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Canonical Surfaces with pg=pa=5 and K2=10 (*).

CIRO CILIBERTO

Introduction.

It is well known that, in the theory of algebraic surfaces of general type,
the problem of finding out the existence of surfaces with given invariants
is still open, particularly referring to the construction of their canonical or
pluricanonical models and to the description of their moduli space. We have
recently dealt with regular surfaces with p, = 4, K2 = 5, ..., 10 over C
(see [C]), obtaining exhaustive results for surfaces whose canonical models
have ordinary singularities in P3.

Turning to regular surfaces with Po = 5, it is known that, if the canonical
map is birational, it is K2 &#x3E; 8. If .g2 = 8, 9, the canonical models of such
surfaces are complete intersections in P4. In this paper we deal with surfaces
with p, = pa = 5, g2 = 10, such that the canonical map is a birational

morphism. As far as we know, these surfaces have not yet been exhaustively
studied. Our interest has been also attracted on this subject by some
remarks of F. Enriques in [E], p. 289.

The main results we reach are the following:

(i) there exist surfaces with p, = p. = 5, K2 = 10, such that the

canonical map is a birational morphism: there exists a unique irreducible
component X(l) of the coarse moduli space of surfaces with the above in-

variants, containing points corresponding to classes of birational equivalence
of such surfaces; -T(l) is unirational, of dimension 40 ;

(ii) there exists a not empty open Zariski subset of 5i1&#x3E; whose points
correspond to classes of birational equivalence of surfaces whose canonical
models have isolated singularities: these are canonical surfaces of degree 10

(*) This work has been made under the auspices of G.N.S.A.G.A. of the

Italian C.N.R.
Pervenuto alla Redazione il 10 Giugno 1981.
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in P4 not contained in any quadric, with a unique nonnormal ordinary
double point (see no. 6) and in general with no other singular points;

(iii) there are points in -T(l) corresponding to classes of birational equi-
valence of surfaces, special with respect to moduli, whose canonical models
have a singular curve: this can either be a double line, iff the canonical
model is not contained in a quadric, or a curve of higher degree, which we
are able to describe, if the canonical model lies in a quadric; clearly par-
ticularizing moduli it could be possible to have canonical surfaces with
irrelevant singularities beyond the aforementioned ones.

An affirmative answer to a conjecture of Enriques (see l.c.) follows from (i).
The paper consists of two parts. The first one (no. 1-4) has, in our

opinion, some independent interest. We give an extension to algebraic
varieties of any dimension of results about curves contained in [S], part I,
concerning some graded modules over the polynomial ring associated to
an algebraic curve, to a morphism of it to a Pr, and to a given invertible
sheaf on it. We get in this way some algebraic tools, useful for studying
surfaces in P4.

These results, as well as other well known ones, are applied in part II
(no. 5-11) to the study of canonical surfaces. In no. 5 we give a first ap-
plication providing an equation of matricial type for canonical surfaces
in p4 with p, = p. = 5, not lying in any quadric. In no. 6 we recall some

classical theorems of F. Severi which are frequently used in what follows.
In no. 7 we prove the existence of canonical surfaces with the aforesaid

invariants and with isolated singularities: the method we use is the con-
struction by liaison. In no. 8 we show that the equivalence classes of such
surfaces fill up an open Zariski subset of an irreducible, unirational, 40-
dimensional component 5i1&#x3E; of the coarse moduli space. We develope here
an argument similar to the one used in [S] in order to prove the unirationality
of the coarse moduli space of curves of genus 12. Our methods, strongly
based upon results of part I, give also an explicit description of the ideal of
canonical surfaces we deal with. In nos. 9-10 we prove the existence of

canonical surfaces with double line not contained in any quadric, and we
show that for a general deformation the canonical model has isolated

singularities. We liked to follow an hint of Enriques in order to prove the

existence, which could also be proved in different ways. Finally in no. 11
we study canonical surfaces contained in a quadric and their general de-
formations. The results in nos. 1-7 hold not only on C but on any algebraic-
ally closed field of characteristic zero.

We do not deal here with surfaces whose canonical system has base
points: this will be the object of another paper.
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We believe the methods we use in nos. 7-8 could be applied to the study
of canonical surfaces with p,, = pa = 5, K2 &#x3E; 10 with isolated singularities.
However here some nasty technical difficulties occur in constructions by
liaison. It seems more difficult to get complete and detailed results about
canonical surfaces With pg = pa= 5, g2 &#x3E; 10, with nonisolated singularities.

Part I

1. - Preliminaries.

Let 8 be an irreducible, nonsingular, projective variety of dimension
n&#x3E;l, defined over an algebraically closed field K of characteristic zero.

We shall denote by 0,, the structure sheaf of 8 and by Ks a canonical
divisor on S.

Suppose we are given a divisor D on 8 and a vector subspace TT of

HO(S, as(D)), of dimension r + I &#x3E; n + 1, such that in no point of 8 all
sections in V vanish. Let p : 8 - pr be a morphism of 8 in the projective
r-dimensional space over K, corresponding to V. In what follows p will

be assumed to be a finite birational morphism. Then, if F = p(S), F is a
nondegenerate, n-dimensional subvariety of pr and p is the normalization
morphism of F.

For any j E N, consider the natural map:

We call F j-normal if ej is onto; if j = 1 we shall say linearly normal. in-
stead of 1-normal. F is projectively normal if it is j-normal for any j e N.
Let us put f(F)j = Ker (2j for any j EN; f(F) == EB J(F)j is the ideal

JEN 
,

of polynomials vanishing on F. We shall also write Er(j, .F) to denote the
linear system P(,f (F),) of hypersurfaces of degree j in pr containing F,
and Er(j) instead of Er(j, fl).

Let ’U be the linear subsystem of the complete linear system j.D) cor-
responding to V. By the assumptions, ’1J has dimension r&#x3E;n&#x3E;l and no

base points on S. By Bertini’s theorem, there are nonsingular divisors C
in ’1J such that the restriction pc of p to C is a finite birational morphism
of C onto a section d cut out on F by a hyperplane n of par. If n = 1 we

can assume that pc is one to one. In the above case we shall say that L1

is a generic hyperplane section of F and that n is a generic hyperplane for F.
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If n &#x3E; 1, let R be a divisor on C such that 0,(R) = tls(D) 10; the natural map :

can be considered. If W = r(V), W is the vector subspace of H°(6, (9c(R))
corresponding to the morphism pC : C --* x. Similarly we can consider generic
sections of .F with a p8 cpr, s &#x3E; r - n. In particular, if s = r - n + 1, we
have generic curve sections ; they are nonsingular and their genus will be
denoted by g(S, D), or simply by g, if no confusion anises. Obviously ti
is g(S, D) = g(C, R).

For any r E N we set A(r) = K[x,,, ..., xr]. If If is a graded Ar&#x3E;-module,
the K-vector space of homogeneous elements of degree j e Z in M will be
denoted by M,, so that M == EB Mj. In particular it is A (r&#x3E; == EB At&#x3E;;

i c-Z 3~Z

Aj(r) is, in a natural way, isomorphic to the j-th symmetric power of V,
or to HO(pr, Op,(j)). Any ideal of A(r) will be, as usual, considered as an
A(r&#x3E;-module, and any homogeneous one as a graded module. Moreover

any A(’)-module M, with s  r, will be considered as an A(r&#x3E;-module setting
Xi M = O,i = s + 1, ..., r. As usual we shall set M(m) == (D M,+,,,, namely

jEZ

M(m) j == Mj+m, for any graded A(’)-module If and any m c- Z. M* will

denote the dual of the A(r)_module M, namely the module HomAT&#x3E; (.M, A (r»;
.M will denote the sheaf of (9pr-modules associated to lVl (see [H], chapt. II).
Any homomorphism between graded Ar&#x3E;-modules will be homogeneous of
degree zero.

Let F be an invertible sheaf on S. We shall put, as usual F(jD) =
- 5r&#x26; 0,(jD). One can look in a natural way at:

as a graded A(r)-module7 where y(F); = HO(S7 Ozr(jD)). It is known that

y(-5F) is of finite type (see [0]). Besides dim (y(,5F)) = n + 1, since:

(1.1) PROPOSITION. The following are equivalent:
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Thus:

for any A"’-module if and any integer i &#x3E; 0. In particular it is:

for any integer j and any integer i &#x3E; 0. Applying Serre duality, y we have:

sertion.

(ii) =&#x3E; (i) The assertion being true for n = 1 (see [S], lemma (1.1)),
we make induction on n. From the long exact sequence of cohomology:

for any j E Z, we get:

for any j c- Z and i = 1, ..., n - 2. By induction, y(,5FIO) is a CM module.

Assuming, without restriction, that n has equation x,. = 0, and using again
the exactness of (1.2) and the hypothesis (ii), we get:

Then:

Since y(F]c) is CM of dimension n, it is:

Hence:

If y(-5F) is a CM module, there exists a free resolution of y(F) of
lenght r - n:
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where the F;’s, i = 0, ... , r - n, are free graded A"’)-modules of finite type.
We shall frequently assume, in what follows, that (1.3) is also minimal;
in this case it is well defined, up to isomorphisms.

(1.4) PROPOSITION. I f (1.3) is a free resolution of y(F), there exists a sur-

jective homomorphism :

such that :

is a free resolution of y(W*(Xs)) . If (1.3) is minimal, (1.5) is minimal too.

PROOF. Analogous to the proof of proposition (1.7) of [S]. q.e.d.

(1.6) REMARK. From proposition (1.4) it follows that y(W) is CM if and
only if y(W*(Ks)) is CM. This is also a direct consequence of proposition (1.1)
and Serre duality.

(1.7) REMARK. From the proof of proposition (1.1) it follows that if

y(,.F) is CM, the same occurs to y(F]c). The converse is not true: look,
for instance, at the case n = 2. If y(-5F) is CM, it is natural to look for a
minimal free resolution of y(Fc) related to (1.3), if this one is minimal.

Assume the generic hyperplane has equation xr = 0. Tensorizing (1.3)
by A(r-1) = A(r)I(Xr) over ACT), by the flatness of A(r-1) over A(r) we have that:

is a free resolution of

are considered as A(r-’)-modules in the natural way, and the f i’s, i =
= 1, ... r - n, are the obvious maps. We shall see later that (1.8) is minimal
in some interesting cases.

2. - The minimal free resolution of y(,F) -

We define now some integers related to F and p ; first the level of D

with respect to F. This is the integer:
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Let us consider the natural maps:

for any integers i, j, and write E(F), a;(F), etc., for E(D, iF), ai(p, F), etc.,
if no confusion arises. We shall also write e for E(as), ai for ai(as), etc.,
if no confusion arises; e will be simply called the level of D.

