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We propose a theory to describe dynamic correlations in bonding situations where there is also
significant nondynamic character. We call this the canonical transformation (CT) theory. When
combined with a suitable description of nondynamic correlation, such as given by a
complete-active-space self-consistent Field (CASSCF) or density matrix renormalization group
wave function, it provides a theory to describe bonding situations across the entire potential energy
surface with quantitative accuracy for both dynamic and nondynamic correlation. The canonical
transformation theory uses a unitary exponential ansatz, is size consistent, and has a computational
cost of the same order as a single-reference coupled cluster theory with the same level of excitations.
Calculations using the CASSCF based CT method with single and double operators for the potential
energy curves for water and nitrogen molecules, the BeH, insertion reaction, and hydrogen fluoride
and boron hydride bond breaking, consistently yield quantitative accuracies typical of equilibrium
region coupled cluster theory, but across all geometries, and better than obtained with multireference

perturbation theory. © 2006 American Institute of Physics. [DOL: 10.1063/1.2196410]

I. INTRODUCTION

In the chemical bond, the electronic correlation can be
divided into two types: the nondynamic correlation, associ-
ated with the overlap of near-degenerate atomic states, and
the dynamic correlation, associated with the scattering of
electrons at short distances. We know that nondynamic cor-
relation is well described by a multireference theory in an
active space. Examples of multireference theories include the
complete-active-space self-consistent field'? (CASSCF) and
density matrix renormalization group (DMRG) methods.”'*
An exact treatment of correlation in the active space yields
potential energy surfaces that are qualitatively, but not quan-
titatively, accurate across the entire surface, due to the ne-
glect of dynamic correlation. Dynamic correlation is well
described by high-order perturbative approaches, and in par-
ticular coupled cluster (CC) theory.”*™'® Coupled cluster
theory in its usual form yields quantitatively accurate results
near equilibrium, but not at stretched geometries, due to the
neglect of nondynamic correlation. Multireference perturba-
tion theories' present an approach to include both nondy-
namic and dynamic correlations, but they do not attain quan-
titative “chemical” accuracy—say equal to that of the
coupled cluster theory in the equilibrium region—because
the perturbation theory can only practically be applied to low
order. Thus quantum chemistry is still lacking a general pur-
pose theory that describes bonding situations across the en-
tire potential energy surface with quantitative accuracy for
both dynamic and nondynamic correlations.

Here we propose a theory that describes dynamic corre-
lations in bonding situations where there is also significant
nondynamic character. We shall assume that a suitable
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description of the nondynamic correlation, e.g., through a
CASSCF or DMRG calculation, can first be obtained. When
such a treatment is then combined with the proposed theory,
a complete and quantitative description of a potential energy
surface from equilibrium to stretched geometries is achieved.
The current theory is size consistent and uses a unitary ex-
ponential description of dynamic correlation. The computa-
tional cost is of the same order as a single-reference coupled
cluster method with the same level of excitations. We use the
theory of cumulants to characterize the nondynamic correla-
tion in the reference, and to simplify the working equations
for the energy and amplitude equations. We shall call this
theory canonical transformation theory, to reflect the essen-
tial ideas in its construction, and the link with the earlier
canonical diagonalization theory of White.”!

There is an extensive literature on the problem of con-
structing theories of dynamic correlation, using an exponen-
tial ansatz on top of multireference wave functions. One
main approach is that taken by multireference coupled clus-
ter theory, which is reviewed in the article by Paldus and
Li.'® These are often complicated by the need to handle very
complicated multireference wave functions in the coupled
cluster equations. In our current theory, we avoid a direct
manipulation of the complex multireference wave function
and instead characterize the nondynamic correlation in the
reference using only the one and two particle reduced density
matrices. A recent multireference CC ansatz with a similar
emphasis on simplicity, but which uses the 71 and 72 am-
plitudes to characterize the nondynamic correlation in the
reference, is the tailored CC theory of Kinoshita and
co-workers.”>** The unitary exponential employed in our
theory has previously been investigated in a multireference
setting by Freed,24 Kirtman,25 and Hoffman and Simons.?
We mention also the single-reference unitary coupled cluster
work of Kutzelnigg,27’28 Bartlett and co-workers,29’30 and Pal
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al?'?? As recognized by Freed,” the unitary exponential

can be seen as a kind of renormalization transformation and
our work may be viewed from this perspective. In this con-
text, we mention related work on the flow-renormalization
group (Flow-RG) by Wegner* and Glazek and Wilson.” The
Flow-RG was independently reinvented and further devel-
oped for quantum chemical problems by White,”' who
named it canonical diagonalization. The canonical diagonal-
ization theory has been the most direct influence on this cur-
rent work.

In Sec. II we present the basic equations and ideas of the
canonical transformation theory. We introduce the linearized
canonical transformation [linearized canonical transforma-
tion with doubles and linearized canonical transformation
with singles and doubles (L-CTD and L-CTSD)] models. We
carry out a perturbative analysis of the theory, and demon-
strate that it is a familiar generalization of Hartree-Fock
theory to a two-particle mean-field theory that includes elec-
tron correlation. In Sec. III we describe the computational
implementation of the canonical transformation theory. In
Sec. IV, we report ground-state calculations on the water and
nitrogen potential energy curves, the BeH, insertion reaction,
and hydrogen fluoride and boron hydride bond breaking. Fi-
nally, our conclusions and future directions of the theory are
presented in Sec. V.

Il. THEORY
A. Basic formulation

The generic chemical problem involving both dynamic
and nondynamic correlations is illustrated in Fig. 1. The or-
bitals are divided into two sets: the active orbitals, usually
the valence orbitals, which display partial occupancies (as-
suming spin-orbitals) very different from O or 1 for the state
of interest, and the external orbitals, which are divided into
the core (largely occupied in the target state) or virtual
(largely unoccupied in the target state) orbitals. The asym-
metry between the core and virtual orbitals can formally be
removed by transforming to a core Fermi vacuum where all
core states are filled (although in our numerical work, we
retain the distinction between core and virtuals for reasons of
efficiency). Nondynamic correlation is associated with
active-active space correlations, while dynamic correlation is
associated with correlations between the active-external and
external-external spaces.

Define a reference wave function W (not in general a
single determinant) which accounts for the nondynamic cor-
relation, and which (relative to the core Fermi vacuum) ex-
ists only in the active space. The electronic Hamiltonian is
written as

A A A

+ HﬂCt-CXt + I:Iext * ( 1 )

An exact eigenfunction ¥ of H which incorporates the re-
maining dynamical correlations out of the active space, can
be obtained by an appropriate canonical transformation of
W,
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FIG. 1. Multireference problems involve both dynamical and nondynamical
correlations. The nondynamical correlation is accounted for by the CASCI/
CASSCF/DMRG wave function, which is made of multiple configurations
generated in the active space with a fixed number of active electrons. The
dynamical correlation is recovered on top of the multiconfigurational refer-
ence by correlating the active orbitals with orbitals in the external space, i.e.,
core and virtual orbitals.

