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Abstract—A canonical space–time characterization of mobile
wireless channels is introduced in terms of a fixed basis that is in-
dependent of the true channel parameters. The basis captures the
essential degrees of freedom in the received signal using discrete
multipath delays, Doppler shifts, and directions of arrival (DOA).
The canonical representation provides a robust representation of
the propagation dynamics and eliminates the need for estimating
delay, Doppler and DOA parameters of different multipaths.
Furthermore, it furnishes a natural framework for designing
low-complexity space–time receivers. Single-user receivers based
on the canonical channel representation are developed and ana-
lyzed. It is demonstrated that the resulting canonical space–time
receivers deliver near-optimal performance at substantially
reduced complexity compared to existing designs.

Index Terms—Antenna arrays, diversity methods, multipath,
RAKE receiver, time-varying channels.

I. INTRODUCTION

T HE USE of antenna arrays for enhancing the capacity and
quality of wireless communication systems has spurred

significant interest in space–time signal processing techniques
[1]. A key consideration in space–time receiver design is
modeling the complex time-varying multipath propagation
environment. Most existing receiver designs employ “ideal”
matched filtering to all the dominant multipaths and corre-
sponding direction of arrivals (DOAs). In addition to suffering
from high computational complexity in a dense multipath
environment, such receivers rely heavily on accurate estimation
of the delay and DOA parameters of dominant scatterers [1]. It
can be difficult to estimate these parameters in low SNR sce-
narios. The time-varying nature of the spatio-temporal channel
requires continuous tracking of delay and DOA parameters
which further complicates receiver design. The complexity
of front-end processing can adversely affect other aspects of
receiver design as well, including interference suppression,
timing acquisition, and channel estimation.

In this paper, we introduce a canonical representation of the
received signal in terms of afixed finite-dimensional basis.
The basis captures the essential degrees of freedom in the
channel that are observable at the receiver and corresponds to
certain discrete multipath delays, Doppler shifts, and DOAs
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of the signaling waveform. The canonical representation
provides a robust representation of the propagation dynamics
and eliminates the need for estimating delays, Doppler shifts,
and DOAs of different multipaths. In essence, it is a parsi-
monious fixed representation of the signal with virtually no
loss of information. In this paper, we focus on single-user
code-division-multiple-access (CDMA) systems to illustrate
the advantages of the canonical representation. We develop
both coherent and noncoherent space–time receiver structures.
It is demonstrated that the canonical receiver structures deliver
near-optimal performance at a dramatically reduced complexity
compared to existing designs, especially in dense multipath
environment.

There have been several recent works that exploit the use
of fixed basis signals for modeling and estimating the wireless
channel (see, e.g., [2]–[4]). All these works focus on temporal
processing and slow fading environment. This paper develops
a model for an arbitrary spatio-temporal channel and fully in-
corporate fast fading effects along the lines of [5]. We note that
temporal channel variations are also modeled via basis signals
in [6]. However, in contrast to the fixed basis philosophy of this
paper, the basis signals used in [6] depend on channel parame-
ters such as Doppler frequencies.

The canonical channel representation is developed in the next
section. Single-user coherent and noncoherent receiver designs
are discussed in Section III. The performance of the receivers
is analyzed in Section IV. Section V demonstrates the advan-
tages of canonical space–time receivers via various examples.
Conclusions and avenues for future research are discussed in
Section VI.

II. CANONICAL SPACE–TIME SIGNAL REPRESENTATION

The received complex baseband signal vectorat an -el-
ement sensor array due to a single symbol from a single user is

(1)

where and are the -dimensional information bearing
signal and complex white Gaussian noise, respectively. The
signal component at theth element in the array is

where denotes the signal waveform arriving from direc-
tion , denotes the carrier wavelength, anddenotes the speed
of propagation. As illustrated in Fig. 1, is the angular
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Fig. 1. Signal reception geometry.

spread of the scatterers encountered during propagation,1 and
is the time delay of the signal waveform at theth antenna

element relative to the first antenna element. The received signal
is related to the transmitted signaling waveform of

duration via the angle-dependent time-varying channel im-
pulse response or, equivalently, the multipath-Doppler
spreading function [7], [8]

(2)

where and denote the multipath and Doppler spreads, re-
spectively.2 Without loss of generality, we choose to have
unit energy with support . Defining the array response
vector as a function of as

(3)

we can express the received signal in a vector form as follows:

(4)

A discretized version of (2) is often used for system design and
analysis

(5)

where is the number of (dominant) scatterers,
is the time-varying complex path fading coefficient, and

and are the DOA and path delay
corresponding to theth path.