(2.1) REMARK. By definition of level, it is:

Observe that:

so that:

From (2.2) and (2.3) we get:

It is also:

Similarly it is:

It is also clear that the integers E(F*(Ks)) and E(F) are completely de-
termined by (2.2) and (2.6) respectively.
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We now investigate the link between the numbers we have introduced
above and the ranks of the modules appearing in the minimal free resolu-
tion (1.3) of y(F), if this is a CM module. Obviously, it is:

where in fact it is I &#x3E; - E(W*(Ks)) (see remark (2.1)). Similarly, y by pro-
position (1.4) we have:

where in fact it is j &#x3E; - E(3+’). From (2.7) and (2.8) it is clear the impor-
tance of an explicit computation of the numbers a;(F), fl,(3+’), i, j c- Z.
In this direction we begin proving the:

(2.9) PROPOSITION. I f y(F’) is a CM modute and n &#x3E; 1, it is:

PROOF. Look at the commutative diagram:

where Izi, vi are the natural restriction maps, and (01,i, , (W2,, are respectively
given tensorizing and multiplying by a nonzero section 8 E HO(S, (9s(D))
vanishing on C. The right column of the above diagram is exact and, since
y(F) is CM, the maps ,u2, vZ are onto for any ic-Z, by proposition (1.1).
Hence:

and (i) is proved. The proof of (ii) is analogous. q.e.d.
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(2.10) COROLLARY. If y(F) is a CM module, it is :

PROOF. It follows from proposition (2.9), taking into account re-

mark (2.1). q.e.d.

(2.11) REMARK. Suppose the resolution (1.3) is minimal. By proposi-
tion (2.9), the modules Flo and F;-n appearing in the resolution (1.8) have
the right ranks in order that (1.8) is minimal. Hence (1.8) is minimal if (1.3)
is minimal and r - n = 1-, 2.

Let us finally prove the following:

(2.12) PROPOSITION. I f y(,-F) is a CM module, it is:

PROOF. The assertion is true if n = 1: in this case the proof, based on
a well known Castelnuovo’s lemma is analogous to the proof of proposi-
tion (2.6) of [8]. For n &#x3E; 1, we make induction on n. Using corollary (2.10),
(i) is easily proven. Part (ii) follows from (i), since bj(.-F) = aj(F*(Ks)),
taking into account remark (1.6). q.e.d.

3. - The case 0,,-. Subcanonical varieties.

From now on we shall restrict our attention to the case F = 0,,. If

y(as) is CM, namely, by proposition (1.1), if and only if it is:

applying proposition (2.12) we have:

and, taking also into account (2.3):
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It is possible to say something more about fJn. Precisely:

(3.4) PROPOSITION. If y((9s) is CM, it is :

PROOF. The assertion is true for n = 1 (see proposition (2.6) of [S]
for (i); case (ii) is trivial). The proof is easily achieved for n &#x3E; 1, making
induction on n and using (3.1). q.e.d.

(3.5) REMARK. If y(as) is CM and g &#x3E; 0, it is ?&#x3E; - n; if g = 0 and
deg (.I’) &#x3E; 1, it is E = - n. This is true for n = 1 (see [S], no. 2). For

n &#x3E; 1 one makes induction on n, using corollary (2.10).

We assume now:

Then e = d and .F’ is called a sub canonical variety of level d. If y((98)
is CM and (3.6) holds, applying again proposition (2.12), we get:

beyond (3.2) and (3.3). We have also more informations in this case about
the resolution (1.3), if it is minimal and F = Us:

(3.8) PROPOSITION. I f y(C,,,) is a CM module, .F is subcanonical of level d
and the resolution (1.3) is minimal, there are isomorphisms :

PROOF. It is y(COs(Ks)) = y(US)(d), and the assertion follows applying
proposition (1.4). q.e.d.

A trivial consequence of proposition (3.8) is the:

(3.10) COROLLARY. In the same hypotheses of proposition (3.8) it is

L’ti = fli-, for any i E Z.

Proposition (2.5) of [S] shows that the converse of proposition (3.8)
holds if n = 1. Similarly we can prove that:
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(3.11) PROPOSITION. I f y( as) is a CM module and there are isomor-

phisms (3.9) between the modules appearing in a free resolution (1.3) of Y((08),
then F is a subcanonical variety of level d.

PROOF. The assertion is true if n = 1 (see [S], proposition (2.5), and
note that the hypothesis of minimality on the resolution (1.3) is not es-

sential). We make induction on n. The isomorphism (3.9) gives rise to

isomorphisms:

between the modules appearing in the free resolution (1.8) of (Dslo = ac
(see remark (1.7): here :F === 0,). By induction 4 is a subcanonical va-

riety of level d + 1. Look at the short exact sequence of sheaves:

Then, either (3.6) holds, or there exists an effective divisor L on 8 linearly
equivalent to .gs - dD. Since D is ample on S 7 by Nakano-Mdishezon
criterion we should have:

which is impossible. q.e.d.

(3.12) REMARK. If 0 is a subcanonical variety of level d, any its generic
hyperplane section is subcanonical of level d + 1. This is a consequence
of the adjunction formula (see [GH], p. 196). Proposition (3.11) asserts

that the converse is true if y((9s) is CM. If y(as) is not CM, counterexamples
are available. Look, for instance at the case .F’ is a surface whose generic
hyperplane section is an elliptic curve, which is subcanonical of level 0.

It is well known that F is subcanonical of level - 1, namely a Del Pezzo

surface, if and only if it is regular; this is the same as saying that y(as)
is CM, as one can easily check.

(3.13) REMARK. We want to point out, like in [S] is done for the case

n = 1, that proposition (3.11) implies that, if .F’ is nonsingular and
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r = n + 2, F is a complete intersection if and only if it is subcanonical
and projectively Cohen-.lVlacaculay, which means projectively normal and
y(as) CM. This is the extension to projective varieties of codimension 2
of a well known theorem about curves in P3 due to G. Gherardelli (see [GHE]).

4. - Fitting i deals and f (F).

If ll is a finitely generated Ar&#x3E;-module, 4D(M) will denote the 0-th Fitting
ideal of M, which we shall simply call the Fitting ideal of M. Let us as-

sume M graded and Ann (.lVl ) =1= 0, which is the case we are interested in,
and let us recall the definition of 4D(M). If M =1= 0, let:

be a free resolution of M, with lVlo, M. of ranks mo, ml respectively. Since

Ania (M) =A 01 it is:

Given minimal bases of homogeneous elements of lVlo, Ml, the map f is

represented, in the two bases, by an homogeneous matrix A of type mo X ml
(see [G], p. 190); here we are looking at the elements of M,,, 1121 as col-
umn vectors of polynomials. By definition, (D(M) is the ideal generated
in A(r) by the minors of order mo of A ; by (4.2), these are the minors of
maximal order of A. It can be proved that 4D(M) does not depend on the
resolution (4.1) (see [MR ] ) . If M = 0, by definition it is 4D(M) = m, where m
is the maximal homogeneous ideal in A(r). 4D(M) is, in any case, an homo-
geneous ideal. ,

If A is an homogeneous matrix of elements of ACT), 4D(A) will denote the
ideal generated in A(r) by the minors of maximal order of A. This is an

homogeneous ideal, called the Fitting ideal of A. With the previous nota-
tions, it is 43,(M) = 43,(A), if M # 0.

(4.3) PROPOSITION. For any invertible sheaf on S, it is:

PROOF. For any module M, with Ann (M) =1= 0, there exists an integer
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h &#x3E; 0 such that:

(see [MR]). Hence we get:

Applying (4.5) to M = y(F), we get the assertion, since Ann (Y(-5r)) =
= f(P). q.e.d.

(4.6) REMARK. Putting M = y(,5r) in (4.4) and (4.5), we get:

A natural question to ask is when it is:

This is a consequence of results of [BE,]. If r - n = 1 and y(F) is CM
we can take mo = m1, thus (4.9), and hence (4.8), holds. For a direct discus-
sion of this case, with /F == {!)s, see [C] (see also next remark (4.14)).
If F = as and F is projectively normal, (4.8) trivially holds.

(4.10) REMARK. If y(F) is CM, we shall denote by Ai the matrix re-
presenting the map f i appearing in the free resolution (1.3) of lVl = y(/F),
in two homogeneous minimal bases of .F’Z, Fi-l, i = l, ..., r - n. If 4»(Ai) =F 0
for any i = 1, ..., r - n, it is:

(see [BE2], theorem 2.1). Moreover the ideals cD+ = +(Ai) . cb(A,,) ..., W- =
cb(A,) - cD (A,). - - - are isomorphic, namely there exists an (XEAr&#x3E;, CX:A 0,
such that cb+ = occb-. If r = n + 21 it is 4D(A,,) = oc4b(A,), and in fact

(X E K, since, by (4.11), Rad (cD(A,)) = Rad (,D(A,)). Thus cb(A,) = cb(A,).
Applying this remark to projectively Cohen-Macaulay nonsingular varieties
of codimension 2 in a projective space, it is possible to find all known

results about the ideals defining these varieties (see [GA], [PS]).
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(4.12) REMARK. Let If = y(317) in (4.1) and:

where v is a mo X 1 matrix. Clearly g(u) = 0 if and only if P E f(F).
On the other hand, g(v) = 0 if and only if there exists a mix 1 matrix
w E M, such that v = Aw. This trivial observation gives a method for
finding all polynomials in f (F), once we know the matrix A. If al , ..., 7 amo
are its rows, first we find all ml X 1 matrices w such that:

For any such a w, a,. - w E J(F), and in this way we get any element in.-f (F).
It is obvious that the first row can be replaced by any other.

We now refer to the case F = as, and put M = y( C9s) in (4.1). Then

we can take:

00

(see (2.7)), so that mo == 2 (Xi. To get the matrix A, we choose the fol-

lowing basis of 3fo: i=O

where e generates A(’), e1,1’ ..., e1,(Xl generate A (1)(- 1 )tXl, etc. Hence we

can write:

here A1 is the first row of .A and A2 is a (mo - 1) X mi matrix. Let us give
an interpretation of A2- Consider the natural map:

whose kernel is J(F) and whose image is the coordinate ring of F. If coker

r(S) = 0, namely if and only if .F’ is projectively normal, it is Mo ci A(r)
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and A, does not exist. If coker r(S) 0 0, we have the following part of a
free resolution of coker r(S) :

where f is represented by A2 in the two obvious bases of Mi and Mo/eAr&#x3E;.
Therefore we have :

When, in what follows, we shall assume y(Cs) CM, we shall implicitely
identify (4.1), in which M == y(US), with the first part of (1.3), in which
= C9s . Thus M, - F,, M, - j’’1.

