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Canonical Space—Time Processing for Wireless
Communications

Eko N. Onggosanusi, Akbar M. Sayeddember, IEEEand Barry D. Van VeerSenior Member, IEEE

Abstract—A canonical space-time characterization of mobile of the signaling waveform. The canonical representation
wireless channels is introduced in terms of a fixed basis that is in- provides a robust representation of the propagation dynamics

dependent of the true channel parameters. The basis captures the 4,4 gliminates the need for estimating delays, Doppler shifts
essential degrees of freedom in the received signal using discrete d DOAs of diff ¢ ltinaths. | ' it i o
multipath delays, Doppler shifts, and directions of arrival (DOA). & S of difrerent multipaths. In essence, It Is a parsi-

The canonical representation provides a robust representation of monious fixed representation of the signal with virtually no
the propagation dynamics and eliminates the need for estimating loss of information. In this paper, we focus on single-user
delay, Doppler and DOA parameters of different multipaths. code-division-multiple-access (CDMA) systems to illustrate
Furthermore, it furnishes a natural framework for designing the advantages of the canonical representation. We develop
low-complexity space—time receivers. Single-user receivers base th coh t and h ¢ i . truct

on the canonical channel representation are developed and ana- 9 coherent and nonconheren space— Ime receiver struc gres.
lyzed. It is demonstrated that the resulting canonical space—time It iS demonstrated that the canonical receiver structures deliver

receivers deliver near-optimal performance at substantially near-optimal performance at a dramatically reduced complexity

reduced complexity compared to existing designs. compared to existing designs, especially in dense multipath
Index Terms—Antenna arrays, diversity methods, multipath, environment.
RAKE receiver, time-varying channels. There have been several recent works that exploit the use

of fixed basis signals for modeling and estimating the wireless
channel (see, e.g., [2]-[4]). All these works focus on temporal
processing and slow fading environment. This paper develops
HE USE of antenna arrays for enhancing the capacity aadnodel for an arbitrary spatio-temporal channel and fully in-
quality of wireless communication systems has spurredrporate fast fading effects along the lines of [5]. We note that
significant interest in space—time signal processing techniquesporal channel variations are also modeled via basis signals
[1]. A key consideration in space-time receiver design i [6]. However, in contrast to the fixed basis philosophy of this
modeling the complex time-varying multipath propagatiopaper, the basis signals used in [6] depend on channel parame-
environment. Most existing receiver designs employ “ideatérs such as Doppler frequencies.
matched filtering to all the dominant multipaths and corre- The canonical channel representation is developed in the next
sponding direction of arrivals (DOAs). In addition to sufferingsection. Single-user coherent and noncoherent receiver designs
from high computational complexity in a dense multipathre discussed in Section Ill. The performance of the receivers
environment, such receivers rely heavily on accurate estimatigranalyzed in Section IV. Section V demonstrates the advan-
of the delay and DOA parameters of dominant scatterers [1]tdiges of canonical space—time receivers via various examples.
can be difficult to estimate these parameters in low SNR sa@enclusions and avenues for future research are discussed in
narios. The time-varying nature of the spatio-temporal chanrgkction VI.
requires continuous tracking of delay and DOA parameters
which further complicates receiver design. The complexity || canONICAL SPACE-TIME SIGNAL REPRESENTATION
of front-end processing can adversely affect other aspects of

receiver design as well, including interference suppression,The received complex baseband signal vectoratanfi-el-
timing acquisition, and channel estimation. ement sensor array due to a single symbol from a single user is

. INTRODUCTION

In this paper, we introduce a canonical representation of the
received signal in terms of fixed finite-dimensional basis. r(t) = s(t) + n(t) 1)
The basis captures the essential degrees of freedom in the
channel that are observable at the receiver and correspond¥/igres(¢) andn(t) are thek-dimensional information bearing

certain discrete multipath delays, Doppler shifts, and DOAdgnal and complex white Gaussian noise, respectively. The
signal component at theth element in the array is
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Fig. 1. Signal reception geometry. 4" B’

. . Fig. 2. A schematic depicting the canonical space—time coordinates.
spread of the scatterers encountered during propagatm, 9 picting P

() is the time delay of the signal waveform at #tb antenna

element relative to the first antenna element. The received sigAdet of uniformly spaced discrete multipath delays and Doppler
z(, 1) is related to the transmitted signaling wavefog(n) of ~ Shifts [5], [9F. Furthermore, assuming the antennas are spaced
duration? via the angle-dependent time-varying channel inf0 avoid spatial aliasings(t) possesses at most spatial de-

pulse responsi( ¢, ¢, 7) or, equivalently, the multipath-Doppler 9rees of freedom that can be captured by certain discrete DOAs
spreading functiodH (¢, 6, 7) [7], [8] even if the DOA distribution is continuous withjd~, S*]. The

following canonical space—time characterizatios@ identi-

T . . . .
[ fies these essential spatio-temporal degrees of freedom in the
(1) = /0 Mt m)alt = 1) dr channel that arebservableat the receiver.

Ty pBa ot Theorem: The signak(¢) in (4) admits the canonical repre-
= / / H($,0,7)q(t — 7)™ dfdr  (2) sentation
0 —Bg

whereT,,, and B, denote the multipath and Doppler spreads, res(t) ~ 8(t)

spectively? Without loss of generality, we choogét) to have Pt ML
unit energy with supporfo, 7). Defining the array response = > > Y Hpugpmi(t), 0<t<T (6)
vector as a function ap as p=P— m=—M 1=0

o o - . - L .
a(e) = |:1,6_JQ7TXT2(¢),...,6_]2WTT“(¢):| /\/172 3) in terms of the unit-energy space—time basis waveforms

. l
— i((2emt)/T) _
we can express the received signal in a vector form as follows: Qi (t) = alyp)e’ 1 <t B) ™
S+
B whereé {y1,¢2,...,pr} are chosen such thgta(y,), ...,
s(t) = /_ a(g)x(¢,t) de. ) a(pg)} are linearly independent and(7/2) < ¢; < @2 <

