
RESEARCH ARTICLE

Canonical Response Parameterization:

Quantifying the structure of responses to

single-pulse intracranial electrical brain

stimulation

Kai J. MillerID
1,2*, Klaus-Robert MüllerID

3,4,5,6, Gabriela Ojeda Valencia2, Harvey Huang7,

Nicholas M. GreggID
8, Gregory A. Worrell2,8, Dora Hermes2

1 Dept of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America, 2 Dept of

Biomedical Engineering & Physiology, Mayo Clinic, Rochester, Minnesota, United States of America,

3 Google Research, Brain Team, Berlin, Germany, 4 Machine Learning Group, Department of Computer

Science, Berlin Institute of Technology, Berlin, Germany, 5 Dept of Artificial Intelligence, Korea University,

Seoul, Republic of Korea, 6 Max Planck Institute for Informatics, Saarbrücken, Germany, 7 Medical Scientist

Training Program, Mayo Clinic, Rochester, Minnesota, United States of America, 8 Dept of Neurology, Mayo

Clinic, Rochester, Minnesota, United States of America

* miller.kai@mayo.edu

Abstract

Single-pulse electrical stimulation in the nervous system, often called cortico-cortical evoked

potential (CCEP) measurement, is an important technique to understand how brain regions

interact with one another. Voltages are measured from implanted electrodes in one brain

area while stimulating another with brief current impulses separated by several seconds.

Historically, researchers have tried to understand the significance of evoked voltage poly-

phasic deflections by visual inspection, but no general-purpose tool has emerged to under-

stand their shapes or describe them mathematically. We describe and illustrate a new

technique to parameterize brain stimulation data, where voltage response traces are pro-

jected into one another using a semi-normalized dot product. The length of timepoints from

stimulation included in the dot product is varied to obtain a temporal profile of structural sig-

nificance, and the peak of the profile uniquely identifies the duration of the response. Using

linear kernel PCA, a canonical response shape is obtained over this duration, and then sin-

gle-trial traces are parameterized as a projection of this canonical shape with a residual

term. Such parameterization allows for dissimilar trace shapes from different brain areas to

be directly compared by quantifying cross-projection magnitudes, response duration,

canonical shape projection amplitudes, signal-to-noise ratios, explained variance, and sta-

tistical significance. Artifactual trials are automatically identified by outliers in sub-distribu-

tions of cross-projection magnitude, and rejected. This technique, which we call “Canonical

Response Parameterization” (CRP) dramatically simplifies the study of CCEP shapes, and

may also be applied in a wide range of other settings involving event-triggered data.
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Author summary

We introduce a new machine learning technique for quantifying the structure of

responses to single-pulse intracranial electrical brain stimulation. This approach allows

voltage response traces of very different shape to be compared with one another. A tool

like this has been needed to replace the status quo, where researchers may understand

their data in terms of discovered structure rather than in terms of a pre-assigned, hand-

picked, feature. The method compares single-trial responses pairwise to understand if

there is a reproducible shape and how long it lasts. When significant structure is identi-

fied, the shape underlying it is isolated and each trial is parameterized in terms of this

shape. This simple parameterization enables quantification of statistical significance, sig-

nal-to-noise ratio, explained variance, and average voltage of the response. Differently-

shaped voltage traces from any setting can be compared with any other in a succinct

mathematical framework. This versatile tool to quantify single-pulse stimulation data

should facilitate a blossoming in the study of brain connectivity using implanted

electrodes.

This is a PLOS Computational BiologyMethods paper.

Introduction

Electrical stimulation of the brain can be used for a variety of diagnostic, therapeutic, and sci-

entific purposes. Interactions between brain regions may be studied by applying or inducing

pulses of electrical stimulation to a particular site, while measuring the electrophysiological

response at the same place or elsewhere [1–3]. In particular, the averaging of measured volt-

ages from implanted electrodes following brief (several millisecond) pulses of current produces

widespread but sparse deflections from baseline (Fig 1). These voltage traces are typically called

“single-pulse electrical stimulation” responses or “cortico-cortical evoked potentials” (CCEPs)

[4–6]. We make measurements of these types with recordings of the convexity brain surface

electrocorticography (ECoG) or in deeper structures from stereoelectroencephalography

(stereoEEG; sEEG) and deep brain stimulation (DBS) electrodes with our neurosurgical

patients [7]. Despite the “CCEP” name, these stimulation-evoked potential changes are seen

with stimulation and recording of non-cortical structures such as white matter, basal ganglia,

thalamus, and others [8, 9]. Contemporary analysis of these CCEP responses has suffered from

reliance on pre-defined assumptions about the shape that the response should have and quan-

tification of effect only by the voltage at a particular time. This manuscript describes an algo-

rithmic approach to formalize and simplify CCEP analysis so that responses of different shape,

duration, and magnitude may be quantitatively compared with one another.

Because stimulation studies often involve a very large number of stimulated-at and measured-

from brain sites, the potential set of interactions to study can become very large and make it diffi-

cult to examine data to discover simplifying principles. To address this, we recently introduced a

conceptual framework formalizing four basic paradigms for interpreting CCEP data [10]:

• The hypothesis-preselected paradigm—Two brain sites are chosen based upon a pre-defined

anatomical or functional hypothesis, and a 1-way or 2-way interaction between them is

characterized.
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• The divergent paradigm—Stimulation is performed at one brain site and measured

responses at all sites are examined and compared. For N brain sites, this characterizes N
interactions.

• The convergent paradigm—One brain site is measured from, and the effects of stimulations

at all brain sites are compared versus one another based upon the response shapes at the

measured-from site. For N brain sites, this characterizes N interactions.

• The all-to-all paradigm—All brain sites are stimulated at, and responses are measured at all

sites. For N brain sites, this characterizes N2 interactions.

We previously addressed the convergent paradigm [10], which allows one to uncover “Basis

Profile Curves” (BPCs) whose shapes characterize different types of responses at a measured-

from brain site that can be intuitively mapped back anatomically to the stimulated brain sites.

However, for many studies, what is needed is a simple way to characterize the structure of an

evoked response at a single measured-from brain site produced by stimulating at one brain

site (the hypothesis-preselected paradigm). This manuscript addresses this need with a new

technique for identifying structure in an evoked timeseries and parameterizing single trials in

terms of it.

Previous quantifications of voltage deflections in single-pulse responses (CCEPs) have

typically assumed a single canonical shape consisting of characteristic negative deflections

between *10–100 ms from stimulation called the “N1” response and a later second negative

deflection (called the “N2”) [4, 11, 12]. However, there are a wide variety of evoked potential

Fig 1. Single-pulse electrical stimulation with stereoelectroencephalography (sEEG). A. A cartoon schematic of an axial MRI with two sEEG leads.

B. Single-pulse biphasic electrical stimulation is delivered through adjacent sEEG electrode contacts (200μs, 6mA), separated by 3–7s between pulses.