(4.14) REMARK. Let .6s be the sheaf of ideals of Op,. which is the inverse
image of the sheaf of ideals conductor of Øs in 0,, and let:

be the corresponding homogeneous ideal of A(r). It is clearly:

where X(F) is the closed Zariski subset of F formed by the points at
which F fails to be normal. By our hypotheses K(F) coincides with the
singular locus of .F. From (4.15) we get:

Since (coker r(S))- = p*(ØS/ØF), and lfs is the sheaf of annihilators of

p*(ØS/ØF), it is easy to check that there exists an integer h &#x3E; 0 such that :

By (4.4), (4.5) and (4.16), we get:

for a suitable integer h &#x3E; 0. Using the results of [BE1,], we can also state
that, if : 

°
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it is:

(4.20) PROPOSITION. It is:

PROOF. Similar to the proof of proposition (4.3), taking into account
remark (4.14). q.e.d.

Finally we want to compare Proj A(r)/4b(y(o s)) and F = Proj A(r)l..f (F)
in order to get a more precise statement than the one of proposition (4.3),
even if we are not going to make use of it in what follows.

First we remark that:

Moreover, y applying lemma (2.6) of [MR] to the exact sequence:

and using (4.17), we get, for some integer h &#x3E; 0:

1’(F) determines two not empty open subsets:

which we consider as open subschemes of Proj ,
respectively.

(4.23) THEOREM. There exists a natural isomorphism between [21 and 922 -

PROOF. Let p be any homogeneous prime ideal of ACT) containing IP(Y(0"1))
but not containing f ’(F). By (4.21) and (4.22), p contains J(F). There-

fore these exists a natual map ~ : [21 &#x3E; SZ2 . Using (4.22) it is easy to check

that is an isomorphism. q.e.d.
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(4.24) COROLLARY. I f X(F) = 0 it is :

PROOF. If %(F) = 0, by (4.15) it is ,f,(F) D Mk for some integer k &#x3E; 0.

In this case it is Di = Proj A(,r)lcb(y(Cs)), Q2 = Proj A(,r)l..O’(F) = F. By the-
orem (4.25) the assertion follows. q.e.d.

(4.25) REMARK. Many of the results stated up to here hold even if we
drop the hypothesis S is nonsingular. Since we have only used Serre duality,
it is sufficient for S to be a locally Cohen-Macauly variety (see [H], chapt. II,
no. 8 chapt. III, no. 7). In particular, if n = 2 it is enough to suppose S
normal (see [GR], example 7.19). We shall constantly use this fact in what
follows. Moreover, often, and particularly in this no. 4, F could have been
replaced by any locally free coherent sheaf of as-modules.

Part II

5. - Canonical surfaces in P4.

Let 9 be an irreducible, nonsingular, algebraic variety of dimension
n &#x3E; 1 defined over K, and let q: g ---&#x3E; F C: pr be a birational morphism such
that q*(H,,) E IKs - ZI, where Hp is a hyperplane section of F and Z is

the fixed part of IKl on S. F is said to be a canonical variety. In what

follows we shall deal with canonical surfaces, assuming, unless the con-
trary is explicitly stated, IK,l without base points. There is, a factoriza-
tion of q:

where p : S - .F’ is the normalization of F. It is well known that

has only irrelevant singularities, also called Du Val singularities, and

4*(d,S(Ki)) = ois is the dualizing sheaf of S. We shall call ms the canonical
sheaf of S, and canonical divisor on S any divisor of zeros of a section of ros.
Then p is determined by a (r + I)-dimensional vector subspace V C HO(S, Cos),
and I" is a subcanonical surface of level 1 (see no. 3 and remark (4.25)), y
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which will be for us a synonym of canonical surface. The generic hyper-
plane sections of canonical surfaces are subcanonical curves of level 2

(see remark (3.12)); these objects we shall call half-canonical curves. If

m = deg (F), it is m = gs and, by adjunction formula, g = K’ + I = m + 1.

(5.1) PROPOSITION. If F is a canonical surface, y(C,,) is a CM modules if
and only if q(S) = hl(S, (9s) = 0.

PROOF. Similar to the proof of proposition (6.4) of [C]. q.e.d.

In order to apply the results of nos. 1-4 to canonical surfaces, we have,
by proposition (5.1), to suppose, them regular. Moreover, since our goal
is the study of linearly normal canonical surfaces in P4, we shall usually
assume:

It is well known that, if (5.2) holds, it is m = K£ &#x3E; 8. Besides, if m = 8, 9, 7
.F’ is a complete intersection in P4 (see [E], cap. VIII). To avoid trivial

cases we shall often assume m&#x3E;10.

(5.3) PROPOSITION. I f F is a canonical surface of degree m in P4, verifying (5.2)
and not contained in any quadric, in the minimal free resolution (1.3 ) it is :

PROOF. By (3.2), (3.3), proposition (3.4) and corollary (3.10), we get
ai = fl,_1 = 0 for any integer i different from 0, 1, 2. By (2.5) and (2.6)
we also get ceo = P-l =1 and al = flo = 0. Since no quadric contains F,
we have X2 == PI == ho (82 lVs(2Ks)) -15 = m- 9. Therefore, by (2.7) and (2.8).,
Fo and .F’1 have the expression (5.4). Let us now put:

and determine the integers b; . By minimality it is bi = 0 if j&#x3E;6. Besides,
applying proposition (3.8), we have:
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Hence bj = 0 if j  0 and bl = b5, b2 = b4. But b5 = 0, otherwise .F should
lie in a hyperplane; similarly b4 = 0. So Fi is like in (5.4). q.e.d.

(5.5) REMARK. We keep the hypotheses of proposition (5.3). In the minimal
free resolution (1.3) there are two relevant maps: /iy/2’ Choosing bases
for .F’o , PI, .I’2 in the usual way, f l, f, are respectively represented by homo-
geneous matrices of the type:

where [i] stays for a matrix of homogeneous polynomials of degree i in A(4),
and the numbers 1, m - 9, 2m -16 indicate the sizes of the matrices.

Like in no. 4, A2 will denote the matrix obtained from A erasing the first
row. Clearly it is :

(5.8) REMARK. If .F verifies the hypotheses of proposition (5.3), and
m = 10, .F’ must be singular. This follows from proposition (4.20), ob-

serving that w(A2) is the ideal generated by four linear forms in A(4). If

X(F) is one point, (4.18) holds, and so (4.19). Since w(A2) is radical in

this case, by (4.27) it is also w(A2) = S’(F). The only other chance for
%(F) is to be a line.

Proposition (5.3) applies to many canonical surfaces. For instance if .F’

has isolated singularities. In fact:

(5.9) PROPOSITION. If F is a canonical surface of degree m &#x3E; 8 in P4, with
isolated singularities, then F does not lie on any quadric.

PROOF. It is sufficient to show that if a quadric Q contains the generic
hyperplane section 4 of F, which is a nonsingular half-canonical curve in P3,
it must be m = 8. Assume Q nonsingular, and look at the exact sequence:

.gQ being the plane section of Q. Since:
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the map:

is an isomorphism. Being:

it is h°(Q, 6’Q(,d - 42fo)) = 1. Hence d - 4HQ, where - denotes the linear
equivalence. So it is m = 8. The case Q is a cone can be worked out in
a similar way. q.e.d.

6. - Recalling properties of surfaces in P4.

Let .F be a surface in P4. We shall say that .F’ has ordinary singularities
if it has at most a finite number of double points with tangent cone con-

sisting of two planes spanning P4 . Any such a double point we shall call
a node. If .F’ has ordinary singularities and p : S - F is the normalization
S is nonsingular and the fiber of p is one point except at the nodes of F,
whose fiber is formed by two distinct points.

If F is an irreducible surface of degree m in P4, with ordinary singularities,
we can attach to F three numbers, which are projective invariants, but
turn out to be related to the birational geometry of F. The three num-

bers are:

1) d(F), the number of nodes of F;

2) wl(F), the degree of the ruled surface described by the tangent
lines to a generic hyperplane section of F;

3) co,(F), the number of distinct tangent lines to .F passing through
a generic point of P4.

A theorem of F. Severi gives the connection between m, d(F), wl(F),
w2(F). Namely:

(6.1) THEOREM. If F is an irreducible surface of degree m in P4 with ordinary
singularities, it is :

The proof of theorem (6.1) is in [SE1] ; in [SE2] a more general result
can be found. For a modern version, see [CA].
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In order to give, a more intrinsic form to formula (6.2), it is necessary
to relate mi(F), w2(F) to the birational invariants of S and to the invariants
of the linear system IDI on S, where, as usual, (9s(D) = p*(Cp.(l-)). The

task is very easy for co.,(F), being, as easily can be checked:

As for w2(F), we recall a theorem classically due to P. Bonnesen (see [B]),
a proof of which can be found in [E], p. 173-176, or, for modern versions,
in [KL], p. 162, and in [P], p. 115:

(6.4) THEOREM. BWith the hypotheses of theorem ( 6.1 ) , it is:

Putting together theorems (6.1), (6.4) and formula (6.3), we finally get:

(6.5) COROLLARY. With the hypotheses of theorem (6.1), it is:

Besides, with few computations, we get:

(6.6) COROLLARY. If F is a canonical surface of degree m in P4, with or-
dinary singularities, it is :

p : S ---&#x3E; F being the normalization.

(6.7) REMARK. If .F’ is a regular, linearly normal, canonical surface of
degree m in P4 , with ordinary singularities, by corollary (6.6) we get :

Applying corollary (6.6) and formula (6.8) to nonsingular surfaces, one
checks that:

1 ) .F’ is nonsingular and regular if and only if m = 8, 9, in these cases F
is a complete intersection;

2) F is nonsingular and irregular only if m = 12, p.(S) = 4, thus
q(S) =1.

It is an open problem to find out whether the latter surfaces exist.
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(6.9) REMARK. If .F’ is an irreducible surface of degree m in P4, we shall
say that F has quacsi-ordinacry singularities if it is normal outside of finitely
many nodes: of course a node is not a normal point. Analysing Severi’s
proof of theorem (6.1) one checks that it still holds if F has quasi-ordinary
singularities. More generally if F has isolated singularities, F has non-
normal singularities equivalent, in a sense that can be made rigorous, to
d(F) nodes, where d(F) is given by (6.2). One has to be careful with the-

orem (6.4) if F has quasi-ordinary singularities: one has to remember indeed
that isolated singularities affect pa(S), gs. If F has only irrelevant sin-
gularities off the nodes, no problem arises, thus theorem (6.4), and its

corollaries (6.5), (6.6) still hold.

