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Abstract – We give the explicit structure of the functional governing the dynamical density and
current fluctuations for a mesoscopic system in a nonequilibrium steady state. Its canonical form
determines a generalised Onsager-Machlup theory. We assume that the system is described as a
Markov jump process satisfying a local detailed balance condition such as typical for stochastic
lattice gases and for chemical networks. We identify the entropy current and the traffic between
the mesoscopic states as extra terms in the fluctuation functional with respect to the equilibrium
dynamics. The density and current fluctuations are coupled in general, except close to equilibrium
where their decoupling explains the validity of entropy production principles.
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Understanding the microscopic origin of equilib-
rium thermodynamics proceeds through fluctuation
formulæ that appeared about a century ago. Consider for
example a gas in large volume V in thermal equilibrium
at inverse temperature β and with chemical potential
µ. Away from the phase coexistence regime the density
fluctuations satisfy the asymptotic law

P

(
N

V
� n
)
∼ e−βV [Ω(µ,n)−Ω(µ)], (1)

where the variational functional is Ω(µ, n) = F (n)−µn
with F (n) the free energy, and Ω(µ) is the grand potential.
There thus exists an important relation between the
structure of equilibrium fluctuations and the thermo-
dynamics of the system. In particular, the variational
principles characterising equilibrium can be understood
as an immediate consequence of its fluctuation theory
and response relations can be derived from expanding (1)
around the equilibrium density n0.
In order to include dynamics in the fluctuation theory,

Onsager and Machlup derived the generic structure
of small time-dependent equilibrium fluctuations and
explained how their dynamics relates to the return to equi-
librium [1]. The ensuing linear response theory formalised

(a)E-mail: christian.maes@fys.kuleuven.be
(b)E-mail: netocny@fzu.cz

the general relation between equilibrium current fluctua-
tions and the response in driven systems in a first-order
perturbation theory around equilibrium. To go beyond
and challenged by e.g. the fast progress in nonequilibrium
experiments on nanoscale, one soon realises a lack of
general principles. Moreover we still feel very uncertain
about what the physical quantities are that such a non-
equilibrium physics should be based upon, surely not only
on those that are typical to close-to-equilibrium descrip-
tions. Yet, more recently there has been progress, too.
One well-known approach to dynamical (and especially
current) fluctuations in open systems adds to the models
fields representing the various reservoirs that count the
long-time statistics of associated “charges” by master
equation or stochastic path methods, see e.g. [2–4]. The
hydrodynamic fluctuations for some stochastic lattice
gas models have been studied in e.g. [5,6]. For some
standard lattice gas models the large deviations can in
fact be explicitly calculated, see the review [7]. Up to
now, special emphasis was put on the fluctuations of
the current, also because of relations with a celebrated
fluctuation symmetry of the entropy production [8,9].
In the present letter we come back to the basic question

whether there is at all any systematics in the fluctuations
beyond equilibrium or close to equilibrium. Can one
develop a formalism that would —similarly to the equi-
librium scheme— establish a link between the dynamical
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fluctuations and mean (thermo-)dynamical properties
of a system, possibly with the entropy production play-
ing a role similar to the entropy at equilibrium? And
could that also explain the appearance and limitations
of the entropy production variational principles on a
fluctuation basis? As we have shown before [10], the
(mesoscopic) minimum entropy production principle close
to equilibrium follows from the fluctuation theory for the
occupation (or residence) times, which are the relative
times spent at different states of the system. This supports
both the relevance of dynamical fluctuation theory for
understanding the status and the validity of various
nonequilibrium variational principles, and the importance
of time-symmetric observables in these considerations.
Indeed our results here strongly suggest that only by
treating jointly the time-symmetric and -antisymmetric
sectors do model-specific results make place for a unique
fluctuation structure. As far as we know, that is one of
the rare occasions on which the nonequilibrium world can
be seen submitted to general laws.
To address the above questions and in the context of a