C. Cartoon voltage traces that might be elicited at two different sites in response to stimulation at a third site (i.e. with a stimulation artifact followed by

a characteristic evoked potential deflection). D. An example set of actual evoked potentials showing the stimulation-locked evoked potential matrix V,

with columns Vk(t)) shown as individual traces. E. Average stimulation-evoked potential from (D). F. Examples of some of the different measured

average response shapes seen in these studies (as in E). These selected responses were produced from 5 different stimulation sites across two patients

(over the interval 15ms-1s post-stimulation, where the gray line indicates 0 μV). The variety of different shapes seen in just this small subset shows that

there is no one typical form of stimulation evoked potential shape.

https://doi.org/10.1371/journal.pcbi.1011105.g001
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shapes in CCEP responses, and the N1/N2 description is insufficient to describe most of

them, as seen in Fig 1. There has not been an alternate, generic, way of approaching these

data in the time domain (though some have proposed generic frequency-domain approaches

[13]). A formulation is needed that studies a set of repeated trials of stimulation and extracts

a canonical structure in the response (if one exists), without a pre-set assumption of the

response shape. Our proposed method, which we call “canonical response parameterization”

(CRP) provides a recipe for examining structural similarity between trials to a) identify

whether there is a significant reproducible response shape (and over what time interval), b)

characterize what this shape is, and c) parameterize single trials by the weight of the discov-

ered shape and the residual (after the discovered shape has been regressed out). Equipped

with our novel CRP parameterization, researchers can quantify the magnitude, duration,

and significance of response to stimulation between pairs of brain sites in a generic

framework.

Materials and methods

Ethics statement

The study was conducted according to the guidelines of the Declaration of Helsinki, and

approved by the Institutional Review Board of the Mayo Clinic IRB# 15–006530, which also

authorizes sharing of the data. Each patient / representative voluntarily provided independent

written informed consent to participate in this study as specifically described in the IRB review

(with the consent form independently approved by the IRB).

Measurement of cortico-cortical evoked potentials

Two patients with epilepsy (19 and 63 years old, both male) participated in the study while

undergoing monitoring to localize their seizure onset zone. Patient 1 was implanted with 15

bilateral sEEG leads and patient 2 was implanted with 13 left sided sEEG leads plus several

scalp EEG electrodes (in canonical 10/20 locations). Each sEEG leads consisted of 10–18 con-

tacts, composed of cylindrical platinum-iridium electrodes of 2 mm length, with 1.5 mm

between (3.5mm center-to-center separation). The diameter of the lead is 0.8 mm, giving

each contact has an exposed surface area of 5.0 mm2 (Fig 1). Electrode recordings were

excluded if they were: 1) in seizure onset zone, 2) not stimulated, 3) artifactual, or 4) not in

the brain (i.e. not extended past the bolt, etc). Voltage data were recorded at 2048Hz with a

Natus Quantum amplifier. Electrode pairs were stimulated 10 times with a single biphasic

pulse of 200 microseconds duration and 6 mA amplitude every 3–7 seconds using a Nicolet

Cortical Stimulator. Data first were notch filtered to remove 60Hz line noise and then re-ref-

erenced to a modified common average on a trial-by-trial manner to exclude stimulated

channels and channels with large variance, as described in prior work [14]. Electrodes were

localized on post-operative CT scans and coregistered to preoperative MRI using the sEEG
View package [15], available on github [16]. All code to implement this technique along with

the sample data to reproduce the illustrations are publicly available for use without restric-

tion (other than attribution) at: https://osf.io/tx3yq and https://github.com/kaijmiller/crp_

scripts.

Our illustration of this technique is limited to data from two patients. However, the reader

interested in applying this technique with a wider set of example data than that included here

can access further illustrative recordings released with our other emerging work by van Blooijs

et. al. [17], Ojeda Valencia et. al. [18] and Huang et. al. [14].

PLOS COMPUTATIONAL BIOLOGY Canonical Response Parameterization to quantify electrical brain stimulation responses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011105 May 25, 2023 4 / 25

https://osf.io/tx3yq
https://github.com/kaijmiller/crp_scripts
https://github.com/kaijmiller/crp_scripts
https://doi.org/10.1371/journal.pcbi.1011105


Data structure

The quantification of interaction between a stimulated brain site and a recorded brain site

begins with a matrix of single-trial voltage responses. Matrix Vk(t) is drawn from the voltage

data from the measured brain site, selecting epochs of time t over the naïvely chosen interval t1
to t2 following the time τk of the kth stimulation from the stimulated electrode pair, where t
denotes the time from the kth electrical stimulation at brain sitem, τk: (τk + t1)� t� (τk + t2).

The dimensions of V are T × K, with T total timepoints (over the interval t1� t� t2) by K total

stimulation events (Fig 1D).This fragment is an error. In this manuscript, t1 of 15ms was cho-

sen to reduce the likelihood of contamination by stimulation artifact, and t2 of 1s was chosen

because (anecdotally) the vast majority of sEEG CCEPs we have observed return to baseline

well before then. We anticipate that researchers will adjust t1 and t2 based upon their own cir-

cumstances. Before data are analyzed and parameterized, one should evaluate the preprocessed

data for baseline fidelity. Issues with inappropriate referencing or lack of a baseline around

zero can be avoided by visual inspection or calculation of the mean and/or median values at

far from stimulation times.

Single-trial cross-projections

In order to understand shared structure between stimulation trials, we first obtain a matrix of

unit-normalized single trials: ~VkðtÞ ¼ VkðtÞ=jVkðtÞj. Each ~VkðtÞ is then projected into all other

trials, P ¼ ~VTV:

Pðk; lÞ ¼
X

t

~VkðtÞVlðtÞ

Note that P(k, l) 6¼ P(l, k). The full matrix P is subsequently sorted into a combined set S, with

self-projections (k = l) omitted, and a total of K2 − K elements (Fig 2). Each element (initially

with units mV �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# samples

p
) is then scaled by 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
samplerate

p
so that it carries the units

mV �
ffiffi
s
p

. The average over the set of cross-projections, S, summarizes the interaction from

stimulation to response.

