1 that the canonical
map from Σ to Picg(Γ ) is a homeomorphism.

4. Orientations and divisors

4.1. Finite graphs. Assume that G is a finite connected multigraph. As usual,
we denote the set of vertices by V (G) and the set of edges by E(G). In
what follows, S will always denote a subset of V (G). We denote by G[S] the
induced subgraph of G with vertex set S. Let χ(S) denote the topological Euler
characteristic of G[S], which is equal to the number of vertices of G[S]minus the
number of edges of G[S]. (If G[S] is connected, then χ(S) = 1 − g(S), where
g(S) is the genus, or first Betti number, of G[S].)

Given a divisor D ∈ Div(G), we define

χ(S, D) = deg(D|S)+ χ(S),

where D|S denotes the restriction of D to G[S]; that is, if D =
∑

p∈V (G) ap(p),
then D|S =

∑
p∈S ap(p). For S = V (G), we write χ(G, D) instead of

χ(V (G), D).
If S and T are disjoint subsets of V (G), we define e(S, T ) to be the number of

edges of G with one end in S and the other end in T . We define e(S) to be the
number of edges both of whose endpoints belong to S.
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A submodular function is function f from the collection of subsets of V (G) to
R such that, for any subsets S, T of V (G), we have

f (S)+ f (T ) > f (S ∪ T )+ f (S ∩ T ). (4.1)

If equality holds, then f is called modular. The following lemma is an immediate
consequence of Equation (4.1).

LEMMA 4.2. Subsets where a submodular function takes its minimum value are
closed under intersection and union.

LEMMA 4.3. For any divisor D, the function χ(·, D) is submodular.

Proof. By definition, we have χ(S, D) = deg(D|S) + |S| − e(S). One easily
checks that f1(S) = deg(D|S) and f2(S) = |S| are modular and that f3(S) =
−e(S) is submodular, and the result follows.

More precisely, we have the following quantitative refinement of
submodularity.

LEMMA 4.4. For any subsets S, T of V (G), we have

χ(S, D)+ χ(T, D) = χ(S ∪ T, D)+ χ(S ∩ T, D)+ e(S\T, T \S). (4.5)

In particular, if S ∩ T = ∅, then

χ(S ∪ T, D) = χ(S, D)+ χ(T, D)− e(S, T ). (4.6)

Proof. Since we have χ(S, D) = deg(D|S) + |S| − e(S), and both deg(D|S)
and |S| are modular functions, it suffices to prove that e(S) + e(T ) + e(S\T,
T \S) = e(S ∩ T ) + e(S ∪ T ). This is a well-known stronger version of the
submodularity of e(·).

For a given divisor D ∈ Div(G), we define

χD = min{χ(S, D) : ∅ 6= S ( V (G)},
S(D) = {∅ 6= S ( V (G) : χ(S, D) = χD}.

COROLLARY 4.7. Let D ∈ Div(G) be a divisor such that χ(G, D) > 0 and
χD < 0. Then S(D) has a unique minimal element (with respect to inclusion).

Proof. Since χ(S, D) is a submodular function, by Lemma 4.2 there is a unique
minimal subset S for which χ(·, D) takes on its minimum value, namely the
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intersection of all such subsets. Since χ(∅, D) = 0 and χ(G, D) > 0, while
χD < 0, we conclude that the unique minimal element is a proper nonempty
subset of V (G), and hence lies in S(D).

Recall from Section 1 that a divisor D ∈ Div(G) is called orientable if there
exists an orientation O on G such that at every point p ∈ V (G) we have D(p) =
indegO(p)− 1. It is easy to see that if D is orientable then deg(D) = g−1, which
is equivalent to saying that χ(G, D) = 0. The following result strengthens this
observation. Although we discovered this result independently, Backman and the
anonymous referee both informed us that Theorem 4.8 is in fact a reformulation of
a classical result of Hakimi [Hak65] (see also [Sch03, Theorem 61.1]). Backman
shows in [Bac13, Theorem 7.3] that Theorem 4.8 is equivalent to the well-known
max-flow min-cut theorem.