A. Canonical Signal Representation

The signal experiences temporal and spatial dispersion during
propagation as evident from (2). Our characterization of the in-
formation bearing signal is motivated by the fact that the sig-
naling waveform has a finite duration and an essentially
finite bandwidth . Hence, the signal exhibits only a fi-
nite number oftemporaldegrees of freedom that are captured by

1For simplicity of presentation we have assumed a one dimensional array.
2We note thatT andB denote the maximum spreads—the variation of

spreads with� is captured byH(�; �; �).

Fig. 2. A schematic depicting the canonical space–time coordinates.

a set of uniformly spaced discrete multipath delays and Doppler
shifts [5], [9]3 . Furthermore, assuming the antennas are spaced
to avoid spatial aliasing, possesses at most spatial de-
grees of freedom that can be captured by certain discrete DOAs
even if the DOA distribution is continuous within . The
following canonical space–time characterization of identi-
fies these essential spatio-temporal degrees of freedom in the
channel that areobservableat the receiver.

Theorem: The signal in (4) admits the canonical repre-
sentation

(6)

in terms of the unit-energy space–time basis waveforms

(7)

where4 are chosen such that
are linearly independent and

. The number of terms in (6) are given by

.
The proof of this canonical representation is given in

Appendix A. An alternate proof based on the finiteness
of the array aperture is given in [11]. Fig. 2 illustrates the
canonical space–time channel coordinates defined by the
multipath-Doppler-angle sampling in the above representation.
We note that the number of terms in the canonical coordinate
expansion given above is theminimumto obtain a reasonably
accurate representation of for an arbitrary channel. The
main source of error is due to the band-limited approximation
to the signaling waveform . It is shown in the next section
that the representation accuracy can be improved arbitrarily by
increasing both the number of terms in the expansion (6) and
through the choice of . We also note that for uniform linear
array geometries with the time delay at theth element relative
to the first is given by , where

3This is related to Shannon’s celebrated2WT theorem (see, for example,
[10]).

4Note that' is used for canonical DOAs instead of� to differentiate canonical
spatial sampling from natural DOAs represented by�.
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is the spacing between adjacent elements. If, furthermore,
, then a set of orthogonal spatial basis vectors

can be obtained by choosing

(8)

While the canonical representation (6) is quite general, it
proves particularly advantageous in the context of spread-spec-
trum signaling [5]. From a signal representation
viewpoint, it provides a robust andparsimoniouscharacteri-
zation of space–time propagation effects in terms of thefixed
basis given in (7). It is parsimonious in the sense that, amongst
all fixed-basis representations, it yields the lowest-dimension
signal representation that is valid for any spatio-temporal
channel with given channel spreads. This is due to the fact that
the maximum number of essential degrees of freedom induced
by the temporal and spectral channel spreading is approxi-
mately [5], [8], and
the maximum number of degrees of freedom induced by spatial
channel spreading is ,
where denotes the sensor aperture [11]. These essential
degrees of freedom are captured by a fixed basis in the canon-
ical representation. Any fixed-basis signal representation will
require at least dimensions
for characterizing all spatio-temporal channels with the given
channel spreads. Consequently, the canonical representation
also eliminates the need for estimating arbitrary delays, Doppler
shifts, and DOAs of dominant scatterers.5 Note that changes in
the channel spread can be accomodated by simply adding or
discarding some basis functions; the structure of the basis set
does not change.

The representation also provides a versatile framework for
channel modeling—both deterministic and stochastic. In partic-
ular, the dimensional canon-
ical channel coordinates defined by the basis (7) characterize
the inherent diversity levelafforded by awide-sense stationary
uncorrelated scatterer(WSSUS) channel [5], [9]. This is evi-
dent from (6) as the signal can be represented in terms of a
finite number of the canonical basis waveforms. This indicates
that the signal energy is located within a compact region of the
canonical coordinate system.

