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CANONICAL SEMI-INVARIANTS AND
THE PLANCHEREL FORMULA FOR PARABOLIC GROUPS

BY

RONALD L. LIPSMAN1 AND JOSEPH A. WOLF2

Abstract. A parabolic subgroup of a reductive Lie group is called "good" if the
center of the universal enveloping algebra of its nilradical contains an element that
is semi-invariant of weight proportional to the modular function. The "good" case
is characterized here by invariance of the set of simple roots defining the parabolic,
under the negative of the opposition element of the Weyl group. In the "good"
case, the unbounded Dixmier-Pukanszky operator of the parabolic subgroup is
described, the conditions under which it is a differential operator rather than just a
pseudodifferential operator are specified, and an explicit Plancherel formula is
derived for that parabolic.

1. Introduction. This paper continues our work on the Plancherel formula for
parabolic subgroups of reductive Lie groups. Earlier, we considered maximal
parabolic subgroups ([7] and [11]), minimal parabolic subgroups ([4] and [6]), and
parabolic subgroups whose unipotent radical has square-integrable representations
modulo its center ([7] and [12]). In each case we described the representation
theory, the Plancherel measure, and the Dixmier-Pukanszky operator that appears
in the Plancherel formula to compensate for nonunimodularity. We now consider
arbitrary parabolic subgroups.

We isolate the common features of all previously treated cases which enabled us
to describe the fundamental semi-invariant polynomial that gives rise to the
Dixmier-Pukanszky operator. That is our first main result here. The second main
result is a simple characterization of which parabolics have the requisite property,
and the third is the construction in that case of the canonical semi-invariant
polynomial. We explicitly compute the Dixmier-Pukanszky operator and the
Plancherel formula for parabolics that have the requisite property.

Here is a brief summary of the contents of this paper.
In §2 we describe the key property (see Definition 2.1) for parabolic groups that

guarantees the existence of a unique appropriate semi-invariant (Theorem 2.2) in
the center of the universal enveloping algebra of the nilradical. We call such
parabolics "good". Let P be a good parabolic and P = NAM its Langlands
decomposition. We prove (Proposition 2.4) that the generic stability groups S¡ for
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112 R. L. LIPSMAN AND J. A. WOLF

the action of the Levi component MA on Ñ are unimodular, and (Theorem 2.7) we
derive the Plancherel formula

(1.1) f{\P) = 2   f. trace tr,a{Df) dp,(a)
i   Js¡

where the sum runs over the (finite) set of generic MA -orbits on N, the tria are
associated to the z'th orbit by the Mackey machine, D is the Dixmier-Pukanszky
operator on P, and /x, is ordinary Plancherel measure on the unimodular group S¡.
Actually one might have to use cocycle representations here, but (1.1) is the same.

In §3 we characterize good parabolic subgroups as those whose defining set of
simple roots is stable under a certain symmetry of the Dynkin diagram (Proposi-
tions 3.3 and 3.10). That stability says that a certain finite dimensional representa-
tion of the reductive group has a bilinear invariant. That bilinear invariant leads to
an explicit construction (Proposition 3.12) of the canonical semi-invariant, and thus
describes the Dixmier-Pukanszky operator D in (1.1). Theorems 3.13 and 3.14
reformulate and summarize these results, and Proposition 3.15 applies them to
characterize the tube domains among bounded symmetric domains.

In §4 we compile a collection of examples addressing the questions of whether D
is differential and whether the S¡ are reductive. With [12], these examples inciden-
tally complete the detailed discussion of the case where N is abelian or 2-step
nilpotent.

In §5 we consider the "domain problem", the problem of describing a subspace
of the Schwartz space dense in L2 for which (1.1) holds. There, one needs that
Df G LX(P) so that the trja(Df) are defined, that the tr¡a(Df) are of trace class for
/ij almost all a, and that a i-> trace tria(Dß is integrable against ju,. This problem has
been with us throughout our work in this area. When the canonical semi-invariant
lives on an abelian ideal of the nilradical n the domain problem is tractable. We
describe some conditions which guarantee the existence of such an ideal.

This paper completes the basic Fourier Inversion theory for good parabolics.
There the recipe is complete: Given a good parabolic subgroup of a reductive Lie
group, our results tell one how to write down all the ingredients of its Plancherel
formula (1.1). We point out that most of this is valid on/7-adic groups with only
minor modifications.

We thank Tony Joseph for suggesting that we express the modular function in
terms of the maximal set of strongly orthogonal roots. That is essential for §3.

2. Good parabolic subgroups. In this section we define the category of "good
parabolics". Parabolic groups are always nonunimodular. Thus their Plancherel
formula contains a Dixmier-Pukanszky operator-that is, an invertible, positive,
selfadjoint unbounded operator D on the Hubert space of square-integrable func-
tions on the group, which is semi-invariant of weight the modular function and
affiliated with the left ring (see [7, Theorem 1.1] or [5, Theorem 6.4]). Another
ingredient in the Plancherel formula is of course the Plancherel measure ¡i. Neither
D nor ju is unique, but D ® n is uniquely determined (see [7, Remark 2, p. 121]). A
fundamental question in nonunimodular Plancherel theory arises: Is there a best
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CANONICAL SEMI-INVARIANTS 113

possible choice of D (and so also of n)l That quality of good parabolics that
distinguishes them is that for these parabolics there is such a choice. We show in
this section that for a good parabolic P (see definition below) there is a canonical
element T in the center of the enveloping algebra of the nilradical and an integer
k > 0 (eventually 1 or 2) such that \T\l/k is a Dixmier-Pukanszky operator on P.
Then we prove that the generic stability group for the action of P/N on the dual N
of its nilradical is unimodular. This gives immediately a canonical choice of a
measure ¡iP on P in the Plancherel class. Then by an explicit computation we
demonstrate that the pair (\T\l/k, ¡xP) occur together in the Plancherel formula.
Before beginning, we remark that there is a domain problem for the operator |T\l/k
that is not completely resolved. We shall comment on that in greater detail in §5.

2a. Definition of a good parabolic. Let G be a reductive algebraic group defined
over the real number field R. Then G = G(R), the set of all real points of G, is a
real reductive Lie group. We identify G with the set G(C) of complex points and
view G as the complexification of G.

Suppose that P is a parabolic subgroup of the algebraic group G. Then P = P(R)
is a parabolic subgroup of the Lie group G. Suppose we have a Levi decomposition
P = NL of P, where N is the nilradical and L is a reductive Levi component. We
set TV = 7Y(R) and L = L(R). Then L splits canonically L = AM so that P =
NAM is a Langlands decomposition of P.

We will need Calvin Moore's result that P has a Zariski-open orbit on rt*, so
there is a finite set of open /'-orbits on N whose union is conull with respect to
Plancherel measure. Moore presented this and a number of related results in a
seminar at Berkeley in January 1972, but he did not publish it. In June 1973,
Carmona circulated a slightly sharpened version, but that too seems not to have
been published.

We set

8(x) = detc Ad(*)|n, 8: L -*C,
8(x) = 8\L(x) = detR Ad(*)l„. 8: L^R*.