Let us now assume that F, .I" are irreducible surfaces in P4 , with ordinary
singularities, and that F u F’ is the complete intersection of two hyper-
surfaces Q, Q’ of degrees, q, q’ respectively, with at most isolated singularities.
Since any hypersurface containing .F’ (or F’) has a singular point at any
node of .F (of F’), the same happens for Q and Q’. F and F’ having ordinary
singularities, Q and Q’ have only double points at the nodes of .I’ and F’,
which are the same points of P4. Moreover Q, Q’ have at most a double
point at any point of FUF’, since F, .F" are nonsingular off their nodes.
If V is any hypersurface in P4 containing F’ but not F, the divisor V’.F
cut out by V on F is defined (see [H], p. 146). We define the divisor

r(F, F’) on .F’ to be the maximal divisor contained in all divisors V. F,
where V contains F’ but not F. Similarly r(F’, F) is defined. If p : S -+F,
p’ : S’ - F’ are the normalization morphisms, we put:

F(F, F’) and F(F’, F) are supported on the same curve of P4 , namely the
set-theoretic intersection of -F and F’.

The first basic fact is that:

(6.10) PROPOSITION. I f /li, .F’ are like above, it is:

where t = q + q’- 5 and D, D’ have the 2csnat meaning.

This statement, like the others in the reminder of this paragraph, is due
to Severi; its proof is based upon the adjunction formula. For reference,
see [SE3].
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By lemma (6.10), for any j EN there is a natural map:

and the similar map kf for S’. The main theorem, due to Severi (see [SE3]),
is the following:

(6.11) THEOREM. T he maps k. I kf are isomorphisms for any j e N.

An easy consequence of theorem (6.11), is the:

(6.12) COROLLARY. I f F, .F" are like above, If is subcanonical of level d if
and onty if there exists a hypersurface of degree t - d containing P’ but not F,
cutting out r(F, F’) on F.

7. - Canonical surfaces of degree 10 in P4 with isolated singularities : existence.

Let us prove the existence of canonical surfaces of degree 10 in P4 with
isolated singularities, verifying (5.2). According to remark (5.8) and for-
mula (6.8), we expect that any such a surface has a single node.

We start considering a rank 4 quadrie cone Q in P4 with vertex P.
On Q there are two linear pencils of planes 21, 22; any two distinct planes
of the same pencil intersect only at P, and two planes of different pencils
intersect in a line containing P. Let 7:1’ z2 be two distinct planes in 21.

(7.1) LEMMA. There are irreducible hypersurfaces in E4(4, ’l’1 U z2), which

are nonsingular off P, and have a double point at P with tangent cone o f rank 4,
intersecting Q in zi, 7:2 and in two distinct planes of -W..

PROOF. Bertini’s theorem can be applied, once we prove that E4(4, z,, U z2)
contains:

(i) an irreducible hypersurface, nonsingular off P;

(ii) a hypersurface having an isolated double point at P, with the
required behaviour of the tangent cone. 

Since there are nonsingular quartic surfaces in P3 containing two skew
lines, for instance the Fermat quartic, certainly there are quartic cones in
,E4(4, 7:1 U z2) verifying (i). To settle (ii), it is sufficient to take a reducible
quartic formed by a quadric not containing P and a rank 4 quadric cone
with vertex at P, intersecting Q in Ti, z2 and in two distinct planes
of 22. q.e.d.
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The hypersurfaces in E4(4, 7:1 U 7:2) not containing Q, cut out on Q,
off ii U z2, a linear system 2 of surfaces of degree 6. Any surface in 2 is
singular at P, having at least a node there.

(7.2) LEMMA. There are irreducible surfaces in 2 with a node at P and
no other singularity.

PROOF. 2 contains all reducible surfaces formed by two distinct planes
in Y. and in a quadric section of Q. The assertion follows by Bertini’s
theorem. q.e.d.

By lemmas (7.1), (7.2), it follows that there exists a not empty Zariski
open subset 2’ of 2, such that:

1) any surface .F" E 2’ is irreducible, has a node at P and no other
singularity;

2) any surface ]j" E.ftJ’ is the intersection of Q with an irreducible
hypersurface Q’ E -P4(4, ’il U 7:2), which is nonsingular outside of P
and has a double point at P, with the properties described in
lemma ( 7.1 ) .

Remark that if F’e 2’, the tangent cone of F’ at P consists of two
planes I z2 in -T2

Consider the linear pencils Yl’, Y,’ cut out on Fc- Y’ by the planes
in Yl, 22 respectively.

(7.3) LEMMA. I f Flc- Y’, it is:

(i) Y’ is a pencil of plane quartics, whose generic element has a node
at P and no other singularity;

(ii) ’ is a pencil of conics, whose generic element is irreducible.

PROOF. Any plane 7: E 21 - {-Cl 9 -r2l, intersects .F’’ where it intersects Q’,
since it has no curve in common with 7:1’ ’i2. Thus (i) follows by the
properties of the tangent cone of Q’ at P and by Bertini’s theorem. The

proof of (ii) is similar. q.e.d.

(7.4) REMARK. Lemma (7.3), (ii) implies that F’ is rational. Moreover

the generic hyperplane section of F’ is a nonsingular, hyperelliptic curve
of degree 6 and genus 3: it is, in fact, a curve of type (4, 2 ) on a nonsingular
quadric surface in P3 (see lemma (7.3)). Projecting F’ into a p3 from any
nonsingular point of .F" one gets a quintic surface with a triple line. Hence
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there exists a birational map Fl -* P2 mapping the linear system of hyper-
plane sections to the linear system of quintics with a triple base point and
ten simple base points (see [CO], p. 482). F’ is also a counterexample to
a theorem stated in [SE1], p. 37, whose proof is uncorrect.

Fix now any .F" E £f’. The hypersurfaces in E4(4, F’) different from Q’,
cut out on Q’, off F’, a linear system 8 of surfaces of degree 10. Any sur-
face in 8 is singular at P, with at least a node there.

(7.5) LEMMA. There are irreducible surfaces in tf with ac node at P and no

other singularity.

PROOF. 8 contains the linear system of surfaces reducible in 7:1’ 7:2 and

in a quadric section of Q’. Moreover, the points of 7:1 U Ts - fp} are not
base points for 8: in fact the hypersurfaces in E4(4, .F’’ ) not containing Q,
cut out on Q any couple of planes of Y,,, since Q is projectively normal.
The assertion follows by Bertini’s theorem. q.e.d.

S cuts out on F’ a linear system 2" of curves.

(7.6) LEmmA. Y" is a linear system of curves of degree 20, whose generic
element is irreducible, nonsingular outside P, where it has a quadruple point
with f our independent tangent Zines.

PROOF. The assertion follows from lemma (7.3), applying Bertini’s
theorem. q.e.d.

By lemmas (7.5), (7.6) and properties of E4(4, F’), it follows that there
exists a not empty Zariski open subset e’ of J such that:

1) any surface F c- e’ is irreducible, with a node at P, and no other
singularity;

2) any surface F c e’ is the intersection of two irreducible hypersur-
faces Q’, Q’EE4(4, F’), off F’; Q’, Q" are nonsingular outside P,
have a double point at P, with tangent cone of rank 4;

3) any surface .F e e’ cuts out on .F’ an irreducible curve c(.F’, F’)
of degree 20, with the properties listed in lemma (7.6).

We can finally prove the:

(7.7) THEOREM. Any /li G tb" 18 a canonical surface of degree 10, with ordinary
singularities, verifying (5.2).
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PROOF. Since .F’ is not contained in Q, Q cuts out on .F a curve of
degree 20, which is just e(F, F’) - Keeping the notations of no. 6, it is

c(F, F’) = JT(F, F’). This implies that F is canonical (see corollary (6.12)).
Since F’ is not the complete intersection of Q with a cubic (see remark (7.4)),
no irreducible cubic hypersurface contains F’. Therefore, by theorem (6.11),
it is p,,(S) = 5; here, as usual, p : S - F is the normalization of F. Finally,
applying corollary (6.6), one checks that Pa(S) = 5, since d(F) =1. q.e.d.

8. - Canonical surfaces of degree 10 in P4 with isolated singularities : uni-
rationality of moduli space.

Once the existence of canonical surfaces of degree 10, with ordinary
singularities, verifying (5.2), is proved, we want to describe their moduli
space. In order to do this, we make the following considerations, assuming,
from now on, K = C.

We introduce the indeterminates over C:

and consider the ring 8 = C[x aih, bh, C:kl] as a graded algebra of poly-
nomials over the ring .R = C[ah, bh, Chkl]. We shall also put R’ = C[ah]
and denote by A, A’ the affine spaces over C whose coordinate rings are .R, .R’
respectively.

Let:

be matrices, of type 1 X 4 and 4 X 2 respectively, with elements in 17 given by:
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If no confusion arises, we shall write:

to denote the matrices (8.1).
Consider the matrix s/.£&#x26;, of type 1 x2, whose two entries are:

Let .f ç R be the ideal generated by the coefficients of 9,, £Pz considered
as polynomials over .R. Observe that the generators of .f are homogeneous
polynomials in the variables ah, b:, chkl, and separately are also homogeneous,
and linear indeed, in each set of variables. Let I be the reduced, closed
subvariety of A which is the support of Spec R/.f, and consider the pro-
jection morphism e: I - A’. By the properties of the ideal f7 the fibers
of O are supported on affine subspaces of A. More precisely, if we fix a

point a = /I rJ: /I E A’7 the support of Ow(a) has equation given by the
vanishing of the coefficients b2 , , cz k2 of the two polynomials:

In this way one gets 85 linear homogeneous equations in the variables

bh, eihkl, which are 160 indeterminates. The basic remark is that these

85 equations are not independent. In fact, for any a = ))ce/)) e A’, there
exists a nontrivial solution of the linear system:

in the variables Xh. Therefore the polynomials (8.2) both vanish at a

certain point of the 4-dimensional projective space over C(a). This means

that there are at least two independent linear relations, with coefficients
in C(a)y among the coefficients of the polynomials (8.2). Hence, for any
a E A’ it is:

thus O is surjective.
Consider now the not empty Zariski open subset X of A’, formed by

points a = 11 ot e A’ such that the linear system (8.3) has only one solu-
tion in the 4-dimensional projective space over C(cE). In other words,
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X is the complement in A’ of the locus defined by:

We want to prove the:

PROOF. The group GL(5, C) acts in the natural way on the variables
xo, ..., x4; this induces an action of GL(5, C) on A and A’. It is obvious that :

(i) the action is transitive on X;

(ii) the action on A induces an action on I such that O is GL(5, C)-
equivariant.