stochastic network we propose to study the joint dynami-
cal fluctuations of the occupation times (time-symmetric)
and currents (time-antisymmetric). We show that these
joint fluctuations have an explicit and general structure,
with a fluctuation functional derived from the entropy
current and the so-called traffic measuring the mean
dynamical activity in the system. Formally, the traffic is
the counterpart of the entropy or grand potential in the
equilibrium static fluctuation theory, cf. (1). Only close
to equilibrium there emerges a simple relation between
that traffic and the entropy production. Together with
a decoupling between small time-symmetric and time-
antisymmetric fluctuations in the close-to-equilibrium
domain, this lies behind the approximate validity of the
entropy production principles. This substantially extends
the argument in [10]. Our main results are relations (13),
(19), and (29) below. More details and the application of
our formalism for driven diffusions can be found in [11].
Our emphasis here on jump processes makes the analysis
also suitable to the statistics of quantum transport as
e.g. in [3,12]; particular examples will follow separately.
In contrast with full counting statistics methods, the

reservoirs are not made explicit in our approach. Instead,
we assume that the changes in all reservoirs or leads are
mutually distinguishable and can be read off from the
trajectory of the system. Another remark concerns the
meaning of the occupation times. This is a dynamical
observable and its fluctuations fundamentally differ from
static fluctuations, which evaluate the plausibility that
the system obeys some statistics given that the system
was in its typical stationary state far in the past. These
static fluctuations are governed by an effective action
(or potential) yielding a nonequilibrium extension of the
equilibrium free energy and providing a Lyapunov function
for the nonequilibrium system; it has been extensively
studied in the regime of weak noise [13–15]. Recently there

has been an important progress in the analysis of these
static functionals for lattice gases in the hydrodynamic
limit [16,17]. As a matter of principle, one expects that one
could recover the static from the dynamical fluctuations
that are studied here.
The mathematics involved is the theory of large

deviations and stems from the work of Donsker and
Varadhan [18,19]. A useful and repeatedly exploited
technique in this approach is to compute the fluctuation
functionals on more coarse-grained levels from constrained
minimisations of a fine-grained functional. That is called
the contraction principle.

General formalism. – We consider a nonequilibrium
system modelled as a stationary Markov process running
in continuous time and making jumps on a discrete set
of states, {x, y, . . .}. We are given transition rates w(x, y)
on ordered pairs x→ y, and we assume that the process
has a unique stationary distribution ρ, ρ(x)> 0 over all
states (ergodicity assumption). As is typical for a thermo-
dynamic formalism it is not essential whether the process
represents a single-particle random walk or perhaps a
many-body system. However, for an easy interpretation we
ask that whenever a transition x→ y is possible, w(x, y)>
0, then also w(y, x)> 0. Although that excludes certain
singular yet relevant cases (e.g., the totally asymmetric
exclusion process), it is essential for the local detailed
balance to be applicable: we assume a sufficiently fine-
grained level of description so that log [w(x, y)/w(y, x)]
reads the entropy change in the environment (possibly
made of several distinct reservoirs) per single event x→ y.
Tracing the whole trajectory of the system, (ωt; t� 0),
all currents as well as the total entropy exchange with
the environment can be determined. This is an essential
assumption that will allow for a physical interpretation of
the fluctuation formulæ below.
We start from that fine-grained level of description and

we consider as dynamical observables the occupation times

pT (x) =
1

T

∫ T
0

χ(ωt = x) dt (2)

(with χ equal to one or zero, indicating whether the event
in brackets occurs, respectively, does not occur) jointly
with the jump fractions x→ y,

CT (x, y) δt=
1

T

∫ T
0

χ(ωt = x)χ(ωt+δt = y) dt (3)

counting the number of jumps x→ y, both defined for
each realisation of the process (ωt; 0� t� T ). The occu-
pation times pT (x) form a random distribution that
asymptotically approaches the stationary distribution,
limT→∞ pT (x) = ρ(x), with probability one by the ergodic
theorem. Similarly, the jump fractions have the almost-
sure asymptotics limT→∞ CT (x, y) = ρ(x)w(x, y).
The question about dynamical fluctuations concerns the

long-time asymptotics of possible deviations of pT and
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CT from their typical values: to compute the probability
PT (p, k) to observe for all x and y,

pT (x) = p(x), CT (x, y) = p(x)k(x, y). (4)