THEOREM 4.8 (Hakimi). A divisor D ∈ Div(G) is orientable if and only
if χ(G, D) = 0 and χ(S, D) > 0 for all nonempty subsets S of V (G).
(Equivalently, D is orientable if and only if deg(D) = g − 1 and χD > 0.)

REMARK 4.9. It follows from Lemma 4.4 that one only needs to check the
condition χ(S, D) > 0 for subsets S whose induced subgraph is connected: if
the condition is satisfied for all connected components of a set, it is automatically
satisfied for the whole set by Equation (4.6).

THEOREM 4.10. Every divisor D ∈ Divg−1(G) is linearly equivalent to some
orientable divisor.

Proof. If D0 = D is not orientable, then Theorem 4.8 guarantees that there exists
a subset ∅ 6= S ( V (G) with χ(S, D) < 0. It follows from Corollary 4.7 that
there is a unique minimal element (with respect to inclusion) in S(D0) = {∅ 6=

S ( V (G) : χ(S, D0) is minimal}. In other words, there is a unique nonempty set
S0 ( V (G) such that χ(S0, D0) is minimal and which is contained in any other
vertex set S with this property.

Let D1 be the divisor obtained from D0 by simultaneously firing all vertices
in S̄0.

CLAIM. For all ∅ 6= S ( V (G), we have χ(S, D1) > χ(S0, D0). Moreover, if
equality holds, then S ) S0.

To prove this claim, we consider the following cases.

(1) S ( S0. In this case, χ(S, D0) > χ(S0, D0) (by the minimality of S0) and
χ(S, D1) > χ(S, D0) (by the construction of D1).
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(2) S = S0. In this case, it follows from definitions that χ(S, D1) = χ(S0, D0)+

e(S0, S̄0) > χ(S0, D0).

(3) S ⊆ S̄0. In this case, it follows from definitions and Equation (4.6) that

χ(S, D1) = χ(S, D0)− e(S, S0) = χ(S ∪ S0, D0)− χ(S0, D0).

Therefore χ(S, D1) > 0 > χ(S0, D0).

(4) S ∩ S0 6= ∅ and S ∩ S̄0 6= ∅. In this case, let A = S ∩ S0 and B = S ∩ S̄0.
Then

χ(B, D1) = χ(B, D0)− e(B, S0) = χ(B ∪ S0, D0)− χ(S0, D0) > 0,

and we have

χ(S, D1) = χ(A ∪ B, D1)

= χ(A, D1)+ χ(B, D1)− e(A, B)
> χ(A, D1)− e(A, B)
= χ(A, D0)+ e(S̄0, A)− e(A, B)
> χ(A, D0)

> χ(S0, D0).

By the minimality of S0, equality can happen only if A = S0, in which case
S = S0 ∪ B ) S0.

Let S1 be the minimal element in S(D1). It follows that either (i) χ(S1, D1) >

χ(S0, D0) or (ii) χ(S1, D1) = χ(S0, D0) and S0 ( S1. If we repeat this procedure,
we are therefore guaranteed to stop, at which point we will have an orientable
divisor.

There can be many different orientations associated to a given orientable
divisor. Also, in each equivalence class of divisors of degree g − 1 there can be
many different orientable divisors. Our next goal is to show that one can obtain a
uniqueness result by fixing a vertex q .

Recall from Section 1 that an orientation of G is called q-connected if there
exists an oriented path from q to each vertex p of G. Also, a divisor D ∈ Div(G)
is called q-orientable if there exists a q-connected orientation O on G such that
at every point p ∈ V (G) we have D(p) = indegO(p)− 1.

PROPOSITION 4.11. An orientable divisor D ∈ Div(G) is q-orientable if and
only if χ(S, D) > 0 for all nonempty subsets S ⊆ V (G)\{q}.
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Proof. If D is q-orientable, it is in particular orientable, and it follows from
Theorem 4.8 that χ(S, D) > 0 for all ∅ 6= S ⊆ V (G)\{q}. If χ(S, D) = 0 for
some subset S, then all edges connecting S to S̄ will be directed away from S in
any associated orientation, and the orientation will not be q-connected.