V=0V, (2)

A canonical transformation, which may be single particle or
many particle in nature, is one which preserves the commu-
tation relations of the particles involved. Strictly speaking, it
need not be unitary (it need only be isometric, see, e.g., Ref.
36), but this distinction is less important for calculational
purposes and we shall henceforth consider only unitary ca-
nonical transformations where U satisfies UU =1.

If W, is itself an eigenfunction of I;Vact, then no active-
active rotations are necessary and U rotates only between the
active-external and external-external spaces. Without loss of

generality, we can write U in exponential form, namely,

U=eé, 3)

A a T ey a]a2|
A= Alcico+ 2 Ac o+ 20 ARG el eoce,

ejey ajayesey
aya, T ae T
+ 2 AN e o 4 2 Al 2c
asey “1 a2 az“ey exey a] e2 e; e4
ajayazey ajeresey

€162
+ > A, celcezce3ce4+

c+hec., (4)

8162(/;64

where a,e denote active, external indices, respectively, and

all amplitudes A are antihermitian to ensure unitarity. A may
be decomposed as the difference of an operator and its
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hermitian conjugate, A=7T—T". The terms in Eq. (4) include
not only the usual single and double excitations, but also
semi-internal excitations that couple relaxation in the active
space with external excitations.

The unitary operator can be pictured as acting either on
the reference state, or on the reference Hamiltonian: in the
latter case it gives rise to an effective Hamiltonian which has
W, as an eigenfunction and the exact eigenenergy E of the
target state as its eigenvalue. Thus

H=e2HeA, (5)
H\IIO = quo, (6)
E=(Wo|H|Wy). (7)

Note that in contrast to a general similarity transformation
(as found for example in the usual coupled cluster theory)
the canonical transformation produces a Hermitian effective
Hamiltonian, which is computationally very convenient.

When U is expressed in exponential form, the effective
Hamiltonian can be constructed termwise via the formally
infinite Baker-Campbell-Hausdorff (BCH) expansion,

H=A+[AA)+ IAALAL+ - 8)

The eigenvalue equation (6) defines the amplitudes A
that determine the unitary operator. These can be reduced to
nonlinear amplitude equations by projection on excited de-
terminants, e.g.,

(WolHY,|Wo) =0, )

where ¥, denotes the operator c! ¢, and « denotes the

ezcelcaz ay
indices a,a,,e e,. From the hermiticity of H, and the fact

that (relative to the core Fermi vacuum) W, exists only in the
active space, it follows that

(WollH. 7 - 7] W) =0. (10)

In this form, the amplitude equations (10) have been previ-
ously studied by Kutzelnigg, and named as the generalized
Brillouin conditions.”’

B. Cumulant formulation
To evaluate the energy and amplitude equations (7) and

(10), we need to (i) construct H, and (ii) have some means of

evaluating expectation values of operators O with the refer-
ence Wy,

Let us first discuss (i). The primary difficulty associated
with the infinite BCH expansion comes from the fact that
each term in the expansion generates operators of greater
particle rank (i.e., involving a longer string of creation and
annihilation operators) than the previous term. Thus it is nec-
essary to assume some closure or truncation when construct-

ing H. This is commonly cited as an obstacle to the adoption
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of unitary coupled cluster theory, but as we shall see, a
simple yet accurate closure can be found. More recently this
concern has also arisen in studies of generalized two-body
exponential theories of correlation.”® !

The approach typically taken in unitary coupled cluster
theories is to truncate either by stopping the BCH expansion
at some low order (e.g., second) (Ref. 26) or by keeping
terms in the effective Hamiltonian such that it is correct
through a given order of perturbation theory.29 The accuracy
of such a truncation is therefore tied to the accuracy of the
underlying perturbation series. We will start with a different
nonperturbative approach used in the theory of canonical di-

agonalization, that is, to restrict the form of H to contain only
certain classes of ()perators.21 (In our numerical work, we

shall restrict H to contain only one- and two-particle opera-
tors.) If we then neglect all the higher particle-rank opera-
tors, we obtain the approximation used in canonical diago-
nalization. In the CT theory, we go one step further and

account for the higher particle-rank operators appearing in H
in an approximate way. We achieve this by using an analog
of the cumulant decomposition to express high particle-rank
operators in terms of lower particle-rank operators and effec-
tive fields. This may be regarded as generalizing Hartree-
Fock theory, where the effective Hamiltonian (the Fock op-
erator), contains an average over the two-body interaction
with a density field (see also Sec. IT E).

The procedure is clearest with the aid of an example.
Consider the first commutator in the BCH expansion, [I:I ,A].

ajay TCT cc

Let A be the two-particle operator, Ealazelez elesCa,CaCe,Cey
and consider a two-particle term in the Hamiltonian,

gégic;lczzc&c& where g denotes a general index (i.e., a or
e). Then, the commutator of the two terms yields both two-
particle (through double contraction) and three-particle
(through single contraction) operators. We wish to decom-
pose the new three-particle operators in terms of one and
two-particle quantities. Recall that the cumulant decomposi-
tion in statistical mechanics offers the best statistical decom-
position of a high-particle rank correlation function in terms
of lower-particle rank functions. In the context of reduced
density matrices, it has been studied extensively by Colme-
nero and Valdemoro,"** Yasuda and Nakatsuji,44 Nakatsuji
and Yas.uda,45 and Mazziotti.***” The cumulant decomposi-
tion for a three-particle density matrix element (cj'c}'ciclcmc,,)
is

T AT
<Ci cj CrCiCmCn

= 9<cjci) A (q}c,ﬁclcm> - 12(cjcn> A (c}'cm> A (c,tc,). (11)

This is not quite what we need, as in the current context, we
require a cumulant decomposition of a three-particle opera-
tor. We can construct an operator cumulant expansion by
(i) requiring it to yield the same expectation value as the
cumulant expansion for a reduced density matrix element,
and (ii) by keeping two-particle operators rather than single-
particle operators, when the choice arises. This gives
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cfc}c,iclcmc,, = 9{clcly A (c;c,tc,cm) —12{cley A (c;cm) A (cfe)
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T ¥ T t ¥
=(c} c,l>c;ckclcm + <c;fcm>c;£ci'cncl + (c,tc;)cjcj-cmcn - <c}cl>c‘}czcncm - <c}c,,)c,tcjcmcl - <c,tcm>c:fcj cicy

T T T 2 T
- <Cjcm>C;C;CCIC‘n - <c;Cl>czcjcncm - <CkCn>C:-er CnCr— 5{(<Ct Cn><C;Cm> - <C2‘Cm><C;Cn>)C}:C[ + (<c;Cm><Cch>

- <CJ-CZ><C}£Cm>)C:«rCn + ((C;C1><C;~I—Cn> - <CZC”><C§C1>)CJ:Cm - (<C:'rcl><c_—jrcm> - <C3-Cm><C;Cl>)CZCn - (<C}-C”><C;£Cl>

- <C}'Cl><czcn>)cjcm - (<Clicm><cjcn> - <CZCn><CZ.Cm>)C}'Cl - (<Cij><C;.Cn> - <C2.Cn><C}.Cm>)CzC1 - (<C;Cl><cltcm>

—(cjemcien)cie, = (egencien = (eredlelen)e]ent,

where A denotes an antisymmetrization over all indices with
an associated factor 1/(P!)*> (P is the particle rank of the
original operator) and (- --) denotes an average with the ref-
erence wave function W, (this yields McWeeny normaliza-
tion for the density matrices, i.e., Tr(cfc;cmcn>=N(N -1), N
is the number of particles).