We must add here the stationarity condition
∑
y[p(y)×

k(y, x)− p(x)k(x, y)] = 0 since limT→∞
∑
y[CT (x, y)−

CT (y, x)] = 0 for every realisation of the process. The
distribution of the process is

PT (ω) = ρ(x0) e
−λ(x0)t1w(x0, x1) dt1 e−λ(x1)(t2−t1) . . .

. . . w(xn−1, xn) dtn e−λ(xn)(T−tn) (5)

on realisations ω= (x0, 0;x1, t1; . . . ;xn, tn � T ) with
jumps xk−1→ xk at times tk and with λ(x) =

∑
y w(x, y)

the escape rates. To determine for that process the proba-
bility PT (p, k) of (4), we use a standard trick of the theory
of large deviations, see [18,19], and we compare the path
distribution of the original stationary process (5) to a ficti-
tious stationary process P∗T having rates k and occupation
fractions p(x). In other words, the values p and k become
typical under the fictitious process P∗T when T →∞. The
path probabilities P∗T (ω) under the fictitious process are
obtained as in (5) by replacing w with k, and λ with the
escape rates

∑
y k(x, y). The crucial observation is that

for any trajectory ω such that the constraints (4) are
satisfied, the density of PT with respect to the P

∗
T equals

dPT
dP ∗T
(ω) =

e−
∑
x,y p(x)w(x,y)

e−
∑
x,y p(x)k(x,y)

∏
x,y

[
w(x, y)

k(x, y)

]p(x)k(x,y)
(6)

and hence only depends on the time averages p(x) and
on the old (w(x, y)), respectively new (k(x, y)) transition
rates. Considering now that the constraints (4) are indeed
satisfied by the fictitious process P∗T when T →∞, we
find directly from (6) that

PT (p, k) =

∫
dP∗T (ω)

dPT
dP∗T

(ω)χ (constraints (4)) =

e−
∑
x,y p(x)w(x,y)

e−
∑
x,y p(x)k(x,y)

∏
x,y

[
w(x, y)

k(x, y)

]p(x)k(x,y)
(7)

asymptotically for T →∞. In other words, PT (p, k)∼
exp[−T I(p, k)] with the fluctuation functional

I(p, k) =
∑
x,y

p(x)

[
k(x, y) log

k(x, y)

w(x, y)
− k(x, y)+w(x, y)

]
(8)

(remember that I(p, k) =∞ whenever p is not stationary
with respect to the transition rates k). The above calcula-
tion is not entirely original and its variants can be found
in the literature on large deviations. Yet the important
lesson for nonequilibrium applications is that it clearly
identifies the one-point and the two-point functions pT
and CT as the natural and in a sense the complete
collection of dynamical observables, cf. (6). Formula (8)
is our starting point towards a systematic generation of
various other fluctuation laws by contraction, in both the
time-symmetric and the time-antisymmetric domains.

Their physical interpretation then follows by invoking the
local detailed balance principle.

Occupation-current fluctuations. – The observed
time-averaged currents correspond to the antisymmetric
part of the jump fractions, CT (x, y)−CT (y, x). The joint
fluctuation law for the currents and the occupation times

PT (p, j)∼ e−TI(p,j) (9)

can thus be derived from (8) by solving the minimisation
problem

I(p, j) = inf
k

{I(p, k) | p(x)k(x, y)− p(y)k(y, x) = j(x, y)}.
(10)