Fig 2. Quantifying single-trial cross-projections. A. Stimulation and recording sites for this example, shown in an axial MRI section. B. 15 single trials

of stimulation response (gray) produced the averaged evoked potential shape (black). C. Trial #1 (light blue) was unit-normalized and projected into the

other 14 trials, omitting self-projection. D. As in (C), but for normalized trial #10 (orange). E. All 210 projections are shown sorted, note the obvious

sub-sets corresponding to the projections of unit-normalized single trials. The projections of each trial into the others can reflect how representative

each trial is of the canonical evoked potential response shape. F. The projections from (E), aggregated into a single column (i.e. imposing the

assumption that the order of trials doesn’t matter, which will be false under some circumstances).

https://doi.org/10.1371/journal.pcbi.1011105.g002

PLOS COMPUTATIONAL BIOLOGY Canonical Response Parameterization to quantify electrical brain stimulation responses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011105 May 25, 2023 5 / 25

https://doi.org/10.1371/journal.pcbi.1011105.g002
https://doi.org/10.1371/journal.pcbi.1011105


Response duration

In order to quantify how long there is a significant effect after stimulation, the set S can be con-

structed over different time periods to determine the duration of most statistically-meaningful

response. We do this by determining projection weights S and S as a function of time, S! St,
and quantify a temporal profile, St, as illustrated in Fig 3. Because S may be thought of as a

reflection of mutual information between responses (i.e. their correlated deviation from 0V),

the peak of St represents the time past which further information is not reliably contained in

the response—when the distribution of voltages across responses drifts to be indistinguishable

from 0μV. We define this peak time as the “response duration”, or τR. It is important to note

that this CRP approach is very sensitive to baselining, as the sign of the voltage in cross-projec-

tions around zero determines when the profile of St begins to decrease. The uncertainty of τR
could be estimated in many ways, but, for the illustrations in this manuscript, we place error

bars where Sðt2Þ exceeds 98% of SðtRÞ. The truncated voltage matrix representing just the

times in the response to stimulation up to this duration τR is henceforth denoted V, with

dimensions τR − t1 (“TR”) timepoints and K trials. The initial voltage matrix (over the naïvely-

chosen time interval) will be specifically designated as such when discussed further in the text.

Extraction significance: Quantifying reliability of response structure and

identifying anomalous single trials

The set of projection magnitudes StR can be tested against zero for significance, which we call

the “extraction significance”. Note that one cannot use the full distribution of StR—this creates

Fig 3. Using time-resolved projection weight to quantify response duration, τR. A. Stimulation and recording sites for this example, shown in a

sagittal MRI section. B. 10 single trials of stimulation response (gray) produced the averaged evoked potential shape (black). C. Abbreviated timeseries

are calculated from t1 to a range of t2s to obtain time-resolved projection weights (individual dots). The traces above indicate a subset of the projections

(for the normalized trace of 9th trial) at times t2 = 20ms, t2 = 80ms = τR, t2 = .5s, and t2 = 1s, with distributions of St2 at each of these timepoints

highlighted in the light red background. In this example, the blue dots are projection of the normalized trace of 9th trial (illustrated in traces above). The

thick black line is Sðt2Þ. Calculated response duration, τR, is indicated by a red circle. Small vertical red lines indicate thresholds where Sðt2Þ exceeds

98% of SðtRÞ (providing an estimate of the error in calculating τR). Note that blue dots in bottom portion are the projections illustrated for the 9th trial

from the traces on the top. D. The projection weight temporal profile, from the black line in the lower portion of (C), is shown with a gray line. The

averaged voltage response, from the black line in (B), is shown with a black line, and the significant portion of the response is highlighted (i.e. up to τR).

E. As in (D), but for the example response from Fig 2.

https://doi.org/10.1371/journal.pcbi.1011105.g003
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artificial significance since a pair-wise interaction between two trials is counted twice. Once

when the once when the first trial is normalized & the second trial is raw, and once in the

inverse case. Therefore, only half of projections are considered for p-value and t-value analysis.

These are selected such that 1) each trial is the normalized trial half of the time and raw half of

the time, and 2) pair-wise interactions are counted only once. Sub-distributions of StR corre-

sponding to the projection magnitudes involving single trials can be used to identify the “most

anomalous and most normal” single trials—(with comparison against the same selection of

half of the projection magnitudes). This can be used as a simple technique for artifact

rejection.

Identification of canonical CCEP shape using Linear Kernel PCA

We would like to identify a characteristic shape of the canonical CCEP, C(t), determined from

V, that characterizes a stimulation-induced interaction between brain regions. The most com-

mon way to do this is to take the simple average trace (i.e. CðtÞ ! VðtÞ). However, we prefer a

quantity that represents the “principal direction” (1st principal component) of V, which cap-

tures the variance of the data and is more robust than the average against outlier trials. A stan-

dard principal component decomposition (PCA, [19]) is generally not possible in these data

because of the practical fact that the number of timepoints, TR, generally far exceeds the num-

ber of trials, K, in these data (i.e. TR� K), which would require K > T2
R to characterize the TR-

by-TR matrix of interdependencies between timepoints in PCA. As in prior work [10], we

address this issue by inverting the decomposition using the Linear Kernel PCA technique [20–

22]. This method allows for the interchange of an eigenvalue decomposition of the matrix

VVT (T2
R elements) with VTV (K2 elements). Following this approach, we obtain a matrix F,

whose columns are the eigenvectors of VTV, with associated eigenvalues contained in the diag-

onal matrix ξ2, satisfying ðVTVÞF ¼ Fξ2
. We can then solve for the eigenvectors of VVT, con-

tained in the columns of X: Xξ ¼ VFT. We keep the first column of X as our canonical CCEP

shape C(t) (Fig 4).

Parameterizing single trials in terms of the canonical response shapes

We utilize the formalism from functional data analysis to parameterize our data [23, 24]. Each

individual trial is represented as a projection of a canonical CCEP form C(t), scaled by a scalar

αk, with residual ε(t) (note that ε(t) reflects combined measurement noise and uncorrelated

brain activity):

VkðtÞ ¼ akCðtÞ þ εkðtÞ

We assert that the expectation values related to ε(t) are E(ε) = 0 and Eðε2
kÞ � Eðε

2
l Þ, for all k

and l. This allows us to estimate the projection of C(t) into each individual trial as follows.

First, we expand our single-trial formalism above by application of ∑t C(t) to both sides,

i.e.:
X

t

CðtÞVkðtÞ ¼
X

t

CðtÞakCðtÞ þ
X

t

CðtÞεkðtÞ

However, ∑t C(t)εk(t) = 0 since E(ε) = 0, and ∑t C(t)αkC(t) = αk ∑t C(t)C(t), which is just αk,
since ∑t C(t)C(t) = 1. This allows us to calculate αk for each trial:

ak ¼
X

t

CðtÞVkðtÞ
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Knowing αk, we can quantify the residual signal after regressing out the shape of C(t):

εkðtÞ ¼ VkðtÞ � akCðtÞ

With the description Vk(t) = αkC(t) + εk(t), several useful quantities for each trial Vk can be

described: a “projection weight” αk; a scaled version of projection weight, a0k that is normal-

ized by the square root of the number of samples in C(t) (i.e. in t1 to τR interval) and carries

intuitive units of μV (analogous to root-mean-squared response); a scalar “noise” summary

term
ffiffiffiffiffiffiffiffiffi
εT
kεk

p
(magnitude of the residual); a “signal-to-noise” ratio ak=

ffiffiffiffiffiffiffiffiffi
εT
kεk

p
; the “explained

variance” by the canonical stimulation response (CCEP shape) is 1 �
εTk εk
VT
k Vk

. Table 1 summa-

rizes these discovered parameters, with some examples illustrated in Fig 5. Note that

canonical response extraction and parameter discovery can be highly sensitive to baselining

appropriately (Fig 6). The distributions of single trial parameters can be used to quantify

the significance of the canonical shape to explain variation in the data, and we call these

measures “parameterization significance” to distinguish them from the extraction signifi-

cance that is described above.