Then
8p(nx) = |ô(jc)|,   n G N, x G L, 8P: P->R*

is the modular function of P. We also put L0 = Ker 8, P0 = NL0.
2.1. Definition. We say that P is a good parabolic if P0 does not have an open

orbit on n*. Otherwise we say that P is bad. These definitions are justified by
Theorems 2.7 and 3.13.

It is clear that in the case of a good parabolic, the dimension of the generic
P0-orbits on n* is diim- N — 1 = dimR N — 1.

Now we set P0 = P0(R) = NL0, where L0 = L0(R) = Ker 8. If A0 = L0 n A,
then A0 = Ker 8P\A and P0 is of finite index in Ker 8P. Therefore, P0 has an open
orbit on n* <=> P0 has an open orbit on N «=> Ker 8P has an open orbit on N.
Finally, let 0 be the Zariski-open /"-orbit in n*. Then 0 = 0(R) is a disjoint union
0 = U/_] 0,- of open f-orbits in n*. Let S¡ be the stability group in L of a
representation y, G TV that corresponds to a point <p¡ G 0,. For any /', 1 </</■, the
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114 R. L. LIPSMAN AND J. A. WOLF

conjugacy class of S¡ in L is uniquely determined. Write 3(") for the center of the
universal enveloping algebra.

2b. Canonical semi-invariants. We prove the following

2.2. Theorem. Let P be a good parabolic. Then there exist a positive integer k and
a nonzero T G 3(n)> semi-invariant under P of weight 8k, such that the operator
D = \T\^'k-considered as an operator on L2(P)- is a Dixmier-Pukanszky operator.
Furthermore D is uniquely determined up to scalar; that is, if T' G 3(n), k' > 0, is
another such pair, then

|T-|.A = c|r|'A'
for some scalar c.

Proof. By [2, Lemma 4.6], 3(tl) 's finitely generated and hence is an affine
algebra. Let A denote the corresponding affine variety of maximal ideals. The
variety A-which we think of as n*/TV-is an affine L-space, and there is an open
orbit. Restrict the action to L0. By assumption, the codimension of a generic
L0-orbit in A is one. Now the group L0 is reductive. Hence there is a quotient. Let
ß be the affine variety whose algebra of regular functions is C[S2] » Síü)^- We
now consider the action of C* on C[ñ] given by factoring the action of L through
L0 via fi-that is A •/ = x -/if 8(x) = A G C*,/ G C[ß] s 3(n)-°- Of course C* has
an open orbit on S2.

Now we diagonalize the action of C* on C[S2]. Let m G Z and set

Km={/GC[fi]:A-/=A'"/}.
We assert that Vm is a complex vector space of dimension zero or one. That it is a
complex vector space is clear. Let /,,/2 G Vm where neither is identically zero.
Choose a point co G ß which is in the open C*-orbit. Then a — /](«) ¥= 0, ß = /2(co)
=£ 0. Furthermore, for any A G C* we have

(/V«)/,(A • co) = (/3/«)(A-1 •/,)(«) = (/?/«)X-m/,(") = /8a-

= A"/2(co) = (A"1 -/2)(co) = /2(A • co).

Therefore (/?/ a)/, =/2.
Choose n G Z such that \n\ is minimal among the integers for which Vn contains

a nonconstant function. Then n J= 0 because otherwise the existence of a noncon-
stant invariant / would contradict the fact that C* has an open orbit on ñ (or that
L has an open orbit on A). Select /0 G Vn, f0 =£ 0. Of course /0 corresponds
canonically to a nonscalar element T G 3(o)~°- But m ract T is semi-invariant of
weight 8". To show that, it is enough to demonstrate it for /0. But that is true
virtually by definition

x -/o - 8(x)•/„ = 5(x)70,       x6L.
Therefore if we set Z) = ITI'^", then D is semi-invariant of weight |S| = 8P under
the action of P. That it is actually a Dixmier-Pukanszky operator follows by the
kind of reasoning employed in [7]. To wit, it is nonsingular by nilpotent Fourier
analysis. Indeed any operator in 3(ü) (resp. a power of the absolute value of such
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CANONICAL SEMI-INVARIANTS 115

an operator) defines a nonsingular operator on L2(N) because its Fourier trans-
form is a polynomial (resp. power of the absolute value of a polynomial) on n*. D
is in the left ring because any operator that lives on TV, is right invariant there, and
given by Dh(nx) = D{hx){ri), hx(n) = h(nx) is automatically so [7, §5a].

Next we show that n must be positive. We choose a Carian subgroup H of G
inside P such that H(R) 2 A- We also choose a collection of positive roots 2 in tj*
so that a G 2 <=* a\a ^ 0 and

(2.3) n=  2   0"-

Then 8(a) = exp(2oej: naa(log a)), a & A, where the na are the nonnegative in-
tegers na = dime g". We can pick a basis for n that is compatible with the
decomposition (2.3). Then any element of 3(n) is a polynomial in those basis
elements. In particular an element T G 3(n)-° as above is a homogeneous poly-
nomial. Since T is semi-invariant of weight 8", we have

8"(a) = expi 2   maa(ioëa))>       a G A,

for some nonnegative integers ma-because a ■ X = ea^°%ä)X, X G ga. It follows
that i2ae2 naa = 2ae2 maa; and hence that n > 0.

Finally suppose T' G 3(n)> k' > 0, is another pair. 7" corresponds to an element
f¿ G C[fi] that must satsify x-f¿ = 8(x)-f¿ = 8(x)% Consider/*' and/„n. Then
A •/*' = \nk'fk' and X-f¿" = A*'n/Un. Therefore/¿' = c/¿" for some nonzero scalar c.
This implies that

|J-|l/n   _   lei1/"*'!/"!1/*'.

The proof of Theorem 2.2 is now complete.
If P is a good parabolic, we shall always select (T, k) from Theorem 2.2 so that k

is minimal. Then T is uniquely determined up to scalar. We shall refer to T as the
canonical semi - invariant. Later we shall see that D = \T\l/k is the best choice of
Dixmier-Pukanszky operator on P.

2c. Unimodularity of the generic stability group. Recall from 2a the definition of
the stability groups S,.

2.4. Proposition. Let P be a good parabolic. Then all the stability groups S¡ are
unimodular.

Proof. Let dn be a Haar measure on TV and dfiN the corresponding Plancherel
measure on TV. As before we fix </>, G 0, ç n*, y¡ G TV the corresponding represen-
tation. Then we have a homeomorphism S¡ \ L -» L • y,. Now dn is relatively
invariant under the action of L with modulus 8P. Therefore d¡iN is relatively
invariant with modulus 8PK Restricting to the open set L ■ yt, we find that S¡ \ L
carries a relatively invariant measure of modulus 8Pl. But that can only happen if
the modular function 8^ extends to a homomorphism of L into R* and then

(2.5) 6P\S, = 8Sr
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116 R. L. LIPSMAN AND J. A. WOLF

Now consider the canonical semi-invariant T constructed in Theorem 2.2, but
viewed as a semi-invariant polynomial/0 on n*. It must be that/0(</>,) ̂  0-because
the P-orbit of tj>¡ is Zariski-open in n*. Let s G S¡. Since s- y¡ = y„ there must exist
w G TV such that s ■ <¡>¡ = u ■ c¡>,. That and the equation s -f0 = 8(s)"f0 enable us to
compute

/ofo) = /o(" • </>,) = /o(* • */) = (*"' -/o)(*) = «(*)"7ofo)-
Therefore \8(s)\ = 1. But 8P(s) = \8(s)\ = 1. Hence, by (2.5), S¡ is unimodular.