Hence it is sufficient to prove the assertion for a particular point in X.
Let F c- e’ be a canonical surface of degree 10, whose existence has been
proved in theorem (7.7). Applying propositions (5.3), (5.9) to F, we get
two matrices A, B, given by (5.6), with m = 10, verifying (5.7). We shall
prove the assertion if a is the point of A’ corresponding to the coefficients
of A2, where A2 has the usual meaning (see remark (4.12)); a is in X by
proposition (4.20). By remark (4.12) and the exactness of resolution (1.3)
for F = Os, it is:

Then, using theorem (6.11), remark (7.4), Riemann-Roch theorem and
Kodaira vanishing theorem on S’, we get:

By lemma (8.4) and properties (i), (ii) of the action of GL(5, C) on I
and X listed in its proof, it follows that there exists a unique irreducible
component Z of I such that the restriction Oz of 0 to Z maps Z onto a
subvariety of A’ containing X. Z is an irreducible, reduced variety and,
by lemma (8.4), it is rational, and:
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Consider now the Fitting ideal 4»(&#x26;6) of the matrix -4 (see no. 4) and
look at the commutative diagram of morphisms:

where i is the natural closed immersion, k is the projection on the second
component, and h commutes the diagram. Since the ideal w(&#x26;6) is homo-

geneous in the variables Xih, we can projectify Supp (Speefl/4D(-V)) in each
fiber of h. In this way we get a new commutative diagram:

where !7 is the variety obtained with the partial projectification of

Supp (Spec and i, k, h have the same meaning as above. Restricting
everything to Z c A, we get the commutative diagram:

where i, k, h still denote the natural morphisms. For any C E Z, h-’(C),
with its reduced structure is a subvariety in P4 X{Cl. We want to show that :

(8.6) PROPOSITION. There exists a not empty Zariski open subset Z’ of Z,
such that:

( i ) f or any canonical surface F of degree 10 in P4 with isolated sin-
gularities, verifying (5.2), there exists a point C E Z’ such that F = h-’(C);

(ii) for any C E Z’, h-’(C) is a canonical surface of degree 10 in p4 with
isolated singularities, verifying (5.2).

PROOF. Consider the subset Z" of Z formed by all C E Z such that

h-’(C) is a surface of degree 10 in P4with one node and no other singularity.
By standard arguments (see [H], p. 95, ex. 3.22), one checks that Z"
is a constructible subset of Z, namely a finite disjoint union of irreducible,
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locally closed subsets of Z. Let Zff , . - ., Zm, be the components of Z" con-
taining a point C such that h-’(C) is a canonical surface of degree 10: by
theorem (7.7), remark (5.5) and proposition (5.9), it is m&#x3E;l. For any
i = 1, ... , m, 7 consider the restriction map h : Yz" i -&#x3E; z i ff *

This is an algebraic family or surfaces over Z;, since, by constance of
degrees, any fiber occurs with multiplicity one. Blowing up any fiber
at the node, we get an algebraic family of nonsingular surfaces over Z,," -
By a theorem, of Igusa (see [I], p. 36) the arithmetic genus of the fiber is
constant, hence is 5. Similarly one checks that the generic hyperplane
section 4 of the fiber is a nonsingular curve of degree 10 and genus 11 in P3.

Let c- Z," 7 F = h-II(C)7 p : S -F the normalization. It is pg(S) &#x3E;
&#x3E;p.(S) 5- and )Ks) cuts out on C = p*(d ) a gio with:

The divisors of this gio are residual, with respect to IKol of the divisors of
the linear series IR I, pull-back on C of the linear series cut out on d by the
hyperplanes of P3. By a result of Comessatti (see [COM]; for a modern
version see [BEA], no. 5), it is dim IRI = 3 so that r3. Hence p,(S) = 5
and Ks - C, namely .F’ is canonical. Therefore, for each i = 1, ..., m, there
exists a natural morphism ggi: Z, ---&#x3E; -li, where -Vi is a component of the
coarse moduli space of surfaces with p, = p,, = 5, K2 = 10 (see [GI]).
By propositions (5.3), (5.9), there exists an i = 1, ..., m, such that 99i is

dominant; say i = 1. Let us evaluate the dimension of Z;.
The basic remark is that there is a natural action on Z of the group

(; = GL(l, C) X GL(4, C) X G X GL(5, C), where G is the group of matrices :

The action is defined in the following way:

with (A, B, C, D) e 9, (.,Q/, -4) c- Z, and sl(D), -V(D) obtained letting D
act on the variables x, in the natural way (see proof of lemma (7.11)).
This action induces an action of 9 on Z // 1 and, 2 for any C E Z1, the fiber
Ti 1(99,,(~)) is (g-stable. We claim that, for any C = (a, -4) c- Zi, the stab-
ilizor g(C) of C is a 2-dimensional subgroup of (g. First, remark that the
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projection of W(C) in PGL(5, C) via GL(5, C) is a finite group, because the
surface h-’(C) has only a finite number of automorphisms. Hence, if

(A, B, C, D) E g(C)07 #(()° being the connected component of the unity of
g(C)7 D is a scalar matrix. Moreover g(C)O coincides with the group of
matrices of the type (A(Ä), B(Ä-l,u-l), C(A), D(,u)), where :

A, ,u E C*. In fact this 2-dimensional group is certainly contained in g(C)O.
Besides, if (A, B, C, D) E W(C)O, and A = A(A), D = D(,u), it must be

B = B(Ä-lp,-l), since dEX. If C is given by (8.7), from the relation:

we get:

for any i = 1, ..., 4. Since (D(-I) =,- 0, it must be a11 = a22 = Â, ac21 = o.

By the above considerations, we have dim g(C) = dim g(C)O = 2, thus for
any C E Zff, it is :

It is also:
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where 8 is a surface whose class of birational equivalence is in Jfiy and Ts
is its tangent sheaf (see [Z], appendix to chapt. V). Combining (8.8) and (8.9),
we finally get:

By (8.5), y Z; is a not empty Zariski open subset of Z. Let us consider the

subset Z’ of Z formed by all C e Z such that h-’(C) is a surface of degree 10
in P4 with a single node and no other nonnormal point. By the above con-
siderations, Z’ is a not empty Zariski open subset of Z. By arguments
already used above, one ckecks that Z’ fulfils the assertion, q.e.d.

(8.10) THEOREM. There exists a unique component -T(l) of the coarse moduli
space of surfaces with Pg = pa = 5, .g2 = 10, containing points corresponding
to equivalence classes of surfaces having a canonical model of degree 10 with
isolated singularities. :Yí( 1) is unirational o f dimension 40.

PROOF. Consider the restriction map h: Yz, --* Z’. This is an algebraic
family of surfaces over Z’, and each fiber has a single node, being normal
outside it. Z’ can be covered by a family (Z’),,,f of open sets such that,
in the induced family hi: Y , -* zIwe can blow up in any fiber at thesi i7

node. These new families are families of normal varieties and, provided
we restrict to open subsets, they can be assumed to be flat and even smooth.
Hence for any i E J there is a morphism ggi: Zi - 5i, where 5i is the

moduli space of surfaces with P, = Pa = 5, g2 = 10. Since for any i, j E J,
ggi and ogj agree on Z’ (1 Z’, there is a unique morphism cp: Z’- 5r induced
by the morphisms (CPi)ie.1". By proposition (8.6), cP is dominant on an

irreducible component 5i1&#x3E; of Jfy the unique one containing points cor-

responding to equivalence classes of surfaces having canonical model of
degree 10 with isolated singularities. Moreover X(l) is unirational, since Z’
is rational. Argueing like in the proof of proposition (8.6), we have:

But, since dim si1&#x3E;&#x3E;40 (see (8.9)), we get the assertion. q.e.d.

(8.11) REMARK. It is a consequence of theorem (8.10) that:

(i) for any surface 8 with p,(S) = Pa(S) = 5, gs =10, whose

canonical model has isolated singularities, its local moduli space has ex-

actly dimension 40 = hl(S, Ts) - h2(S, Ts).
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It is also possible to check that:

(ii) if .F is the generic canonical surface of degree 10, verifying (5.2),
with isolated singularities, it can be obtained as a residual intersection of
two quartics containing a rational sextic surface with sections of genus 3
and isolated singularities.

This can be seen in many ways, for instance counting parameters. From
the same proof of theorem (8.10) it also follows that:

(iii) the generic fiber of the morphism q : Z’ - -T(’), contains an orbit
for the action of # on Z’ and has the same dimension of the orbit, namely
dim 9 - 2. It seems likely that the fiber coincides with the orbit and it is
certainly so if it is irreducible.

Let us conclude remarking that the arguments of this paragraph give,
by remark (4.11), an explicit description of the ideal of canonical surfaces
we have dealt with.

9. - Canonical surfaces of degree 10 in P4 with non isolated singularities, not
contained in a quadric : existence.

In this paragraph we shall prove the existence of canonical surfaces of
degree 10 in P4 with nonisolated singularities, verifying (5.2), not con-

tained in any quadric. According to remark (5.8), the nonnormal points of
such a surface lie on a line.

We begin recalling what is a tacnode of a surface in P3 . This is an isolated

singular point of a surface in P3, locally analytically isomorphic to the
singularity of the surface of equation Z2 = f (x, y) in C3 at the origin, where
f (x, y) = 0 defines an analytic curve in C2 with an ordinary 4-ple point
at the origin. The tangent cone at a tacnode is a plane counted twice; this
plane is called tacnodal plane.

Let us prove the:

(9.1) LEMMA. Given any five points A1, ..., A, in P3, four by four linearly
independent, and any plane a containing As and not containing any of the

other points, there exists a surface T of degree 6 in P3 with ordinary triple
points at AI, ..., A4, with a tacnode at As, tacnodal plane a, and rco other

singulatities.

PROOF. It is easy to check that there exist six nonsingular quadrics
Qi, ... , Qg in P3 with the following properties:
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(i) Ql, Q2, Q. contain .A1, ... , A5, are tangent to oc at A5, and in-
tersect only at A,, ..., .A5;

(ii) Q1, ... , Q5 generate the linear system of quadrics containing
Â1, ..., A6;

(iii) Q1’’’.’ Q6 generate the linear system of quadrics containing
A1, ..., .At. °

Q1, ..., Q6 will denote the quadrics and the quadric polynomials whose
vanishing defines them. Consider the linear system of quartics:

and let us show that the generic surface in (9.2) has:

(iv) an ordinary double point at Ai, ..., A4;

(v) a tacnode with tacnodal plane a at .Å.5;

(vi) no other singular point.

