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Canonical Sources and Duality in Chiral Media 

Absrracr-Chiral media are characterized by the constitutive relations 
D = €E + it, B and H = B/p + &E where lc i s  the chirality admittance 
introduced to take into account macroscopic handedness or optical 
activity inherent in the media. In addition we define a chirality impedance 
and a dimensionless chiralityfactor to describe the wave properties of this 
medium. As known for some time, this medium supports the plane-wave 
propagation of circularly polarized waves of opposing handedness and 
differing wavenumbers. Here we examine the radiation of electromag- 
netic waves from a set of simple canonical arrays. This leads us to the 
notion of duality for chiral media which can be exhibited in a surprisingly 
simple form. We show that in the far field, both point and extended 
sources, w hether electric or magnetic, radiate two electromagnetic 
eigenmodes which are of opposing handedness. We also demonstrate 
sources which access only one of the eigenmodes of the medium. Several 
applications of the results and array performance in chiral media are 
noted. 

I. INTRODUCTION 
HIRALITY' or handedness is common in a variety of C naturally occurring and man-made objects. The former 

includes a diverse array of sugars, amino acids, DNA, and 
certain mollusks and winding vegetation while the latter 
encompasses such common objects as gloves, stringed instru- 
ments, and helices. This form of symmetry, or lack of bilateral 
symmetry, has been of interest to the scientific community 
since its discovery by Arago [ 11 in the early nineteenth century 
and subsequent experimentation by Biot [2] and Pasteur [3] in 
the mid- 1800's. These researchers were concerned with the 
rotation of the plane of polarization of optical waves due to 
interaction with certain crystals and liquids. Since then, this 
phenomenon has been of interest to those in the electromagnet- 
ics' community starting with the simple but illuminating 
microwave experiments of Lindman [4], [5]  and Pickering [6] 
performed in the early and middle part of the twentieth 
century, respectively. 

Of more recent note are several papers by Bohren examin- 
ing the reflection of electromagnetic waves from chiral 
spheres and cylinders [7], [8] and the book by Kong [9] and 
numerous references therein regarding general bianisotropic 
media. Shortly thereafter was the research by Jaggard et al. on 
relating the interaction of electromagnetic waves with chiral 
structures and the relation of microscopic and macroscopic 

Manuscript received July 16, 1987; revised October 29, 1987. 
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PA 19104. 

IEEE Log Number 8820229. 
I By definition, an object is chiral if it cannot be brought into congruence 

with its mirror image by translation and rotation. The mirror image of a chiral 
object is denoted its enantiomorph. If a chiral object is right-handed (left- 
handed) then its enantiomorph is left-handed (right-handed). An object which 
is not c h i d  is said to be achiral. 

chiral media [lo], and the work on transition radiation at a 
chiral-achiral interface by Engheta and Mickelson [ 1 11. In the 
most recent past is the work on the reflection of waves from 
chiral-achiral interfaces reported by Silverman [ 121 and 
Lakhtakia et al. [13] and the scattering of waves from 
nonspherical chiral objects by Lakhtakia e? al. [ 141. 

Here we shall examine the characteristics of antenna arrays 
embedded in unbounded chiral media using the Green's dyadic 
for electric sources and the Green's vector for magnetic 
sources. The former was recently found by Bassiri er al. [ 151 
for electric sources. Our purpose is to bring to light the new 
characteristics of sources, both point and extended whether 
electric or magnetic, which interact with this medium and to 
examine general characteristics of sources located in a medium 
with handedness. These results may prove valuable in estimat- 
ing the effect of bounded chiral media, such as lenses and 
radomes, on the performance of arrays. Of theoretical interest 
is the very simple duality relations that are characteristic of 
chiral media when the results are written in terms of the 
circular eigenmodes. Appropriate measures of c h i d i g  such 
as the chirality admittance and impedance and a dimensionless 
chirality factor are introduced as needed. 

11. PROBLEM FORMULATIOS 
Chirality is introduced into electromagnetic theon through 

the constitutive relations [9]-[ 113, [ 151, [ 161 given by 

D = EE + itCB (1) 

H = B / p  + itcE 

for the lossless case where boldface quantities denote vectors 
and lightface characters denote scalars. The chirality admit- 
tance E c  (a real number) is an indication of the degree of 
chirality of the medium and E and p are the usual permittivity 
and permeability, respectively. Intuitively, this chirality ad- 
mittance is a result of electrical-like secondary sources being 
induced by magnetic fluxes and magnetic-like secondary 
sources being induced by electric fields as explained previ- 
ously for the case of a medium composed of electrically small 
helices [ 101. Alternative but equivalent constitutive relations 
have also been employed. 