Note that one may choose an “optimal” basis with a minimal
number of nonzero expansion coefficients for a given signal

. However, such optimal bases are generally parameter-de-
pendent. For example, an optimal set can be designed for given
delays and DOAs of different paths. However, for a different set
of delays and DOAs, all the basis signals in the set must be mod-
ified to preserve optimality. The representation (6) directly uti-
lizes thea priori knowledge about the structure of the received
signal—the array response , the signaling waveform ,
and the channel spread parameters—to capture the essential de-
grees of freedom in the signal with respect to afixedbasis.

B. Computing Canonical Channel Parameters

The proof of the canonical signal representation in Ap-
pendix A is based on the time-limited and (essentially)

5Up to synchronization to a “global” delay, Doppler offset, and DOA to
“align” the basis, which is required in all receivers.

band-limited nature of . In fact, the resulting channel pa-
rameters, which serve as the basis expansion coefficients in the
representation, only depend on the durationand bandwidth
of . However, the channel parameters derived in the proof
are not necessarily optimal in any particular sense. A naturally
optimal criterion to compute these channel parameters is to
minimize the energy loss in reconstructing the signal

(9)

where6 denotes the 2-norm of a vector. For analysis
and derivation purposes, we define the vector space for
space–time signals of the form given in (4) with an inner

product of two signals and defined as
. Then, in (9) becomes , where

is thespace–time normof induced by the inner product
defined above. Note that .

In this section, we investigate the least squares optimal solu-
tion for the channel coefficients. We define the canonical array
response matrix, temporal basis vector, and canonical channel
parameter vector as follows:

(10)

The symbol denotes Kronecker product [12] and superscript
denotes matrix transposition. We may rewrite the canonical

signal representation in (6) as

(11)

ones

(12)

Here, ones is an matrix with unity for all entries,
and forms a diagonal matrix from the elements of a
vector . With this notation, it can be shown that the solution of
the least squares problem (9) is

(13)

6The integral is defined over the real line even thoughs(t) andŝ(t) represent
a single symbol. This accomodates an arbitrary multipath spread.
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The resulting minimized reconstruction error is

(14)

The magnitude of depends on various parameters. How-
ever, we can decompose it into three parts, each corresponding
to approximation in multipath, Doppler, and space domain. The
error bound for general spatio-temporal time-varying channel is

(15)

where are some constants. The first
term represents the reconstruction error in angle alone,
which can be made arbitrarily small by the choice of array ge-
ometry and increasing the number of terms in the summation
over (see Appendix B). The second term represents
the reconstruction error in Doppler only. The Doppler bases

imply a Fourier series expansion for the Doppler spec-
trum, and hence, this error can be made arbitrarily small by in-
cluding more terms in the summation over (Appendix C).
The third term is the error incurred by approximating
arbitrarily multipath delays with uniformly delayed versions of

. The uniform delays are multiples of , so by choosing
sufficiently large, and by including more terms in the sum, we

can approximate arbitrarily well using
(Appendix D). We prove inequality (15) in Ap-

pendix E.
In sparsemultipath environments where some of the channel

coefficients in are zero, the canonical representation as (6)
may suffer from overparametrization. This problem can be miti-
gatedbyaddinganalgorithmwhichtracksthesubsetof“nonzero”
channel coefficients, at the expense of increased complexity. An
example of this is “RAKE finger tracking” in IS-95 where domi-
nant -spaced multipath delays are tracked [13].

C. Reconstruction Error for DS-CDMA Systems

We now focus on the special case of DS-CDMA systems em-
ploying spread-spectrum signaling waveforms of the form

(16)

where is the spreading sequence of length, is the
chip waveform of duration , and is a normalization con-
stant which ensures hasunit energy. Since the spreading
sequence has approximately flat spectral magnitude, the band-
width of is solely determined by the bandwidth of ,
which is inversely proportional to . As noted in the previous

section, the definition of affects the accuracy of the canonical
representation.