In fact the base points of (9.2) are just A,,..., A5 by (i). Applying
again (i), it is easy to check that QL, Q2, 9s have independent tangent
planes at AL, ..., .A.4. Hence, by Bertini’s theorem, we get (iv) and (vi).
As for (iv), let us assume A5 = (1, 0, 0, 0), a has equation x3 = 0, and pass
to affine coordinates x = xl/xo, y = x2/xo, z = x3/xo. Ql, Q2, Q3 can be sup-
posed to have affine equations Qi = z li(x, y, z) = 09 i = 1, 2, 3, with

li(x, y, z) homogeneous polynomial of degree 2 in x, y, z. Passing to affine
coordinates in (9.2) we have:

For a generic choice of the Aijls, the quartic of equation (9.3) has a double
point at A5 with tangent cone z2 = 0. Besides its intersection with a has

an ordinary 4-ple point at .A5. By Weistrass’ preparation theorem, the
equation (9.3) can be locally written:

around Å5. The double covering of the plane a defined by (9.4) has branch
locus of equation a1(x, y) 2 - a2(x, y) = 0 ; hence it is locally analytically
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isomorphic around .A5 to the surface of equation (see [F 2]) :

still havingZ2 = 0 as tangent cone, so that the curve a,(x, y)2 - a2(x, y) = 0
has an ordinary 4-ple point at Â5. Consider now the linear system of
surfaces of degree 6:

where Fi, ..., F’6 are six quartics spanning the linear system (9.2) having
the singularities described in (iv), (v), (vi). Taking into account (i), (ii), (iii),
it is easy to check that the base locus of the linear system (9.5) is given by
A], ..., A5, and that the generic surface in (9.5) has, by Bertini’s theorem,
the singularities required for T. q.e.d.

It is now possible to prove the:

(9.6) THEOREM. There exist canonical surfaces .F’ of degree 10 in P4, with
a nodat tine and no other singularities, verifying (5.2).

PROOF. Let T be the sextic of lemma (9.1), and look at a minimal de-
singularization co: 8 --* T. If we set m*(A;) = E; , i===1,...,5, the Bils
are nonsingular elliptic curves on 8 and B,2 3, i = l, ... , 4, Eb = - 2.
Moreover it is:

x

(see [E], cap. III; [F1]) ; (9.7) reflects the well known fact that canonical

divisors on S are proper transform by co of divisors cut out on T, by quadrics
containing A1, ... , As . Hence p,,(S) = 5 and the canonical map p: S --&#x3E;- F C P4
is a morphism, which fails to be injective exactly on E5. Indeed [Ks[ cuts
out on E5 a complete g2. Applying Riemann-Roch theorem and the

Kodaira vanishing theorem to the linear system [Ks + ro*(H) I, whose

divisors are proper transform by cubics containing A1, ..., As, one checks
that pa(S) _ 5. q.e.d.

(9.8) REMARK. Let us explicitely point out that the canonical surfaces,
whose existence has been proved in theorem (9.6), also contain four plane
nonsingular cubics, corresponding to the four curves Ei, ...,JE’4.

The above canonical surfaces do not lie on any quadric. Indeed:
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(9.9) PROPOSITION. Let d be a half-canonical curve of degree 10 in P3 with
a node or a cusp and no other singularity; d does not lie on any quadric.

PROOF. Assume 4 on a quadric Q, and suppose Q is nonsingular. It is

LtI’J aA + bB, where a, b are nonnegative integers and A, B are incident
lines of Q. It is :

Let p : C --&#x3E;-,d be the normalization of J, Pl + P2 the divisor on C cor-
responding to the double point of d, s E H°(C, aC(Pl + P2)), s # 0. If l(c)
is the vector subspace of HO(Q, {OQ((a- 2)A -[- (b - 2) B)) given by sections
vanishing at the double point of J, there exists a natural isomorphism:

so that 2ab - 2(a + b) - 2 = 20. Hence, by (9.10), it is ab = 21, and

so a = 3, b = 7 or viceversa. But if it is so, L1 cannot be half-canonical, as
easily can be seen. The case Q is a cone can be worked out in a similar
way. q.e.d.

(9.11) REMARK. By proposition (9.9), it is possible to apply proposition (5.3)
to canonical surfaces .IT of degree 10, verifying (5.2), with a nodal, or even
cuspidal, line, and, may be, other isolated singularities. By remark (5.8)
the latter singularities must be normal points, namely irrilevant singularities.
Besides, with notations usual in no. 5, it is cI»(A2) = JI(F) (see remark (5.8)).

We conclude this paragraph showing the:

(9.12) PROPOSITION. Let L1 be a half-canonical curve of degree 10 in P3,
with a singular point P, not lying on a quadric. Then P is a node or a cusp.

PROOF. Suppose P is not a node or a cusp. Then there exists a line r
containing P, such that any plane through r has multiplicity of intersec-
tion at least 4 with d at P. If p : C - 4 is the normalization, there are
four, not necessarily distinct, points P1, ..., P4 on C, such that p(Pi) = P,
i = 1,..., 4, and Pi + ... + P4 is in the pull-back on C of any divisor cut
out on L1 by a surface tangent to r at P. The quadrics tangent to r at P
form a 7-dimensional linear system cutting out on L1 a 7-dimensional linear
series of divisors, each one containing PI + ... + P4. Thus there exists

a gig on C, which is complete by Clifford’s theorem. This gig is residual of
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Pi + ... + P4 with respect to IEol; thus, by Riemann-Roch, IPl + ... + P41 I
is a g4. Consider now the gio on C corresponding to the plane section of d.
This is a complete series, by a theorem of Comessatti (see [COM]); more-
over the g4 is contained in it, and the residual series is a gg, and viceversa.
This implies that any divisor of each, the g4 and the gg, 1 consists of col-

linear points. This is impossible. In fact, like in the proof of proposition (5.3),
one checks that, in the minimal resolution (1.3), with F = OC it is

.Fo-,A(s)(DA(3)(-2), F,-A(3)(-3)4, F,=A(3)(-6)(DA(3)(-4). Therefore,
by proposition (4.3), L1 is set-theoretically intersection of quartics, so that
no sextuples of points of d lie on a line. q.e.d.

(9.13) REMARK. Let F be a canonical surface of degree 10 in P4, veri-

fying (5.2), with nonisolated singularities, not lying on a quadric. Then

any generic hyperplane section of .F’ does not lie on a quadric (see [R],
p. 151). Hence, by proposition (9.12), .F has a nodal or cuspidal line. As
observed in remark (9.11), there can be only irrelevant singularities of F
beyond it.

10. - Canonical surfaces of degree 10 in P4 with nonisolated singularities,
not contained in a quadric : general deformations.

Let .F be any canonical surface of degree 10 in P4, verifying (5.2), with
a nodal or cuspidal line. We aim to prove that the class of birational equiv-
alence determined by .F’ corresponds, in the moduli space of surfaces with
pe = pa = 5, .g2 =10, to a point in the component f(l) containing all equiv-
alence classes of surfaces whose canonical model has isolated singularities
(see theorem (8.10)). In order to get this result, we need some preliminary
considerations.

(10.1) LEMMA. Let F be like above and p : S - F its normalization. There

exists a f lat family of surfaces containing S, such that its elements have

pg = pa = 5, .g2 = 10, and its generic element has a canonical model with
isolated singularities or with a nodal line and no other singularities.

PROOF. A generic projection .F’’1 of .F’ in P3 is a canonical surface

of degree 10 in P3. Using standard arguments (see [E], p. 6; [GH],
p. 611-618), it is easy to check that F1 has the following singularities.

(i) a curve y of degree 25, of double points; one component of y
is the projection "1 of r;



324

(ii) finitely many multiple points, multiple for y too, coming from
multisecant lines of F passing through the center of projection;

(iii) the projection of the irrelevant singular points of F ; these could,
also lie on y and, in particular, on ri.

Let m : 8 - S be a minimal desingularization and .T the proper transform
on 9 of y via pow. Since .Fl is a canonical surface in P3, there exists a
surface F’ of degree 5, containing y, such that the pull-back on S-, via

pom, of the divisor cut out by Fi on .F’1, is .T. Hence Fi does not contain
any singular point of .F’1 of type (iii), not lying on y, and has a simple point
at any such a point lying on y. Consider the pencil of surfaces of degree 10:

There exists a Zariski open subset X in the lPl parametrizing this pencil,
containing the point A = 1, ,u = 0, such that any surface corresponding
to a point in X, except at most Fi, has singularities of type (i), (ii), rl as
nodal curve, and no singularities of type (iii). This by Bertini’s theorem.
Provided we restrict to a suitable open subset of X containing A = 1, # = 0,
we can make a simultaneous normalization of the surfaces of the family, y
getting the required flat family. q.e.d.

By the previous lemma, y we can restrict our attention to canonical sur-
faces .F’ of degree 10 in P4, verifying (5.2), with a nodal line r and no other
singularities. In this case, the normalization p: S --* F is the canonical

map for S, which is nonsingular. Let us put E = p*(r) ; E is nonsingular
(by proposition (9.12)) and pE: E - r is a double covering.

(10.2) LEMMA. If F, S are like above:

(i) the generic curve in IKs - E) I is irreducible, nonsingular ;

(ii) E is an irreducible curve of genus 1 and E2 = - 2 on S.

PROOF. E is a special divisor on S and it is hO(S, as(.gs - E)) = 3;
all curves in IKs - EI are pull-backs on S of curves cut out on F, outside
of r, by hyperplanes containing r. Hence IKs - E has no base points on S.
Thus, if (i) is not true, IKs - El is composite by couples of curves of a

rational pencil 9, without base points. Let D c 9. Since Es - B = 2, it

is Ks-D = 4. Moreover D2 = 0, thus all curves in 9 are mapped, via p,
onto plane quartics. Let iP’ be the algebraic system of planes containing
these quartics. Any couple of planes in £P’ is contained in a P3 through r,
but iP’ is not contained in the same P3. Hence all planes in 9’ contain r.
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But this is impossible, since F is a set-theoretical intersection of quartics
(see remark (9.11)). Now, by Riemann-Roch, we have:

thus:

Therefore it is:

Remark now that it must be:

since (.gs - .E)2 is even and the generic curve in IK, - El is not hyper-
elliptic. From (10.3) and (10.4) it follows E2 = - 2 since E2 is even. By
adjunction formula we have that E is elliptic. q.e.d.