Now suppose that D is an orientable divisor and that χ(S, D) > 0 for all ∅ 6=
S ⊆ V (G)\{q}. We will show that for any orientation associated to D there is
a directed path from q to any other vertex. Let p = p1 be an arbitrary vertex in
V (G)\{q}. Since χ({p1}, D) > 0, there exists an edge oriented toward p1. Let p2

be the other end of this oriented edge. If p2 = q , we have found a directed path
from q to p. Otherwise, {p1, p2} ⊆ V (G)\{q}, and we have χ({p1, p2}, D) > 0.
Continuing this procedure will yield a directed path from q to p.

Fix a vertex q . For a divisor D ∈ Div(G), we define

Sq(D) = {∅ 6= S ⊆ V (G)\{q} : χ(S, D) = χD}.

LEMMA 4.12. Fix a vertex q, and let E ∈ Div(G) be an orientable divisor, but
not q-orientable. If S1, S2 ∈ Sq(E), then S1 ∪ S2 ∈ Sq(E). In particular, Sq(E)
has a unique maximal element (with respect to inclusion).

Proof. When restricted to subsets of V (G)\{q}, χ(·, D) is still a submodular
function. By Lemma 4.2, there is a unique maximal subset of V (G)\{q} for which
χ(S, D) = χD, namely the union of all such subsets. Since E is orientable but not
q-orientable, it follows from Theorem 4.8 and Proposition 4.11 that the maximal
set is nonempty, and hence lies in Sq(E).

THEOREM 4.13. Fix a vertex q. Every divisor D ∈ Divg−1(G) is equivalent to a
unique q-orientable divisor.

Proof. Existence. By Theorem 4.10, we know that D ∼ D1 for some orientable
divisor D1. If D1 is not already q-orientable, let S1 be the unique maximal element
of Sq(D1), which exists by Lemma 4.12. In any orientation associated to D1,
all edges connecting S1 to its complement are directed from S1 to S̄1. Also, it
follows from the maximality of S1 that there is a directed path from q to any
vertex p ∈ S̄1. We now replace D1 with the divisor D2 obtained by firing all
vertices in the subset S̄1. This reverses the orientation of edges connecting S̄1 and
S1, directing them toward S1, and leaves all other orientations unchanged. If D2 is
not already q-orientable, there exists a maximal element S2 of Sq(D2). Since there
is a directed path from q to any vertex p ∈ S̄1, as well as at least one vertex in S1,
it follows that S2 is a proper subset of S1. We now fire the subset S̄2 and proceed
as before. This procedure must eventually terminate in a q-orientable divisor.
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Uniqueness. Let D1 and D2 be distinct orientable divisors, and write D1 =

D2+∆( f ). Consider the (nonempty) set X ( V (G)where f achieves its (global)
minimum value. We have

0 6 χ(X, D1) 6 χ(X, D2)− e(X, X̄) = −χ(X̄ , D2) 6 0.

It follows that χ(X, D1) = χ(X̄ , D2) = 0. This means that in any orientation
associated to D1 all edges are directed away from X , and in any orientation
associated to D2 all edges are toward X . Thus there cannot be a vertex q for
which D1 and D2 are both q-orientable.

REMARK 4.14. It follows from the proofs of Theorems 4.10 and 4.13 that
we have the following algorithm for finding the unique q-orientable divisor
equivalent to a given divisor D. Our algorithm for finding the unique q-orientable
divisor equivalent to a given divisor D takes exponential time. Since this paper
was first posted on the arXiv, Backman [Bac13] has given a polynomial-time
algorithm for this problem, as well as for finding an associated orientation.

(1) While there exists a subset ∅ 6= S ( V (G)with χ(S, D) < 0, find the unique
minimal element A of S(D), and replace D with the divisor obtained by firing
all vertices of Ā.