For stationary currents,
∑
y j(x, y) = 0, to which

we restrict ourselves from now on (otherwise
I(p, j) =∞), the solution is I(p, j) = I(p, k∗) with
k∗(x, y) =w(x, y) e∆(x,y)/2, the Lagrange multipliers
∆(x, y) =−∆(y, x) being determined from the constraints

p(x)k∗(x, y)− p(y)k∗(y, x) = j(x, y) (11)

or, explicitly,

∆(x, y)= 2 log

{
1

2p(x)w(x, y)

[
j(x, y)

+
√
j2(x, y)+ 4p(x)p(y)w(x, y)w(y, x)

]}
. (12)

As a result,

I(p, j) =
1

4

∑
x,y

∆(x, y)j(x, y)− 1
2

∑
x,y

[t∗p(x, y)− tp(x, y)]

(13)
in which

tp(x, y) = p(x)w(x, y)+ p(y)w(y, x) (14)

and
t∗p(x, y) = p(x)k

∗(x, y)+ p(y)k∗(y, x) (15)

measure the mean dynamical activities; we call them
traffic and they yield the symmetric counterpart to the
expected currents. The second term in (13) is therefore
an excess in the overall traffic needed to create the
fluctuation or to make it typical. Similarly, by the local
detailed balance principle, the first term corresponds to
an excess in the entropy flow to the environment which
amounts to Ṡ = 12

∑
x,y j(x, y) log[w(x, y)/w(y, x)] under

the original process and analogously for the modified one.
Next, being motivated by the equilibrium fluctuation

theory, cf. (1), we reveal a canonical structure in the
dynamical fluctuations. Any nonequilibrium process can
be related to a reference detailed balanced one with
rates w0(x, y), so that w(x, y) =w0(x, y) e

σ(x,y)/2 with
some driving σ(x, y) =−σ(y, x). (For example, the rates
w0(x, y) =

√
w(x, y)w(y, x) es(y)−s(x) and s an arbitrary

state function can serve as such a reference.) Having fixed
w0, the rates w(x, y)≡wσ(x, y) are now parametrised

30003-p3
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by the driving σ(x, y), and we introduce the potential
function

H(p, σ) = 2
∑
x,y

p(x)[wσ(x, y)−w0(x, y)] (16)

equal to the excess in the overall traffic with respect
to that reference. It is a potential for the expected
transient currents jp,σ(x, y) = p(x)wσ(x, y)− p(y)wσ(y, x)
in the sense that

δH(p, σ) =
1

2

∑
x,y

jp,σ(x, y) δσ(x, y) (17)

(with the p kept fixed in the variation). The Legendre
transform of H with respect to driving σ is

G(p, j) = sup
σ′

[
1

2

∑
x,y

σ′(x, y)j(x, y)−H(p, σ′)
]

(18)

and we observe that the supremum (taken over all anti-
symmetric matrices) is attained at σ′ = σ∗ such that
jp,σ∗ = j, which means that the driving σ and the current
j are canonically conjugated variables. Furthermore, the
function ∆ that specifies the k∗ in (11) equals σ∗−
σ, hence the fluctuation functional I(p, j) = Iσ(p, j) of
eq. (13), obtains the final form

Iσ(p, j) =
1

2

[
G(p, j)+H(p, σ)− Ṡ(σ, j)

]
(19)

with

Ṡ(σ, j) =
1

2

∑
x,y

σ(x, y)j(x, y) (20)

the observed entropy current into the environment. That is
our main result, giving the fluctuation functional entirely
in terms of the entropy current and of the potential
function H(p, σ) (i.e. in terms of the overall traffic)
and derived quantities. The functional G(p, j) directly
gives the reference equilibrium dynamical fluctuations as
I0(p, j) =