Fig 4. Parameterizing the evoked response for single trials. A. An example evoked response, as in Figs 2B and 3B. B. The voltage responseVk(t) from

trial k (black) is parameterized by how strongly the canonical response shape (C(t), red trace, time interval t1 to τR) is represented (scaling factor αk)
plus the “residual” εk(t) (green): Vk(t) = αkC(t) + εk(t). C. OverlaidVk(t), αkC(t), and εk(t) for example trial #6. D. As in (C), for all 10 trials.

https://doi.org/10.1371/journal.pcbi.1011105.g004
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Results and discussion

The figures in this manuscript show a wide variety of shapes in evoked voltage responses to

brain stimulation. No single or several pre-defined form(s) would adequately capture the

shape of these responses, with or without sign-flips, temporal scaling, or other manipulation.

Therefore, we have constructed an approach to extract structure from these data that begins by

calculating semi-normalized dot-product projections between single trials over increasing

time intervals. From this, we can uncover a duration of significant response τR, extract a char-

acteristic shape C(t), and then parameterize the single trials in an intuitive formalism: V(t) =

αC(t) + ε(t) (Fig 4). We call this recipe “Canonical Response Parameterization” (CRP).

Projection magnitudes and response duration

Description of the voltage time series response to a stimulus typically begins by visualization

of the average of many repeated stimuli (Fig 1). In practice, one then tries to infer how robust

this shape is by visually observing a suppression of “roughness” in the small deviations in

shape as more trials are added to averaging. Alternately, one can plot single trials in the back-

ground of the average shape to quantify trial-to-trial variability from the mean (as in Figs 2B

or 3B, for example). However, it would be preferable to have a direct quantification of simi-

larities between different trials, and our technique addresses this by performing pairwise

cross-projections between trials (with one normalized) to identify structure. The distribution

of these cross-projection magnitudes can be compared versus zero to determine significance,

which we call extraction significance (illustrated in Fig 2). By omitting self-projections, there

is no self-consistency in significance determination and no appeal to the mean across all

trials.

This projection technique is then further elaborated upon by applying it to limited time

epochs for comparison, as illustrated in Fig 3. A temporal profile for projection magnitude

results from this and illustrates the accumulation of information as more structure is consid-

ered in the comparison. When adding further time includes data where structure is lost as

individual traces trend across zero, negative contributions to the dot product produce a

decrease in the overall cross-projection magnitude. The timepoint of the maximum of the tem-

poral profile of cross-projection magnitude therefore reveals the end of the time epoch that is

meaningful across trials (we call this the “response duration” τR, Figs 3 and 4).

Table 1. Discovered parameters for single stimulation-recording pair.

Parameter Units Interpretation

τR s Response duration

StR mV �
ffiffi
s
p

Averaged1 cross-projection magnitude at time τR

C(t) 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# samples

p
Canonical CCEP form (unit norm vector, length τR)

Single-trial parameters (for trial k)

αk mV �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# samples

p
Projection weight (how strong C(t) is represented in trial k).

a0k μV αk normalized by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# samples

p
in t1 to τR interval.

εk(t) μV Residual data after regressing out the shape of C(t).
ffiffiffiffiffiffiffiffiffi
εT
k εk

p
mV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# samples

p
A scalar single trial summary term quantifying the magnitude of the residual.

ak=
ffiffiffiffiffiffiffiffiffi
εT
k εk

p
dimensionless “Signal-to-noise” ratio of projection weight to residual.

1 �
εTk εk
VT
k Vk

dimensionless “Explained variance” by the stimulation response C(t).

1 Averaged over all non-self stimulation trial cross-projections.

https://doi.org/10.1371/journal.pcbi.1011105.t001
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Fig 5. Examples of shapes, durations, projections, and parameterizations. Five example responses illustrate projection magnitude profiles,

parameterization values, and significance metrics. Note that the bottom response does not meet signficance at any time. The four top examples all met

extraction significance at τR of p� 10−16 (t-test of SðtRÞ vs 0). The bottom example is not significant (p = 0.37). Single trial parameters are averaged across

trials for the 3 right-most columns. Note that the second trace might be called the classic N1/N2 response.

https://doi.org/10.1371/journal.pcbi.1011105.g005
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Figs 5 and 6 show that significant vs. insignificant trials can be readily identified by applying

simple statistics to the cross-projection magnitudes, S. Furthermore, the response durations τR
obtained from the peak of the cross-projection magnitude temporal profiles St clearly capture

the timing of meaningful structure that is visually apparent in the CCEP traces. For present

use, we plot error bars around τR representing the limits where St exceeds 98% of SðtRÞ.
Synthetic response traces, shown in Fig 7 (and S1 Fig) give the reader a set of simple illustra-

tions to develop intuition for St. Notably, responses that are mirrored in voltage or mirrored

in time produce the same peak response magnitude, at the same duration (Fig 7G–7L). Split-

ting a response in two parts and separating them in time does not change the peak cross-pro-

jection response magnitude (Fig 7A–7C). Addition of noise to a response will not change the

response duration, and only decreases the cross-projection magnitude at very high levels of

noise (Fig 7D–7F). Note that cross-projection magnitude profile St for a sustained fixed volt-

age offset increases by
ffiffiffiffiffiffiffiffiffi
time
p

, as seen in Fig 7. This is a consequence of the fact that the mea-

sure is semi-normalized—one of the single-trial vectors in the dot product is normalized

Fig 6. Illustrative examples of extraction significance. A. An example of a high noise, but highly significant voltage response. B. An example of no

significant response to stimulation. C. Early significance is detected in an apparently insignificant response. D. Examination of the voltages prior to t1
shows a clear (presumably artifactual) offset, explaining the observation in (C). E. An example of significance throughout a response that appears to be

insignificant, though does have a non-zero offset. F. Correcting (E) for the 20μV offset in baseline removes the artifactual significance. Note that p-

values determined by t-test of SðtRÞ vs 0.

https://doi.org/10.1371/journal.pcbi.1011105.g006
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( ~VkðtÞ ¼ VkðtÞ=jVkðtÞj), while the other is not. Because of this semi-normalization, the noise-

less St profile examples in Fig 7 plateau rather than decrease when the signals return to zero

after the synthetic feature—a result of the fact that there is no anti-correlation in pairwise com-

parisons to reduce the value of the sum in St from its peak.

Fig 7. Examples of projection magnitudes and profiles obtained with synthetic data. A. A 100ms, 100μV synthetic square wave response (zero

noise). B. 50ms/100μV square. C. Two 50ms/100μV square. D. 100ms/100μV square (low noise). E. 100ms/100μV square (intermediate noise). F.