Unlike the density cumulant expansion, which can in
principle be exact for certain states (such as the Slater deter-
minants), the operator cumulant expansion is never exact, in
the sense that we cannot reproduce the full spectrum of a
three-particle operator faithfully by an operator of reduced
particle rank. However, if the density cumulant expansion is
good for the state of interest, we expect the operator cumu-
lant expansion to also be good for that state and also for
states nearby.

With the above decomposition, the commutator [I:I ,A] is
reduced to an expression containing only terms of the form
we wish to keep, i.e., one- and two-particle operators. Let us
denote this approximate form of the commutator as

[I:I ,A](,’z), to indicate that the cumulant decomposition re-
tains only one- and two-particle operators. Then, we can ap-
ply the procedure recursively, and thus the next commutator
in the BCH expansion is approximated as

[([H.ALA]=[[H.A]12)Al12)- (13)
Consequently, we can carry out the BCH expansion to arbi-
trarily high order without any increase in the complexity of
the terms in the effective Hamiltonian. In practice, the ex-
pansion is carried out until convergence in a suitable norm of
the operator coefficients is achieved. Note that through the
decomposition (12), the effective Hamiltonian depends on
the one- and two-particle density matrices and therefore be-
comes state specific, much like the Fock operator in Hartree-
Fock theory.

Size consistency is a desirable feature of any approxi-
mate theory. Since we truncate in the operator space (as op-
posed to the Hilbert space of wave functions), the current
approximation is naturally size consistent. Consider two
widely separated systems X and Y. Then, we can construct
two bases of creation/annihilation operators, ck,c} that
generate/destroy the Fock spaces of X and Y, respectively,
and which commute by virtue of separation. In terms of these
operators, the starting Hamiltonian is separable into compo-

nents that act only on X and Y, respectively, H=H X+I:I y» and

RIGHTSE LI MN iy
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so too is the exponential operator exp(A)=exp(Ay+Ay)
=exp(Ay)exp(Ay). Consequently the effective Hamiltonian is

also separable H=Hy+ Hy. The amplitude equations (10) are
solvable separately in the X and Y spaces. Consequently, the
total effective hamiltonian is the sum of the corresponding
effective hamiltonians for the systems X and Y considered in
isolation, the total wave function is a product, and the total
energy is additive, as is required in a size-consistent theory.

We now discuss (ii), the evaluation of operator expecta-
tion values with the reference V. We are interested in mul-
tireference problems where W, may be extremely compli-
cated, i.e., a very long Slater determinant expansion, or a
compact but complex wave function, such as the DMRG
wave function. By using the cumulant decomposition, we
limit the terms that appear in the effective Hamiltonian to
only low order, e.g., one- and two-particle operators, and
thus we only need the one- and two-particle density matrices
of the reference wave function to evaluate the expectation
value of the energy in the energy expression (7). To solve the
amplitude equations, we further require the commutator of

[H,%,], which, for a two-particle effective hamiltonian and
two-particle operator ¥, again involves the expectation value
of three-particle operators. We therefore invoke the cumulant
decomposition once more, and solve instead the modified
amplitude equation

<‘If0|[1?1(1,2), 5’,1](1,2)|‘P0> =0.

This modified amplitude equation does not correspond to the
minimization of the energy functional (7), and thus the gen-
eralized Hellmann-Feynman theorem™® does not apply.

Consequently, with the simplifications above, all the
working equations of the canonical transformation theory
can be evaluated entirely in terms of a limited number of
reduced density matrices, e.g., one- and two-particle density
matrices, and no explicit manipulation of the complicated
reference function is required.

(14)

C. The linearized model

To summarize the theory, dynamic correlations are de-
scribed by the unitary operator epr acting on a suitable

reference function, where A consists of excitation operators
of the form (4). We employ a cumulant decomposition to
evaluate all expressions in the energy and amplitude equa-
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FIG. 2. An example of a diagram of the three-particle operator appearing in
[W,4,].

tions. Since we are applying the cumulant decomposition
after the first commutator (the term “linear” in the ampli-
tudes), we shall call this theory linearized canonical transfor-
mation theory, by analogy with the coupled cluster usage of
the term. (Further links between this linearization approxi-
mation and that in coupled cluster theory are shown in the
perturbative analysis of Sec. I D.)

In the current work, we shall consider primarily two the-
oretical models: the L-CTD L-CTSD theories. These are de-

fined by the choice of operators in A. The L-CTD theory
contains only two-particle operators (including also the two-
particle semi-internal excitations) and the L-CTSD theory
contains both one and two-particle operators, thus

A(L-CTSD) =A, +A,,

A(L-CTD) = A,,

FIG. 3. A diagrammatic representation of the cumulant decomposition
([W’AZ](I,Z)) for the three-particle operator drawn in Fig. 2. Four kinds of
one- and two-particle operators are obtained. The double line is the contrac-
tion for the particle rank reduction (closure) where the correlation is aver-
aged with the effective field, i.e., density matrices.
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FIG. 4. Two connected diagrams in the term ([[W,A,],A,]), which contrib-
ute to E5 [Eq. (20)].
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Although L-CTD theory does not include explicit one-
particle single excitations (it does include two-particle semi-
internal single excitations), in most of the applications in this
work it is combined with a CASSCF reference, which is
already based on optimized orbitals.

D. Perturbative analysis and relation to coupled
cluster theory

Perturbative analyses have yielded many insights into
single-reference coupled cluster theory. Although we will
generally be using the canonical transformation theory to-
gether with a multireference wave function, it is informative
to carry out the analogous perturbative analysis for the
single-reference canonical transformation theory, to highlight
the connections with existing coupled cluster methods. The
analysis in the section follows that of Bartlett ez al.?30%

First consider a Hartree-Fock reference function, and
transform to the Fermi vacuum (all occupied orbitals are in
the vacuum). Then all particle density matrices are zero and

FIG. 5. A diagram in ([[[VAV,AZ],AZ],AZD that yields nonzero energy in E,
[Eq. (21)] and which is missed in the cumulant decomposition in L-CTSD

theory. In this diagram, the three-particle operator arising from [W,Az] con-

tracts successively with two other Az terms.
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the cumulant decomposition Eq. (12) based on this reference
corresponds to simply neglecting all three and higher
particle-rank operators generated by commutators. This type
of operator truncation is used in the canonical diagonaliza-
tion theory of White.?!