We will consider bandwidth definitions of the form
, where is termed a chip rateoversamplingfactor, typ-

ically 1, 2, 4, or 8.7 We assume thediscrete multipath channel
model given in (5). The choice of and the shape of the chip
waveform can have a significant effect on the reconstruc-
tion error . Clearly, we would like to select a whose
energy is concentrated around DC since is proportional
to the energy of outside the frequency range
(see Appendix D). In this paper, we use the class ofraised-co-
sinechip waveforms and show that by sufficient oversampling
(a maximum of 8), the reconstruction error can be made
negligible. Define , as given in the equation at the bottom
of the page, where is the roll-off factor. Notice that

generates a rectangular chip waveform. Asincreases, the
main lobe of the spectrum becomes wider, but the side lobe
levels are smaller. Hence, we expect for to in-
crease as increases due to the broadening mainlobe. How-
ever, for large , should decrease more rapidly with in-
creasing , because the sidelobes are smaller. These properties
are shown below and illustrated with examples in Section V.

It is instructive to look at the reconstruction error associated
with a single multipath temporal channel

for different . To illustrate the error a length 31 -se-
quence is used. In this case, the canonical basis is of the form

with and the canonical channel pa-
rameter computation follows from Section II-B. The reconstruc-
tion error for roll-off factor of can be easily obtained in
closed form. Let where

for rectangular chip waveform and . For
simplicity, we use a rectangular chip waveform. It can be shown
from (13) that due to the linearity of
with respect to , the canonical channel parameters
for . Without loss of generality, set hence

. In this case

It can be shown from (13) and (14) that

(17)

7The term oversampling implies sub-chip rate sampling of the output of the
matched filterq (�t) (Fig. 5). The effects of oversampling are further discussed
in Section III.

elsewhere
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Fig. 3. Comparing reconstruction error under LS and FS methods for a single
multipath case with rectangular chip waveform.

Equation (17) implies that , which ap-
proaches zero as increases. Fig. 3 depicts the reconstruction
error as a function of for with
computed using least squares and truncated Fourier series
(Appendix A) methods.

Fig. 4 shows as a function of . Notice that for a
given oversampling factor , local maxima occur exactly at the
middle of two basis function delays. For , only the two
basis functions adjacent to contribute to due to the lin-
earity of the rectangular waveform’s temporal correlation. This
is not true with . In general, all basis functions will
contribute to the canonical representation, except when

. The effect of oversampling factor and roll-off factor
on reconstruction error for general frequency-selective channels
is discussed in Appendix D. The oversampling factorinduces
a tradeoff between complexity and representation error .
The error is directly related to symbol error as discussed in Sec-
tion IV. When , choosing as in (8) gives a set of
approximately orthonormal set of basis functions ,8

albeit at the expense of a loss of accuracy in the representa-
tion (6) in the case of arbitrary multipath delays. The accuracy
of (6) can be improved by increasing the oversampling factor

, although at the expense of losing orthogonality of the basis
functions .

III. SPACE–TIME RECEIVER STRUCTURE

Consider the discrete multipath channel described in (5).
For simplicity in receiver design, we assume , which
is typical in mobile wireless environments and implies negli-
gible intersymbol interference (ISI).9 Conventional coherent
space–time receivers, such as those proposed in [1], are based
on theideal test statistic

(18)

8Due to the correlation properties of the spreading sequence.
9Large delay spreads for which ISI is not negligible can be accommodated by

jointly decoding a frame of symbols.

Fig. 4. " as a function of� for (a)� = 0 and (b)� = 1.

which requires estimates of the DOAs, delays , and fading
coefficients of each multipath component. The detected
symbol is given by . This receiver performs matched-fil-
tering to all the multipath components, resulting in high
complexity in a dense multipath environment. Furthermore, the
performance depends on the quality of the DOA, delay, and
channel parameter estimates. Even if joint angle-delay esti-
mation frameworks [1], [14] are employed, a large number of
observations and relatively complex algorithms are necessary
to obtain accurate parameter estimates for the conventional
receiver.