100ms/100μV square (high noise). G. Ramp up to 100μV over 100ms (zero noise). H. Ramp down from 100μV over 100ms. I. Ramp up to 100μV over

50ms then down to 0μV over 50ms. J. Sinusoid (peak ±100μV) over 100ms. K. Inverted sinusoid. L. Absolute value of sinusoid.

https://doi.org/10.1371/journal.pcbi.1011105.g007
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How V(t) is normalized prior to cross-projection has a marked effect on how significance is

determined, as illustrated in Fig 8. The un-normalized approach (Vk(t)Vl(t)) is sub-optimal

because trials with large amplitude are relatively over-emphasized, even when their shape does

not reflect the most characteristic structure. Conversely, fully-normalized projections

~VkðtÞ~VlðtÞ are sub-optimal because they measure higher significance for shorter lengths of

Fig 8. Illustrations of different normalizations of single-trial cross projections. As discussed in the manuscript, different trials Vk(t) and Vl(t) may be

compared with each other directly, or after normalization with ~VkðtÞ ¼ VkðtÞ=jVkðtÞj. A. Un-normalized projections Vk(t)Vl(t) are sub-optimal

because trials with large amplitude are over-emphasized in comparison with trials of lower amplitude but more characteristic structure. B. The time-

resolved structure of fully-normalized projections ~VkðtÞ ~V lðtÞ are sub-optimal because they dramatically favor early transients and cannot resolve

temporally-sustained structure. C. Semi-normalized projections are optimal in that they balance emphasis of amplitude and sustained structure

between trials. Panels D-F show the same sample data as A-C, and illustrate the effect of extracting the canonical response from different epochs of time. In

the “standard” extraction approach we have illustrated so far, C(t) is discovered using linear kernel PCA from V(t) over the isolated time interval from

t1 to τR (black line with yellow highlight). We can also unit normalize the average voltage VðtÞ over the t1 to τR interval, though the explained variance

and signal-to-noise are slightly worse. D. If a C(t) is extracted using linear kernel PCA from t1 to t2 = 3 s (blue+red compound trace), the explained

variance and signal-to-noise is very poor due to the introduction into the algorithmic process of a large amount of unnecessary noise from the time

following τR, even if the extracted form is truncated at τR for parameterization (red trace). E and F. As in (D), but for t2 = 2 s (E) and t2 = 1 s (F). Note

how the shapes converge as t2 decreases.

https://doi.org/10.1371/journal.pcbi.1011105.g008
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data (favoring early transients), and are unable to resolve sustained structure over time (as the

normalization factor penalizes added datapoints). Semi-normalized projections, ~VkðtÞVlðtÞ,
nicely balance an emphasis between response amplitude and sustained structure.

Response duration τR captures the point in time where the signal produced from stimula-

tion becomes indistinguishable from zero (Fig 3). Automated quantification of response dura-

tion, rather than visual identification, is important because there is wide variation in duration

across pairs of stimulated-at and measured-from brain sites (i.e. Fig 1E). It is also very impor-

tant because it enables further discovery and robust parameterization of structure in the data:

by taking only the segment of data up to the response duration when performing parameteri-

zation, unnecessary noise that follows this time does not confuse or diminish the algorithmic

process (as illustrated in Fig 8D–8F).

In principle, a response onset/beginning time, τB, could be calculated moving backward

from the discovered response duration, e.g. search through a profile of τB − τR once τR has

been discovered. For the present application, that is felt to be unproductive since conduction

times between stimulated electrode pairs and measured responses is of the same order as the

initial τB (*15ms). However, calculation of onset/beginning time would be useful in other,

future, contexts, where there is a clear delay between the stimulation and response onset. For

example, application of CRP and calculation of τB may be useful in the study of visual or audi-

tory evoked responses, where we know that there is a lag between visual presentation and

physiological response that can change in the context of disease (e.g. visual evoked potentials

increasing in latency in the context of optic neuritis [25]).

Parameterization of single trials by canonical CRP shapes, C(t), magnitude

of the voltage response, a0k, and the residual, εk
The discovery of response duration defines the information-rich epoch of data following stim-

ulation, and allows for isolation of the characteristic induced response shape C(t), by using lin-

ear kernel PCA on V(t) over the isolated time interval from t1 to τR. Our data-driven CRP

approach is an important tool to move analysis of these brain stimulation data past the level of

characterization by eye, discovering C(t) empirically (rather than assuming a pre-defined

shape). With CRP, researchers can identify and compare different response shapes across stim-

ulation and recording brain sites in different patients using a unified quantification. The for-

malism is adopted from the field of functional data analysis [23, 24] and allows us to express

single trials of the voltage response as Vk(t) = αkC(t) + εk(t) (Fig 4). This representation allows

single trials to be summarily characterized by normalized projection weight (α0, in units volt-

age), signal-to-noise ratio, and explained variance (Fig 5). Importantly, the CRP technique is

quite robust and performs well with diminishing signal in the presence of constant noise

(which we have found explicitly, using synthetically-generated responses—illustrated in S1

Fig). Quantifying effect size and statistical significance in this way helps to compare many dif-

ferent response shapes (whether short or long) within one framework, and opens up the possi-

bility to explore data in the hypothesis-preselected and divergent paradigms [10]. While our

illustrations consist of a low number of trials (10–15), the technique works easily and is associ-

ated with higher statistical significance when a much higher number of trials are obtained (S2

Fig). Seemingly dissimilar responses may be statistically compared with one another without

difficulty, as illustrated in Fig 5. Of note, the N1/N2 shape, when present, is clearly and effec-

tively captured (e.g. second row of Fig 5).

While the numerical values of α are not intuitive, α0 is normalized by the square root of the

number of samples in C(t) (i.e. in t1 to τR interval) and roughly captures the average voltage

deflection from zero during the significant response interval. α0 is comparable to the root-
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mean-squared metric that has been shown to be useful in this context [26], but is weighted

only by the empirically-discovered significant interval of the response, rather than a pre-

selected epoch defined by the researcher.

The different metrics to quantify and compare response size and significance will be most

useful depending on the context. Normalized projection weight α0 is useful to compare

whether one stimulation-response pair has a larger average voltage. However, one brain site

might have less baseline activity (as quantified by voltage) than some other site, due to a differ-

ent cellular milieu or organization; in this case the magnitude of the voltage deflection com-

pared to residual or the explained variance in the signal by the stimulation

i:e: ak=
ffiffiffiffiffiffiffiffiffi
εT
kεk

p
or 1 �

εTk εk
VT
k Vk

� �
are more meaningful comparators.

Canonical shapes C(t) can be compared across brain sites and patients by taking the dot

products to compare similarity. As such comparisons mature, one might account for variations

in anatomy and physiology that preserve overall response shape but not conduction speed by

performing scaling in time (i.e. by “stretching” C(t) with established techniques [27, 28]).