2d. Computation of the Plancherel formula. We now derive the Plancherel formula
of a good parabolic. First we must describe the irreducible representations of
P = NL. We shall do that by applying the Mackey machine to the group extension
TV < P. Since we are only interested in the Plancherel formula, it is enough to
restrict our attention to generic representations.

We start with the TV-equivariant Kirillov map k: n* —> TV. Put % = k(0) and
% = k(0,), 1 < / < r. Then the conull set % = U-^x% is a disjoint union of
open L-orbits. Let y, G %, and set S¡ = L^. Let y, be an extension of y to TVS',.. y¡
may fail to be an ordinary representation-but the worst that can happen is that the
obstruction, say co,, is of order 2 [1]. Hence, according to Proposition 2.4, Sf* is
either the unitary dual of a unimodular group, or the projective dual of a
unimodular group with a fixed order 2 multiplier. In either case the Plancherel
measure (ordinary or projective) of Sf* is unique up to scalar. We shall use that
momentarily. But first, we observe that the generic irreducible unitary represen-
tations of P are given by

w, „ = Ind£s y,: <8> o,        1 < / < r,   a G S/*.

Now fix a Dixmier-Pukanszky operator D = \T\l/k according to Theorem 2.2.
We fix choices of Haar measure dn on TV and dx on L, so that dndx is right Haar
measure on P = NL. Let y G TV. Then the scalar y+(D) is well defined. Indeed
yt(T) is the infinitesimal character of y evaluated at T G 3(ü) and ym(D) =
\y*(T)\i/k > 0- Alternatively, D is diagonalizable-considered as an operator on
L2(TV)-with respect to the spectral decomposition provided by the Plancherel
Theorem-and {y,(Z>): y G TV} is its spectrum. Thus for h G L2(N), we have
y(Dh) = yt(D)y(h) for ^-a.a. y G TV.

Next note that for x G L, the semi-invariance says that x • D = 8P(x)D. Since
8P(L) = R^., we can choose for each i = 1, 2, . . . , r an element y, G %, so that

(Y,),tf>) = L
We assume henceforth that such a choice has been made. We continue to write S¡
for Ly; by Proposition 2.4, all the 5, are unimodular. Furthermore, the choices of
measures already made uniquely determine a Haar measure on S¡ as follows. The
choice of dn uniquely specifies a Plancherel measure ju,^ on N, therefore also on the
open set %. The map x —* x ■ y„ L —» %, factors to a Borel isomorphism

(2.6) S,\L^>%.
We put the unique Borel measure dx on S¡ \ L so that 8P(x) dx —» dnN\^ under the
map (2.6). dx is L-invariant; 8P(x) dx and <//% are relatively invariant. But then the
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CANONICAL SEMI-INVARIANTS 117

measures dx and dx, on L and 5, \ L respectively, uniquely determine a Haar
measure ds¡ on S¡ according to

f f(x) dx = f       f f(s¡x) ds¡ dx.
JL JS¡\L JS¡

Finally we pick ¡xs to be the Plancherel measure on Sf' corresponding to ds¡ (see [5,
Theorem 7.1 and Remark 2 following]). Our main result of this section is

2.7. Theorem (Plancherel Formula for the good parabolic P).

h(lp) = 2   f.   Tr ^a(Dh) d^io).
¿-1 -'S!*'

Proof. It has become standard in computations of this sort to use the formula
for the character of an induced representation, namely [5, Theorem 3.2]. By (2.5)
the c7-function of S, \ L is identically 1. Hence [5, Theorem 3.2] gives

Tr -nia{Dh) = f     8P\x) Tr f    (Z)A)(x-1/w,x)(y, ® a)(ns¡) dn ds¡ dx
JS¡\L JNS¡

= |       Tr j    (Z)A)(«x_1j,x)(y, <8> o)(xnx~xs¡) dn ds¡ dx.
JS,\L JNS¡

Therefore

f    Tr tt^Dh) d^io)
JSf

= (      j      Tr I    (£)/j)(nx^15',x)(y,:® a)(xnx~ls,) dn ds,dx dfis(a)
JS¡"' JS¡\L JNS¡ '

= I        |     Tr I    (£)/j)(nx_1Ä,x)(y, ® a)(xnx~ls¡) dn ds¡ dfis(o) dx
JS¡\L JS?' JNS¡ '

(2.8) = f     Tr f D/i(«)y,(xnx-1) dn dx
JS¡\L JN

= f     Tr f Dh{n)(x~l ■ y,)(«) dn dx
JS,\L ¿N

= f      Tr(*-' • y){Dh) dx = f     (x* ■ y),(Z>) Tr(x-'y,.)(A) dx
JS¡\L ■/Si\L

= /    (y¡Ux ■ D ) Tr(*-' • Y/)(/i) dx = f     8P(x) Tr(xl • y)(h) dx
JS¡\L JS,\L

= /   Tr y(h) ¿Mr)-

Consequently

2    f    Jrw,a(Dh)dH(a)=J:   f   Try(/0¿Mr)

= f  Tr y(A) ̂„(y) = A(l*) = Ml,).    Q-E-D.
Ja,
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118 R. L. LIPSMAN AND J. A. WOLF

2e. Remarks and observations, (i) All the details implicit in the computation in the
proof of Theorem 2.7 are straightforward except in two instances. The first is step
(2.8); the second is the specification of the exact collection of functions h for which
it is valid. The latter is a delicate problem and we postpone its discussion to §5. The
former is not serious. Step (2.8) is most easily understood as just a formal
application of the Plancherel Theorem on the unimodular type I (perhaps projec-
tive) group 5,. The precise details are exactly the same as in [7, proof of Theorem
4.9].

(ii) We saw earlier (Proposition 2.4) that if P is good, then the generic stability
groups S¡ are unimodular. Actually, the following conditions are equivalent:

(a) P = NL is good;
(ß) each generic stability group S¡ is contained in Ker 8P\L;
(y) each generic stability group S, is unimodular.
Proof, (a) => (y) is already done.
(/?)<=> (y). This follows immediately from (2.5).
(/?)=> (a). If 5, Ç Ker 8P\L, then the index of S¡ n L0 in S¡ is at most 2.

Therefore dim(L0 n S¡) \ Lq = (dim S¡\ L) — I = dim TV — 1. Hence P0 cannot
have an open orbit on n*.

(iii) As an immediate corollary of (ii) we obtain: Minimal parabolics are good.
That is true because any Lie subgroup S¡ Ç AM is reductive, and so unimodular.