In Section II, we have shown that a space–time signalin
(4) can be represented with arbitrary accuracy using the canon-
ical representation. This suggests that all the signal processing in
the receiver can be performed in the canonical channel coordi-
nates. The canonical channel coordinates have lower dimension-
ality than the original signal space. The representation (6) also
provides a framework for space–time processing that eliminates
the need for DOA and delay estimates. This results in significant
reduction of receiver complexity and robustness against param-
eter estimation errors. In addition, our approach fully accounts
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for fast fading effects and in fact exploits Doppler effects for ad-
ditional diversity compared to conventional receivers [5], [9].

In this paper, we develop space–time single-user receivers for
binary signaling—both coherent antipodal and noncoherent or-
thogonal signaling are considered. Recall that the delay spread

is assumed to be sufficiently small so that ISI is
negligible and symbol-by-symbol detection suffices. The-di-
mensional complex baseband signal within one symbol duration
at the receiver is given by (1), for antipodal
signaling and for orthogonal signaling.
We consider the discrete multipath model (5) for receivers de-
velopment and analysis. The noise vector is assumed to
be complex Gaussian with zero mean and

, where is a identity matrix and
.

A. Coherent Antipodal Signaling

The canonical representation in (6) suggests a coherent
space–time matched filter receiver structure defined by the
basis functions in (7). The canonical space–time receiver maps
the received signal onto the basis functions to form the test
statistic

(19)

where are estimates of the canonical channel coeffi-
cients.10 In this paper, we assume perfect estimates are
obtained by projecting a noise-free pilot signal onto the canon-
ical subspace.

It is desirable to formulate the detection statistics in matrix
form for analysis considerations. Define the array response ma-
trices and delayed signaling waveforms vector

(20)

Then, we can write in (5) as

The test statistics for binary antipodal signaling with coherent
detection given in (19) can be written as ,
where the superscript denotes conjugate transpose,is the
canonical channel parameter vector. The vector of
space–time matched filter outputs is expressed as

(21)

10This method of generating a symbol decision statistic is known as maximal-
ratio combining (MRC). While MRC is optimal in a single-user scenario, it is
not near–far resistant in the presence of multiple-access interference [7], [15].

Fig. 5. Space–time RAKE receiver.

where and are defined in (11). The vectorconsists
of signal and noise components. For a noise-free pilot signal,
the canonical channel parameter vectorcan be computed ac-
cording to (13) by substituting the received pilot signal for .

We note that an increase in multipath density does not af-
fect canonical receiver performance as long as the basis func-
tions span the signal space. Furthermore, the canonical receiver
can easily adjust the number of basis functions to accommodate
changes in the angular, Doppler, and delay spreads. For even
modestly dense multipath environments, the complexity of the
canonical receiver is substantially less than that of the conven-
tional receiver since fewer channel parameter estimates are re-
quired and fewer matched filters need to be implemented. Fur-
thermore, the canonical matched filter outputs can be efficiently
computed via a space–time RAKE receiver structure as depicted
in Fig. 5 [11].

B. Noncoherent Orthogonal Signaling

When coherent channel estimation is not practically feasible,
a noncoherent detection scheme with orthogonal signaling that
relies on estimates ofchannel statisticscan be employed. Define

and , where

for . All the matrices involved in the computa-
tion of , are defined in Sections II-B and III-A
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where the subscript denotes the temporal basis correlation for
symbol . If is known, the optimal noncoherent de-
tector computes the log-likelihood ratio

and compares it to a threshold [16]. If the estimate of
cannot be obtained, an equal-gain square-law com-

bining detector can be used [7].

IV. PERFORMANCEANALYSIS

For performance analysis, we assume a discrete WSSUS mul-
tipath channel model in (5) with sufficiently slow fading so that
Doppler effects are negligible. This is just the special case of the
formulation in Section III with in (20) over one symbol
duration.