(2) While there exists a subset ∅ 6= S ⊆ V (G)\{q} with χ(S, D) = 0, find the
unique maximal element B of Sq(D), and replace D with the divisor obtained
from firing all vertices of B̄.

It seems difficult to deduce effective algorithms for these problems from the work
of Mikhalkin and Zharkov.

4.2. Metric graphs. Fix a metric graph Γ and a divisor D ∈ Div(Γ ). A
model for (Γ, D) is a (weighted graph) model for Γ whose vertex set contains
the support of D. If a point q ∈ Γ is also distinguished, we further assume that
the vertex set of G contains q .

We call a (weighted graph) model G for Γ a semimodel for (Γ, D) if Γ \V (G)
consists of a finite union of open intervals ∪r

i=1e◦i , and for each i the set e◦i ∩
Supp(D) is either empty or consists of a single point p with D(p) = 1. In other
words, a semimodel is allowed to ‘miss’ some points p ∈ Supp(D)where D(p)=
1 and p is the only point of Supp(D) lying in the corresponding open edge. Again,
if a point q ∈ Γ is also distinguished, we further assume that q ∈ V (G).

It turns out that semimodels are more convenient to work with than models
when we want to show that certain algorithms for metric graphs terminate. We will
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obtain results similar to those in Section 4.1 by reducing the metric graph case to
the case of finite graphs via semimodels.

Let G = (V, E) be an arbitrary semimodel for (Γ, D), and let G D be the finite
graph obtained from G by removing all open edges which contain a point of the
support of D. Note that V (G D) = V (G) and E(G D) ⊂ E(G). The following
lemma will help us compare the set of orientable divisors on Γ and on G D.

LEMMA 4.15. Let D ∈ Divg−1(Γ ), and let G be a semimodel for (Γ, D). Let
DG be the restriction of D to G; that is, if D =

∑
p∈Γ ap(p), then DG =∑

p∈V (G) ap(p). Then, for any q ∈ Γ , the divisor D is (q-)orientable on Γ if
and only if DG is (q-)orientable on G D.

Proof. Suppose that D is given by the q-connected orientation O on Γ . Then
O naturally induces a q-connected orientation on the semimodel G. Strictly
speaking, the induced orientation is not an orientation for the semimodel G but
for its refinement whose vertex set consists of V (G) and the support of D. On
each edge e ∈ E(G)\E(G D), the orientation O on Γ must look like two arrows
pointing toward a single point in the support of D. Hence, after removing these
edges, O is still a q-connected orientation on G D, and the resulting divisor is DG .

Conversely, given a q-connected orientation on G D for DG , we obtain an
orientation for D on Γ by directing every edge e ∈ E(G)\E(G D) toward the
corresponding point in the support of D.

By Lemma 4.15, in order to show that D ∈ Div(Γ ) is q-orientable, it suffices
to show that there is a semimodel G for D such that DG is q-orientable on G D.
This helps us reduce our problems to the case of finite graphs.

REMARK 4.16. In the following, since we are working with different finite
graphs, we use the notation χG(S, D), S(G, D), and Sq(G, D) (instead of
χ(S, D), S(D), and Sq(D)) to identify the underlying graph we are working with
at each step.

THEOREM 4.17. Every divisor D ∈ Divg−1(Γ ) is equivalent to an orientable
divisor on Γ . More precisely, let G be a model for (Γ, D). Then D is equivalent
to a divisor D′ on Γ such that G is a semimodel for D′ and D′G is orientable
on G D′ .

Proof. Fix a model G for (Γ, D). Let D0
= D, let k > 0, and assume that G

is a semimodel for Dk . If Dk is not orientable, we inductively define a divisor
Dk+1

∈ Divg−1(Γ ) equivalent to D as follows. By Lemma 4.15, Corollary 4.7,

https://doi.org/10.1017/fms.2014.25 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.25


Y. An et al. 20

and Theorem 4.8, there is a unique minimal element Sk ∈ S(G Dk , Dk). Define `
to be the minimal distance between Γ [Sk] (the closed subset of Γ corresponding
to the induced subgraph G[Sk]) and Tk := (V (G) ∪ Supp(Dk))\Γ [Sk]. Let C be
the cut consisting of all the closed intervals connecting Sk to points of Tk , and
fire by moving each chip on an interval in C a distance ` toward Sk . We call the
resulting divisor Dk+1.