. : . : . -+ < pr < (w/2). The number of terms in (6) are given by
A discretized version of (2) is often used for system design and _ [T,.B],M = [TBg],PT = min{g; : ¢i > S}

analysis P~ =max;{g; :¢; < S} O
L The proof of this canonical representation is given in
s(t) :Zﬁla(@)eﬂ”e”q(t—n) (5) Appendix A. An alternate proof based on the finiteness
=1 of the array aperture is given in [11]. Fig. 2 illustrates the

canonical space—time channel coordinates defined by the
ultipath-Doppler-angle sampling in the above representation.
g\]le note that the number of terms in the canonical coordinate
 are the DOA and path Olelayexpansion given above is tleinimumto obtain a reasonably
accurate representation sft) for an arbitrary channel. The
main source of error is due to the band-limited approximation
_ ) o ) to the signaling waveform(¢). It is shown in the next section
The signal experiences temporal and spatial dispersion durigt the representation accuracy can be improved arbitrarily by
propagation as evident from (2). Our characterization of the iﬁrcreasing both the number of terms in the expansion (6) and
formation bearing signal is motivated by the fact that the Si%rough the choice of3. We also note that for uniform linear
naling waveformy(¢) has a finite duratiof” and an essentially array geometries with the time delay at {#ta element relative

finite bandwidthB. Hence, the signal(¢, ¢) exhibits only afi- {5 the first is given byr,(¢) = (p — 1)dsin(¢)/c, where
nite number ofemporaldegrees of freedom that are captured by
3This is related to Shannon's celebratZld’ T theorem (see, for example,
1For simplicity of presentation we have assumed a one dimensional array[10]).
2We note thatl’,,, and B, denote the maximum spreads—the variation of “4Note thaty is used for canonical DOAs instead#fo differentiate canonical
spreads withy is captured by (¢, 6, 7). spatial sampling from natural DOAs representedpby

where Ly is the number of (dominant) scatterers(¢)
is the time-varying complex path fading coefficient, an
¢ € [S7,ST]andm, € [0,T;,
corresponding to th&h path.

A. Canonical Signal Representation
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d is the spacing between adjacent elements. If, furthermoband-limited nature o§(¢). In fact, the resulting channel pa-
d = A/2, then a set of orthogonal spatial basis vecterSe,)}  rameters, which serve as the basis expansion coefficients in the

can be obtained by choosing representation, only depend on the durafiband bandwidthiB
of ¢(¢). However, the channel parameters derived in the proof
. 2p—R—-1 . . . .
sin(pp) = — R p=12,...,R. (8) are not necessarily optimal in any particular sense. A naturally

optimal criterion to compute these channel parameters is to

While the canonical representation (6) is quite general, Rinimize the energy loss in reconstructing the sigifa)
proves particularly advantageous in the context of spread-spec-

trum (TB > 1) signaling [5]. From a signal representation eo
viewpoint, it provides a robust anparsimoniouscharacteri- er :/
zation of space—time propagation effects in terms offikex

basis given in (7). It is parsimonious in the sense that, amongdteré || x ||» denotes the 2-norm of a vect&r For analysis
all fixed-basis representations, it yields the lowest-dimensi@amd derivation purposes, we define the vector sgace £, for

signal representation that is valid for any spatio-temporgpace-time signals of the forait) given in (4) with an inner

channel with given channel spreads. This is due to the fact thabduct of two signals(t) andy(t) defined as(x, y)sr =

the maximum number of essential degrees of freedom inducpg# (+)x(t) dt. Then,e, in (9) becomed| s — & ||2;. where|

by the temporal and spectral channel spreading is approxi{| . is thespace-time norrof x induced by the inner product
mately [, B1(2[1Ba] +1) = (L +1)(2M +1) [5], [8], and  defined above. Note th#jt g, ||st= 1.

the maximum number of degrees of freedom induced by spatialn, this section, we investigate the least squares optimal solu-
channel spreading if(S* — 57)/S,] = (P* — P~ + 1), tjon for the channel coefficients. We define the canonical array

where S, denotes the sensor aperture [11]. These essentigdponse matrix, temporal basis vector, and canonical channel
degrees of freedom are captured by a fixed basis in the canggrameter vector as follows:

ical representation. Any fixed-basis signal representation will
require at leastL + 1)(2M + 1)(Pt — P~ + 1) dimensions Agr =[a(pp-),...,alpps)] (10)

I's(t) —8(t) |13 dt 9)

— o0

for characterizing all spatio-temporal channels with the given , , T
channel spreads. Consequently, the canonical representatio’r(t) = [fﬁ(eﬁMt)/T)a---’GJ(OWMWT)}
also eliminates the need for estimating arbitrary delays, Doppler 1 N7
shifts, and DOAs of dominant scatterérblote that changes in ® |:q(t), q <t — E) eeesq <t - E)} /\/T
the channel spread can be accomodated by simply adding or
discarding some basis functions; the structure of the basis set  h = [Hp- _yo,..., Hp- _pip,-- -,
does not change. o Hoo
The representation also provides a versatile framework for LM AP ML
channel modeling—both deterministic and stochastic. In partic- Hp-t1,-mo0,--- Hp-y1,-mp,- -
ular, the(PT — P~ +1)(2M + 1)(L + 1) dimensional canon- I:IP+,M,0a . a-HP+,J\LL]T

ical channel coordinates defined by the basis (7) characterize
theinherent diversity levedfforded by avide-sense stationary The symbol denotes Kronecker product [12] and superscript
uncorrelated scattere(WSSUS) channel [5], [9]. This is evi- T denotes matrix transposition. We may rewrite the canonical
dent from (6) as the signalt) can be represented in terms of &ignal representation in (6) as
finite number of the canonical basis waveforms. This indicates
that the signal energy is located within a compact region of the 8(t) = URQR(t)]& (12)
canonical coordinate system. def