Note that the ability of C(t) to capture the signal in, and explain the variance of, the voltage

responses is diminished if one applies the PCA extraction on longer segments of data, or uses a

unit-normalized version of the averaged trace (CCEP), as seen in Fig 8D–8F.

Although this manuscript has concentrated on exploring interactions between stimulated-

at and measured-from brain sites, one need not measure at a different site than was stimulated

to apply our methodology. One may stimulate and measure the evoked response at the same

site, applying this parameterization to the measurement, but ensuring that the beginning time

of analysis, t1 is chosen to be well after the stimulation artifact and volume conduction effects

have passed [29].

The residual term, εk(t), is a signal that reflects all local brain activity not directly linked to

stimulation timing, combined with measurement noise (i.e. from amplifiers and the environ-

ment). For example, if a researcher wishes to examine non-phase-locked oscillatory (rhythmic)

activity resulting from the stimulation, they should calculate this from εk(t) rather than Vk(t),
since the shape of the deflections of the evoked potential C(t) will have corresponding power

in the Fourier domain. For example, a positive deflection in a component of C(t) lasting

100ms will have power at 1/(2 � 0.1s) = 5Hz, but not be an oscillation. Extracts of broadband

spectral activity (spread across all frequencies according to a power-law form, but often cap-

tured at high frequency by researchers) that capture local brain activity [30] might be best

extracted from εk(t) rather than Vk(t).
The εk(t) term can be used as a tool to understand changes in the shape of the response

after external conditions have been applied to perturb brain state. After performing a set of

stimulations and parameterizing the responses, one might administer a pharmacologic agent,

perform a behavioral analysis, apply therapeutic stimulation, or observe a global state change

(e.g. transition from waking to sleep, etc). Stimulations may then be re-performed with the

brain in the perturbed state, but the responses are parameterized according to the original C(t),
obtaining a new set of residuals εnkðtÞ. Then, the extraction and parameterization described in

this manuscript is applied to εnkðtÞ rather than V(t): If any significance is identified, then the

resulting new Cn(t) that emerges reveals the structure introduced by the perturbation to brain

function (pharmacologic, stimulation therapy, awake/asleep, etc).

Characterizing significance, anomalous trials, and artifact

When considering whether a set of N trials have a significant response to stimulation, the

extraction significance defined above reveals how robust the shape is, providing a distribution
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of N2 − N cross-projection magnitudes that may be tested versus zero for significance (e.g. 90

datapoints for a 10 trial set). It should be noted that there is some relationship between conju-

gate cross-projection magnitudes
P

t
~VkðtÞVlðtÞ and

P
t
~VlðtÞVkðtÞ, but they are not the same

(as seen clearly by the difference between red and green datapoints in Fig 9D. This relationship

is addressed by a balanced downsampling so that trial-pairs of projections are only included

once (as described above). The distribution of p-values obtained from many iterations of null

data are evenly distributed on the 0-to-1 interval, indicating that the extracted significances are

statistically appropriate (S3 Fig).

As an alternative to the extraction significance, one may calculate the parameterization sig-
nificance based upon the single trial parameters noted in Table 1, of which there are N data-

points for each parameter (e.g. 10 datapoints for a 10 trial set). For test of significant response

(versus no response) αk is the most useful, because it would be expected to be distributed

around zero (insignificant) for spurious discovered structure C(t).
When comparing different stimulation-response sets that have very different shapes, it can

be quite useful to compare the distributions of parameters between the two. One might say

that a response is “significantly larger” than another by comparing one distribution of α0 to

another or a response is “more robust” by comparing 1 �
εTk εk
VT
k Vk

distributions (i.e. comparing

their explained variance).

We may use the tools of this extraction and parameterization to characterize single trials

within a set of stimulation-response measurements—anomalous single trials can be identified

by individual comparison of the distribution of cross-projection magnitudes involving one

trial to the all of the cross-projection magnitudes involving other trials. Trials with larger-

Fig 9. Voltage deflections in the scalp EEG from intracranial sEEG electrical stimulation pulses, and automated artifactual trial identification. A.

Schematic, showing sEEG stimulation and EEG recording. B. Ten single-pulse EEG trials (gray) and average trace across trials (black). Note the clearly

artifactual trial. C. Time-resolved projection magnitudes for trials from (B). D. Projection magnitudes at τR = 0.23s, suggesting that trial #6 is artifactual

(p = 1.8�10−6, unpaired t-test comparing red+green vs black). Green dots indicate projections of normalized trial #6 into other trials, and red dots indicate

normalized projections of other trials into trial #6. E and F. As in (B and C), with trial #6 removed. Note the change in τR from 0.23 to 0.28s and StR from

8.5 to 14.5μV�
ffiffi
s
p

.

https://doi.org/10.1371/journal.pcbi.1011105.g009
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than-average cross-projections may be interpreted as the “most representative” of the shape of

the response. Conversely, as illustrated in Fig 9, trials with cross-projections that are far below

the others can reveal artifactual trials for automatic rejection from the dataset (for automated

artifact rejection, one can use projections at τR or at full duration T sent for analysis). Note that

there is a large and rich literature for identifying anomalous data [31], and it will be an interest-

ing future direction to explore more comprehensively with data and methodology of this type.

Biological interpretation of sEEG CCEP

Fig 1 shows that there are a wide variety of stimulation response shapes in the sEEG stimula-

tion-evoked-potential responses, and the durations of these responses may be less than 100ms

or last up to 600–700ms. This would be expected from brain surface ECoG measurements,

where very different response shapes and durations could be evoked at the same measurement

site depending on what site was stimulated [10]. One might hypothesize that the systematic

study of waveform shapes C(t) may provide understanding about the biology underlying these

responses:

Could each C(t) morphology type reflect a set of projections to different aspects of laminar

architecture (e.g. different cell classes, or unique synaptic subtypes on pyramidal neurons)

[32]? For example, in primary visual neocortex, differences in laminar pattern separate feed-

forward and feedback connections across the 6 layers, allowing for the characterization of a

visual hierarchy [33]. Feedforward connections preferentially terminate in the middle layer

(layer 4), feedback connections preferentially avoid layer 4, while lateral connections terminate

in roughly equal density across all layers. A different primary brain area, the motor neocortex,

completely lacks a distinct layer 4. The hippocampus, which is archicortex rather than neocor-

tex, only has 3 layers. One would therefore expect that a homologous input type, even if origi-

nating from the same source, would produce very different C(t) in visual, motor, and

hippocampal cortex. Therefore, consistent differences in C(t) across these regions could

inform new models of how intralaminar dynamics generate characteristic voltage responses.

Will future work find that specific shapes of C(t) imply specific biology, such as pro-dromic

versus anti-dromic propagation, long-track versus u-fiber white matter transmission, intracor-

tical excitation (via axons that project laterally and remain within the gray matter), or thalamo-

cortical relays [34]? We know for example that, for the divergent paradigm, evoked potentials

may arrive with smoothly varying latency, duration, or polarity along adjacent sites in an

sEEG lead traversing a natural axis in a brain structure (e.g. the body of the hippocampus in

response to stimulation [18]).