Clearly, G is again a semimodel for Dk+1. The claim in the proof of
Theorem 4.10 also holds here (with a similar proof); that is, for each k > 0, either
(i) χG Dk+1 (Sk+1, Dk+1) > χG Dk (Sk, Dk) or (ii) χG Dk+1 (Sk+1, Dk+1) = χG Dk (Sk, Dk)

and Sk ( Sk+1. Therefore this procedure is guaranteed to stop, at which point we
will have an orientable divisor.

THEOREM 4.18. Every divisor D ∈ Divg−1(Γ ) is equivalent to a unique
q-orientable divisor.

Proof. Existence. By Theorem 4.17, we may assume that D = D0 is orientable.
Fix a model G for (Γ, D), and apply the following algorithm.

For k > 0, assume that G is a semimodel for Dk . If Dk is not already
q-orientable, then by Proposition 4.11 and Lemma 4.12 there is a unique
maximal element Sk ∈ Sq(G Dk , Dk). Define ` and C exactly as in the proof of
Theorem 4.17, and fire by moving each chip on an interval in C a distance `
toward Sk . Clearly, G is also a semimodel for the resulting divisor Dk+1.

In obtaining Dk+1 from Dk , at least one chip must arrive at some vertex v ∈ Sk ,
so there is a directed path from q to v in the corresponding orientation Ok+1.
Thus Sk+1 is a proper subset of Sk , and the algorithm will terminate to give a
q-orientable divisor.

Uniqueness. This is identical to the proof of uniqueness in Theorem 4.13,
starting with distinct orientable divisors D1 and D2 and letting G be a model for
Γ such that V (G) contains Supp(D1)∪Supp(D2). (Note that if D1 = D2+∆( f )
then f is linear on every edge of G because ∆( f ) = D1 − D2 is supported
on V (G).)

4.3. Break divisors and universally reduced divisors. Break divisors, like
q-reduced divisors, provide a way for us to pick out a distinguished representative
from each linear equivalence class of divisors. In this section, we link the two
notions by characterizing break divisors as limits of degree g effective divisors
which are q-reduced for all q ∈ Γ .

LEMMA 4.19. An effective divisor D on Γ is q-reduced for every q ∈ Γ if and
only if |D| = {D}.
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Proof. If D is q-reduced for every q ∈ Γ , it follows from the least action principle
that |D| = {D}, exactly as in the proof of Lemma 3.5. Conversely, if D is effective,
then for every q the unique q-reduced divisor Dq equivalent to D is also effective,
so if |D| = {D} we must have Dq = D.

We define a divisor on Γ to be universally reduced if it has degree g, is
effective, and is q-reduced for every q ∈ Γ .

THEOREM 4.20. The set Σ of break divisors on Γ is equal to the closure in
Divg

+
(Γ ) of the set of universally reduced divisors.

Proof. Let Ω be the set of universally reduced divisors. By Lemma 3.5, Σ
contains a dense subsetΣ◦ belonging toΩ . SinceΣ is compact, we haveΣ ⊆ Ω̄ .
To prove the reverse inclusion, note that, if D ∈ Ω , then by Lemma 4.19 we have
|D| = {D}. Since D is equivalent to a break divisor by Theorem 1.1, D must
itself be a break divisor. Thus Ω ⊆ Σ , and by taking closures we obtain Ω̄ ⊆ Σ
as desired.

4.4. Integral break divisors on finite graphs. Suppose that G is a finite
(unweighted) graph and that Γ is the associated metric graph in which all edges of
G are assigned length 1. We let Σ(G) := Σ ∩Divg

+
(G) denote the set of integral

break divisors, that is, those break divisors which are supported on vertices of G.
Inside Picd(Γ ), for each integer d , we have the finite subset Picd(G) consisting
of linear equivalence classes of divisors of degree d supported on the vertices of
G. For d = 0, the set Pic0(G) is a group whose cardinality is equal to the number
of spanning trees in G, and each Picd(G) is a torsor for Pic0(G).