Note that one may choose an “optimal” basis with a minimal Ur ot Ar@onesl, (L+1)(2M +1))
number of nonzero expansion coefficients for a given signal Qr(t) = diag{yr(t)} @ Ips_p-11)- (12)
s(t). However, such optimal bases are generally parameter-de-
pendent. For example, an optimal set can be designed for givéere, oneg/, J) is an/ x J matrix with unity for all entries,
delays and DOAs of different paths. However, for a different senddiag{v} forms a diagonal matrix from the elements of a
of delays and DOASs, all the basis signals in the set must be magctorv. With this notation, it can be shown that the solution of
ified to preserve optimality. The representation (6) directly utthe least squares problem (9) is
lizes thea priori knowledge about the structure of the received

signal—the array responsés), the signaling waveform(t), h =arg min || UrQr(t)h — s(t) |&r=R,'d
and the channel spread parameters—to capture the essential de- oo
grees of freedom in the signal with respect tiixad basis. d= / QR (HULs(t) dt,
B. Computing Canonical Channel Parameters ef [T
Puting nanne N R, [ Qi UFURQa() . (13)
The proof of the canonical signal representation in Ap- —o0

pendix A is based on the time-limited and (essentially)

5Up to synchronization to a “global” delay, Doppler offset, and DOA to 6The integral is defined over the real line even thos@t ands(¢) represent
“align” the basis, which is required in all receivers. a single symbol. This accomodates an arbitrary multipath spread.
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The resulting minimized reconstruction error is section, the definition aB affects the accuracy of the canonical
representation.
€1 MIN = /sH(t)s(t) dt —dR'd. (14) We will consider bandwidth definitions of the forl® =~

O/T., whereQ is termed a chip rateversamplingactor, typ-
The magnitude of,. vv depends on various parameters. Howieally 1, 2, 4, or 8. We assume thdiscrete multipath channel
ever, we can decompose it into three parts, each correspondmmapel given in (5). The choice @ and the shape of the chip
to approximation in multipath, Doppler, and space domain. Theaveformu(t) can have a significant effect on the reconstruc-
error bound for general spatio-temporal time-varying channetltion errore,. yin. Clearly, we would like to select&(t) whose

energy is concentrated around DC siagay iS proportional

Ve MIN < Cangle\/Zr, angle + Cdoppler /2, doppler to the energy of(t) outside the frequency rangg| < W/2
+ Cupathv/Er, mpath (15) (see Appendix D). In this paper, we use the classaisfed-co-

here O o o tants. The f sine chip waveforms and show that by sufficient oversampling
WRETE Cangle, Cdoppler; Cmparn ar€ SOME CONSIANLS. TN€ NSty 14550 m of 8), the reconstruction eregryx can be made
terme,. angle represents the reconstruction error in angle alon ’

egligible. Defi t), i in th ti t the bott
which can be made arbitrarily small by the choice of array g gligible. Definev(f), as given in the equation at the bottom

. . . '0f the page, wherer is the roll-off factor. Notice thatae =
ometry and increasing the number of terms in the Summat'arbenerates a rectangular chip waveform. dincreases, the
overp (see Appendix B). The second teem goppler Fepresents y

) . main lobe of the spectrum becomes wider, but the side lobe
the reconstruction error in Doppler only. The Doppler bas

J2mmt )T . . . f&vels are smaller. Hence, we expegtyn for O = 1to in-

¢ |mplyaF01_Jr|erser|es expansmnfor_the Dopplerspe_g—rease asy increases due to the broadening mainlobe. How-
trum_, and hence, th|§ error can be "T‘ade arbitrarily sr_nall by IQ\’/er, for largex, ¢, viiv Should decrease more rapidly with in-
cluding more terms in the summation over (Appendix C). creasing?, because the sidelobes are smaller. These properties

Thbg th'r.:j terrrlls:-,,7 ‘“ﬁaah I'S the gLror |_|f1currlec:j bly apgroxmatmg?re shown below and illustrated with examples in Section V.
arbitrarily multipath delays with uniformly delayed versions o It is instructive to look at the reconstruction error associated

q(t). The uniform delays are multiples of B, so by choosing ith a sinale multipath temporal chanrigh) — &(¢ —
B sufficiently large, and by including more terms in the sum,wWI ng utip P &) (t=m),m €

; o . ﬁ), T.] for differentc. To illustrate the error a length 3/ -se-
can approximate(t — Té). arbitrarily weII_usmgql(_t - m/.B)’ guence is used. In this case, the canonical basis is of the form
gleer?x’ E -+ L (Appendix D). We prove inequality (15) in Ap- {q(¢—1/B)} with l_: 0,1,...,Land the_ canonical channel pa-
. . rameter computation follows from Section 1I-B. The reconstruc-
In sparsemultipath environments where some of the channgl, , ¢ o for roll-off factor ofer = 0 can be easily obtained in
coefficients inH,,,,; are zero, the canonical representation as (g osed form. Let(t) = gt — 1), 71 € (k/B,k+1/B), where

may suffer from overparametrization. This problem can be mitj- _ 0.1 for rectangular chip waveform arél = © /T... For
gated byaddmgan aIgorlthmwhlchtracksthesubsetof honzer, implicity, we use a rectangular chip waveform. It can be shown
channel coefficients, at the expense of increased complexity.

Bm (13) that due to the linearit = [q(t)q(t— 1) dt
example of this is “RAKE finger tracking” in 1IS-95 where domi'wit?r(esgec?tmfeth(; c:ngwneigglyér?;;ﬁel pjarq;rgggé{&jli 0
nant7,.-spaced multipath delays are tracked [13]. ’

for I # k,k + 1. Without loss of generality, sét = 0 hence

C. Reconstruction Error for DS-CDMA Systems n € [0, T¢]. In this case

We now focus on the special case of DS-CDMA systems em- 1 1-1/0 1—7/T;
ploying spread-spectrum signaling waveforg(s) of the form Ry = [ } , d= [

1-1/0 1 1-1/O0+7/T.|"
N-1
q(t) = Z vt —iTL)/C, 0<t<T (16) It can be shown from (13) and (14) that

=0 71 TL

Hooo =1— OZL Hopy = 0L

where{c,} is the spreading sequence of lengdéh v(¢) is the 000 1. oot T.
chip waveform of duratiorf ., andC is a normalization con- _o, (] _on 17
stant which ensureg(t) hasunit energy. Since the spreading ErMIN = 2 \ 27 2 17

sequence has approximately flat spectral magnitude, the band-
9 bp y b 9 the term oversampling implies sub-chip rate sampling of the output of the