1
2G(p, j), hence (19) specifies the nonequilibrium

correction to that equilibrium. Remark also that the anti-
symmetric part of the functional Iσ under time reversal
equals Iσ(p,−j)− Iσ(p, j) = Ṡ(σ, j), compare [9,20], which
is just the steady-state fluctuation symmetry. However,
more important is that (19) also in a generic way speci-
fies the time-symmetric component. That is why (19)
represents a generalised (far-from-equilibium) Onsager-
Machlup Lagrangian describing steady fluctuations, the
generalised dissipation functions being G and H. At the
same time, one recognises the mathematical structure of
equilibrium fluctuations; the grand potential Ω(µ) and
the variational functional Ω(µ, n) of (1) get replaced here
by −H(p, σ)/2 and [G(p, j)− Ṡ(σ, j)]/2, respectively. This
should not really come as a surprise since such a mathe-
matical structure is characteristic of the large deviation
framework, equilibrium statistical thermodynamics just
being its most prominent example and its guide for phys-
ical interpretation. In the nonequilibrium domain, related
canonical structures like (17)–(19) have been obtained
before, see e.g. [13,17] for static fluctuations. In contrast

with their work, we concentrate on the generic structure
of steady fluctuations, with time T being the only large
parameter of the asymptotic theory. This is well suited
for the discussion of the validity of stationary variational
principles already at the mesoscopic level (i.e., for stochas-
tic processes), as shortly demonstrated at the end of this
letter.
To our knowledge, the introduction of an equilibrium

reference as in (17)–(19) has not been considered before
for a far-from-equilibrium dynamics. Note that while the
potentials G and H do depend on the choice of the
reference equilibrium, the resulting functional I(p, j) is of
course independent of that.
Fluctuation laws on a more coarse-grained level, e.g.,

the fluctuations of a single selected current, can be
obtained by further contractions starting from (8) or (19).
Then, depending on the particular level description, a
modified canonical formalism can be expected.
There is a trivial yet important generalisation of the

above results to systems in which a transition x→ y can
go via multiple channels, each possibly corresponding to
the interaction with different reservoirs. For these systems
the formulæ (8), (13), (17), (18) etc. remain valid if the
ordered pairs x, y in the sums get replaced with x, y, α,
the α labelling the channels. A simple example of such a
multi-channel model comes in the next section.

Example. – A paradigmatic model serving general
considerations in full counting statistics is the one of
bidirectional transport over a single-level “quantum dot.”
The model is well known, see, e.g., [2], and it is simple
enough to allow explicit comparisons with other examples
and methods. We demonstrate the above formalism in this
particular example.
There are two configurations x= 0, 1 corresponding to

the level being empty, respectively, occupied, and it is
coupled to the left (L) and the right (R) reservoirs. Using
the notation VL and VR for the potential gradients between
that level and the reservoirs, both oriented in the L→R
direction, the local detailed balance principle restricts the
possible transition rates corresponding to each channel to
the following general form:

wL(0, 1) = ΓL e
βVL/2, wL(1, 0) = ΓL e

−βVL/2,
wR(0, 1) = ΓR e

−βVR/2, wR(1, 0) = ΓR eβVR/2.
(21)

For simplicity, we consider here only the case ΓL =ΓR =Γ.
Writing the occupation times as p(0) = (1− υ)/2 and
p(1) = (1+ υ)/2, the expected transient currents (also
both oriented in the L→R direction) and traffic
separately for each channel equal

jL,Rυ =Γ sinh
βVL,R

2
∓Γυ cosh βVL,R

2
, (22)

tL,Rυ =Γcosh
βVL,R

2
∓Γυ sinh βVL,R

2
. (23)

As a reference equilibrium we take the dynamics (21) for
VL = VR = 0 (with the symmetric part Γ kept unchanged).
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The current potential (16) is determined from the overall
traffic:

H(υ, VL, VR) = 2Γ

(
cosh

βVL

2
− υ sinh βVL

2

+ cosh
βVR

2
+ υ sinh

βVR

2
− 2
)
. (24)

One checks that ∂H/∂VL,R = βj
L,R
υ which is an instance

of (17). The Legendre transform of H at jL = jR = j gives
the occupation-current fluctuation functional G(υ, j) =
I0(υ, j)/2 for the reference equilibrium dynamics, cf. (18):