A. Symbol-Error Probability

The performance of ideal and canonical receivers is compared
based on theaveragesymbol-error probability assuming
perfect estimates of all multipath parameters for the
ideal receiver, and canonical channel coefficients for the
canonical receiver. From (5) and (21), the symbol test statistics
of the canonical receiver in (19) can be written as

(22)

where and with
defined in (14). From (13), . Hence, (22)

can be written as

(23)

Assuming equiprobable binary symbols, thegiven the fading
vector is11

(24)

Some insight can be gained from (24). Define
. From (14), it follows that the

reconstruction error given can be written as:

(25)

Hence, (24) can be written as

(26)

Since is obtained by averaging (24) over, it can be seen
from (26) that (by the monotonicity of and expectation)

is an increasing function of . This is intuitively
satisfying since is the relative energy loss
in the canonical signal representation with respect to the total
received signal energy . This energy loss contributes to
decision error.

Assuming is a complex Gaussian random vector with
zero mean (the Rayleigh fading model) and

11Q(x) = (1=
p
2�) e dt.

,12 where is the total received energy, can
be obtained as follows:13

(27)

where and are the nonzero eigenvalues of

the signal matrix .14 Note that the effects of
reconstruction error and diversity on symbol-error rate are cou-
pled in (27). Basically, reconstruction error represents
the amount of signal energy captured by receiver, while diver-
sity represents the number of independent signal copies avail-
able at the receiver due to the channel scattering. The number
of effective diversityand corresponding energy distribution are
determined by the number of significant eigenvalues and eigen-
value distribution of the signal matrix .

The of the ideal receiver can analyzed in the same manner
since its test statistic is a special case of (23), where

; hence . The for a noncoherent re-
ceiver can be obtained in a similar manner. In particular, by
using the eigendecomposition and adopting the approach in [7],
a closed-form expression for can also be derived.

B. Diversity Gain

Quantifying the diversity gain from is not a clear-cut
matter since the effect of diversity and energy loss onare
not separable, as apparent from (27). We choose to define the
diversity gain of a space–time receiver with a signal matrix
as follows:

receiver
(28)

where is as in (27) and is the trace of matrix .
The denominator is just the symbol-error probability of a
single-path Rayleigh fading channel with the same amount of
received signal energy as that remaining after the space–time
matched filtering operation(ideal or canonical). We will see in
the next section that the proposed receivers capture virtually all
diversity available in the received signal. In particular, the loss
in the diversity gain decreases as the oversampling factoris
increased and at the loss is virtually negligible.

V. EXAMPLES

As noted in Section III, the canonical receiver only requires
estimates of the canonical channel coefficients, while the ideal
receiver requires estimates ofall multipath, DOAs, time delays,
and fading parameters. For comparison purposes, we assume all
parameters required are estimated perfectly. Although unreal-
istic, this assumption provides an upper bound on performance.
Coherent detection and binary antipodal signaling are assumed.
A length-31 sequence serves as the spreading code, and

12Uniform power uncorrelated scatterer [7], a commonly used model.
13Using [7, pp. 801–802] and the Karhunen–Loeve expansion of the random

vectorR R �.
14� = R R R E[�� ] if uncorrelated scatterer model is relaxed.
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Fig. 6. Coherent space-only processing: ideal versus canonical with different
number of beams.

as a function of is used as the performance mea-
sure.

A. Example 1. Coherent Space-Only Processing

A nine-element uniform linear array is used with half-wave-
length spacing. A total of 21 multipath arrivals with DOAs
uniformly distributed on is assumed with zero
delay spread . The canonical receiver is based on up
to nine beams with directions chosen according to (8) to obtain

. Fig. 6 depicts
the performance of the conventional and several canonical
receivers based on different numbers of beam directions. The
receiver with “three beams” uses the directions ,
“five beams” uses , “seven beams” uses

, while “nine beams” use all
nine . The three-beam canonical receiver experiences a
2.5-dB SNR loss at since the beams with directions

do not span the space corresponding to the angular
spread of the multipath . However, as suggested
by the canonical signal model, five beams are sufficient to
represent the given angle spread, as evident from the nearly
identical performance of the canonical receiver with five, seven,
or nine beams and the conventional receiver exactly matched
to the DOAs. Note that the conventional receiver requires
estimates of 21 2 DOA and fading parameters and forms
21 beams, whereas canonical receiver requires estimates of at
most nine channel parameters and forms at most nine beams.