Wiqth B Qf q(t) is solely d?termined by the ba:ndWidthﬂ(f’_f)' matched filtew;" (—t) (Fig. 5). The effects of oversampling are further discussed
which is inversely proportional t@,.. As noted in the previous in Section il

T. T.
1, OS‘t——S—(l—a)
2 2
t) = T. e T, LT
U() O.5{1+COS|:T <‘t—? ——(1—04))}}, —(1—04)S t— — S?
0 ‘ elsewhere
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Fig. 3. Comparing reconstruction error under LS and FS methods for a sing'~
multipath case with rectangular chip waveform. 10°

Equation (17) implies that, iy < (1/(20)), which ap-
proaches zero a8 increases. Fig. 3 depicts the reconstructior 1g57'L
error as a function ofy for O = 1,2 with {Hooo, Hoo1}

computed using least squares and truncated Fourier seri

(Appendix A) methods. G107
Fig. 4 showse, v as a function ofr;. Notice that for a &

given oversampling factd®, local maxima occur exactly at the 3

middle of two basis function delays. Far= 0, only the two ~ £10°

basis functions adjacent tg contribute tos(¢) due to the lin-
earity of the rectangular waveform’s temporal correlation. This .
is not true with0 < « < 1. In general, all basis functions will 10
contribute to the canonical representation, except wheg:

1/ B. The effect of oversampling factd? and roll-off factor« Sl
on reconstruction error for general frequency-selective channe  '© ¢
is discussed in Appendix D. The oversampling faédanduces

a tradeoff between complexity and representation efrqf. i
The error is directly related to symbol error as discussed in s&g+
tion IV. When© = 1, choosing{¢,} as in (8) gives a set of

approximately orthonormal set of basis functi mi(t)},8 . :
albeit at the expense of a loss of accuracy ir?[ ﬁe r(egiesen%g?ﬁ'c'ems.ﬁ 1 of each mulgpath pomponent. The detec.ted
tion (6) in the case of arbitrary multipath delays. The accura mbol IS given by;gn(Z.)' This receiver performs matched-f!l-
of (6) can be improved by increasing the oversampling fact rnd tq a_ll the multlpat_h compqnents, resulting in high
Q, although at the expense of losing orthogonality of the basclgmplexny in a dense multipath environment, Furthermore, the
functions{qumi()}. performance depends on the quality _of. the DOA, delay, ant_j
vy
channel parameter estimates. Even if joint angle-delay esti-
mation frameworks [1], [14] are employed, a large number of
observations and relatively complex algorithms are necessary
Consider the discrete multipath channel described in (3% obtain accurate parameter estimates for the conventional
For simplicity in receiver design, we assumhg < 7T, which receiver.
is typical in mobile wireless environments and implies negli- |n Section II, we have shown that a space—time sigfalin
gible intersymbol interference (IS).Conventional coherent (4) can be represented with arbitrary accuracy using the canon-
space-time receivers, such as those proposed in [1], are basartepresentation. This suggests that all the signal processing in
on theideal test statistic the receiver can be performed in the canonical channel coordi-
Ly nates. The canonical channel coordinates have lower dimension-
7 =Re {Z B e (t), a( )’ gt — ﬁ))} (18) ality than the original signal space. The representation (6) also
=1 provides a framework for space—time processing that eliminates
8Due to the correlation properties of the spreading sequence. the negd for DOA and delay es_timates. This results in_significant
SLarge delay spreads for which ISl is not negligible can be accommodated@ﬂuc“on of receiver complexity and robustness against param-
jointly decoding a frame of symbols. eter estimation errors. In addition, our approach fully accounts

¢, as a function ofr; for (&) = 0 and (b)a = 1.

which requires estimates of the DOAg delaysr;, and fading

Ill. SPACE-TIME RECEIVER STRUCTURE
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for fast fading effects and in fact exploits Doppler effects for ad_ 1 - Pt p-
ditional diversity compared to conventional receivers [5], [9]. Fror™ PP Sag:p'e 7;: yO
In this paper, we develop space—time single-user receivers 1: 0 > q(-t) - kB |t
binary signaling—both coherent antipodal and noncoherent ¢ Pror Por | i
thogonal signaling are considered. Recall that the delay sprep— M?;ﬁzred k=0,.L 7:’ y@)
TOT

T, is assumed to be sufficiently sméll,,, < T) so that ISl is

negligible and symbol-by-symbol detection suffices. Theli- Beamtformer Bank

mensional complex baseband signal within one symbol duration A H

at the receiver is given by (1)(t) € {%qo(¢)} for antipodal yO) 7;: ho \

signaling andg(t) € {q:1(¢),q2(¢)} for orthogonal signaling. . : @_, sgn{.}l—
We consider the discrete multipath model (5) for receivers de- . A' 7 b
velopment and analysis. The noise veadt) is assumed to y(L)7P4> h|_H —/

be complex Gaussian with zero mean din(t)n” (#)} =
Moé(t — t)In,,,, Wherely is a K x K identity matrix and

Fig. 5. Space-time RAKE receiver.
Niot = (P — P~ + 1)(2M + 1)(L + 1).

whereQr(¢) andU i are defined in (11). The vectgrconsists
) L of signal and noise components. For a noise-free pilot signal,
The canonical representation in (6) suggests a cohergit -anonical channel parameter vediaran be computed ac-

space—time matched filter receiver structure defined by thEing to (13) by substituting the received pilot signalsi).
basis functions in (7). The canonical space—time receiver Map$ye note that an increase in multipath density does not af-

the received signai(¢) onto the basis functions to form the testgqt canonical receiver performance as long as the basis func-

statistic tions span the signal space. Furthermore, the canonical receiver
can easily adjust the number of basis functions to accommodate
changes in the angular, Doppler, and delay spreads. For even
modestly dense multipath environments, the complexity of the

ffcanonical receiver is substantially less than that of the conven-

A. Coherent Antipodal Signaling

r+ M L R
Z=Red > > > Hpu(r,dpmi)

p=P— m=—M I=0

(19)

where {prml} are estimates of the canonical channel coe

cientso In this paper, we assume perfe{tﬁpml} estimates are

obtained by projecting a noise-free pilot signal onto the can
ical subspace.

tional receiver since fewer channel parameter estimates are re-
?huired and fewer matched filters need to be implemented. Fur-
0 \lermore, the canonical matched filter outputs can be efficiently

computed via a space—time RAKE receiver structure as depicted

It is desirable to formulate the detection statistics in matriﬁ;] Fig. 5 [11]

form for analysis considerations. Define the array response
trices and delayed signaling waveforms vector

def

Ar = [a(d)l)a [RRE) a(d)LT)]

er() = et — ), at =) (20)
Then, we can writa(t) in (5) as
s(t) = Ar[diag{yr(t)}]
-[diag{e?®™ . 2 V(B B |F
' ALQr(1)O(1)5.