(10.5) REMARK. By lemma (10.3), the generic curve in IKs - BI, which
is irreducible, nonsingular, has genus 7. Moreover (Ks - E) -E = 4. Besides,
since E is elliptic, there are four cuspidal points on r. If P E r is not a

cuspidal point, there are two tangent planes at P to the two branches of F
passing through r. Take the P2 consisting of all planes containing r, and
look at the curve 0 described in this P2 by all couples of tangent planes
to .F’ at a point of r. Clearly there is a map q;: B-* e c: P2 ; q corresponds
to the linear series U:, d c 2, cut out on E by fKs- B 1. Since, by adjunc-
tion, 1 it is 0 s(K, - E) IB = (!)s(2Ks) IE, the gd, contains the g2 cut out by IKs I
on E, corresponding to the map . The residual series of the g2 with
respect to the g4 is contained in the g2 . Since IKs - E has no base points,
it is 2g2 c g4, thus d = 2, and 0 can either be an irreducible quartic or an
irreducible conic, counted twice. Consider now the generic section of F

with a hyperplane through r, outisde of r. This is an irreducible, non-
singular curve 41 of degree 8 and genus 7, corresponding to a curve of

IKs - E I - 41 cuts r in four distinct points AI, ..., A,; let r,, ..., r, be the

tangent lines to 41 at AI, ..., A4 respectively. If 8 is an irreducible quartic,
no couple of lines ri, ..., r4 lies in a plane: the generic tangent plane to F
at a point r is tangent at a single point. If 0 is a conic, any tangent plane
to F at a point of E is tangent at another point too. The 94 2 is composite
with a g2 such that couples of points of this g2 correspond to points on r
with the same tangent plane. Remark that, by this reason, it must be



326

-1 1 since r is nodal. The four points AI, ..., At can be arranged in two
couples, say A1, A, and As, At such that r,, r2 are coplanar, and similarly
r.,, r, are coplanar, the two planes being distinct.

(10.6) LEMMA. Let d be a half-canonical curve of degree 10 in P3 with a
singular point P, not lying on any quadric. The projection of d in a plane
from P is either a double covering of a nonsingular quartic, or is birational

and the image curve has at most double points.

PROOF. The assertion follows from this property of L1: there exists no
line r through P which is at least a trisecant of d outside of P. Namely
if p: C - 4 is the normalization and Pl + P2 is the divisor correspond-
ing to P (see proposition (9.12)), there are no triple of points Ps, P,, P5
on C such that Pl +... + P5 is in the pull-back on C of any divisor cut
out on d by a surface containing r and not containing 4. If this happens
indeed, look at the linear 6-dimensional system of quadrics through r.

It cuts out on d a 6-dimensional linear series with P1 + ... + Pa as fixed
divisor. Thus there exists a gib on C, residual of IPl +... + P51 I with

respect to IK, 1. By Riemann-Roch it is dim (P1 +... + Psl&#x3E;1. In fact

the equality holds, since C is neither birational to a plane quintic, nor
hyperelliptic. The g5’ = IP., -E- ... -E- P51 is contained in the gg 10 corresponding
to plane sections of L1; the residual series is still a gb. Therefore both these 951
consist of divisors of collinear points on L1; this is impossible, since d is

a set-theoretical intersection if quartics (see remark (9.11)). q.e.d.

(10.7) REMARK. Let F be like above. By lemma (10.6), the projection n
of .F’ from a noncuspidal point P of r in a P3 can a priori be:

1) birational; in such a case its image .I’1 is an irreducible surface of
degree 8 in P3 with no more than double points outside of the
point PI = n(r) ;

2) a double covering of a quartic surface.

The second case does not happen if P is suitably chosen on r. Let P

be indeed such that the two tangent planes al, a2 to .F’ at P cut .F’ in

finitely many points off r. Such points do exist by lemma (10.2) and fill
an open Zariski subset r’ of r. Let now d be a hyperplane section of F

through P, having a node at P, no other singularity and missing the points
of intersection of a1, a2 with F off r. If n is not birational, n4 is not bira-
tional. Thus, by lemma (10.6) and by the above, the two branches of d
at P are two flexes ; hence a1, a2 are inflexional tangent planes. Then any Ps
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containing oci, cuts F, outside of r, in a curve having a double point at P
on the branch of .F’ with tangent plane ai, i = 1, 2. Since this cannot

happen for any point of r’ by Bertini’s theorem applied to IKs - -E7), the
conclusion is that there exists a Zariski open set r* of r’ such that for any
P E r* the projection of F from P on a P3 is birational. Let us examine

the projection n from an abstract point of view, assuming it is birational.
First we look at the normalization p : S - F of F, which is nonsingular.
The fiber p-1(P) consists of two distinct points P(1), P(2) on S. We blow up
these points, getting a new surface S and a morphism q : 8 - S such that
99-1(P(’)) = .EZ , i = 1, 2, El, E2 being exceptional curves of the first kind ;
T is an isomorphism off P(l), P(2) . For any divisor H on S, we denote by 17
its proper transform via 99, which is a divisor on S. Let us consider the

3-dimensional linear system IKs - El - E21 on S. It determines a map

y: 8 - P3, and the following diagram commutes:

Therefore it is sufficient to study the map y and its image Fi. Since

(Ks - El - E2).Ë = 0, 1p contracts R in one point, namely P1. Besides

(Ks - E, - E2) .Ei = 1, i = 1, 2, thus El, E2 are birationally mapped onto
two lines ri, r2 in P3. Using lemma (10.2), formula (10.4) and remark (10.5)
one easily checks that Pl is a 4-ple point. Being K0161 _ .KS + El + E2,
it is Ki - (Ks - El - E2) = 2(.El + E2). If y is the double curve of F,
and T is the corresponding divisor on S, there exists a unique adjoint
surface Fix to Fi of degree 3, cutting out on Fl the divisor whose pull-back
via 1p is T + 2(El + E2). Thus Fi has to contain y and to touch .F’1 along rl, r2.
Moreover, since pg(S) == 5, there exists some adjoint surface to Fi of degree 4,
distinct from .F’i plus a plane, y containing ri, r2. Since the generic plane
section of .F1 has 10 double points, which can be distinct or infinitely near
it follows that y U rl U r2 is the set-theoretic complete intersection of .F’i
with an adjoint quartic surface. Finally, Pl being a 4-ple point for Fi,
any adjoint surface has at least a double point at Pi (see [E], p. 76). It is

now easy to check that y, considered as a subscheme of P3, complete inter-
section of a cubic and a quartic off rl, r2, has matricial equation:
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where the fili))S, g,")’s are homogeneous polynomials in x°, ..., X3 of degree j,
the quadric fi2) cuts the plane gi1) in rl U r2 and /(2), /(3), g(21), g(2) contain the
point Pl (see [GA], [PS]).
We are now ready to prove the main theorem of this paragraph:

(10.10) THEOREM. If S is like above, its local moduli space has dimension 40
and, for a general deformation, the canonical image is a canonical surface of
degree 10 in p4 with a single node and no other singularity.

PROOF. It is h1(S, Ts) - h2(S, Ts) = 40 (see formula (8.9)). By Kura-
nishi’s theorem (see [K]), there exists an analytic subspace X in a neigh-
bourhood of 0 in H’(S, Ts), defined by h2(S, Ts) equations, hence of

dimension at least 40, y and a family /: Y --* X which is the universal de-
formation of S. We shall denote by Sx the fiber f-1(x), x E .X. Let wV/z
be the relative dualizing sheaf on f/. By Grauert’s theorem (see [H],
p. 288) we can assume that f*(wv/x) is a trivial, rank 5, vector bundle
over X. Fix five independent sections of this bundle. They determine five
independent sections of coVlx which, restricted to S.,, span HO(Sz, (!Js:e(Ks:e)).
for any x E X. We may also assume that these five sections do not have

common zeroes on Y, since this happens for their restriction to S = So.
Thus a morphism is defined k : f/ -+ P4 X X, such that the following diagram
commutes:

g being the projection onto the second component; (p.. is the canonical map
for Bae. Then cp(B0153) = Fz is a canonical surface of degree 10 in P4 7 veri-

fying (5.2), and we may assume it is not contained in any quadric, since Fo
is not. Suppose the theorem is not true. It can be assumed that for any x

in a component X of X, Fae has a nodal line rx and no other singularity,
since this is true for .F’o (see remark (9.13)). Keep now all notations of
remark (10.7). Fix a hyperplane (X ç P4 cutting ro in a point of ro ; we can
suppose that a cuts each rx in a point of r*, if z e 8.

Fix a P3 not containing any point Px = a r1 rx and project Fz in the P3
from Px. By the same remark (10.7), we get an abvious morphism
fl: X -+1:’3(8) whose fibers are finite. Let 9 be the, may be reducible,
locally closed subset of E3(8) formed by all surfaces of degree 8 in P3 which
are projection of a canonical surface of degree 10 in P4, verifying (5.2),
with a nodal line r and no other singularity, from a point of r*. Clearly fl
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induces a morphism /z’: I --* 9. Moreover PGL(4, C) acts in a natural way
on 9, with finite stabilizors, and ,u’ induces a morphism p,": X --&#x3E; £PfPGL(4, C)
whose fibers are still finite. Hence it must be:

Let 9 be any irreducible component of 9. By remark (10.7), there exists
a natural morphism ’V: p) -+ðf, :;e being the component of the Hilbert
scheme of curves of degree 10 in P3 having matricial equation (10.8). With
easy computations one checks that :

Let us fix 7’ EV(PJ), double curve of 1l’1 E 9. The fiber v-i(y) is contained

in the linear system :E(F1) of surfaces of degree 8 which are biadjoint sur-
faces to Fi(see [E], p. 89). They cut out on I’1, off y, bicanonical divisors.
Hence:

Finally, by (10.11), (10.12), (10.13), it is dim X c 39, which is impos-
sible. q.e.d.

(10.14) COROLLARY. I f .I’ is a canonical surface of degree 10 in p4, veri-
fying (5.2), not contained in any quadric, the class of birational equivalence
corresponding to F gives, in the moduli space of s2cr f aces with Pu = Pa = 5,
K2 = 10 1 a points of the component -*’(1) containing att equivalence classes of
surfaces whose canonical model has isolated singularities.

PROOF. Easily follows from theorem (8.10), lemma (10.1) and the-

orem (10.10). q.e.d.

(10.15) REMARK. It could be perhaps possible to analyze more closely
the subvariety -VIII) of Y") corresponding to classes of equivalence of

surfaces whose canonical model has a double line. In order to study X(O’)
one should analyse the family of projections in P3 of canonical surfaces of
degree 10 in P4 with a double line from a point of this line. We do not ex-
plore this here, but we guess that eYîÓl) is an unirational subvariety of

codimension 2 of Wi&#x3E;. Unfortunately the methods used in no. 8, strongly
based upon the results of part I, do not work in this case.