Using the time-harmonic Maxwell equations for both 
electric sources J and p and magnetic sources J, and pm with 

In [7], [8], [ 131, [14] the fields D and B are related to E and H and their 
derivatives through the relations D = eE + Be V x E and B = pH + Pp V 
x H where f l  is measure of chirality. These relations can be shown to produce 
results equivalent to those obtained through ( 1 )  and (2). 

0018-926X/88/07OO-1OO7$01 .OO 0 1988 IEEE 
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e-’”‘ excitation assumed 

V x E =  iwB- J, 

V x H = J - ioD 

(3) 

(4) 

V B=p, 

V * D = p  

one can find the following inhomogeneous differential equa- 
tions for the field quantities with the aid of (1) and (2): 

0 :E = iwp[J - iEcJm] - V x J, 

O ~ H = ~ W ~ [ ~ [ ~ J + J , / ~ ~ ] + V X J  (8) 

O ~ B = p { V x [ J + i ~ , J m ] + i ~ ~ J m }  (9) 

0 f.D = p { iweJ + V x [i&J - J,/qf]} 

(7) 

(10) 

where the chiral differential (Helmholtz-like) operator is given 
by the relation 

U,”{ } 3 V X V X {  } - 2 ~ p t , V x {  }-k2{ } (11) 

and where 

is a generalized chiral impedance with qo( = a as the 
background intrinsic wave impedance. The introduction of 
both the chiral impedance by (12) and the chiral admittance 
through (1) and (2) lead us naturally to the definition of a 
dimensionless chirality factor K given by their product. 
Explicitly we write 

where the absolute value of K is bounded by zero and unity. It 
is this parameter that is a quantitative measure of the degree of 
chirality of the medium, and we propose it here as the 
appropriate measure of the chirality of a medium. We note that 
tC is bounded by relations involving the permittivity and 
permeability and cannot become large without limit [ 161. 

Since the fields E ,  B, D, and H are linearly dependent on 
the current sources J and J, one can write these fields in terms 
of integrals over the sources and appropriately defined Green’s 
vectors and Green’s dyads. Following an analogous procedure 
to that outlined by Papas [17] for achiral media, the time- 
harmonic fields can be written for unbounded chiral media as 

E(x)=iwp s F(x, x’ )  * [J(x’)--i[,Jm(x’)] dx’ 

- s rm(X, x’ )  x J,(X’) dx‘ 

+ s rm(x ,  x’ )  x J (x’ )  dx‘ 

(14) 

H(x)=iwp f (x ,  x ’ )  - [J,(x’)/~f+i[,J(x’)l dx’ 

(15) 

B(x)=p iwc f ( x ,  x ’ )  J , ( x ’ ) ~ x ’  U 
I s  

+ j rm(x ,  x’ )x[J (x’ )+i~ ,J , (x’ ) ]  dx’ 

D(x)=p iwe f ( x ,  x ’ )  * J (x’ )  dx’ 

- 1 rm(x ,  x’)x[Jm(x’)/~f-iEcJ(x’)] dx‘) (17) 

where the functions Green’s dyad f (x ,  x’)  and the Green’s 
vector F,,,(x, x’) are as yet undetermined. Here boldface 
quantities with overbars indicate dyads. It can be verified that 
(14)-(17) satisfy the constitutive relations (I)  and (2). 

The dyadic Green’s function T(x, x’) has been derived [15] 
and can be rewritten in the compact and instructive form 

f ( x ,  x ’ ) = ~ + ( x ,  x ’ ) + ~ - ( x ,  x ’ ) = P r + ( k + ) G + ( x ,  x’ )  

+ [ l -P ] r - (k - )G- (x ,  x ’ )  (18) 

where the + and - superscripts refer to the first and second 
terms, respectively, on the right-hand side of (18) and the 
dyadic operators for the two eigenmodes are given in terms of 
the unit dyad 1 by 

r’(k,)= { I +  k ; ’ Ix  - V +  k;’VV} - (19) 

and where 

The wavenumbers k, are the propagation constants for the 
two eigenmodes supported by the medium. We denote the 
factors P and 1 - handedness factors. These quantities will 
play a role in the far-field radiation patterns of antennas and 
arrays and represent the relative amplitude of waves of each 
handedness. Here ko( = w G )  is the background wavenumber 
of the achiral media with identical permittivity and permeabil- 
ity. 