The amplitude, width, and overall shape of voltage deflections are influenced by factors

relating to the synchronous electrical activity produced in these neuronal populations. At the

microelectrode scale, local field potentials have been shown to predominantly reflect coordi-

nated synaptic inputs [35, 36]. For example, negative deflections in LFP recorded at the cortical

surface can often represent current sinks generated by synchronized excitatory postsynaptic

potentials (EPSPs) at apical dendrites of superficial pyramidal cells. In contrast, EPSPs at

deeper cortical layers result in positive deflections in the same surface LFP. The width of an

LFP deflection may therefore reflect the coherence of synaptic inputs, or may reflect the time-

scale of charge influx, which is specific to the neurotransmitter type, signal transduction cas-

cade, and channel dynamics that characterize each synapse [37].

Applications in other scientific and medical contexts

Although we have illustrated this parameterization to the case of single-pulse electrical stimu-

lation through sEEG electrodes, the approach might be applied in many other settings where
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one wants to characterize a reliable response structure of unknown duration. A few such possi-

bilities are:

• Evoked electrical and magnetic changes in the brain in response to visual or auditory stimuli

are typically called event-related potentials (ERPs) (cf. [38, 39]). ERPs have been studied

exhaustively in EEG, ECoG, and MEG, to study sensation, perception, cognition, memory,

and other aspects of brain function [38, 40–44]. Event-related potentials have been studied

to understand injuries and diseases of the brain and spinal cord [45–47], and are also used

intraoperatively to dynamically to study the function of the spinal cord and brainstem (e.g.

somatosensory evoked potentials—SSEPs [48] and brainstem evoked auditory responses—

BAERs [49]). Much as in the case of the N1/N2 formulation described above, these ERP data

typically focus on identification of a feature by the voltage at hand-picked latencies after the

stimulus. The CRP approach detailed here would automate and simplify identification of

structure and relative significance in the ERP. For the example case of ERPs in EEG, it is

often said anecdotally that single trial signal is very low compared to the residual “noise”—

application of CRP would allow one to quantify this explicitly.

• Early work with a similar formulation has been also useful for colleagues in neuroscience

examining the EEG response to deep brain stimulation [50]. Our specific extraction and

parameterization may fit nicely into their work, expanding on it by allowing for identifica-

tion of the salient duration τR and single-trial parameterizations noted in Table 1.

• The hemodynamic response functions (HRFs) measured with fMRI have different shapes

across different regions and laminae (cf. [51, 52]), and CRP might simplify the comparison

of these in different voxels.

• A parameterization could be performed by replacing stimulation times with “discovered

events” in ongoing brain data may be useful in examining electrophysiology studies such as

action potential characterization and sorting in high-impedance microelectrode recordings.

• Brain state under anesthesia can affect CCEP shape [11]. One might apply CRP to a set of

stimulations performed under one state of anesthesia, and apply the initial parameterization

to a new set of stimulations performed during a different subsequent anesthesia state.

Changes in α0 or repeated CRP applied to the residual ε(t) of this subsequent parameteriza-

tion would reveal change in response structure that accompanies change in anesthesia.

• Somatosensory evoked potentials (SSEPs) are measured from the brain or spinal cord in

response to electrical stimulation of the peripheral nervous system for medical diagnostics in

the operating room and the clinic. In the operating room, these are a realtime diagnostic

electrophysiology that can dynamically reveal impending injury so the surgeon can stop an

action before causing permanent injury. In the clinic and hospital setting, these can be used

to diagnose brain function in coma (diminished level of consciousness) after anoxia or trau-

matic brain injury [46, 53, 54]. Parameterization would dramatically simplify the nuance

required by the electrophysiological technician who assists in these surgical procedures.

• Single-pulse electrical stimulation of the white and gray matter has been used for intraopera-

tive connectivity mapping during surgery for tumor and epileptic focus resection [55, 56].

The utility of these diagnostics is still being explored [57], and CRP could help to simplify

and standardize the interpretation of the CCEPs (the shape of which, as shown here, will

vary dramatically), helping to identify the optimal approach for assistance during resection.

• Our ongoing work—as well as those of many colleagues [58]—is focused on the exploration

of epileptic networks. With the advent of stimulation devices that can record and perform
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open- or closed-loop stimulation [59–61], and can stimulate through 4 leads [62], brain

stimulation for epilepsy is rapidly evolving. As we learn to stimulate networks in tandem at

different cortical and thalamic sites, the ability to quantify connectivity during sEEG

implants will help to drive better DBS and RNS system implantations [63].

Limitations, alternative considerations, and future technical strategies

There are important limitations to consider when implementing CRP. By construction, this

method cannot parameterize the timing of particular features. An example of this is the case

where one wishes to quantify the propagation time between two areas (i.e. the latency). This is

typically done by finding the first extrema (peak or trough) in the averaged response as an

important time [6, 17, 64]. While this could be performed on C(t), it is not explicitly built into

the parameterization process. A change in output can have forms that are not easily tracked by

the CRP technique, such as perturbations in the overall brain state affecting the amplitude of a

specific deflection within the CCEP (while sparing other deflections) in subsequent stimula-

tion trials; alternatively, timescales can change and the duration may get longer. CRP may not

be useful in those settings (though the change would be quantified in correlated structure

across the residual ε(t)).
By taking the peak magnitude of St as the duration, a late resurgence of structure (“blip”)

following a period of relative insignificance will only contribute if it can overcome any inter-

vening loss in cross-correlation to create a higher peak in the projection profile. Notably, we

have not yet observed this in our studies, but it remains an important possibility to be aware of.

The reader should be aware of two frequent artifactual conditions, illustrated in Fig 6. In

the first of these (Fig 6C and 6D), a seemingly insignificant response has a very significant

brief structure at the beginning of the examined period. This situation may arise when a latent

effect of stimulation artifact “carries forward” into the window being considered. Determining

what is stimulation artifact and what is brief evoked neural activity is a nuanced topic that we

defer to future study. The second artifactual condition to consider (Fig 6E and 6F) is the case

where a set of responses appear to be complete noise, but the time-resolved projection magni-

tude St grows steadily in time. Inappropriate baselining of the data produces this—we also

defer comprehensive exploration of this to future treatment.

As opposed to quantifying time-domain (i.e. raw voltage) changes, one might instead study

responses to single pulse electrical stimulation in the frequency domain. Broadband changes

in the frequency domain are of particular appeal since their shapes may be interpreted generi-

cally as increases in firing rate [30, 65–67], without the need to interpret polyphasic shapes as

we do in this manuscript. Crowther, et. al. and Kundu et. al. [13, 68] showed that broadband

changes can effectively identify interactions between brain areas, and it is very likely that

broadband changes and raw voltage changes have complementary information, which has

been shown for ECoG responses to visual stimuli [41]. Frequency-domain changes that are

peaked at a particular frequency (rather than broadband) can reveal stimulation-evoked brain

rhythms (oscillations), and are a topic of future study. As noted above, one must be careful

when inferring the presence of a rhythm purely from examining responses in the frequency

domain, since a simple voltage deflection (like many of those seen in Fig 1), will have power at

a frequency that is the inverse of the width of the voltage deflection.