Now write the Hamiltonian as

I:\I:EHF+I::‘+W, (15)

where F is the one-particle Fock operator and W is the two-
particle fluctuation potential. From Brillouin’s theorem, we

recognize that Az is first order in W, while Al is second order
in W. [To make contact with the analysis of unitary coupled
cluster theory in Refs. 29 and 30, write A, as (fl—ﬁ) and
Azz(f"z—f";).] Then consider the expectation value of the
energy E=(exp A'H exp A) without using any cumulant de-
composition. Expanding in powers of the fluctuation opera-
tor, we have

E=E°+E'+F?+E*+E*+ -+, (16)

where these are defined as

E'=(Eyp+F), (17)
E'=(W), (18)
Ez = <[VAV7A2] + [ﬁ’Al] + [[FA"AZ]’AZ:Dv (19)

B = ({IW.A,1.A,] + [W.A, ]+ L[F.A,0.4,]
+ IE.A,1.4,)). (20)

B =(UITW,A;1A, 1. Ay + HIW,A 14,
+3[[W,A,),A ]+ 3[[F,A 1A

+ ME.A51.A,1.A,1.42). 1)

Now consider the effect of the cumulant decomposition
on the different orders of energy contribution. Firstly, no
decomposition is involved in computing E°,E'. For E?, the
cumulant decomposition corresponds to

E2 = ((W.Ay]( )+ [F.A ]+ [[F.A2). A5 )1 2) (22)

We have used the subscript (1,2) only when the commutator

generates three-particle terms, e.g., [I:" ,Az] generates only
two-particle terms and thus no decomposition is applied. We
can illustrate the different terms diagrammatically using the
coupled cluster-type diagrams popularized by Bartlett.” Fig-
ure 2 illustrates a three-particle term that appears in [VAV,AZ].
Additional “double” lines are used to indicate contractions
with a reduced density matrix. When these double lines are
cut and rotated, one recovers the usual CC-type diagram.
(The cumulant decomposition of [W,Az](l,z) yields four
kinds of diagrams for one- and two-particle operators, shown
in Fig. 3, but for the single reference case we are consider-
ing, all these terms vanish since all particle density matrices

are zero from the Fermi vacuum.) Now ([F AJ) vanishes
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(from Brillouin’s theorem). Both [W,Az] and [[F ,Az],/iz]
generate three-particle operators that are approximated in the
cumulant decomposition, but these have no expectation
value with the Fermi vacuum, and thus do not contribute to
the energy. Thus no error is made in Eq. (22) for E2.

In the expression for E°, we apply the cumulant
decomposition twice for the double commutator

[[W,A2](1,2)’AA2](1,2)- Once again, only the fully contracted
term contributes to the energy. The only way fully contracted

terms arise is from double contractions in [W,Az] to produce
a two-particle operator, which then doubly contracts with the

final Az commutator, to contribute to the energy. Since
double contractions are involved in each step, no cumulant
decomposition is involved for this term. There is no contri-
bution from the three-particle operators generated by either
commutator, and the cumulant decomposition approximation
is exact for E3 (see Fig. 4).

In the expression for E* we find our first error from
using the cumulant decomposition. Here, the three-particle

operator arising from the first commutator [W,Az], which is
dropped in the cumulant decomposition, can contract succes-
sively with two other A, terms, in [[[W,A,],4,],A,] to yield
a fully contracted term and a contribution to the energy. Al-
though the cumulant decomposition misses this contribution,
it does, however, contain the contribution that arises from
contracting the two-particle operators generated in the first

commutator [W,Az]. A diagrammatic illustration of the same
result is shown in Fig. 5. By a similar analysis, we find that
the cumulant decomposition also provides an incomplete

evaluation of [[[[F,A,],A,],A,],A,], arising from intermedi-
ate three-particle operators.

In the usual coupled cluster hierarchy =2 E; is the MP2
energy functional, while 37 E; is the linearized coupled
cluster single-doubles (L-CCSD) energy functional. =} E; is
the unitary CCSD energy functional. The linearized CTSD
energy is correct up to third order in perturbation theory,
such as the linearized CCSD theory. However, unlike the
linearized CCSD theory, fourth order terms (such as

[[[W,A,].A,],A,]) are not completely neglected but partly
included as discussed above. From this, we might expect the
single-reference L-CTSD theory to perform intermediate be-
tween linearized CCSD and the full CCSD theories. But, in
fact, there are an infinite number of additional diagrams that
are included in linearized CTSD theory as compared to the
usual CC and UCC(n) theories, because the energy func-
tional does not terminate at finite order, but contains further
partial contributions from E°,E® and indeed to infinite order.
For example, all terms involving pure orbital rotations (i.e.,

Al) are included to all orders in the energy functional. Terms

involving A2 where all Az operators are at least doubly con-
tracted with one other operator also included to all orders.
Example of these additional diagrams contained in L-CTSD,
but not in the usual CC theories, are shown in Fig. 6. One
might speculate that these additional diagrams would yield
an improved theory, but in the general case, and certainly
when we extend the discussion to cases where a multideter-
minantal reference wave function is used, the significance of



194106-7 Canonical transformation theory

innl)”

FIG. 6. An example of two diagrams in [[[WAZ],AZ]
and [ {F.4,].A,]--
CTD and CTSD. The diagrams involve Az where all Az operators (here six

“1.A,] (upper)
-1,A,] (lower) that appear at higher orders in linearized

Az) are at least doubly contracted with one other operator.

these additional contributions can only be assessed numeri-
cally.

E. Variation of the reference

A further point is of interest in the formal discussion of
the canonical transformation theory. So far, we have assumed
that the reference function is fixed, and have considered only
solving for the amplitudes in the excitation operator. We may
also consider optimization of the reference function itself in
the presence of the excitation operator A. This consideration
is useful in understanding the nature of the cumulant decom-
position in the canonical transformation theory.

Using the energy functional (7) and the cumulant de-
composition, and making the energy stationary with respect
to variations in ‘I’g we find that the optimal reference W,
satisfies

12)
H(l 2) W+ <‘1’0|

|\If0> F‘I’O—O (23)
where the second term arises because the effective Hamil-
tonian is state dependent through the usage of the cumulant
decomposition. Thus the optimal reference function is an
eigenfunction not of the effective Hamiltonian, but a corre-

lated two-particle “Fock” operator F.
To understand this more clearly, consider a simpler

model where A consists of single excitations, only single-
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particle operators are retained in the effective Hamiltonian,
and we choose the reference function W, to be a single de-
terminant. Then, from a cumulant decomposition of the two-
particle terms, the effective Hamiltonian becomes

1)—2 TUC,C/"' 2 szkl[<c C1>C iCk— <C cpel Ck]
ij ijkl

(24)

Note this resembles the (N-particle) Fock operator that ap-
pears in the Hartree-Fock theory, but the contribution of the
two-electron term is only half the normal contribution in the
Fock operator. However, if we consider making the energy
stationary with respect to variations in the reference, we must
also consider the second term in Eq. (23), where we find

5H(1
12 [thkl«c C1>C Cr— <C Cl>C e ¥, (25)
8\1,0 ijkl

A

and thus the final Fock operator F that determines the opti-
mal reference function is identical to the usual Hartree-Fock
operator

F= 2 Tijc; CJ+E szk1[<C Cl>C Ck— (C Cz>C ¢l (26)
ijkl

Thus we see that the Hartree-Fock theory is identical to a
canonical transformation theory retaining only one-particle
operators with an optimized reference, and the canonical
transformation model retaining one- and two-particle opera-
tors employed in the current work, if employed with an op-
timized reference, is a natural extension of the Hartree-Fock
theory to a two-particle theory of correlation.