The Green’s vector rm(x ,  x’) can be found in a similar 
manner to be 

where the vector operators are given by 

y i ( k , )  = { V k  k;’V - x V} (25) 

and the other quantities are defined as before. 
We note that the background wavenumber satisfies the two- 

sided inequality k -  5 ko s k +  for positive [, and k +  I ko 5 
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k _  for negative 4,. Likewise, the handedness factors 0 and 1 
- 0 satisfy the inequality 0 5 0, 1 - 0 I 1. Clearly, the two 
modes, denoted by +(e) correspond to waves propagating with 
wavenumbers greater (less than) the background wavenumber 
for a positive chirality factor and it can be demonstrated that 
the former produce right-handed circularly polarized waves 
while the latter produce left circularly polarized waves in the 
far field. This form complements Bohren’s results for source- 
free wave propagation [7], [8]. In the limit cc -+ 0, the 
medium becomes achiral since the wavenumbers k ,  + ko 
while @, 1 - @ + 1/2 and G ,  and G -  approach a common 
value, that of the background medium. Similarly, the Green’s 
dyad and the Green’s vector take on their achiral forms [ 171 in 
this limit. 

111. DUALITY AND FAR-FIELD RADIATION 

and 
- J k =  f v c J  J‘ = k Jm/vc 

- P A =  f l c p  p ’ =  f p P m / l c .  (31) 
These results show the extremely simple relationship that 
electric and magnetic sources have in chiral media due to the 
peculiar constitutive relations of (1) and (2) and evidenced in 
the field similarities demonstrated in (26)-(29). We use these 
results in the next section to examine the radiation from simple 
electric and magnetic sources. Also note the role of the chiral 
impedance qc which is an intrinsic descriptor of the chiral 
medium. 

From a far-field expansion of the Green’s dyad (18) the 
electric field eigenmodes corresponding to (14) or (26) can be 
written in the form 

[-C,x@,x k i @ , x ]  Using (14)-(17) and the operators (18) and (24), the field ~ ( ~ 1 ,  k r , l  * iwp 
expressions can be simplified so that appropriate field duality 
for chiral media becomes evident. Expressions (14)-(17) take 
on the simple form for each eigenmode, 

E(x), = i w p  1 F*(x, x ’ )  . [J(x’)+iJ,(x’)/q,l dx‘ (26) 

- iwp 
H(x)+ =- [ F*(x, x ’ )  

Dc 

- (f i)[J(x’)f iJ,,,(x’)/vc] dx‘ (27) 

( f i)[J (X ’ ) f iJ, (x’)/qC] dx ’ (28) 

[J(x ’ ) f iJ,(x ’)/lcl dx ’ 

. l e - i k r f r . x ’  [J(x’) f iJm(x’)/lc] dx’ (32) 

for general current sources where r = 1 x I, 6, is a unit vector 
along the position vector x. It is understood here and in the 
following equations that in the triple-cross product involving 2, 
the cross products are carried out right to left. Likewise, using 
(15) or (27) one can show that the magnetic field in this limit is 
related to (32) by the expression 

- e - i k +  ’ [J(x ’ ) f iJ,(x ’)/vC] dx‘ (33) 

so that 

(34) 

where the chiral wave impedance lc has been given by (12). 
Likewise, for the field pair D and B one finds (29) 

where the subscript or superscript -t indicates the appropriate 
eigenmode and the total field is obtained by summing over the 

[-C,x&,x f i C , x ]  

two modes. 
We note that the particularly simple forms for the field * ~ e - i k ~ f ~ ’ x ’ [ J ( x ~ ) f i J m ( x ’ ) / ~ c ]  dx’ (35) 