The test statistics for binary antipodal signaling with coherent

detection given in (19) can be written @& = Re{fl”y},
where the superscrigf denotes conjugate transpoeis the
canonical channel parameter vector. THg; x 1 vectory of
space—time matched filter outputs is expressed as

y:[;qzwvﬁdwﬁ
=<[;C&H0UEATQﬂ@®@wﬁ>ﬁb

T
+ / QM UHn(t)dt Y Ry fb+w  (21)
0

10This method of generating a symbol decision statistic is known as maxim

ratio combining (MRC). While MRC is optimal in a single-user scenario, it
not near—far resistant in the presence of multiple-access interference [7], [

ma-
B. Noncoherent Orthogonal Signaling
When coherent channel estimation is not practically feasible,
a noncoherent detection scheme with orthogonal signaling that
relies on estimates ehannel statisticean be employed. Define

y © IyT y§17 andRy = Elyy” | au()],k = 1,2, where

T
yk:A QU (UL (t) dt

def
rk17k2 (t) = Qg,kl (t)UgATQTJw (t)
_ —Rk(lvl) Rk(172)
Ri=IR,(21) Ry(22)| TVoRw
Ry (ky, ko) = /I‘khk(t)Rf(t— $)TPL w(s)dtds
R, % [Ry(1,1) Ry(1,2)
YT Ru(2,1) Re(2,2)

R (b1, k) / QY (HULU Qs (1) dt

def

R;(t — s) TE[O)BBT O (s)]

= diag {E|/31|2E(ef27731<t*5>), o
B|pr, [PE (e (=) }

if&ir k, k1, k2 € {1,2}. All the matrices involved in the computa-
1tjon ofy, Ry, (k = 1, 2), are defined in Sections II-B and I1I-A
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where the subscrigt denotes the temporal basis correlation fof1y,,. /(AVyLz),12 whereé is the total received energy. can
symbolk. If R;(t — s) is known, the optimal noncoherent debe obtained as follows:
tector computes the log-likelihood ratify) = y#(R; ' — Neww Moo
R, ')y and compares it to a threshold [16]. If the estimate of I T At PAL

2 ; . =3 11 1- 27
R;(t — s) cannot be obtained, an equal-gain square-law com- 2 =t it A=\ oA+ 1

bining detector can be used [7].

wherep = £/(NoLy) and{),;} are the nonzero eigenvalues of
IV. PERFORMANCEANALYSIS the signal matriv@ RZR,'R,;.14 Note that the effects of

For performance analysis, we assume a discrete WSSUS miggonstruction error and diversity on symbol-error rate are cou-

tipath channel model in (5) with sufficiently slow fading so tha'ed in (27). Basically, reconstruction errer v represents

Doppler effects are negligible. This is just the special case of tHi¢ @mount of signal energy captured by receiver, while diver-

formulation in Section Ill withd; = 0 in (20) over one symbol sity represents the number of independent signal copies avail-

duration. able at the receiver due to the channel scattering. The number
of effective diversityand corresponding energy distribution are
A. Symbol-Error Probability determined by the number of significant eigenvalues and eigen-

) ] ] ] value distribution of the signal matrig.
The performance of ideal and canonical receiversis comparedfhepe of the ideal receiver can analyzed in the same manner

based on theveragesymbol-error probability 7. ) assuming  gince ts test statistié is a special case of (23), wheRa,, =

perfect estimates of all multipath parametgss, ¢;, 7; } for the R, = Ry hence® = Ry. The P, for a noncoherent re-

ideal receiver, and canonical channel coefficigii5o. } forthe - cejver can be obtained in a similar manner. In particular, by

canonical receiver. From _(5) and (21), the _symbol test statlstllg§ing the eigendecomposition and adopting the approach in [7],

of the canonical receiver in (19) can be written as a closed-form expression fdt, can also be derived.

Z = Re{h# Ry, 80 + hw} (22) . Diversity Gain

Wherew — fT Qr(t)AHn(t) dt andE[wwH] = AR, with Quantifying the diversity gain fronP. is not a clear-cut

R.. defined (iJn (14). From (13)h = R-!R,.4. Hence, (22) matter since the effect of diversity and energy lossiorare

Ca“r’] be written as ' w T ' not separable, as apparent from (27). We choose to define the
diversity gain of a space—time receiver with a signal mad¥ix

Z = B"RIR, 'Ryo b+ Re {BPRIR'w) . (23) 2 follows:

P_(receive)
Assuming equiprobable binary symbols, fiegiven the fading De = (28)
vector 3 istt 1 < _ M)
2 1+ ptr(®)
2
P(p)=Q <\/A_/O/3HR£R51R08/3> . (24) wherep is as in (27) andr(M) is the trace of matrixM.
The denominator is just the symbol-error probability of a
Some insight can be gained from (24). Defif®y = single-path Rayleigh fading channel with the same amount of
fOT Qr(H)ATArQr(t)dt. From (14), it follows that the received signal energy as that remaining after the space—time
reconstruction error givefi can be written as: matched filtering operation(ideal or canonical). We will see in
the next section that the proposed receivers capture virtually all
er min(B) = B (Rr — RER 'Ry, 8. (25) diversity available in the received signal. In particular, the loss
in the diversity gain decreases as the oversampling fa@tisr
Hence, (24) can be written as increased and & = 8 the loss is virtually negligible.
P.(B)=Q l\/ 2 gHR,p <1 - 75”’§TTN(/3))] . (26) V- EXAMPLES
No pERrf As noted in Section lll, the canonical receiver only requires

estimates of the canonical channel coefficients, while the ideal

receiver requires estimatesailf multipath, DOAs, time delays,

and fading parameters. For comparison purposes, we assume all

parameters required are estimated perfectly. Although unreal-

istic, this assumption provides an upper bound on performance.
herent detection and binary antipodal signaling are assumed.