(iv) If P is good, the generic stability groups S, may or may not be reductive. See
§4.

(v) The stability groups S¡ may not be mutually conjugate in L, but they are the
real points of L-conjugate complex groups. Here is an argument to demonstrate
that. Consider the natural map $: n* -> A. As before, we denote by 0 the open
P-orbit in n*. Of course $ is /j-equivariant, so % = $(0) is an open P-orbit in A.
Define

J = {x G n*:4>(x) = <i>(y)^>y G TV-x}.

By results of Rosenlicht [9], *Y contains an open set. But note that 'Y is P-invariant.
Indeed  if x G % g G P,  then <ï>(g • x) = <!>(y) => 4>(x) = <^g_1 -y) => g-1 • y G
TV• x =>_y G g/V■ x = TV• g- x (since TV < P). Therefore the open P-orbit must be
contained in T, i.e. BçT.

Now let x, G 0,, A, = $(x,). Then if we define

&, = {g £ L.gx, e TVx,},       SXf = {gEL:g-\i= A,},

it is the case that these are equal. Indeed

g • x, = « • x, => g • A, = g • <î>(x,) = 4>(g • x,) = $(« • xt) = $(x,.) = A,;

and conversely

g • A. = A, => <D(x,.) = g • 4>(x,) = 4>( g • x,),

whence x, G T^g-x, G TVx,. So Sx¡ = Sx¡. The conjugacy follows now be-
cause: S¡ = S^ÇR); and all the groups Sx, are P-conjugate, since {A,, . . ., \) ÇZ
H -_i ©i' = 6» a singte f-orbit.
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CANONICAL SEMI-INVARIANTS 119

(vi) In at least one bad parabolic, the appropriate semi-invariant in the envelop-
ing algebra has been computed [14]. Since it does not live on the nilradical, it does
not correspond in any immediate way to an operator, and so its role in harmonic
analysis is still obscure.

3. Characterization and semi-invariants for good parabolics. Every parabolic
subgroup P in a reductive Lie group G is characterized by a subdiagram of the
Dynkin diagram of G. The subdiagram is the Dynkin diagram of the reductive part
MA of P = NAM. The Weyl group of G has a distinguished element w0 that sends
the positive chamber to its negative, so -vv0 induces an automorphism of the
Dynkin diagram. We will see that P is good if and only if its subdiagram is stable
under -vv0, and in that case the stability will give us the required semi-invariant
T G 3(n). Since -w0 preserves every component of the Dynkin diagram of G and
acts by the identity except in the cases

/ i—o>
o-o— . ..  —o-o , o

A.    i k —   ¿.

and      °-°-?-o-°

E6

this specifies the good parabolics.
3a. Preliminaries: strongly orthogonal roots. Let g be a real reductive Lie algebra,

ïj a Cartan subalgebra, and A = A(bc, gc) the system of f)c-roots on gc. Choose a
positive system A+, so the corresponding simple roots ^ = {a G A+: a not a sum
of two elements of A+) form the vertices of the Dynkin diagram.

We recall Kostant's "cascade construction", found in [2], which is basic to the
result of Moore mentioned in 2a. Two roots y, y' are called strongly orthogonal if
neither of y ± y' is a root. Then of course y-Ly' under the (dual of the) Killing
form, and the 3-dimensional simple subalgebras

9c[ï] = 8c + Qc  + [öo Qc]    and    gc[y'] = g£ + q¿' + [g£, $/]

of gc centralize each other. We denote this by yly'. The cascade construction
produces a maximal strongly orthogonal family of roots B = { ß) c A+ as follows.

Level 1. Decompose the Dynkin diagram into its components, i.e. decompose
¥ = ■*! U • • • U ̂ fq into minimal mutually orthogonal subsets. That decomposes

A+ = A,+ u • • • U A+    where A,+ = A+ n (Z-span of %),

and defines a set {/?,,..., ßq) of mutually 1 roots by: ß, is the maximal root in

-o— —oí

'211+1

jo

^o
• nil
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120 R. L. LIPSMAN AND J. A. WOLF

Level 2. For each i, 1 < i < q, let T,+ = (y £A,+ : y-J-A}- Consider the subalge-
bra gc[r,+] with root system T,+ u ~r,+, and decompose its Dynkin diagram into
components, i.e. decompose

{* e %: *J_&} = *Mu • • • u*,,g(l)
into minimal mutually orthogonal subsets. That decomposes

r,+ =A¿u--- uA,^,,
where A,+ = A+ n (Z-span of ^¡j), and defines a set { ßiX, . . ., /3,)î(/)} of mutually
1   roots by:  ßtJ is the maximal root in A,^. Note that  {/?,, /î,. •:   I < i < q,
1 < / < (?(/)} are mutually 1.

Leue/ /c + 1. For each / = (/,,..., fk), 1 < i} < ç(/,, . . . , /,_,), decompose

{^G*,:^/^} = *A, U • • •  U*,Mn
into minimal mutually orthogonal subsets. Let AA,     denote A+ u (Z-span of
¥,,-   ), and define: ß,,      is the maximal root in A^,    . Note that {ß,: J =
(»i. • • • > >k+\)> 1 < '} < ?('i> • ■ ■ . '}-i)} are mutually Jj..

The procedure eventually ends, giving us a maximal set B = { ß ) of strongly
orthogonal roots.

3.1. Lemma. Let w0 be the Weyl group element such that w0(A+) = -A+. Then
Mß) = ~ßf°r every ß G B-

Proof. First, -w0 preserves each A,+, so we may assume gc simple. If gc is not of
type A„ D¡ (I odd) or E6, then -w0 is the identity and the assertion is clear.

If gc is of type A,
O-O— . o .   —o

then -w0(a¡) = a¡+, _, and B consists of the roots

«,+ ••• + «,+ i-„      1 </ <|(/+ 1).

If gc is of type D,

o-o
oí .      oc1     °"Z °\f-2°^j(-l

with / odd, then -w0 interchanges <*/_, and a, but fixes the other a„ and B consists
of the roots a2,_, and a2,_, + 2(a2, + • ■ • +a,_2) + a,_l + a, for 1 < / < [1/2].

If gc is of type E6
o--O-p-o-o
*1        °<2 "3     °^       "5

then -w0 interchanges a, and a5, interchanges a2 and a4, fixes a3 and a6, and B
consists of the roots a, + 2a2 + 3a3 + 2a4 + a5 + 2a6, al + a2 + a3 + a4 + a5,
a2 + a3 + a4, and a3.    Q.E.D.
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3b. Necessary conditon for the semi-invariant. Retain the notation of (3a) and let
pc be a parabolic subalgebra of gc standard with respect to the choice of b, and A+.
Thus we have a subset 4> c ^ such that p = p^, the parabolic with

reductive part   p¡^ = bc +    2     8c>
ve<*>

nilradical   p£ =    2     So

where <i>> denotes all roots that are linear combinations of elements of Í».
Evidently, $9 acts on pjj, with trace 8<¡, = 2A+N<#> y. It is known (see the proof of
[10, Theorem 8.5]) that 8$ specifies $$, more precisely that if y G A then

positive     for y G A+ \<4>>,
zero for y G <í>>,
negative    for -y G A+ \<3>>.