* 
[l!O) [C, x f i C ,  x 6, x ] B@)+ k r ,  I i d +  

quantities due to both electric and magnetic sources, as given 
by (26)-(29), are peculiar to the case of chiral media and its 
resulting circular polarization eigenmodes. These expressions 
are less cumbersome than their achiral counterparts which are 
more like relations (14)-(17). Thus we expect a certain 
simplicity in the field structure when both electric and 

xr  

* s e - ; “ +  er’x ’ [J (x ’ ) f iJ, (x’)/qc] dx ’ (36) 

and 

magnetic sources are present. 
From the symmetry of (26)-(29) it is apparent that E and H 

are dual field quantities as are D and B. Explicitly, one can 
show by substitution that if the original fields and their sources 
which satisfy (1)-(6) are denoted by unprimed quantities, their 
duals, denoted by primes, also satisfy Maxwell’s equations 
and the constitutive relations providing 

- B ’ =  +vcD D ’ =  f B / v c  (30) 

in a manner reminiscent of (34). 
We note that the results (34) and (37) are identical both to 

similar results in achiral media and the results given in [ 151 for 
chiral media with only electric sources present. That is, the 
introduction of magnetic sources in no way upsets the 
symmetry of the equations which characterize chiral medium. 
This is due in part to the fact [hat the additional terms in (14)- 
(17) due to magnetic sources can be absorbed through the use 
of chiral impedance to produce (26)-(29). 
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Of particular note from (26)-(29) is that either eigenmode 
can be excited while the other is suppressed through the 
appropriate choice of electric and magnetic sources. This 
concept is new with the introduction of magnetic sources and 
will be exploited in the following section concerning simple 
canonical arrays in chiral media. Also note from (32)-(33) and 
(39 ,  (36) that each field has three parts, the first is an 
amplitude prefactor dependent on p, the second is a polariza- 
tion term indicated by the bracketed cross products of unit 
vectors Er, and the third is a propagation part due to the 
exponential kernel e-ik+br‘x’ in the integrand. Each of these 
three parts of the fields is investigated in the following sections 
which apply these results to illuminating examples. 

IV. CANONICAL POINT ARRAYS 
The expression for the electric field eigenmodes due to a 

point electric dipole p and point magnetic dipole m located at 
the origin is immediately found from (26) with the relations 
J(x’) = - iwp 6(x’) and J,(x’) = - iopm 6(x’) as 

E(x), = d p r * ( x ,  0) . [pfim/u, l .  (38) 

In the far field this expression can be written as 

with 

U, = ?.),//A = [&-I4 
being the generalized chiral velocity. It is apparent that this 
expression suggests ways in which one or both of the 
eigenmodes of the medium can be excited or sensed. The two- 
element point arrays of interest examined here are those 
formed by coincident parallel electric and magnetic dipoles 
and the turnstyle antenna formed by two coincident orthogonal 
electric dipoles. These configurations are displayed in Fig. 1. 

Consider first the case of parallel electric and magnetic 
dipoles located at the origin. Two special cases are especially 
illuminating. Assume as the first special case the relation 
where the currents in the two dipoles are in phase and give rise 
to fields of equal magnitude. If p = im/u, = pi?,, only the 
positive eigenmode is excited and the total electric field is 
found to be 

eik+ r 
E(x)=E(x)+ k z l  - 2 h ~ p . p ~  sin e - i?+ (40) 

4nr 

while if p = -im/u, = pb,, only the negative eigenmode is 
excited and the result is 

for the total electric field where the circular polarization basis 
vectors are C, = (6, f i @ , ) / d  and the angles e and r$ are the 
polar and azimuthal angles measured from the z and x axes, 

Z z 

92- y k”- Y 
J 

X 

Fig. 1 .  Two-element point arrays. Coincident parallel electric and magnetic 
dipoles are shown on the left; a small turnstyle antenna is shown on the right. 

respectively. We note that this excitation of only a single mode 
of the chiral medium is particular to the case where both 
electric and magnetic sources are present since this cannot be 
accomplished in chiral medium with only electric sources. In 
particular, note that for each of these cases, the far field is 
perfectly circularly polarized, regardless of direction. As in 
the achiral case, however, the radiation pattern has the sin 0 
dependence characteristic of all electrically small sources. 

As the second special case, consider the case where the 
currents in the two dipoles are fed in phase quadrature so that 
the moments are in phase and are given by p = m/u, = p &. 
The field calculation here yields both modes given as 

eiki r 

p(  1 k i> sin 8 - C (42) 4ar 

in a manner similar to that of the electric dipole alone. Here 
the total electric field is not circularly polarized but instead is 
elliptically polarized. As [, + 0, the ellipse gets thin and the 
polarization becomes linear. The orientation angle of the 
ellipse is dependent here on the distance the receiver is from 
the source. 