Finally, we note that if we retain two-particle operators

in the effective Hamiltonian, but restrict A to single-particle
form, we recover exactly the orbital rotation formalism of
the multiconfigurational self-consistent field. Indeed, this is
the way in which we obtain the CASSCF wave functions
used in this work.

lll. IMPLEMENTATION OF THE LINEARIZED
CANONICAL TRANSFORMATION THEORY

A. Computational algorithm

Considering the one- and two-particle operators in Eq.
(14) separately, we obtain equations for the L-CTSD and
L-CTD models,

—<[H.2m/’ #M=0 (L-CTSD), (27)

RY! -<[H<1 2 4= #41,)=0 (L-CTD/L-CTSD),

(28)

where ¥= c ¢, and )/’q—cpc;cscr. These nonlinear equations
must be solved for the amplitudes A which define the effec-
tive Hamiltonian. A sketch of our implementation is as fol-
lows:
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(1) Given the electronic Hamiltonian H [Eq. (1)] determine
the reference function in the active space (e.g.,
CASSCF, CASCI, or HF). Compute the one- and two-
particle density matrices )/Z=(c;cq and !
:(c;c;csc) of the reference function.

(2) Compute the preconditioner for the amplitude equa-
tions, given by the diagonal linear terms of the ampli-
tude equations [Eqgs. (27) and (28)],

Dy =(([H. %~ %19 - %D, (29)

DY = ([[H, %9 = #2712, 720 = 720 1.0))- (30)

(3) Choose the initial amplitudes A (which we set as zero).

(4) Compute the transformed Hamiltonian, H via the BCH
equation [Eq. (8)]. This is done by iterating a subrou-
tine that computes the cumulant-decomposed commu-

tator I:I(”“):[I:I(”),A](l,z), which contains only one- and

two-particle operators, and where HO=H. The full His
then obtained as a sum of one- and two-particle opera-

tors H=3,_oH"/n!. The sum is truncated after the

norm of coefficients of the nth term H™/n! is less than
a given threshold, which we set as 10™°. The energy is

then computed as E=(H) with the density matrix ele-
ments 7, and ;! of the reference wave function.

(5) Compute the new residuals of the amplitude equations,
RY [Eq. (27)] and RY [Eq. (28)].

(6) Correct the amplitudes by adding the preconditioned
residuals,

AP — AP+ RV/DP, (31)

AT — AT+ REIIDTY. (32)

(7) Repeat (4)—(6) until convergence.

Within the above scheme, we implemented the generalized
minimal residual (GMRES) method,”! which is a robust lin-
ear solver that ensures convergence of the iterative solution.

B. Computational scaling

In active space calculations, the total orbital space is
usually partitioned into external core orbitals (c), active or-
bitals (a), and unoccupied virtual (external) orbitals (v).
(There can additionally be some frozen core orbitals which
remain doubly occupied throughout the calculation.)

In the iterative algorithm outlined in Sec. III A the com-

putational scalings are n’n2, n>, for step (4), and nn.n’ and
nn?n’ for step (5), where n=n +n,+n,, n.=n.+n, and

ng,=ng+n,. Note that, unlike the conventional multirefer-
ence methods, these scalings do not depend on the number of
configurations in the expansion of the reference wave func-
tion. In fact, the scaling is roughly ~O(n3n;1 which is essen-
tially the same as that of single-reference coupled cluster
theory.

RIGHTSE LI MN iy
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TABLE I. Classification of one-particle excitation operators [c, a, and v
denote active core, active, virtual (external) orbitals].

Classified operator AZ =%- %T
ca VI
)/;11=ca;ccl
cv V{:Ct,(),
v 4
av S
)/Z}=0U{ca]

C. Classes of excitations for the exponential operator

To improve the convergence in the iterative solution of
the CT amplitude equations, we have adopted a simple
scheme, where we classify the amplitude equations by the
type of excitation operators involved and solve the classified
sets of the amplitude equations in successive steps.

First number the orbitals thus, core orbitals range from 1
through the number of core orbitals N,y i.e., ¢
=1,...,N .. Active orbitals range from N, .+1 to Ny
+Nactwe, and the virtual orbitals start from N g+ Nociivet 1-
Then, we divide the equations into eight classes (see also
Tables I and II: (i) internal double excitations ccaa, (ii) ex-
ternal double excitations (ccvv, cavv, and aavv) where the
indices of ca, ca, and aa are < the number of electrons N,
(iii) external double excitations where either of the indices of
ca, ca, and aa is <N, and the other is >N, (iv) external
double excitations where the indices of ca, ca, and aa are
>N,eer (V) single excitations (ca, cv, and av), (vi) semi-
internal excitations (ccav, caav, and aaav) where the indices
of ca, ca, and aa are <N, (vii) semi-internal excitations
where either of the indices of ca, ca, and aa is <N, and
the other is >N,.., and (viii) semi-internal excitations where
the indices of ca, ca, and aa are >N,... When solving for a
given class of amplitudes, the amplitudes in all previous
classes are also allowed to vary, while the amplitudes in all
later classes are 0. The excitation operators for caaa are
entirely neglected, and those for (i), (vi), (vii), and (viii) are

TABLE II. Classification of two-particle excitation operators [c, @, and v
denote active core, active, virtual (external) orbitals].

A=y

Classified operator

Internal excitation

ccaa 192 — .
)/:]Cz c ,c /LCZLFI
caaa 19—
Yflﬂz c[‘,ca,cuzc( .

Semi-internal excitation

ccav )/C’ll"z c ,c 1CesCe
caav 192 —

731“2 c ,L ,L"ZL !
aaav a

yZ:ag c ,c o)CaCa,

Double excitation

’
ccov AP1V2 —
’yﬁqu _C ’Cc2cc]

cavv AUV Tor
VL:aZZ—C /C ,c,hc(l

aavv v
yZ:HZ c !c viCaCay




TABLE III. Total energies (E}) for the simultaneous bond breaking of the H,O molecule with 6-31G basis sets. The value in parentheses is the difference from the FCI total energy in mE,. The bond angle is fixed at

/HOH=109.57°. R,=0.9929 A.