In particular 8^ is a dominant weight.

(3.2) <y, 8«) is

3.3. Proposition. If there is a ^-semi-invariant polynomial of weight kS^ on (p$)*
for some k ¥= 0, then -w0(í>) = 4>.

Proof. Any such semi-invariant polynomial corresponds to a p^-semi-invariant
element T of weight kS^ in the universal enveloping algebra U(p¡J,). Here T is
invariant under ñ = 2r(=A+ gc, in particular under pj, so it is an ft-invariant in the
center 3(P<J>) of that enveloping algebra. But A. Joseph showed [2, §§4.10-4.12] that
the weights of bc on 3(f *)" are those nonnegative integral linear combinations of
the roots in B, which are dominant. Since l/c^ = ± k8<¡, is dominant by (3.2), we
now have an expression

(3.4) ±k8* =   2   "ßß>       "ß integers > 0.
ßeB

Lemma 3.1 now tells us -w0(Ô^) = 8$, and from (3.2) we conclude that -w0(í>) =
$.   Q.E.D.

3c. Construction of the semi-invariant. Given p G b£ dominant and integral, we
denote

t„: irreducible finite dimensional representation,
Vv: representation space of rv

for highest weight v.  Furthermore, define £>„ = {« G ^:   (a, v} = 0} c ¥.  If
0 ¥= v„ G F„ is a highest weight vector, then the parabolic subalgebra p„ = £„,  of
gc satisfies

(3-5) p, = iy = {i G gc: t„(ÉK G t>,C}.
We write p£ for the reductive part p$ , p" for the nilradical p¡j,, and p~" for the

"opposite" nilradical 2A+X<<t>g¿1'. Recall the symmetrization map from the symmet-
ric algebra to the universal enveloping algebra,

(3.6) s: S(p;») -> U(p;n) by S(|,.O = i 2 Ski, ■ ■ ■ W
' *      a
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Here the sum is over the symmetric group, s(£,.£r) involves the product in
5(p-"), and £,(1) • • • 4(r) is the product in U(p;").

3.7. Lemma. Suppose that t„ has a (nonzero) bilinear invariant bv: Vp X Vv—>C
Then the function

¿: S(p;") -> C by   fp(Z) = bMs2)v„ v„)
is a nonzero p„-semi-invariant of weight 2v.

Remark./„(£) is linear in S, and to use it we identify/, G S(p"")* = S((p"H)*) =
5(p") = (algebra of polynomial functions on (pn)*).

Proof. By (3.5) we have V„ = t„(U(P~")) • vp, so/, is not identically zero.
Define^: p;" X • • • xp;"-*Cby

<t>(Íi, . ..,£,) = K{rPi\ ■ TA.T,£t^ vv).
If f G gc with Ty(Ç)vp = pvp then we compute

r

(-£■ <fO(£i, • • •, i) = 2 K(T¿i.*Â-i • [t,S, tá] • T,i+i.t£v„ vp)
1

r

= 2   Ki^A\.T&-\ ■ TJ • TÂ.Tr4.0„ t>„)
1

r

- 2 K(TÄ\.rÂ ■ TJ 'TÂ+\.T£r*>r> %)
I

= ¿>„(T„f • t^,.r£v„ v„) - bX-r^i.T& ■ Tr?or, ©„)

= -¿\(T,£i.rJ&>,> T,fry) - bAT¿\.r£.-r,$o„ ©„)

= -2p*($„ . . . , t).
Thus the /--linear function t> on p~" is p„-semi-invariant of weight 2»». Since

/,(£i.Í) " -r 2 «p(£ku» ■ • • ' £»(»■))
we conclude the same semi-invariance for/,.    Q.E.D.

In order to turn Lemma 3.7 around, starting with p«, and going to t„ such that
<I> = <£>„, we recall the standard fact

(3.8) t„ has a bilinear invariant if and only if -w0(v) = v.

Now suppose that -w0(4>) = 0 as in Proposition 3.3. Define

Í \ 8$    if 4*4« is m tne weight lattice,
(3.9) v = i»4 = \

\8<¡,      if j- 8$ is not in the weight lattice.

Then -w0(v) = v, so by (3.8) r, has a bilinear invariant bp, and Lemma 3.7 gives a
nonzero p„-semi-invariant function// S(p¿")-» C of weight j». According to the
Remark, we have

3.10. Proposition. Suppose -w0(<ï>) = 4>. 7V»e« /Acre is a p^-semi-invariant poly-
nomial on (P5,)* o/ weight 8<¡, if \ 8^ is in the weight lattice, of weight 28$ if \ 8<¡, is not
in the weight lattice.
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3d. Degree of the semi-invariant. Suppose that the parabolic p* has a semi-
invariant polynomial of some weight k&9 on (p*)*. According to Propositions 3.3
and 3.10, we may take k = 1 or k = 2. Now, from (3.2) the sign in (3.4) is +, and
(3.4) gives us an expression

(3.11)

if ¿S«, G A   then 89 =   2   nßß = 2v,
ßEB

ifió^GA   then 25*=   2   nßß = 2v,
ß£B

where A is the weight lattice and the nß are integers > 0, and where t„ gives rise to
the semi-invariant of weight 2v.

The bilinear invariant bp: V„ X K„ —> C pairs the highest weight space vpC with
the lowest weight space vw¿p)C = v^„C. Thus the function /, of Lemma 3.7 has
value /,(-) ^ 0 precisely when tp(sK)vp has nonzero component in v_pC

3.12. Proposition. // y G A choose a nonzero ey G Qyc. In the notation of (3.11)
define

E =   II  (e_ßT> G S(P7).
ßeB

Then /,(—) ¥= 0, and/„ is a polynomial of degree n = "ZßeB nß on (p£)*.

Proof. Let q = ©ßefl Qclß]> direct sum of the three-dimensional simple alge-
bras qI + Qeß + [g£, g¿^]. Here we are using strong orthogonality of any pair
ß, ß' G B. Under t„, each Qc[ß] generates a cyclic module Wß from vp and q
generates a cyclic module W. The representation theory of §1(2) says that Wß is
irreducible under Qc[ß], has dimension (2{ß, v>/</}, /?» + 1 = n^ + 1, and has
weight spaces Wß~pß = rp(e_ßYv„C, 1-dimensional (0 < p < n^). Evidently If =
<S>ßeB 1^8, so it is irreducible under q, has dimension WßeB(nß + 1), and has
1-dimensional weight spaces

where £ = {/?„...,/?,} and 0 </>,■< 7ift. In particular 0 =¿= Tr(iS)t?,C = If ""^
= If"", so /,(-) ^ 0 as asserted. In fact, this shows that the component fp(ri) of
degree n = 2 nB of /„ is nonzero, and the uniqueness in Theorem 2.2 shows
/„ =/,<">.   Q.E.D.

3e. Summary and example. We summarize Propositions 3.3, 3.10 and 3.12 as
follows.