(10.16) REMARK. It seems unlikely that canonical surfaces of degree 10
in P4 , verifying (5.2), with a cuspidal line, do in fact exist. Suppose indeed F
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is such a surface with a cuspidal line r and without other singularities.
If p: 8 --* F is the normalization, let us put E = p*(r). E is rational and
E2 = - 3. Argueing like in lemma (10.2), one shows that the generic curve
in IKs- E ( is irreducible, nonsingular. To this generic curve corresponds
an irreducible, nonsingular curve of degree 8 and genus 8, d1 on F, lying
in a hyperplane through r, cutting r in four points. Using Riemann-Roch
one checks that 41 has to lie on a quadric, which contains r. Hence 41
would be a complete intersection of a quadric and a quartic, thus of genus 9,
which is impossible.

11. - Canonical surfaces of degree 10 in P4 contained in a quadric.

In order to work out a complete discussion about surfaces with

Pø == Pa == 5, .g2 = 10, for which the canonical map is a birational mor-
phism, we shall finally examine the case in which the canonical image is a
surface of degree 10 in P4 contained in a quadric. By propositions (5.9)
and (9.9) it follows that the generic hyperplane section has at least two
nodes. As a matter of fact we have the following:

(11.1) LEMMA. Let d be a half-canonical curve of degree 10 in P3 lying on
an irreducible quadric Q. If Q is a cone, d is a complete intersection of Q with
a quintic surface, and has five coplanar nodes or equivalent singularities. If Q
is nonsingular, either d is like above or is a (4,6)-curve with four nodes or
equivalent singularities, two by two lying on lines of the ruling of Q cutting out
the g’ 4 on J.

PROOF. If there exists a quintic surface containing 4 but not Q, d is

a complete intersection. Assume Q is nonsingular. The canonical series

is cut out on d by the adjoint curves in 13HQI. Since d is half-canonical,
there exists a single curve in IHQI which is adjoint to d and cuts on d
the 0 divisor off the singularities. Thus d has five coplanar nodes, or equiv-
alent singularities. The case Q is a cone can be worked out in a similar way.
Suppose now there is no quintic surface containing d but not containing Q.
Let us check that there exist irreducible sextics through d. If it were not

so, any surface in E3(6, J) should contain Q, thus dim 273(6, J) = 34 and
the linear series cut out by E3 (6) on 4 were a g648 . This would imply that L1
has no more than one node or one cusp, which is impossible by proposi-
tion (9.9). Let Qi E 173(6, A) be irreducible. Qi cuts Q in L1 and in a residual
curve of degree 2. By standard arguments, this curve has to be the union
of two skew lines of the same ruling of Q, which is non singular. The reminder
of the statement is easy to prove. q.e.d.
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(11.2) REMARK. Let us keep all notations of the above proof and describe
how d can be done. Assume zt is a complete intersection of Q with a
quintic, and denote by 4’ the unique adjoint curve to d in j.Boj. Then:

1) if 4’ is nonsingular, L1 can have no more than double points,
which can be nodes or cusps and can become infinitely near along d’ ;

2) if 4’ is the union of two distinct lines intersecting at a simple
point P E Q, d has a triple point at P and two double points, y nodes or
cusps, y one on each of the two lines of L1’; clearly these double points
could become infinitely near to the triple point; in this case Q is nonsingular;

3) if Q is a cone and 4’ is the union of two lines intersecting at the
vertex P of Q, d has a double point at P and four double points, two by
two lying on each line of d’ ; these double point are nodes or cusp and
can become infinitely near;

4) if 4 ’ is a line counted twice 4 can either have a triple point and a
tacnode on 4, or a double point, node or cusp, at the vertex of Q on 4’
and two tacnodes on d’. The tacnodes could become cusps of second order.

If zt is a (4.6)-curve then the four nodes of d can become cusps, or be
infinitely near, e.g. giving tacnodes with tacnodal tangent a line on Q.
Finally d could also have two tacnodes or cusps of second order, on a
line of Q.

Let now .F’ be a canonical surface of degree 10 in P4, verifying (5.2),
contained in a quadric Q.

If Q is nonsingular, by lemma (11.1), .F’ is a complete intersection of Q
with a quintic hypersurface QI. F has a curve y of singular points which
we want to study. Consider the adjoint surfaces to .F contained in Q : these
are defined like in [Z], p. 71 is done for surfaces in P3. Argueing like in
the proof of lemma (11.1), one checks that there exists a hyperplane a
cutting out on Q a quadric F’ which is the unique adjoint surface to F
in IHQI. If p: 8 --&#x3E; .F is the normalization and r is the divisor corresponding
on 8 to y, it is r == p*(FI.F), where Fl.F denotes the divisor cut out
by Fi on F. Hence:

Assume y has degree 5, namely the generic point of any component of y
is nodal or cuspidal for F (see remark (11.2)). In this case y is a contact

curve of F’ with the quintic Q I cut out by Q, on n. Thus F’ is a cone

and y contains the vertex P of F’. Applying remark (11.2) to the generic
hyperplane section of F with a hyperplane through P, it is easy to check
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that P is a triple point for F and for y too. Hence any adjoint surface to F
in Q has a double point at P. Remark now that there are no irreducible

adjoint surfaces to I’ in 12HQI, but there are irreducible adjoint surfaces
to F in 13HQI, cutting out on F, off y, curves whose pull-back via p is in
12Ksl. Hence y belongs to the linear system 2(n, F’) cut out on .F’ by
cubic surfaces in n having a double point at P and containing a line of F’.
Thus:

If y has not degree 5, namely if y has some nonnodal or noncuspidal
component, one can extend the above arguments, making few obvious
changes. In any case y can be seen as a curve in 2(n, .F’ ) . For sake of

brevity we shall not go through these details.
We can now prove the:

(11.5) THEOREM. Let S be like above. Then its local moduli space has

dimension 40 and for a general deformation, the canonical image is a canonical
surface of degree 10 in P4 with a single node and no other singularity.

PROOF. The proof is similar to that of theorem (10.10); we shall keep
all notations introduced there. Let /: Y --&#x3E;- X be the universal deforma-
tion of S. If for some x in any component of X the canonical image .I’x
of Sx does not lie in a quadric the assertion follows from corollary (10.14).
Assume that for any x in a component 1 of X, Fz lies in a quadric, which
can be supposed to be nonsingular, since this happens for For. Thus there

exists a natural morphism p: X x PGL(5, C) - 24(2 ) X (P4)* ; P associates,
to any couple (x, (o) E X X PGL(5, C) the couple (Qx, n0153) E E4(2) X (P4)*,
where Qx is the quadric containing w(F0153) and a., is the hyperplane cutting
out on Qx the adjoint surface (o(F) to (o(Fx). Let (x, m) be any point in

XXPGL(5, C), and let Px,w be the fiber p-l(p(0153, oi)). A natural map vx,.:
Px,. -* 2(n0153, w(F’)) is defined. If (y, m’ ) E Px,w’ let Y1I,W’ = vx,w(y, w’) be the
singular curve of w’(F’IJ). Using (11.3) it is easy to check that for any

(z, w") EV;;:;(Y’IJ,w’)’ w"(Fz) cuts out on o&#x3E;’(F1I) off Y1I,W’ a divisor whose pull-
back on 81/ is in 13Ksul. . Thus :

Hence, by (11.4), it is:
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and finally :

which is impossible since diml&#x3E;40. q.e.d.

If Q is a cone of rank 4, by lemma (11.1) and remark (11.2) either .F’

is a complete intersection with a quintic hypersurface or is a section of Q
with a sextic hypersurface outside of a couple of planes of one, say 21,
of the two rulings of Q, and has two conics of double points Yl, y2, in two
planes of the other ruling 22. In the first case the singular curve of F
can either be like the case Q is nonsingular, or can be reducible in a triple
line r and two double lines r1, r2 both coplanar with r : the adjoint quadric F’
to .I’ should be the couple of planes spanned by r, rl and r, r2. In the latter
case the two conics yi, y, can become tacnodal lines, y or one tacnodal

conic, etc. (see remark (11.2)). However, y with suitable counts of para-

meters, similar to the one worked out in the proof of theorem (11.5), y an
analogous statement for the normalizations S of F can be proved. We do
not reproduce these counts for sake of brevity.

If Q is a cone of rank 3, by lemma (11.1) and remark (11.2), .F’ is com-

plete intersection of Q with a quintic hypersurface. Here the singular curve
can be either like the above cases, or reducible in a double line coinciding
with the double line of Q, and in two conics of double points lying in two
planes of Q, or reducible in a triple line and in a tacnodal line in the same
plane of Q, etc. (see remark (11.2)). Here too, with suitable counts of para-
meters one can prove a similar statement to that of theorem (11.5). We
do not reproduce these computations, y which do not offer any difficulty.

Collecting the above results and taking into account corollary (10.14),
we finally have:

(11.6) THEOREM. I f F is a canonical surface of degree 10 in P4, verifying (5.2),
the class of birational equivalence corresponding to F gives, in the moduli space
of surfaces with pg = Pa = 5, .g2 = 10, a point of the component A(’) con-

taining all equivalence classes of surfaces whose canonical model has isolated
singularities.

(11.7) REMARK. Surfaces we have dealt with in this paragrph do exist.
Let us show that, for instance, there exist canonical surfaces of degree 10
in P4 , verifying (5.2), contained in a nonsingular quadric. Let 0 be a

generic projection in P3 of a Del Pezzo surface of degree 5. ø has degree 5
and has a nodal curve y which is irreducible (see [E], p. 8), of degree 5,
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lies on a quadric cone 1jJ, and has a triple point at the vertex of 1jJ with
three noncoplanar tangent lines, and no other singular points. Let II be
a plane in lP3 cutting y in an irreducible conic y’. The generic surface
in the pencil:

has degree 10 and, by Bertini’s theorem, has y as nodal curve, the conic y’
as quintic curve and no other singular points. It is easy to check that such

surfaces are just projections in P3 of canonical surfaces we are looking for,
from a point of the quadric in which they lie. Similarly it can be proved
that there exist surfaces of degree 10 in P3 with two coplanar lines rl, r2
of multiplicity 4 and 6 respectively, and two double conics in two distinct
planes through r2. These are projections in P3 of canonical surfaces of

degree 10 in P4 lying in a quadric cone of rank 4, which are not complete
intersection of the cone with a quintic.

(11.8) REMARK. Let us point out that certainly there exists a second
component X(2) of the moduli space of surfaces with pg == Pa = 5, 5i2 = 10.
Look, for instance at the family of double coverings of a P2 branched on
a curve of degree 12 with three 4-ple points and two triple points each
having an infinitely near triple point. Here the canonical system has two
base points and is composite with an involution of order two. The canonical
images of these surfaces are double coverings of Segre surfaces of degree 4
in P4. The component of the moduli space containing all classes of

birational equivalence of these surfaces has at least dimension 40, thus is
different from -V(’). The above example, which should be interesting to
investigate carefully, is due to F. Enriques (see [E], p. 289).
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