THEOREM 4.21. The canonical map π : Divg
+
(Γ )→ Picg(Γ ) induces a bijection

from Σ(G) to Picg(G). In particular, the number of integral break divisors is
equal to the number of spanning trees of G.

Proof. Choose q ∈ V (G). Then the result follows from Theorem 4.13, which
says that every element of Divg−1(G) is linearly equivalent to an integral divisor
of the form DO with O a q-connected orientation, together with the equivalence
of Theorems 1.1 and 1.2.

REMARK 4.22. One can interpret Theorem 4.21 as follows: although the set of
spanning trees of G is not canonically a torsor for Pic0(G), the set Σ(G) of
integral break divisors is. Fixing a vertex q of G gives a bijection between Pic0(G)
and Picg(G), and for a generic choice of λ ∈ Jac(Γ ) there will be exactly one
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element of Picg(G) + λ in each open cell C◦T . Thus the pair (q, λ) provides a
bijection between elements of Pic0(G) and spanning trees.

5. The dual matrix–tree theorem

5.1. Weights of spanning trees and volumes. Let Γ be a metric graph, and
let the weighted graph G be a model for Γ . Given any spanning tree T of G, we
define the weight of T to be the product of the lengths of all edges of G not in T :

w(T ) :=
∏

e 6∈E(T )

`(e).

We also define
w(G) :=

∑
T

w(T ), (5.1)

the sum being over all spanning trees of G. It is easy to check that w(G) is
invariant under refinement, and therefore it depends only on the underlying metric
graph Γ . We will therefore also denote w(G) by w(Γ ).

Let Λ be a lattice, that is, a free Z-module of some rank g equipped with a
symmetric integer-valued bilinear form 〈·, ·〉whose corresponding quadratic form
is positive definite on ΛR := Λ ⊗ R. We denote by Vol(Λ) the volume of any
fundamental domain for Λ, or, equivalently, the volume of the real torus ΛR/Λ.
If M is any Gram matrix for Λ, that is, the matrix (〈λi , λ j 〉), where λ1, . . . , λg is
a basis for Λ, then it is well known that Vol(Λ) =

√
det(M).

Our goal in this section is to give a geometric proof, via the decomposition of
Picg(Γ ) into the cells CT , of the following ‘dual version’ of Kirchhoff’s matrix–
tree theorem.

THEOREM 5.2 (Matrix–tree theorem, dual version). The volume of the real torus
Jac(Γ ) is Vol(Jac(Γ )) =

√
w(Γ ). Equivalently, if M is any Gram matrix for the

cycle lattice H1(Γ,Z), then det(M) = w(Γ ).

One can explicitly calculate a Gram matrix for H1(Γ,Z) as follows. Fix an
arbitrary orientation of the model G and a spanning tree T of G. For each e 6∈ T ,
the fundamental cycle c(T, e) is the unique element of H1(G,Z) contained in
T ∪ e. It is well known that the set

C(T ) := {c(T, e) : e ∈ E(G)\E(T )}

of fundamental cycles associated to T forms a basis for H1(Γ,Z).
Let m = |E(G)|, and let g = |E(G)| − |V (G)| + 1 be the rank of

H1(Γ,Z). Let CT denote the g × m matrix whose rows correspond to basis
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elements c(T, e) ∈ C(T ). For this, first fix a labeling {e1, e2, . . . , em} of E(G).
The (i, j)-entry of CT is

+
√
`(e j) if +e j appears in c(T, ei);

−
√
`(e j) if −e j appears in c(T, ei);

0 otherwise.