3.13. Theorem. Let gc be a complex reductive Lie algebra, ¥ a simple root system
corresponding to a choice of Car tan subalgebra t)c and positive \)c-root system A+, B
the maximal set of strongly orthogonal roots produced by the cascade construction, and
vv0 the Weyl group element that sends A+ to -A+.

Let p* be the parabolic subalgebra corresponding to a subset 4> c ¥, and let
Sq = 2Ä+N<*> y, trace o/p* on its nilradical p%.

1. TTiere is a p^-semi-invariant polynomial on (p$)* of some weight k89, k ¥= 0, if
and only if -tv0(<I>) = <ï>.
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2. In that case, either \8<¡, is in the weight lattice and we may take k = 1, v = {8$,
or \8q is not in the weight lattice and we may take k = 2, v = 8$. Then 2v =
2/3es nßß, nß integers > 0, and the construction of Lemma 3.1 produces a p9-semi-
invariant polynomial of weight k8<¡, and degree n = 2fl nß on (p*)*.

Consider the case where gc is gl(w; C) or êl(m; Q with simple roots

o-o-   ...   -o

1 2 m-1

So B = {ßx, . . . , ß[m/2]) with ß, = a, + • • • +am_, for 2/ < m, ß = a, in case
2/ = m. Let 4> be such that p* is the gc-stabilizer of a "flag" CcC""'' inside C\
2/J < m, or a subspace C in case 2p = m. In the usual a, = e, — e,+, notation,

P m P

K = (m -/>)2 £i ~{m -p)   2    «,-= ('"-/')2 A-
1 m-p+1 1

If w - /? is even, now j ô* is in the weight lattice A, leading to a semi-invariant
polynomial of weight ô* and degree \p(m — p). If m — p is odd, then \ 8# £ A,
and the semi-invariant polynomial has weight 28$ and degree p(m — p). If we write
p<j, in block form matrices

a    x     z'
0     b    y

.0    0     c.
where a and c are p X p, b is (m — 2p) X (m — 2p), x and y are p X (m — 2p),
and z isp X p, then pj, is given by x,_y, z and the polynomial is a power of det(z).
Compare [12, §10.3].

3f. Reformulation for real parabolics. We return to the situation of §2. G is a real
reductive Lie group and P is a parabolic subgroup with Langlands decomposition
NAM. Express its complexified Lie algebra pc = p* as in Theorem 3.13. Then P
has modular function 8P where 8P: /'-»R* is a quasi-character with differential
S^lp. As before, w0 is the element of the complex Weyl group that sends A+ to its
negative. Theorem 3.13 carries over to

3.14. Theorem. The parabolic P is good if and only if í> = -w0(<I>). In that case
there are two possibilities as follows.

(i) j 8$ is in the weight lattice A, we have an expression 8$ = SfleS nßß where B is
the set of strongly orthogonal roots from the cascade construction and the nß are
integers > 0, and there is a P-semi- invariant polynomial of weight 8P and degree
n = SÄ nß on n*.

(ii) jSq G A, 25* = 2fleB nßß with nß integers > 0, and there is a P-semi-
invariant polynomial of weight 8P and degree n = 2B nß on n*.

Consider the case where G is an indefinite unitary group U(k, I) or SU(k, I), and
let P be the stabilizer of an isotropic subspace of dimension p in the corresponding
hermitian vector space C*'. Now gc is gI(w;Q or §l(m;C) where m = k + I,
1 < p < min(A:, /), and pc is the parabolic p* of the example at the end of §3e. So
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P is good, and we are in case (i) or case (ii) of Theorem 3.14 as m — p is even or
odd. Compare [12, §10.2]. One knows [11, §2] that n has underlying real vector
space structure (p X p skew hermitian matrices) + (p X (m — 2p) complex
matrices) where (unless m = 2p) the first summand is the center of n, and the
polynomial is a power of (z, x) h» det(V^T z).

Finally, the correspondence from 8$ to the semi-invariant polynomial <j> on n* is
not transparent. If G = SL(2« + 1 ; R) (resp. SL(2n + 2; R)) and P is the Borel
subgroup with TV consisting of all strictly upper triangular matrices

1 *

0 1.
then 5* = 2(ßx + • • • + ßn) (resp. 2(/3, + • • • + ßn) + ßn+l), corresponding to
cf> = d2d2 • • ■ d2 (resp. (d2 ■ ■ ■ d2)dn+l). Here we view cf> in S(n), and dj is the
determinant of the j X j upper right-hand corner block submatrix. This particular
formula for </> was known as a consequence of results [13] of Dixmier.

3g. Remark on the tube domains. Consider a hermitian symmetric space G/ K of
noncompact type, and the complex flag manifold realization Gc/ P of its compact
dual symmetric space. If G/K is irreducible, i.e. if Gc is simple, then for a Carian
subalgebra I c f of g there is a system A+ of positive Ic-roots on gc such that
p = p* where

the system ^ of simple roots has just one noncompact root,
<J> consists of all the compact roots in ^.

One knows [12, Theorem 9.15] that there is a nonzero p^-semi-invariant polynomial
on (p*)* if and only if the domain G/K is a tube domain, i.e. a tube over a
self-dual cone. In that case the semi-invariant is of the appropriate weight kSq,.
Now, from Theorem 3.13,

3.15. Proposition. 77ie noncompact type symmetric space G/K is a tube domain
if, and only if, the corresponding set (one for each simple factor of Gc) of noncompact
simple roots is -w0 stable.

Thus, for example, marking the simple root as a, we immediately recover the
well-known fact that G/K = SO*(2m)/U(m):

„o ^
o-o—  . . .  -o^.

is of tube type if and only if m is even.

4. Examples. In this section we consider good parabolic subgroups />* = NAM
and consider the questions of whether the operator D can be taken to be
differential and whether the isotropy subgroups of MA on TV are reductive.
Examples show that one cannot decide these matters in an easy direct way from
the root structure except under rather restrictive conditions.
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4a. Differentially of D. If 5 5* belongs to the weight lattice A then we construct a
differential operator D on N, semi-invariant of weight 8P. If one wants it positive
he must take \D\, which need not be differential. If \8$ & A we construct an
operator E of weight 5/, and then D = \E\l/2 is not differential. In any case the
operator is constructed from a bilinear invariant bp of the representation t„ where
v = \8$ if 15* G A and v = 5* if \8$ £ A. There are two possibilities for b„: It is
symmetric or antisymmetric. Kostant suggested that we check whether symmetry
of bp corresponds to 5 5* G A. We now see that those conditions are independent.

If G = F4B then the minimal parabolic subgroup P = NAM has TV st Im G +
G where G is the Cayley division algebra and (z, x)(z', x') = (z + z' + Im xx',
x + x'). The operator is A"/2 where A is Laplacian on Im G, i.e. |5* G A. But bs
is symmetric.

If G = Sp(2; R) then the Borel subgroup P has {-89 G A, for half the sum of the
positive roots always lies in the weight lattice, but there bs^2 is antisymmetric.