A length-31M sequence serves as the spreading codeFand

Since P, is obtained by averaging (24) ovgr it can be seen
from (26) that (by the monotonicity of(-) and expectation)
P. is an increasing function of, vin(/3). This is intuitively
satisfying since:,. an(3)/ BH R/ is the relative energy loss
in the canonical signal representation with respect to the to
received signal energy” R43. This energy loss contributes to
decision error.

Assuming 3 is a complex Gaussian random vector with 2Uniform power uncorrelated scatterer [7], a commonly used model.

zero mean (the Rayleigh fading model) a[ﬂiﬁ[jH] = 12Usfiggl[72,l%p. 2;01—802] and the Karhunen—-Loeve expansion of the random
vectorR bs 3.

HQ(x) = (1/V2w) [° e=(2/2) gt 14p < RER-1R,, E[§87] if uncorrelated scatterer model is relaxed.
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Fig. 7(a) and (b) compares the performance of the conven-
—— IDEAL tional (ideal) and canonical receivers. At a symbol-error proba-
~~~  CANONICAL 3 BEAMS bility 10—#, the canonical receiver with a roll-off factor af= 0

10 A CANONICAL 5 BEAMS is within 0.5 dB of the ideal receiver fa® = 4 or 8, and this

. CANONICAL 7 BEAMS gap decreases with increasifty Note that the canonical re-

3o. |© © CANONICAL 9 BEAMS ceiver delivers this near-optimal performance at a substantially
reduced complexity. The ideal receiver requiresxl 54 x 3
estimates of ¢;, 71, 4;), and computation of 1k 64 matched
space—time filter outputs. In contrast, the canonical receiver for
O = 8 only requires estimates of % 33 coefficientsflpm
and computation of 4 33 matched filter outputs. Similar com-
plexity savings also occur fer = 1 with improved performance
(compared to that forr = 0) as demonstrated next. Notice
that for raised-cosine withh = 0 at symbol-error probability

‘ , . of 10~%, a 2.3-dB SNR loss occurs f@ = 1 and 0.3 dB for
0 5 SN];(de) 15 20 @ = 4. Fora = 1, the canonical receiver experiences a loss of

4 dB for © = 1 and virtually no loss fo? = 4. The increased

Fig. 6. Coherent space-only processing: ideal versus canonical with differ&@NR loss at? = 1 for roll-off factor of « = 1 occurs because
number of beams. the spectral main lobe is twice as wide as that for roll-off factor
of & = 0. However, the side lobe magnitudes decay much faster

as a function 0BNR(=¢€ /\,) is used as the performance meafor a = 1, resulting in virtually no SNR loss as compared with

107

SYMBOL-ERROR PROBABILITY

sure. that forae = 0.
The diversity gainD for the above receiver structures above
A. Example 1. Coherent Space-Only Processing are computed and depicted in Fig. 7(c) and (d). As expected, the

] ) ) ) ) loss in diversity gain with respect to the ideal receiver become
A nine-element uniform linear array is used with half-wavegmg|jer as the oversampling factoris increased. The effect of

length spacing. A total of 21 multipath arrivals with DOASq|_off factor « on diversity gain is similar to that on symbol-
uniformly distributed on—=/10,7/10] is assumed with zero ooy probability.

delay spread?;, = 0). The canonical receiver is based on Up The above examples demonstrate tiatof canonical re-

to nine beams with directions chosen accordin.g to (8) tq obtgiRiers approach those of the ideal receiver withpractical

¢r € {0,£0.077, +0.157, +0.23m, £0.357}. Fig. 6 depicts angeof SNR (0-15 dB) as the oversampling fact@rand/or

the performance of the conventional and several canonigglse_cosine roll-off factar increase. In fact, the difference in
receivers based on different numbers of beam directions. Te ¢4 pe made arbitrarily small since the reconstruction error
receiver with “three beams” uses the directidits£0.077},  can also be made arbitrarily small. This indicates that the canon-
“five beams” uses(0, +0.07x, £0.157}, “seven beams” usesco| coordinate signal representation is able to capture essen-
{0,0.07m, £0.157, £0.237}, while “nine beams” use all a1y ail the signal energy arriving at the receiver. The last ex-
nine ;. The three-beam canonical receiver EXPEerences,ehple indicates that these receivers capture all the essential di-

a4 T _ _ _ _ _ _
2.5-dB SNR loss aP’. = 107" since the beams with directionsy g sity that are contained in the received space—time signal.
{£0.077} do not span the space corresponding to the angular

spread of the multipatf¢| < «/10). However, as suggested
by the canonical signal model, five beams are sufficient to
represent the given angle spread, as evident from the nearly
e e et n s paer we have nvoduced & parsimonious canoica
to the DOAs. Note that the conventional receiver requir% resentation for arb|_trary t|me_- varying spatio-temporal cha_m-

. : . Fls. The representation exploits the fact that the underlying
estimates of 21x 2 DOA qnd fadlng paramgters ar_1d form? nal space possesses finite degrees of freedom due to the finite
21 beams, whereas canonical receiver requires estimates q

most nine channel parameters and forms at most nine beam tation and essentially finite bandwidth of signaling waveform
0s € channel parameters and forms at mos € PeAMZ 4 finite aperture of sensor array. The representation has been