B. Example 2. Coherent Space–Time Processing with
Raised-Cosine Chip Waveform of Different Roll-Off Factors

In this example, symbol-error probability for roll-off factors
of 0, 1 are computed. A four-element uniform linear array

with a half-wavelength spacing is used and a dense multipath
environment with a total of 11 64 scatterers distributed evenly
over is simulated. The canonical
representation samples at DOAs with

for each .

Fig. 7(a) and (b) compares the performance of the conven-
tional (ideal) and canonical receivers. At a symbol-error proba-
bility 10 , the canonical receiver with a roll-off factor of
is within 0.5 dB of the ideal receiver for or , and this
gap decreases with increasing. Note that the canonical re-
ceiver delivers this near-optimal performance at a substantially
reduced complexity. The ideal receiver requires 1164 3
estimates of , and computation of 11 64 matched
space–time filter outputs. In contrast, the canonical receiver for

only requires estimates of 4 33 coefficients
and computation of 4 33 matched filter outputs. Similar com-
plexity savings also occur for with improved performance
(compared to that for ) as demonstrated next. Notice
that for raised-cosine with at symbol-error probability
of 10 , a 2.3-dB SNR loss occurs for and 0.3 dB for

. For , the canonical receiver experiences a loss of
4 dB for and virtually no loss for . The increased
SNR loss at for roll-off factor of occurs because
the spectral main lobe is twice as wide as that for roll-off factor
of . However, the side lobe magnitudes decay much faster
for , resulting in virtually no SNR loss as compared with
that for .

The diversity gain for the above receiver structures above
are computed and depicted in Fig. 7(c) and (d). As expected, the
loss in diversity gain with respect to the ideal receiver become
smaller as the oversampling factoris increased. The effect of
roll-off factor on diversity gain is similar to that on symbol-
error probability.

The above examples demonstrate thatof canonical re-
ceivers approach those of the ideal receiver within apractical
rangeof SNR (0–15 dB) as the oversampling factorand/or
raised-cosine roll-off factor increase. In fact, the difference in

can be made arbitrarily small since the reconstruction error
can also be made arbitrarily small. This indicates that the canon-
ical coordinate signal representation is able to capture essen-
tially all the signal energy arriving at the receiver. The last ex-
ample indicates that these receivers capture all the essential di-
versity that are contained in the received space–time signal.

VI. DISCUSSION ANDCONCLUSIONS

In this paper, we have introduced a parsimonious canonical
representation for arbitrary time-varying spatio-temporal chan-
nels. The representation exploits the fact that the underlying
signal space possesses finite degrees of freedom due to the finite
duration and essentially finite bandwidth of signaling waveform
and finite aperture of sensor array. The representation has been
shown to capture all the essential degrees of freedom and en-
ergy that are contained within the signal. This representation is
used to design wireless space–time receivers that eliminate the
need for delay, Doppler, and DOA parameter estimation. The
resulting receivers attain near-optimal performance, with sub-
stantially less complexity than existing designs, particularly in
dense multipath environments. The number of parameters in the
canonical representation is independent of the number of multi-
paths and depends only on the angle, delay, and Doppler spreads
of the channel.
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Fig. 7. Coherent space–time processing raised-cosine chip waveform: ideal versus canonical with (a)P for � = 0 (rectangular), (b)P for � = 1, (c) diversity
gain for� = 0, and (d) diversity gain for� = 1.

The parsimonious nature of the proposed canonical coordi-
nate representation simplifies a number of problems in mobile
wireless communication. In the case of time-only processing,
the representation has been exploited for diversity processing,
interference suppression, and timing acquisition [5], [17], [9],
[18]. In a multiuser context, the canonical representation pro-
vides a natural framework for tailoring receiver complexity to a
desired level of performance. We are currently investigating the
use of the canonical representation in several aspects of mul-
tiuser spatio-temporal receiver design, including interference
suppression [15], [19], channel estimation, and timing acqui-
sition.