If G = SL(/i; R) then the Borel subgroup P has 5 5* G A and bs /2 is symmetric.
If G = Sp(l, 1) then the minimal parabolic subgroup P has 5 5* £ A and here

bs  is antisymmetric.
4b. Square-integrable nilradical. Suppose that P = NAM is a good parabolic

subgroup such that TV has square-integrable representations, i.e. representations
with coefficients that are square-integrable on TV modulo its center. Going through
[12] one sees that the generic isotropy subgroups of MA on TV are always symmetric
subgroups of MA. In particular, they are reductive. Here note [12, §8] that TV is
(abelian or) 2-step nilpotent.

4c. Minimal parabolics. Suppose that P = NAM is a minimal parabolic sub-
group. Then M is compact, so the isotropy subgroups of MA on TV are reductive
(and thus P is good), even though N generally does not (see [3]) have square-
integrable representations.

4d. Good parabolics with 2-step nilradical and nonreductive isotropy. Let G be the
indefinite real orthogonal group 0(s + u, s + v) and let P = NAM be the stabi-
lizer of a totally isotropic i-dimensional subspace, where s > 1, í is odd and
u + v > 0. Then P is the group ^.„„(R) of [11]. It has structure n = ImRlXs +
R,x(w) and MA = GL(s; R) X 0(u, v) where the first summand of n denotes
antisymmetric s X s real matrices, and the second summand consists of all 5 X
(u, v) real matrices x = (x,, x2) ins X u,s X v blocks, with

[(z, x), (z', x')] = (*, • 'x\ - x\ ■ 'x, - x2 • 'x2 + x2 • 'x2, 0).

Here MA acts by Ad(y, g): (z, x) h> (yz • 'y, yx • g). TV is 2-step nilpotent but does
not have square-integrable representations, and we are going to check that the
generic isotropy subgroups of MA on TV are not reductive.

Identify n to n* under (z, x) i-»/ZiJC where

fz x(z', x') = trace(zz') + trace(x, • 'x', — x2 • 'x2).

Then Ad*(TV) -fzx = {fz,x+zx.: x' G R*«"'")}, which has a distinguished element
fzx„ with zx" = 0, and the generic classes in TV are those corresponding to the/ZJt
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where z has maximal possible matrix rank, s — 1. tyf denotes the Pfaffian on
antisymmetric matrices; tyf2 = det. If we write out x in columns as (x',..., xu+c)
then

«u-iHi *0')f-j;,K*, ;')}2
is a polynomial on n* that is P-semi-invariant of type det(y)2 where y is the
G\j(s; R)-factor. Here 8P = det(y)(i" ,X«+o)/2j so the Dixmier-Pukanszky operator is
the Fourier transform of |^|<*->X«+«>/4

Let [77-] G TV correspond to the functional fzx G n* given by
0       • • •      0

0

and   x =
0

such that 'b G R"'° has ||'6||2 *= 0 and / = (_? ¿). Then ^(fzx) = ||'6||2 * 0, and the
MA = GL(s; R) X 0(u, v) stabilizer of Ad*(TV) • fzx consists of all (y, g) such that

y = (Í    °e)    With Y G Sp^(i " 1);R^' C G RlX(i-l)

and e = ±1 with g • 'b = e'b.
It has unipotent radical given by y = (^°), g = I, isomorphic to Ri_l. Thus the
generic isotropy subgroups of MA on TV are not reductive.

4e. Good parabolics with 2-step non-square-integrable nilradical and reductive
isotropy. Let G = 0(n, n), n even, and let P = NAM be the parabolic subgroup
that stabilizes an isotropic flag (1-dim isotropic subspace) c (/i-dim isotropic
subspace) inside R"'". Take the usual basis in which the inner product has matrix
(q _f) in n X n blocks. Then P has Lie algebra

0     0        0
R,^t Ggl(«- 1;R)m + a =

n =

A
0
0

0
-'A

x
0
0
0

0
z

y
0
0

0
0
-a

: 'x, 'z G R"-1^ G Im rO-Dx(»-D

The  composition   in  n   is  [(z,y, x), (z',y\ x')] = (xy' — x'y, 0, 0),   and  MA =
GL(1; R) X GL(n - 1; R) acts on n by Ad(a, A\z,y, x) = (az'A, Ay'A, axA~l).

Identify n to n* under (z, y, x) h> fzyx where fz¡y¡x(z', y', x') = z ■ z' -
traceCy/) + x • x\. Then Ad*(TV) • f '- U,y+yy- 'r1*«""^' = Rz}. The
generic classes in TV are those where (yz "„) is nonsingular, and the P-semi-invariant
of type 8,, on rt* is just
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Thus the Dixmier-Pukanszky operator is the polynomial differential operator that
is the Fourier transform of \p, and is positive.

Let [w] G TV correspond tofzyx G n* given by z = (0, . . . , 0, b) with b ^ 0,

J

y

0

with/
-(? -</)•

and b2 > 0,   and   the   MA = GL(1;R) X
consists of all (a, A) with A = (q   °/a)

2);R)X GL(1;R). Thus

x = (0, . . . , 0).   Then   >K/W) =
GL(« - 1;R) stabilizer of Ad*(TV) • fzyx
and A' G Sp(|(« — 2);R). It is isomorphic to Sp^n
the generic isotropy subgroups of MA on TV are reductive.

4f. The other good parabolics with 2-step nilradical. The comments of 4b, 4d and
4e apply to good parabolic subgroups P = NAM in a simple group G, such that TV
is abelian or 2-step nilpotent. It is in fact easy to classify all good P — P9 such that

(i) TV is abelian or 2-step nilpotent,
(ii) TV does not have square-integrable representations, and
(iii) P is good, i.e. -w0(4>) = Í».

First, there are the parabolics P c G considered in 4d and 4e, and their complexi-
fications Pc c Gc. The parabolics Ps{ ,(R) c 0(s + 1, s + 1), s > 1, s odd, com-
plexify and then intersect to give another such parabolic in SO*(2s + 2), the real
form of 0(2s + 2, Q with maximal compact subgroup U(s + 1). These are the
only cases inside classical groups.

Inside exceptional groups one only has P in the (split) ElyA given by P = P$
where <& = {<£„ . . . , <j>6) in

h
-o-

/ ?

o--
¿1      ¿ h '5

•o

and its complexification Pc in the complex E-,. In this group P = NAM, n = a + r
where the center 5 has dimension 7 and the complement r has dimension 35.
M = (MA)0 = GL'(7;R) = SL(7, R) X {±/}, where {±1} is the center of G =
E1A and acts trivially, and SL(7; R) acts

on a = (R7)* by   0-0-0-0-0-0

on r = A3(R7) by  o-

The multiplication in n is \(z, x), (z', x')\ = (2x A x', 0) where x f\x' G A6(R7)
which is identified to (R7)*. In this notation, TV = a + r with (z, x)(z', x') = (z + z'
+ x A x', x + x'), and the coadjoint action of TV on n* = a* + r* is

Ad*(z, x)-1 • a, 0 - a, £ + ? a x)
where ? A x G A4(R7) which is identified to A3(R7)* = r*.
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Define a polynomial ^ on n* as follows. Let (f, £) G n* = a* + r* = R7 +
A3(R7)*. Now | is a 3-form on R7, so the contraction f _i £ is a 2-form on R7 that
annihilates f. If f ^ 0 write {f _i £} for the 2-form induced on R7/f R = R6, and
define «Kf, £) = <3>/{f _, £}■ If ? = 0 then #f, |) = 0. The polynomial 4> is well
defined and A/-invariant because, for £ ^ 0, the SL(7; R)-stabilizer of f acts with
determinant 1 on R7/f R, and it is TV-invariant because f _j (£ + f A x) = f __i £.