Then CTC
t
T is a Gram matrix for H1(Γ,Z), and consequently for any spanning

tree T we have
Vol(Jac(Γ )) =

√
det(CTC

t
T ). (5.3)

Alternatively, let D denote the m × m diagonal matrix whose (i, i)-entry is
√
`(ei). Then CT = C′TD, where C′T is the matrix whose (i, j)-entry is

+1 if +e j appears in c(T, ei);

−1 if −e j appears in c(T, ei);

0 otherwise.

Fix an identification of Jac(Γ ) with Picg(Γ ), and let DT be the cell in Jac(Γ )
corresponding to the cell CT in Picg(Γ ). In order to prove Theorem 5.2, it suffices
to prove the following result.

PROPOSITION 5.4. Vol(DT ) = w(T )/
√

det(CTC
t
T ) = w(T )/Vol(Jac(Γ )).

Proof. Let ẽ denote the orthogonal projection of an oriented edge e in C1(Γ,R)
onto H1(Γ,R). Then the volume of DT is equal to the

√
det(LTL

t
T ), where LT is

the g × m matrix whose rows correspond to the basis elements ẽ for e 6∈ T .
Let DT denote the g×g diagonal matrix whose (i, i)-entry is

√
`(ei) for ei 6∈ T .

Then LT = D2
T (CTC

t
T )
−1CT , since

LTC
t
T = D2

T (CTC
t
T )
−1(CTC

t
T ) = D2

T .

Now we also have

LTL
t
T = D2

T (CTC
t
T )
−1(CTC

t
T )(CTC

t
T )
−1D2

T = D2
T (CTC

t
T )
−1D2

T ,

and therefore

Vol(DT ) =

√
det(D2

T (CTC
t
T )
−1D2

T ) = det(DT )
2/

√
det(CTC

t
T )

= w(T )/
√

det(CTC
t
T ).
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5.2. Matroid duality. We now explain the precise sense in which Theorem 5.2
is dual to the usual version of Kirchhoff’s matrix–tree theorem. In order to do this,
we first give a slightly more canonical formulation of the latter.

Given any spanning tree T of G, we define the coweight of T to be the product
of the lengths all edges of G in T :

w′(T ) :=
∏

e∈E(T )

`−1(e).

We also define
w′(G) :=

∑
T

w′(T )

to be the sum of w′(T ) over all spanning trees of G.
Note that, unlike w(G), the quantity w′(G) is not invariant under refinement

and is therefore not an invariant of the metric graph Γ .

THEOREM 5.5 (Kirchhoff’s matrix–tree theorem, canonical version). Let B be
the cocycle lattice (or lattice of integer cuts) of G. Then Vol(B)2 = w′(G).
Equivalently, if M ′ is any Gram matrix for B, then det(M ′) = w′(G).

If we fix a vertex q of G, then the reduced Laplacian matrix Q ′ = Qq

obtained by deleting the row and column corresponding to q in the usual weighted
Laplacian matrix for G is the Gram matrix of the basis for B consisting of ∂∗(p)
for vertices p 6= q , where ∂∗ : C0(G,Z) → C1(G,Z) is adjoint to the usual
boundary map ∂ : C1(G,Z)→ C0(G,Z). We therefore obtain the following.

COROLLARY 5.6 (Kirchhoff’s matrix–tree theorem, usual version). Fix q ∈
V (G), and let Q ′ be the corresponding reduced Laplacian matrix. Then det(Q ′)=
w′(G).

Theorem 5.5 is dual to Theorem 5.2 in the precise sense that it is obtained
by interchanging the cycle lattice with the cocycle lattice and weights with
coweights. As is well known, interchanging the cycles and cocycles in a graph
is a special case of matroid duality.

REMARK 5.7. The classical linear-algebraic proof of Kirchhoff’s matrix–tree
theorem is an application of the Cauchy–Binet formula. One can also prove
Theorem 5.2 via the Cauchy–Binet formula; we omit the details. We note in
addition that a generalization of the computations in [KS00, Lemma 3.4] [CY09,
Lemma 2] to the setting of weighted graphs can be used to prove that Kirchhoff’s
matrix–tree theorem and its dual version are equivalent.
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