Future exploration might expand this parameterization approach in a number of different

directions:

• C(t) could be chosen in different manners than we have, such as: using the simple average

trace (i.e. CðtÞ ! VðtÞ—we have anecdotally found that using the simple mean as the
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canonical form, rather than the PCA-based extraction, increases α0, while reducing the SNR,

as seen in S4 Fig); using the “most representative” single trial, identified by the trial that has

the largest average cross-projection when compared with other trials (e.g. the first trial, indi-

cated by blue dots, in Fig 6E and 6F), truncated to τR; a globally-defined average shape, such

as one chosen from the average in a corresponding brain site over many patients [14]; or

canonically-defined shape, like the “N1/N2” shape.

• As noted above, a beginning time τB could be calculated by moving backward from the opti-

mal duration and recalculating the St profile, but over τB − τR once τR is known.

• It is possible to calculate the “significance of the leftover”, by performing projections on the

leftover matrix Vk(τR − to − T), and defining the new τR as the value for which “leftover”

cross-projection magnitude drops below a particular significance level. There are problems

with this, because choice of T is somewhat arbitrary without further constraint, so the

threshold will also be arbitrary.

• In our present application, error bars (uncertainty) around τR represent the limits where St
exceeds 98% of SðtRÞ (since St reflects a distribution). Future approaches might employ a

more nuanced approach to quantify this.

• There is very little jitter in the response onsets of these CCEPs. In other contexts, such as

ERP research, there is known variation in response onset, and expanded approaches will be

needed in order to align trials temporally prior to parameterization.

• It is possible to calculate cross-projections using an alternative approach: Instead of normal-

izing one trial by its norm, and not normalizing the other, one can normalize both trials by

the square root of their respective norms. This has the effect of tightening the distribution of

projections—generating higher extraction significance, but also de-emphasizing anomalous

trials (i.e. those that are most representative, or those that are most likely to be artifactual).

• It may be useful in future studies to keep additional columns of X in the linear kernel PCA

to study variation across trials (i.e. the second-order moment in the data), rather than the

first column alone which is our canonical CCEP shape C(t) (a robust approximation of the

mean).

• Future treatments might examine the effect of temporal dilation in a response—where the

shape of the physiologic response is prolonged or contracted due to disease, medication, etc.

The field of functional data analysis has developed “time warping” approaches [27, 28] for

just this purpose, and they can be applied directly to the CRP parameterization.

• It will be interesting to explore an optimal CRP parametrization for multimodal brain data

(e.g. [69–71]). Here the parametrization may further reflect cross-modal spatial and tempo-

ral dependencies.

Supporting information

S1 Fig. Artificially-generated evoked responses with variation in signal to noise. A. An arti-

ficial signal trace, normalized to variance of 1. B. 10 trials of brown-noise (i.e. random walk)

timeseries, with each normalized to z-score of 1. Brown noise generated by cumulative sum of

random data on -0.5 to 0.5 interval and subtracting off of running mean. C. Response duration

(left) and timecourse of projection weights (right) extracted from synthetic traces with noise

traces from (B) added to signal trace at ratio of 3-to-1. D. Response duration (left) and time-

course of projection weights (right) extracted from synthetic traces with noise traces from (B)
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added to signal trace at “mild” variable ratios of 1.2 to 3.0 in 0.2 intervals. E. Response duration

(left) and timecourse of projection weights (right) extracted from synthetic traces with noise

traces from (B) added to signal trace at “extreme” variable ratios of {0.38; 0.47; 0.59; 0.74; 0.94;

1.18; 1.48; 1.86; 2.34; 2.94}. F. Parameterization of the artificial evoked responses of constant

signal-to-noise ratio of 3-to-1 (from (C)). G. Parameterization of the artificial evoked

responses of the “mild” variable signal-to-noise ratios of 1.2 to 3.0 in 0.2 intervals (from (D)).

H. Parameterization of the artificial evoked responses of the “extreme” variable ratios of {0.38;

0.47; 0.59; 0.74; 0.94; 1.18; 1.48; 1.86; 2.34; 2.94} (from (E)). I. Extracted C(t) for different noise

levels overlaid on top of original artificial form. J. Single-trial noise residuals for different noise

levels. K. Single-trial α0 to noise residual (SNR) for different noise levels. L. Single-trial

explained variance for different noise levels. M. Single-trial ratio of coefficient α0 to input SNR

for different noise levels. Differences between extreme variable traces (yellow) in (J) and (M)

are due to shorter C(t). This shorter C(t) may be related to added correlated deviation toward

zero by the brown noise statistics disproportionally contributing at higher noise levels.

(TIF)

S2 Fig. Example of parameterization with a large number of trials. Measurement is from a

dorsal insular contact in response to stimulation of white matter in the orbitofrontal cortex.

A. Stimulation was performed 69 times. Artifact rejection was at a threshold of p<10−10,

resulting in rejection of 6 trials. The extraction was robust with an associated t-value of 149.

B. The first 10 trials from (A) were parameterized in an identical fashion. No trials were

identified as artifactual, and the associated t-value for extraction was 23. Note that the

response duration (τR), mean projection at response duration (S), and scaling coefficient (α0)
were all nearly identical. However, the statistics of the parametrization were much more

robust for 69 trials. The averaged explained variance and SNR were slightly higher for 10 tri-

als (as might be expected).

(TIF)

S3 Fig. Generation of many artificially-generated sets of pure-noise data to validate statis-

tics. A. Top: An example of a single brown-noise (i.e. random walk) timecourse. Bottom: A

10-trial set of brown noise timecourses. B. A histogram of extraction significances from 20,000

surrogate sets of brown-noise timecourses. C. Top: An example of a single white-noise time-

course. Bottom: A 10-trial set of white-noise timecourses. D. A histogram of extraction signifi-

cances from 20,000 surrogate sets of white-noise timecourses. Because histograms of p-values

show a flat distribution over the 0-to-1 interval in (B) and (D), we may infer the statistical

method is well calibrated for null models.

(TIF)

S4 Fig. An illustration of calculating the canonical shape from linear kernel PCA or from

the simple mean. (A-C) are from the example in the middle row of Fig 5 and (D-F) are from

Fig 8. A. The averaged voltage response, is shown with a black line, and the significant portion

of the response is highlighted (i.e. up to τR). B. C(t) calculated from linear kernel PCA (blue)

and from the simple mean (red). C. Parameterizations calculated from linear PCA vs mean

voltage extractions. D-F. As in (A-C), for the example from Fig 8.

(TIF)
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