Method L-CTSD L-CTSD(2) L-CTD L-CTD
reference L-CTSD CASSCF CASSCF L-CTD CASSCF CASCI MRMP
CAS CASSCF CASSCF (6e,50) (6e,50) CASSCF (6e,50) (6e,50) CASSCF
Tou orbitals HF FCI (6e,50) (6¢,50) NOs NOs (6¢,50) NOs NOs (6¢,50) CCSD CCSDT

1.0R, -75.981 92 -76.121 02 —76.038 02 -76.120 65 -76.120 63 -76.11991 -76.119 63 -76.119 45 -76.118 03 -76.114 23 -76.119 35 -76.120 54
(139.09) (83.00) (0.37) (0.38) (1.11) (1.39) (1.57) (2.99) (6.79) (1.66) (0.48)

1.4R, -75.81677 -76.004 54 —75.877 86 -76.003 77 —76.003 85 -76.003 24 -76.003 10 -76.002 70 —75.998 37 —76.000 44 —75.999 56 -76.003 47
(187.77) (80.06) (0.77) (0.69) (1.30) (1.44) (1.84) (6.17) (4.10) (4.98) (1.07)

1.8R, -75.636 59 -75.899 26 -75.82779 -75.905 43 -75.90522 —75.904 60 -75.903 24 -75.901 69 -75.897 38 -75.896 01 —75.889 54 —75.898 68
(262.67) (71.47) (-6.17) (-5.95) (-5.33) (-3.97) (-2.42) (1.89) (3.25) (9.72) (0.59)

2.2R, —75.50043 -75.85277 —75.788 37 -75.85497 -75.85377 —75.85325 -75.854 53 —75.852 64 —75.85770 —75.848 54 —75.830 50 -75.858 13
(352.34) (64.40) (-2.20) (~1.00) (-0.49) (-1.76) (0.13) (-4.93) (4.23) (22.27) (-5.36)

2.6R, -75.439 89 —75.839 55 —75.778 09 -75.838 19 -75.83921 —75.838 57 -75.838 52 -75.83942 —75.848 42 —75.834 47
(399.66) (61.46) (1.36) (0.34) (0.98) (1.03) (0.13) (-8.87) (5.08)

3.0R, -75.41573 —75.836 32 —75.775 68 -75.834 14 -75.83595 —75.83524 -75.83517 —75.836 61 —75.848 23 —75.83099
(420.59) (60.64) (2.18) (0.37) (1.08) (1.15) (-0.29) (-11.91) (5.33)

34R, -75.403 84 -75.83544 -75.775 03 -75.83236 —75.834 94 —75.834 30 -75.833 58 —75.83582 -75.848 36 —75.830 05
(431.60) (60.41) (3.07) (0.50) (1.14) (1.85) (-0.39) (-12.93) (5.39)

3.8R, -75.397 02 -75.83514 —75.774 80 —75.83141 —75.83475 —75.83407 —75.833 63 —75.835 68 —75.848 54 —75.829 74
(438.12) (60.34) (3.73) (0.40) (1.08) (1.51) (~0.54) (~13.39) (5.40)
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TABLE IV. Total energies (Ej,) for the simultaneous bond-breaking of the H,O molecule with cc-pVDZ basis sets. The value in parentheses is the difference
from the FCI total energy in mE,. The bond angle is fixed at ZHOH=109.57°. R,=0.9929 A.

Method L-CTSD L-CTSD(2) L-CTD
reference CASSCF CASSCF CASSCF MRMP
CAS CASSCF (6¢,50) (6e,50) (6¢,50) CASSCF
rou orbitals HF FCI (6e,50) NOs NOs NOs (6e,50) CCSD CCSDT
1.0R, -76.021 67 -76.23885 -76.07586  -76.238 19 -76.238 12 -76.236 60 -76.22407 -76.23501 -76.238 34
(217.18) (162.99) (0.66) (0.73) (2.26) (14.78) (3.84) (0.51)
1.4R, -75.84112  -76.09902 -75.94557  -76.098 80 -76.098 75 -75.09714  -76.08946 -76.09046  -76.09778
(257.89) (153.45) 0.22) 0.27) (1.88) (9.56) (8.55) (1.23)
1.8R, -75.65186 -7597814  -75.84002 -75.98411 -75.984 01 -7598047 -75.97098 -75.96019 -75.976 80
(326.28) (138.12) (-5.97) (-5.88) (-2.34) (7.16) (17.94) (1.34)
2.2R, -75.51038  -75.92722 -75.79946  -75.926 65 -75.926 49 -75.92489 -7591986 -75.903 63 -75.938 71
(416.84) (127.76) (0.58) (0.74) (2.34) (1.37) (23.60) (~11.48)
2.6R, -75.40877  -7591341 -75.78938  -75.910 66 -75.91031 -7591024  -7590547 -75.89646  -75.94397
(504.64) (124.04) (2.75) (3.10) (3.17) (7.94) (16.95) (-30.56)
3.0R, -7533638 -7591003 -75.78702  -75.907 02 —75.906 60 -7590706 -7590190 -75.90036 -75.95109
(573.65) (123.01) (3.01) (3.43) (2.97) (8.13) 9.67) (=41.06)
34R, -7528562 -7590908 -75.78637  -75.905 80 —75.905 47 =7590605 —75.90091 -75.903 81 —75.95533
(623.46) (122.71) (3.28) (3.61) (3.03) (8.17) (5.27) (-46.25)
3.8R, -75.25043  -75.90878 -75.78617  -75.905 60 —75.90523 -7590592  -7590060 -75.90598  -75.957 69
(658.36) (122.61) (3.18) (3.55) (2.86) (8.18) (2.80) (-48.91)

partially neglected when the corresponding preconditioner ~ L-CTD error stays quite constant as the molecule is pulled

element D74, [Eq. (30)], is smaller than the truncation thresh- apart while the CC theories exhibit a nonphysical turnover
old 0.5. Note that this separation scheme may break the or-  and a qualitatively incorrect dissociation curve. The largest
bital invariance of the CT theory. error for the CASSCF/L-CTD method occurs at the interme-
diate bond distance of 1.8R, with an error of —2.34 mE,
IV. NUMERICAL RESULTS (6-31G) and —2.42 mE, (cc-pVDZ). Although the MRMP
curve is qualitatively correct, it is not quantitatively correct

A. Simultaneous bond breaking of water molecule . . . . .
with 6-31G and cc-pVDZ basis sets especially in the equilibrium region, with an error of
6.79 mE,, (6-31G) and 14.78 mE,, (cc-pVDZ). One measure

As a prototype multireference application, we performed  of the quality of a dissociation curve is the nonparallelity
calculations of potential curves for the symmetric breaking

of the water molecule H,O in which the two O—H bonds are
stretched simultaneously. We used both the 6-31G (Ref. 52)
and cc-pVDZ (Ref. 53) basis sets. The results of L-CTD and

error (NPE), the absolute difference between the maximum
and minimum deviations from the FCI energy. For MRMP

L-CTSD calculations, together with a number of conven- ol ' ' ' ' ' ]
tional methods—Hartree-Fock (HF), full configuration inter- o~
action (FCI), multireference second-order perturbation
theory (MRMP),'®" and coupled cluster theory (CCSD/
CCSDT) presented in Tables III and IV. All multireference
calculations used a CAS with six active electrons in five
active orbitals [denoted by (6¢,50)]. The 1s orbital in O )
atom was held frozen in all calculations. The FCI and *g‘;
MRMP calculations were carried out using GAMESS,** and E e
the CC calculations using the TCE (Ref. 55) implemented in =
UTCHEM. % E% N A