shown to capture all the essential degrees of freedom and en-
ergy that are contained within the signal. This representation is
used to design wireless space—time receivers that eliminate the

In this example, symbol-error probability for roll-off factorsneed for delay, Doppler, and DOA parameter estimation. The
« of 0, 1 are computed. A four-element uniform linear arragesulting receivers attain near-optimal performance, with sub-
with a half-wavelength spacing is used and a dense multipatiantially less complexity than existing designs, particularly in
environment with a total of 1k 64 scatterers distributed evenlydense multipath environments. The number of parameters in the
over[—= /10,7 /10] x [0,3.9375T,] is simulated. The canonical canonical representation is independent of the number of multi-
representation samples at DOA&0.087, £0.277 } with @ =  paths and depends only on the angle, delay, and Doppler spreads
1,2, 4,8 for eacha. of the channel.

VI. DISCUSSION ANDCONCLUSIONS

B. Example 2. Coherent Space—Time Processing with
Raised-Cosine Chip Waveform of Different Roll-Off Facters
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(a) (b)
10° : : 10° :
«——  DEAL «—  IDEAL
--- o= ——- 0=t
0=2 0=2
107 5
, 0=4 0=4
0=8 0=8

)
)

)
SYMBOL-ERROR PROBABILITY

SYMBOL-ERROR PROBABILITY
=)

107

SNR (dB)
©

5]
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w
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L
w

5
SNR (dB) SNR (dB)

Fig. 7. Coherent space—time processing raised-cosine chip waveform: ideal versus canonicalRyitbr(a)= 0 (rectangular), (b}P. for o = 1, (c) diversity
gain fora = 0, and (d) diversity gain forv = 1.

The parsimonious nature of the proposed canonical coordiently outside’ the delay, Doppler, and angle spread. Due to its
nate representation simplifies a number of problems in mobtiene-limited and essentially band-limited naturég, t) admits
wireless communication. In the case of time-only processing representatiéh [5]
the representation has been exploited for diversity processing,
interference suppression, and timing acquisition [5], [17], [9], MoE ((G2mmt) /M) l
[18]. In a multiuser context, the canonical representation pro- o, t) = Z ZF””M))C 4 <t B _>

vides a natural framework for tailoring receiver complexity to a "’=T_M 1732
desired level of performance. We are currently investigating the j» () = / / H($,¢, 1')e=i=(m/T)=6)T
use of the canonical representation in several aspects of mul- 0 —By

tiuser spatio-temporal receiver design, including interference % Sinc((ﬂ _ 9/) T)
suppression [15], [19], channel estimation, and timing acqui-

) l
sition. % sine <<§ - T’) B) do’ dr’

APPENDIX A wherelL = [T,,,B] andM = [T By4]. Then, (4) can be written
PROOF OFCANONICAL SIGNAL REPRESENTATIONTHEOREM as

M I
channel parametetd,,,.,;. First, we derive atrictly band-lim- s(t) ~ Z Z e M t—— Fru(d)a(e) do.

To prove (6), we devise a method to compute the canonical N jemm l st
a(t-5) /[
m=—M I=0

ited approximation o&(¢). Then, the Fourier series of the ap-
proximation is truncated to leave out the terms that are ‘suffi-1%inc(x) = sin(za)/ (7).
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By choosing{y, };—, such that{a(y,)}/L, are linearly inde- the sidelobe energy. Hence
pendentspan({a(y,)}i=,) = C¥, hence there exists coeffi-
cientsv,,; such that 2

Er, angle = Z Hpa(¢p) = Z |HP|2
ou pgS g PES

= sin? (géo) |h($2)Sa? % __

sin’(Ar(n, p))

S—

R
Era($)a($) dp = vpnualey)- (29)
p=1

In particular, if{¢, } are chosen so thgh(¢,,)} are orthogonal,
then which can be made arbitrarily small by including more terms in

the representation. When &tlterms are used,. angle = 0.

st
vpmt = 2 (i0) /7 Fru(d)a(p)dg,  p=1,... R APPENDIX C
UPPERBOUND FORE;. doppler—DOPPLERONLY
Otherwise In the Doppler-only case,s(t) =  h(t)g(t) and
o h(t) = fgd H(0)e??%. Then, the canonical channel
-1 - arameters
[Wimis- - vRmt]T = (URUR)™ UR Fou(p)a(e) do P
5
Bg
2 _ jr(—m/T) _:
where U is defined in (12). It is shown in Appendix B for ~ Hm = s H(0)e'™ =™/ Dsine((6 — m/T)T) db
uniform linear array witr‘{<pp}j§’:1 chosen according to (8) that _ ‘ (v —m)
terms outsides = P—,..., PT are small. Hence, (6) follows. = 2BaH (v.)e sinc(v, —m) (31)

While this method highlights the idea behind canonical signal ) o ]
representation, it is not optimal in the least square sense. RESOMev. € (—B4T’, B4T). Here, differentiability oft (v) in

demonstrated in Appendix B, the error in the spatial domaff B+Z: BaT’) is assumed and mean value theorem is used for

originates from the truncation of the summation in (29). THE'® second equality. It can be seen from (31) that most energy is
magnitude of the error depends on the contribution of the esntainedirjm| < [B4T'], which corresponds to the main lobe
cluded array response vectors due to a source from an arbitr@F{1€ ‘Sinc’ function. The reconstruction error originates from
direction in[S—, $+]. Since the excluded response vectgs) 1€ truncation of the series. We have

are associated with directiogsg [S—, S™], it is the sidelobe

levels of the array response that determine the truncation errofr, doppler

T| o 2
APPENDIX B = 4/ Z IfImeJ'Qw((mt)/T) dt