/I = {a/: a > 0} acts on n by (z, x) h> (a2z, ax), on n* by (f, £) h> (¿r2f, a~'£),
so the modular function 8P(aI) = a49. Also ai sends ^ to afy, so |i//|7 Fourier
transforms to the Dixmier-Pukanszky operator on P.

Let [77-] G TV correspond to (f, £) = (e„ ef A «* A ef) G n* where {e,} is the
standard basis of R7 and {ef} is the dual basis of (R7)*. Then \p(Ç, £) = 1, and
Ad*(TV) • (f, 0 = {(e„ ef A e¿* A e* + 2 ?;/*** A e* A e*)} where summation
is over 1 < i <j < k < 7 and c/^ G R. The GL(7; R)-stabilizer of this generic
coadjoint orbit of TV consists of all

1 * *
0 A 0
0     *      B

withdet(^) = 1 = det B,

where the diagonal blocks are 1 X 1, 2 X 2, 4 X 4 and the *'s give the unipotent
radical. Thus the generic isotropy subgroups of MA on TV are not reductive.

4g. Summary. The examples in 4a show that differentiality of the Dixmier-
Pukanszky operator D for a good parabolic P9, i.e. the condition \8<¡, G A, is
independent of whether the bilinear invariant is symmetric or antisymmetric.

The examples of 4b-4e, addressing the question of whether the generic isotropy
groups of MA on TV are reductive for good parabolics P = NAM, give

from 4c: no bound on the degree of nilpotency of TV can prevent the generic
isotropy subgroups from being reductive;

from 4b: if TV has square-integrable representations then TV is (abelian or) 2-step
nilpotent and the generic isotropy groups are reductive;

from 4d: in some cases where TV is 2-step nilpotent the generic isotropy groups
are not reductive;

from 4e: in some cases where TV is 2-step nilpotent but does not have square-
integrable representations, the generic isotropy groups are reductive.

Finally, the results of [12], 4d, 4e and 4f combine to give a complete discussion of
the Plancherel formulae for good parabolics P = NAM in which TV is (abelian or)
2-step nilpotent.

5. The domain problem. Recall the derivation of the Plancherel formula for a
good parabolic P that is carried out in §2d. It is assumed implicitly in that
computation that h G Dom D. But since we also took tr(Dh) to mean the
operator-valued integral fP tr(g)Dh(g) dg (when invoking [5, Theorem 3.2]), it is
also necessary to have Dh G LX(P). So we would like to know whether the space
Dom D n D~XLX(P) is substantial-e.g. whether it is dense in L2(P). This question
has arisen in every previous work on the Plancherel formula for specific nonuni-
modular groups, namely in [4], [7], [6], [12], [8], [5]. A thorough treatment of the
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circle of ideas surrounding this question may be found in [7, especially §1]. The
discussion there reveals that the property which is both desirable and reasonable to
expect is the following:

(5.1) Dom D' n D'L¡(P) n L2(pf is dense in L2(P),   V/ > 0;
where L2(P)^ denotes the left bounded elements in L2(P).

In all previous cases (i.e. in the articles just cited), condition (5.1) has been
verified. However, there are nonunimodular groups for which (5.1) fails. Phil Green
has given such an example, a certain restricted direct product of /J-adic groups. It
seems quite likely that property (5.1) cannot fail for a Lie group, but we have not
been able to prove (5.1) for an arbitrary good parabolic. On the other hand, we do
have some partial results in that direction, and we conclude the paper by sketching
them.

(i) We have seen in Theorem 2.2 that, for a good parabolic, the canonical
Dixmier-Pukanszky operator "lives" on the nilradical. Thus we may replace the
parabolic P by its nilradical TV in equation (5.1).

(ii) Suppose that the nilradical n is abelian. Then the results of [7, §3] apply. If/0
is the semi-invariant polynomial corresponding to the canonical semi-invariant T
given by Theorem 2.2, then the space S^TV) = [h G §>(TV) = Schwartz functions
on TV; (log h)'= 0 near/0_1(0)} is a dense subspace of L2(N) which is contained in
Dom D' n D~'LX(N) n L^Nf for any t > 0.

(iii) Here is the observation which guarantees (5.1) in a large number of cases.
Consider the condition

(l. _s There is an abelian subalgebra a Ç n such that the canonical
semi-invariant T lies in the enveloping algebra 11(3) of 3.

If (5.2) is satisfied, then matters reduce to the abelian case described in (ii).
Indeed, let Z = exp a. We can find a complementary submanifold V such that
TV = Z X V (as manifolds, not groups). Since T lives on Z, once again the results
of [7, §3] apply. If f0 G S(¿*) is the invariant polynomial corresponding to T, then
the space Sj (Z X V), as defined in [7, 3.9], will be dense in L2 and contained in
the intersections described in (5.1).

(iv) Condition (5.2) is always satisfied for groups G of type An and C„. Let G be
SL(«, C) or Sp(«, Q and B a minimal parabolic (i.e. a Borel) subgroup. One knows
the structure of the nilradical n^, of B very well, and condition (5.2) is satisfied. In
fact, in these cases there is an abelian ideal 3 Ç r^ such that 3(rio) Q ^(3).
Condition (5.2) is actually satisfied for any parabolic subgroup P of G. The reason
is the following. It is no loss of generality to assume that P D B, so that the
nilradical n of p is contained in tTq. It does not follow that 3(n) £ 3(0o)- But me
canonical semi-invariant of P must actually be in U(n)^. The latter is contained in
3(l!o)- Furthermore, since a, riß and n are all sums of root spaces, it is easy to see
that the semi-invariant for P must lie in U(a n n); so once again we are in the
abelian case.

(v) Unfortunately, condition (5.2) fails for the groups of 4d, 4e, and 4f, and
others, such as the nilradical of a Borel subgroup of the exceptional group G2. Thus
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we are led to the following interesting problem. Let TV be a simply connected
nilpotent Lie group, T G 3(n) nonzero, and / > 0. Consider the operator on L2(N)
given by D = | T\'. Can we find a partial Schwartz space that is dense in L2(TV) and
contained in Dom D n D~XL^(N) n L2(N)t'> The natural candidate seems to be
the following:

&AN) = {n G &(N) " Schwartz functions on TV; (log h)'= 0 near/r^O)},

where/0 is as usual the polynomial on n* corresponding to T. Sr(TV) is dense in
L2(TV) and contained in Dom D n L2(TV)e. For h G Sr(TV), one has Dh G
C°°(N), but we have not been able to verify the integrability of Dh.
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