Figures 7 and 8 plot deviations of total energies from i “\%'"
FCI results for the various methods. It is clear that the 4 BOORL CAZQ?%’Z?;;?&E?; i .
CASSCF/L-CTD theory performs best out of all the methods 5L é' b 5 CASSCF(8e,50)/L-CTD —HF— |
studied. (We recall that although the canonical transforma- ‘ CASSCF(8e,50)/L-CTSD with CMO T
tion operator expfi does not explicitly include single excita- 8 CA%@%%;S:;S;,/;;),\TA[; e
tions, the main effects are already included via the orbital 2 CCSD @~
relaxation in the CASSCEF reference.) The absolute error of oL , , L CCSDT -~ |
the CASSCF/L-CTD theory at equilibrium: 1.57 mE, (6- 1.0 15 2.0 25 3.0 35 40

31G), 2.26 mE,, (cc-pVDZ) is slightly better than that of the o/ Re

CCSD theory: 1.66 mE;, (6-31G) and 3.84 mE;, (cc-pVDZ), FIG. 7. Energy differences E—E(FCI) for the simultaneous bond breaking
but unlike for the CCSD and CCSDT theories, the CASSCF/ of H,O molecule with 6-31G basis sets.
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FIG. 8. Energy differences E—E(FCI) for the simultaneous bond breaking
of H,O molecule with cc-pVDZ basis sets.

the NPE is 4 mE, (6-31G) and 9 mE,, (cc-pVDZ), whereas
for CASSCF/L-CTD the NPE is 5 mE,, (6-31G) and 6 mE,
(cc-pVDZ), showing that the CASSCF/L-CTD provides a
quantitative description of the bond breaking with a nonpar-
allelity error competitive with that of MRMP.

We now discuss the other CT calculations on water that
are presented here. The CASSCF/L-CTSD method incorpo-
rates an additional orbital rotation on top of those contained
in the CASSCEF optimization, by the inclusion of one-particle

operators in the excitation operator A. Comparison of the
CASSCF/L-CTSD with the CASSCF/L-CTD results shows
that although the broad features of the potential energy
curves are similar (small errors near in and far out, larger
errors in the intermediate region), the absolute errors of
CASSCF/L-CTSD are often larger than that of CASSCF/L-
CTD. We suggest that this may arise from a lack of balance
between the one-particle single excitations (which are always
treated exactly) and the semi-internal single excitations,
which are treated approximately both from the cumulant de-
composition (Sec. II B) and due to the use of the numerical
cutoff in solving the amplitude equations (Sec. III C). This
cutoff also makes the CT calculation not orbital invariant
(with respect to active-active, external-external rotations),

J. Chem. Phys. 124, 194106 (2006)

and this is probably the reason for the observed differences
between calculations using a CASSCF density matrix ex-
pressed in the CASSCF natural orbital basis, and a density
matrix expressed in the canonical CASSCF orbital basis.
Generally speaking, the canonical CASSCF orbital based
calculations perform less well at longer bond lengths. Fi-
nally, the importance of choosing a reasonable set of active-
space orbitals is reinforced by the CASSCF/L-CTD curve,
which does not include any direct mechanism for orbital re-
laxation. The energy computed with this method breaks
down in the intermediate region, past 1.8R,.

Table V lists the norms of internal, semi-internal and
external  excitation  amplitudes obtained in  the
CASSCF(6e,50,NO)/L-CTSD calculations with the 6-31G
basis set. The percentage of retained amplitudes for internal
and semi-internal excitations are also shown in the table. The
norm of the external amplitudes, which primarily contribute
to dynamic correlation, does not fluctuate much across the
potential curve. The maximum of the internal and semi-
internal amplitudes are found at the intermediate bond re-
gion. More internal and semi-internal excitation operators
are retained as the bond length Rqy is increased.

We also measured the energy contributions from the dif-
ferent classes of excitation operators used in solving the am-
plitude equations (Sec. III C). The changes in the total en-
ergy occurring during the solution of the eight classes of
amplitudes are shown in Table VI. The external excitation
operators give the largest contribution to the correlation en-
ergy. The contributions from steps (iii) and (iv), which cor-
relate non-HF configurations with the external orbitals, grow
larger with the longer OH bond. This reflects the importance
of a multiconfigurational description for dissociation. The
energy contribution from semi-internal operators is signifi-
cant, and is largest at the equilibrium structure.

Finally, to assess the convergence of the commutator ex-
pansion in the effective Hamiltonian as the bond is stretched,
we computed a “second-order” energy using the L-CTSD
amplitudes, denoted CASSCF/L-CTSD (2). Here the energy
expression is evaluated as (H®+H"+H?). As seen from
Tables III and IV and Figs. 7 and 8, the second-order energy
curve faithfully follows the parent CASSCF/L-CTSD curve.
This is promising for the development of hybrid CT-
perturbation theories, along the lines of CC(2) theory.57’58

TABLE V. Norms and nontruncation ratios of amplitudes in CASSCF(6¢,50)/L-CTSD with NOs for H,0O

molecule with 6-31G basis sets.

norm X 10?

Nontruncation ratio

ToH Internal Semi-internal External Internal Semi-internal
1.0R, 0.57 2.88 5.07 16% 34%
1.4R, 5.76 3.31 4.84 32% 65%
1.8R, 3.70 6.41 477 64% 79%
2.2R, 3.60 3.52 477 64% 80%
3.8R, 1.87 1.87 4.69 64% 80%
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TABLE VI. Energy changes (in millihartree) in the eight steps used in solving the CT equations. Values are
from CASSCF(6e,50)/L-CTSD calculations with NOs for the H,O molecule with 6-31G basis sets.

() (ii) (i) (iv) ) (vi) (vii) (viii)
rOH CCaLlEl ccvv+cavv+aavvb ca+cv+avc ccav+caav+aaavd
10R, 138  —43.88 ~039  +0.01 +0.13 3701 4000 +0.00
14R,  —208 4541 191 —0.04 +0.16 2998 4005  -0.15
18R, 108  —44.82 -553  -0.19 +0.59 ~19.61  -1.88  —4.90
22R,  -040  -43.16 985  -027 +0.80 -1067 050  -135
38R, 000  —4105  -1412  -029 +0.95 ~548 4000  +0.04

Step (i) solves the equations for ccaa.

bSteps (ii)—(iv) solve the equations for ccvv, cavv, and aavv.
“Step (v) solves the equations for one-particle operators.
dSteps (vi)—(viii) solve the equations for ccav, caav, and aaav.