UPPERBOUND FORE&;. angle—ANGLE ONLY O m=M+1
[e9) [e9) T
Consider the angle-only case where: [ h(¢)a(¢) dg = =4 > > HnH}, / I (@m)/T)m=m")t gy
h((/)*)a((f)*)SA for Some¢* c (S*7S+)’SA d:ef St — §— m=M+1m'=M+1 0
by mean value theorem. For simplicity, we use uniform linear AT i |fI 2
array (ULA) with {¢,}!L | given in (8), which corresponds to o v m
orthogonal set of ()}t . Define S P, PH) / _ 2 -
Given ¢, € [¢n,@nt1) (hence{n,n + 1} C S), it follows _ 4ByVT|H (v,)| sin(mv,) y Z 1
from (8) that there exist8 < &, < 2 for p ¢ S such that 7f il (m —wy)?
-2 v
def . . 1 doppler
Agr(n,p) = sin(p,) —sin(¢,) = E|(50 +2(n — p)|. /oo K2 da K2,
< oppler — oppler .
T v (T —w)? M+1-wv,

Then, the corresponding energy in the canonical channel param-
eterd, is Then, asV is increased abovB,17, the reconstruction error
. goes to zero.
[Hpl” = |1($:)Saa” (pp)alp)l?

. 2
sin (gRAR(n,p)) APPENDIX D

— UPPERBOUND FORé impasi—MULTIPATH ONLY
Sln(§AR(7’L,p)) _ .

2008 7 Consider the case whérd = 0 andR = 1 (no Doppler shift

= |/L(¢*)5A|2.S’1;1($/) (30) or spatial diversity). In particular, we would like to investigate
sin”(Ag(n, p)) the effect of oversampling factd? and roll-off factor on the re-

construction errog,. pat (S€€ Section II-C). The reconstruc-
Itis apparentH,,|* are small fop € S as they correspond to tion error in this case is upper bounded by the error in Fourier

= [h(¢+)Sa
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series expansion [5] which consists of the error due to barBuchC > 0 exists, since the autocorrelation of the spreading
width truncation ofs(t) (e, 1.,) and Fourier series truncation ofcode is banded diagonal, i.e.,

the bandwidth-truncated signgt (¢) (¢, irunc)- It follows from

triangular inequality property of the space—time norm defined in/’ 7 <

! 4
t——)q@——)wzm l— 1| > BT.. (35)

Section II-B that, /2, mpath < v/Erbw + 1/Er, trunc- BUt B B
)2 HenceC is to account for the off-diagonal terms. Then, analo-
Ep bw = | | dt .
gous to Appendix C
<2 s H 2d oy N o
- f&[B‘ié’@' v / Ded S - AUGIECEL DRV S
7, trunc — p
def 2 ’ R 7r Nt (1 — B7)
=28 [ |QUHIPdf (32) ~
B/2 Knlpatl;

where Q(f) is the Fourier transform of(¢). Since the %
spreading code has an approximately flat spectrum, (L+1-B7)

Erpw ~ 2HN? fB o [V(f)I?df, where N is the spreading
gain. For a raised- cosme chip waveform with roll-off factgr
it can be shown that fox = 0

which can be made arbitrarily small by incorporating more
terms (except forv = 0, see Fig. 4).

" df T, APPENDIX E
a#wgzNﬁ/ . =8NZZ%, (33)
B/2 [ O PROOF OF(15)
Given an arbitrary spatio-temporal signsf¢) as in (4),
For0 < o < 1, with = < (27, /V/E;0q) er,MIN = [|s(t) — 80(#)|[31, wheresp(t) is the least squares
optimal estimate af(¢) within the linear span of the space—time
<K o df canonical basis. By the uniqueness of least square solution, for
Erbuw ! 2 (2 -1 -2)2 anys(t) # so(t).
B/2 f (f - K, « )
=3 1—=x A
= Kl(\/Kga)O |:Z log <1 T Z) VEr, MIN < ||S(t) — S(t)HST
3 1 5 P < ||S(t) - éaurlgle(t)HST + ||éangle(t) - édovp(t)HST
+ 9% + 9% + 2(1 — 22):| + [[Sdopp(t) — 8(t)|lsT (36)
=) 2541 .
-y <2Tc> Kg(J) for any Sangie(t), Saopp(t) € CB @ Lo. The second inequality
=2 o a?(=2) follows from triangular inequality property of a norm. By mean
A ¢ 3) (2T 7 value theorems(t) = a(¢)z(¢,t)Sa for somep € (S—, ST).
~ K3(2) < C;) 22 < OC> Note thats.ngie(t), Saopp(t) are arbitrary and(t) is arbitrary

within the linear span of space—time canonical basis. To obtain

for some constant®;, K>, and a sequend&; () for which the (15), Sangie (%), Saopp(t), ands(t) are chosen as follows:

above series is absolutely summalsl&his shows that for large _
«, £, 1, decays faster with higher terms. Sangle(t) =5a® (</), t) Z Fpa(ep)
The bound fok,. i+unc IS derived as in Appendix B since by
mean value theorem
Sdopp(t) = lSA Z FPa(¢P)]
p

x / (4=7) 3 G (7.7) T
for some7 € (0,7T,,). Itis apparent that fot > [T, B], the 0
coefficientsH; are small. Hence 8(t) = [SA Z Foa(p )]
- z p p

T
H = / h(r)sine(Brl) dr = T, h(7)sinc(B7I)
0

p
E1 trunc

/ ()TN 5 <_i) (37)
oSS i fa(e- D)o 5) a R

= L+1l’ L+1
. The choices above reflect three successive least square
=2 Z |Hy|?. (34) approximations ofs(¢) in angle, Doppler, and multipath
I=T+1 domain alone, respectively. The expansion coefficients

16Equation (34) can be obtained from a Taylor series expansion arotnd {Fp}v_{Gm(‘/)_v T)}_v ‘_{Jf_nl(‘/))} are chosen such that each error
for >z < 1. term in (36) is minimized.
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It can be shown from (36), (37), and Cauchy-Schwartz’s in{14] G. G. Rayleigh and T. Boros, “Joint space—time parameter estimation

equality that
[15€) — Sangte®)l|3r = Clagie X €v, angle
||éangle (t) - édOPP (t) ||§T S C(2loppler X 57’7 doppler

||§d0pp (t) _é(t) ||§T7 < Cglpath X €r, mpath

Czngle:S?A / |$((Zv t)|2 dt

2
Er, angle = a(‘%) - Z Fpa(<)0p)
P ST
2
Cgoppler = SQA Z Fpa(QOP) ||Q(t - 7i)”éT
ST

H(,0,7)e’*™" df

pr
By
Er, doppler = /
— By

= 37 Gy 7))

m

= S/QA Z Fra(pp)

p

ST
2

2
Cm path

(2M +1)°T
ST

/Grn((gv T)Q(t_T) dr

max
me{—M,...M}

- zl: Tm(P)a <t - é)

Er, mpath =

2

ST
Hence, (15) follows.
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