G(υ, j) = sup
VL,VR

[βj(VL+VR)−H(υ, VL, VR)] =

4j log

[
1√
1− υ2

(
j

Γ
+

√
1− υ2+ j

2

Γ2

)]

+ 4Γ

[
1−
√
1− υ2+ j

2

Γ2

]
. (25)

This extends to the nonequilibrium dynamics by the
generalised Onsager-Machlup formula (19). E.g., in the
L-R symmetric case VL = VR = V , the entropy current is
Ṡ = 2βV j, and the nonequilibrium fluctuation functional
becomes

IV (υ, j) = 2j log

[
1√
1− υ2

(
j

Γ
+

√
1− υ2+ j

2

Γ2

)]
−βV j

+ 2Γ

[
cosh

βV

2
−
√
1− υ2+ j

2

Γ2

]
. (26)

Due to the “particle-hole” symmetry I(−υ, j) = I(υ, j),
the (marginal) current fluctuations correspond to the rate
IV (j) = IV (0, j), which is

IV (j) = 2j log

[
j

Γ
+

√
1+
j2

Γ2

]
−βV j

+ 2Γ

[
cosh

βV

2
−
√
1+
j2

Γ2

]
. (27)

Again by contraction, the fluctuation functional for
the occupation times is JV (υ) = IV (υ, j

∗) where
j∗ =Γ

√
1− υ2 sinh(βV/2) is the most probable value of

the stationary current given υ. As a result,

JV (υ) = 2Γ cosh

(
βV

2

)
(1−
√
1− υ2). (28)

Regime of small fluctuations. – The main features
of the joint occupation-current fluctuations already
become manifest in the leading order around the nonequi-
librium steady state. For our original dynamics with
stationary distribution ρ, steady current j̄ and steady
traffic t̄, we write p= ρ(1+ ε u1), j = j̄+ εj1. Standard
perturbation theory applied to (13), up to quadratic order

in ε, gives as a final result I(p, j) = ε2I(2)(u1, j1), where

I(2)(u1, j1) =
1

4

∑
x,y

[
1

2t̄
j21 +

t̄

2
(∇−u1)2

− j̄
t̄
j1∇+u1+ j̄

2

2t̄
(∇+u1)2

]
(x, y) (29)

with the shorthand ∇±u1(x, y) = [u1(x)±u1(y)]/2. This
formula demonstrates how the occupation times and
current become coupled away from equilibrium. That
coupling is proportional to the stationary current and
is inversely proportional to the stationary traffic. The
coupling vanishes in the close-to-equilibrium regime where
j̄ =O(ε).
The appearance/disappearance of the occupation-

current correlation is deeply related with the
validity/breaking of the entropy production principles.
The expected value of the (transient) entropy production
rate E(p) at a given distribution p is the sum of the
expected entropy current 1

2

∑
x,y jp(x, y) log[w(x, y)/

w(y, x)] and the rate of increase of the system’s entropy∑
x,y jp(x, y) log p(x), see [20]. In the same quadratic

approximation as above but now close to equilibrium so
that w=w0[1+O(ε)] with w0 again a detailed balanced
reference, that entropy production rate equals

E(p) =
∑
x,y

[
ε2t̄

2
(∇−u1)2+ j̄

2

2t̄

]
(x, y) (30)

with j̄ =O(ε). On the other hand, from (29) the marginal
distribution of the occupation times for j̄ =O(ε) corre-
sponds to the functional J(2)(u1) =

1
8

∑
x,y t̄(∇−u1)2(x, y),

and hence J(p) = ε2J(u1) equals

J(p) =
1

4
[E(p)−E(ρ)] (31)

see [10,11] for more details. Hence, the stationary distrib-
ution ρ is a minimiser of the entropy production rate and
the latter governs the occupation fluctuations. A similar
argument reveals a direct link between the current fluctua-
tions and the maximum entropy production principle, [11].
The relation between Onsager-Machlup functionals and

entropy production principles has been known for a long
time, see, e.g., [21]. Our results outlined in this section
extend those arguments to a class of stochastic driven
systems and mesoscopic variational principles.
On the other hand, these relations are no longer true

beyond the close-to-equilibrium regime since there the
occupation-current correlation becomes relevant, and the
traffic and its changes do not derive from the entropy
changes. Then the traffic appears essential in determining
dynamical fluctuations as we have demonstrated before.