As the third case of this section, consider the turnstyle 
antenna where the electric current distribution is given by 
J(x’) = -iwp(i?, + 2.J 6(x’). Using (26) or (38) the total 
electric field exhibits the two circularly polarized eigenmodes 
as 

e i k ,  r 

.p - [ l*s in8s inr$]@:  (43) 
4nr 

where i? ; denotes the right- and left-handed circular polariza- 
tion vectors with axes about &. As for the case of scattering 
from small helices [ 101, the two eigenmodes possess consider- 
ably different angular dependences, These are displayed in 
Fig. 2 where it is clear that the two modes access two different 
half-spaces divided by the plane of the turnstyle antennas. 
Therefore, in this case, each half-space has essentially a 
circularly polarized wave of opposite handedness. 

V , CANONICAL DISTRIBUTED ARRAY 

As a final example, consider a distributed source which is a 
linear array of dipoles embedded in chiral media. Since there 
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z 
Z 

t 

Fig. 2 .  The radiation pattern of the turnstyle in chiral media displaying the 
two eignrnodes for positive chiral admittance (tC > 0). The solid line 
represents the positive mode with right-hand circular polarization. The 
dashed line represents that of the negative mode with left-hand circular 
polarization. 

is an inherent geometrical spacing which defines the array, it 
intuitively appears that the two eigenmodes of the medium will 
see an array of differing effective geometry. Here we examine 
the radiation characteristics of these two modes and examine 
the operation of this antenna when it is operated as a phased 
array. 

Consider the case of a linear array of dipoles as displayed in 
Fig. 3 where .V elements are spaced a distance d apart along 
the .Y axis. The phase shift per element is taken to be a. 
Calculations similar to those leading to ( 3 8 )  here produce the 
eigenmode expressions in the far field 

where the angular dependence of the array factor AF, is given 
by 

(45) 
AF= = sin [ r ( k , d c o s Q + a )  1 

1 sin [ 1 ( k + d  cos O + a )  

and where 9 is the angle between the array axis and the 
position vector of the observer. Here both modes play an 
important role except for the special case of +-p = im/u, 
when only one of the eigenmodes is excited as noted in the 
previous section. Now, consider the case of electric dipoles 
only which are given by p = p C,.  The total electric field is 
found to be 

- 
E(x)  krT, - L 2 w 2 p p  sin 8 

e i k -  r 

+[ l -p]  - -AF-C-]  4 ~ r  (46) 

which displays an elliptically polarized wave (combined from 
the two circular eigenmodes) at broadside but for nonzero 
phase shifts. can also exhibit two beams of opposite handed- 
ness. For this case, cos Q = sin 8 cos $. 

As an example of the latter we plot in Fig. 4 the far-field 

Y 

x 
Fig. 3 .  A linear array of N-element dipoles spaced a distance d apart along 

the x axis. 

radiation pattern of (46) for an array 15 elements (N = 15), 
spaced a half-wavelength apart ( k d  = K). As the phase shift a 
is varied from nominally broadside to increasing values the 
beam splitting just mentioned is graphically noted. The 
criterion for beam splitting in which the main beam splits into 
two large beams is given by the expression 

N = 2 7 F / K .  (47) 

This indicates that for values of NI a 1 larger than those of (47), 
the array exhibits two distinct main beams. each circularly 
polarized with opposite handedness. Of course, grating lobes 
may also appear as in the case of achiral media. 

The evolution of the beam splitting is clearly shown in Fig. 
4 for six values of the phase shift a with positive chiral 
admittance 4,. First is shown the broadside case (a = 0) in 
part (a) followed by increasing phase shift until condition (47) 
is met in part (b). As the phase shift is increased further. a 
grating lobe appears in the beam for the larger wavenumber 
k ,  as first noted in part (c). As the phase shift increases still 
further so that a > k-d, the visible range begins to exclude 
the main lobe and the negative eigenmode beam decreases in 
size as shown in part (e). In the limit as a + T. almost all of 
the beam energy in th negative eigenmode vanishes and is 
converted to the positive eigenmode beam as noted in part (f ) .  
This beam suppression is of interest for the case when the 
antenna is to be used as a source of circular polarization only. 