APPENDIX A
PROOF OFCANONICAL SIGNAL REPRESENTATIONTHEOREM

To prove (6), we devise a method to compute the canonical
channel parameters . First, we derive astrictly band-lim-
ited approximation of . Then, the Fourier series of the ap-
proximation is truncated to leave out the terms that are ‘suffi-

ciently outside’ the delay, Doppler, and angle spread. Due to its
time-limited and essentially band-limited nature, admits
a representation15 [5]

where and . Then, (4) can be written
as

15sinc(x) = sin(�x)=(�x).
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By choosing such that are linearly inde-
pendent, , hence there exists coeffi-
cients such that

(29)

In particular, if are chosen so that are orthogonal,
then

Otherwise

where is defined in (12). It is shown in Appendix B for
uniform linear array with chosen according to (8) that
terms outside are small. Hence, (6) follows.

While this method highlights the idea behind canonical signal
representation, it is not optimal in the least square sense. As
demonstrated in Appendix B, the error in the spatial domain
originates from the truncation of the summation in (29). The
magnitude of the error depends on the contribution of the ex-
cluded array response vectors due to a source from an arbitrary
direction in . Since the excluded response vectors
are associated with directions , it is the sidelobe
levels of the array response that determine the truncation error.

APPENDIX B
UPPERBOUND FOR —ANGLE ONLY

Consider the angle-only case where

for some
by mean value theorem. For simplicity, we use uniform linear
array (ULA) with given in (8), which corresponds to

orthogonal set of . Define .
Given (hence ), it follows
from (8) that there exists for such that

Then, the corresponding energy in the canonical channel param-
eter is

(30)

It is apparent are small for as they correspond to

the sidelobe energy. Hence

which can be made arbitrarily small by including more terms in
the representation. When all terms are used, .

APPENDIX C
UPPERBOUND FOR —DOPPLERONLY

In the Doppler-only case, and
. Then, the canonical channel

parameters

(31)

for some . Here, differentiability of in
is assumed and mean value theorem is used for

the second equality. It can be seen from (31) that most energy is
contained in , which corresponds to the main lobe
of the ‘sinc’ function. The reconstruction error originates from
the truncation of the series. We have

Then, as is increased above , the reconstruction error
goes to zero.

APPENDIX D
UPPERBOUND FOR —MULTIPATH ONLY

Consider the case when and (no Doppler shift
or spatial diversity). In particular, we would like to investigate
the effect of oversampling factor and roll-off factor on the re-
construction error (see Section II-C). The reconstruc-
tion error in this case is upper bounded by the error in Fourier
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series expansion [5] which consists of the error due to band-
width truncation of and Fourier series truncation of
the bandwidth-truncated signal . It follows from
triangular inequality property of the space–time norm defined in
Section II-B that . But

(32)

where is the Fourier transform of . Since the
spreading code has an approximately flat spectrum,

, where is the spreading
gain. For a raised-cosine chip waveform with roll-off factor,
it can be shown that for

(33)

For , with

for some constants , and a sequence for which the
above series is absolutely summable.16 This shows that for large

decays faster with higher terms.
The bound for is derived as in Appendix B since by

mean value theorem

for some . It is apparent that for , the
coefficients are small. Hence

(34)

16Equation (34) can be obtained from a Taylor series expansion aroundz = 0

for z < 1.

Such exists, since the autocorrelation of the spreading
code is banded diagonal, i.e.,

(35)

Hence, is to account for the off-diagonal terms. Then, analo-
gous to Appendix C

which can be made arbitrarily small by incorporating more
terms (except for , see Fig. 4).

APPENDIX E
PROOF OF(15)

Given an arbitrary spatio-temporal signal as in (4),
, where is the least squares

optimal estimate of within the linear span of the space–time
canonical basis. By the uniqueness of least square solution, for
any .

(36)

for any . The second inequality
follows from triangular inequality property of a norm. By mean
value theorem, for some .
Note that are arbitrary and is arbitrary
within the linear span of space–time canonical basis. To obtain
(15), , and are chosen as follows:

(37)

The choices above reflect three successive least square
approximations of in angle, Doppler, and multipath
domain alone, respectively. The expansion coefficients

are chosen such that each error
term in (36) is minimized.
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It can be shown from (36), (37), and Cauchy-Schwartz’s in-
equality that

Hence, (15) follows.
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