Conclusions and remarks. – We have derived
an explicit formula for the functional governing the
joint dynamical fluctuations of transition intensities and
occupation times in a steady-state regime described by
a Markov jump process (8). In the occupation-current
form (19), it gets a remarkable canonical structure: the
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(reference) equilibrium functional is corrected by its
Legendre transform which is just a potential for the
expected currents, and by the entropy flow. These func-
tionals form a natural starting point towards the study of
fluctuations for any selected collection of observables that
can be expressed in terms of transitions/currents and
occupations, via the contraction principle. That provides
an alternative to the existing approaches.
As a new and crucial quantity, unseen in close-to-

equilibrium considerations, the traffic measures the
time-symmetric dynamical activity in the system. This
observable naturally enters beyond the linear response
theory, e.g., in determining the ratchet current [22] and
in the escape rate theory [23]. The overall traffic yields
the current potential, and its excess together with an
excess in the entropy flow directly determine the joint
occupation-current fluctuations (13).
The time-symmetric and time-antisymmetric fluctua-

tions mutually couple even for small fluctuations around
the nonequilibrium state (29). Their decoupling in lead-
ing order around equilibrium is a fundamental reason for
the known stationary variational principles to be approx-
imately valid.
For extended systems with a large number of degrees

of freedom, phase transitions may become visible through
singularities of the fluctuation functionals [24]. It should
indeed not escape the attention that the analysis from
(13) to (19) requires some strict convexity arguments and
uniqueness of solutions. That is certainly one of the most
fascinating possibilities that can be discussed within our
general framework.
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[11] Maes C., Netočný K. and Wynants B., Physica A,
387 (2008) 2675; cond-mat/0709.4327, to be published in
Markov Process. Relat. Fields (2008).

[12] Fujisawa T., Hayashi T., Tomita R. and Hirayama
Y., Science, 312 (2006) 1634.

[13] Kubo R., Matsuo K. and Kitahara K., J. Stat. Phys.,
9 (1973) 51.

[14] Graham R., in Noise in Nonlinear Dynamical Sys-
tems, edited by Moss F. and McClintock P. V. E.,
Vol. 1 (Cambridge University Press, Cambridge) 1989,
pp. 225–278.

[15] Eyink G. L., Phys. Rev. E, 54 (1996) 3419.
[16] Bertini L., De Sole A., Gabrielli D., Jona-

Lasinio G. and Landim C., Phys. Rev. Lett., 87 (2001)
040601.

[17] Bertini L., De Sole A., Gabrielli D., Jona-Lasinio
G. and Landim C., J. Stat. Phys., 107 (2002) 635.

[18] Donsker M. D. and Varadhan S. R., Commun. Pure
Appl. Math., 28 (1975) 1.

[19] Ellis R. S., Entropy, Large Deviations, and Statistical
Mechanics (Springer-Verlag, New York, Berlin) 1985.

[20] Lebowitz J. L. and Spohn H., J. Stat. Phys., 95 (1999)
333.

[21] Graham R., in Lecture Notes in Physics, edited by
Garrido L., Seglar P. and Shepherd P. J., Vol. 84
(Springer-Verlag) 1978, pp. 82–138.

[22] De Roeck W. and Maes C., Phys. Rev. E, 76 (2007)
051117.

[23] Hänggi P., Talkner P. and Borkovec M., Rev. Mod.
Phys., 62 (1990) 251.

[24] Kafri Y., Levine E., Mukamel D., Schütz G. M. and
Torok J., Phys. Rev. Lett., 89 (2002) 035702.

30003-p6