VI. DISCUSSION 

Here we examine the radiation of canonical sources, 
whether point or distributed, in chiral media. This leads us to 
examine the effect of magnetic sources in this medium and to 
construct the appropriate duality relations. Each field quantity 
is the product of three terms as shown in ( 3 2 ) ,  ( 3 3 )  and ( 3 9 ,  
(36 ) .  The first term is an amplitude term which is dependent 
upon the handedness factors, the second is the polarization and 
slowly varying pattern term given by the cross products of unit 
position vectors, while the third is dependent upon the 
characteristic pair of wavenumbers. The later term determines 
the propagation characteristics and is the dominant one for the 
problem of distributed sources since the beams of each 
eigenmode can access a different region of space. The effect of 
each of these three terms is examined in turn by the 
investigation of the electric and magnetic dipole combinations, 
the turnstyle antenna, and the linear array, respectively. 
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Fig. 4. Evolution of beam splitting and o ~ l m m x  d mo6c sqrewon for different phase shifts (I in chiral media with N = 15 and K 

= 0.4. Here the solid line represents the p a t e  rmk rtule dw dashed line represents the negative mode. We use (a) a = 0". (b) 
CY = 60" (beam splitting begains). (c) a = 90'. td, a = 115'. IC) Q = 130'. ( f )  a = 180" (complete negative eigenmode 
suppression). 



JAGGARD et al.: CANONICAL SOURCES AND DUALITY IN CHIRAL MEDIA 

Field duality relations take on a particularly simple form for 
chiral media in the presence of electric and magnetic sources 
due, apparently, to the particular constitutive relations of this 
medium and the use of circular bases functions. These 
relations indicate that electric and magnetic sources in this 
medium produce identical results, with the exception of a 
quadrature phase factor, when viewed in circular bases 
vectors. In general it is an elliptically polarized wave. The 
surprising result is that the duality relations are of a form more 
simple than those of achiral media. The duality relations along 
with the complementary geometry in scattering problems can 
be used in diffraction problems in chiral media. The applica- 
tions of duality relations and generalization of Babinet’s 
principle in chiral media are under present consideration. 

The canonical cases examined here are of practical interest 
in a variety of problems. First consider the design and analysis 
of antennas covered by chiral radomes or lenses for pattern 
and/or polarization control. The results given here for 
unbounded chiral media provide an upper bound or first-order 
calculation for the effect of finite nonresonant chiral slabs. 
(Naturally, some resonant structures could show increased 
chirality over that offered by unbounded media due to multiple 
reflections.) These applications and those to other polarization 
diverse arrays is under present consideration. 

Second, these results are applicable to the remote sensing of 
chiral media and the identification of their parameters. Of 
particular interest is the problem of chirality measurement 
which involves either the specification of the chirality factor 
and sense of handedness or equivalently the specification of 
the chiral admittance. This has traditionally been accom- 
plished in optics through a measurement of the plane of 
rotation over a differential path. However, at lower frequen- 
cies this may not be an easy measurement. Instead we propose 
a method involving the use of the parallel electric and 
magnetic dipoles to construct a point sensor in conjunction 
with the use of the turnstyle antenna as a source. By exciting 
the chiral medium by a turnstyle antenna, both the absolute 
degree of chirality and the handedness of the chiral medium 
can be measured by varying the output currents of the point 
sensor until a null is achieved. This condition indicates that the 
ratio p / m  of the point sensor is f i / u c .  From this relation and 
knowledge of the background permittivity and permeability, 
the absolute value of the chiral admittance and the chirality 
factor of the medium can also be found. To find the sign of the 
chiral admittance or the sense of handedness of the medium, 
the turnstyle antenna can be used in two mirror-image 
orientations in which the plane of the antenna is perpendicular 
to the line connecting the transmitting turnstyle antenna to the 
point sensor. The larger signal will indicate the correct sense 
of handedness since the two eigenmodes of the turnstyle 
antenna access opposing half-spaces. 

Finally, we note that describing the characteristics of 
sources in this medium requires an indication of polarization. 
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The beamwidth, gain, directionality, and related quantities ioc 
these antennas depend significantly on which of the modes arr 
excited and/or received. This becomes of particular impor- 
tance for distributed sources such as phased arrays in which 
beam splitting is present and which, under certain ph= 
delays, can cause beam suppression of one of the eigenrnodes. 
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