B. Bond breaking of nitrogen molecules
with 6-31G basis sets

The second application focuses on the dissociation of the
triple bond in the nitrogen molecule N,, which has been
chosen by many multireference studies as a simple multiref-
erence model that is difficult to solve. For these calculations,
we used the 6-31G basis set and froze the ls orbitals. We
chose two types of CAS space, (6¢,60) and (10e,80). The
triple bonding in N, is primarily formed by three valence

orbitals, one o and two 7 orbitals. The bond breaking is
basically a chemical reaction that involves these three bond-
ing orbitals and the corresponding higher-lying antibonding
orbitals. The CAS(6¢,60) is thus the smallest active space
that allows for a qualitatively correct treatment of the bond
breaking. We also look at CAS(10e,80), which includes the
valence 2s occupied orbitals in addition to CAS(6e,60). This
allows a correct description of the primary 2s-2p relaxation
effects during bond breaking.

TABLE VII. Total energies (E,) for the bond breaking of the N, molecule with 6-31G basis sets. The value in parentheses is the difference from the FCI total

energy in mEj,.

Method L-CTSD L-CTSD(2) L-CTD L-CTD
reference L-CTSD CASSCF CASSCF CASSCF CASCI MRMP
CAS CASSCF CASSCF (6e,60) (6e,60) (6e,60) (6e,60) CASSCF
NN orbitals HF (6e,60) (6e,60) NOs NOs NOs NOs (6e,60)
1.15 A -108.857 17 -109.017 61 —109.098 86 —109.098 86 —109.098 44 —109.099 93 -109.095 25 —109.090 51
(248.75) (88.31) (7.06) (7.06) (7.48) (5.99) (10.67) (15.41)
1.40 A -108.69962  -108.92973  -109.014 14  -109.01416  -109.01366  —109.01465  —109.00208  —109.007 56
(322.44) (92.33) (7.92) (7.90) (8.40) (7.41) (19.98) (14.50)
1.80 A —-108.420 80 -108.796 15 —108.88571 -108.88571 —108.885 22 —108.881 90 —108.873 88 —108.878 82
(467.23) (91.88) (2.32) (2.32) (2.81) (6.13) (14.15) (9.21)
220 A -108.216 46 —108.766 57 —-108.846 20 -108.846 20 —108.845 78 —-108.844 69 -108.853 23 -108.840 01
(631.10) (80.99) (1.36) (1.36) (1.78) (2.87) (-5.67) (7.55)
2.60 A —108.076 48 —108.764 50 -108.839 61 —108.839 61 —108.838 95 —108.839 66 —108.859 87 —108.832 49
(764.11) (76.09) (0.98) (0.98) (1.64) (0.93) (~-19.28) (8.10)
3.00 A -107.982 60 —108.764 36 —108.838 73 -108.838 73 -108.837 95 —-108.839 34 -108.866 29 —108.830 82
(855.29) (73.53) (-0.84) (-0.84) (-0.06) (-1.45) (-28.40) (7.07)
Method L-CTSD L-CTSD(2)
reference L-CTSD CASSCF CASSCF MRMP
CAS CASSCF CASSCF (10e,80) (10e,80) CASSCF
NN orbitals FCI (10e,80) (10e,80) NOs NOs (10e,80) CCSD CCSDT
1.15 A -109.105 92 -109.031 25 -109.102 40 -109.102 40 -109.101 85 —-109.097 25 —109.094 89 -109.103 55
(74.67) (3.52) (3.52) (4.07) (8.67) (11.03) (2.37)
1.40 A —109.022 06 —108.944 10 -109.017 23 -109.017 24 —-109.016 71 -109.013 89 —108.999 78 —109.015 75
(77.96) (4.83) (4.82) (5.35) (8.17) (22.28) (6.31)
1.80 A —-108.888 03 -108.804 16 —108.887 24 -108.887 19 —108.886 64 —-108.882 03 -108.85293 —108.887 70
(83.87) (0.79) (0.84) (1.39) (6.00) (35.10) (0.33)
220 A —108.847 56 —108.768 65 —108.846 65 —108.846 68 —108.846 25 —108.84124 —108.920 53 —108.961 90
(78.91) (0.91) (0.88) 1.31) (6.32) (=72.97) (~114.34)
2.60 A —-108.840 59 —108.765 12 —-108.839 34 —-108.839 66 —108.838 87 -108.832 96
(75.47) (1.25) (0.93) (1.72) (7.63)
3.00 A —108.837 89 —108.764 56 -108.838 15 —108.838 87 —108.837 62 -108.831 03
(73.33) (~0.26) (~0.98) 0.27) (6.86)
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FIG. 9. Energy differences E—E(FCI) for the bond-breaking curve of the N,
molecule with 6-31G basis sets.

Table VII shows the total energies as a function of bond
length Ry using several CT methods, as well as those using
the HF, FCI, CASSCF, MRMP, CCSD, and CCSDT meth-
ods. Figure 9 plots the energy differences from the FCI
results.

Comparing the different methods we see once again that
the CASSCF/L-CTD method yields the most accurate de-
scription of the potential energy curve out of all the theories.
The error at equilibrium (5.99 mkE,) is better than that of
CCSD (11.03 mE;)) and once again this error stays roughly
constant across the curve, while that of the CC based ap-
proaches exhibit a nonphysical turnover. For comparison, the
MRMP error at equlibrium is 15.41 mE;,. The nonparallelity
errors for CASSCF/L-CTD and MRMP are 8.9 and 8.3 mE,,
respectively, demonstrating again that CASSCF/L-CTD
yields quantitatively accurate curves with NPEs competitive
with that of MRMP theory.

A source of error in the CASSCF(6¢,60) based methods
is an incomplete treatment of the active-core relaxation. Al-
though some effects of active-core relaxation are incorpo-

J. Chem. Phys. 124, 194106 (2006)

rated via the exponential operator in the CT calculations, this
is incomplete due to the truncation of some operators in the
ccaa class as explained in Sec. IIC. Comparing
CAS(10e,80) with CAS(6e,60) shows us the effects of the
truncation. At the equilibrium structure (Ryy=1.15 A), we
observe that the L-CTSD energy with CAS(6e,60) is
3.5 mE, higher than that with CAS(10e,80). For comparison
the MRMP energy with CAS(6e,60) is 6.7 mE;, higher than
that with CAS(10e,80). Thus the truncated ccaa operators
capture much, but not all of the active-core relaxation. In the
region far from the equilibrium structure, the discrepancy in
energies between the two types of CAS disappears, as the
active-core relaxation is less important.

In the nitrogen molecule, we found no significant differ-
ence in the CT energies between using NOs and canonical
CAS orbitals over the potential curve, unlike in the H,O
case. However, it is still important to optimize the orbitals, as
the CASClI-based L-CTD does not yield a correct potential
curve. Finally, as in the water calculations, the L-CTSD(2)
approximation recovers most of L-CTSD correlation energy
across the potential energy curve.

C. Comparison with MR-CISD and MR-LCCM
on the two-configuration reference insertion
of Be in H, molecule

Several authors have studied the insertion of Be in H, as
an example of a true two-configuration multireference
problem.lg’%’59 Laidig and Bartlett presented a multirefer-
ence coupled cluster method which they called MR-LCCM,
in which they applied a linearized form of coupled cluster
theory to a two-configuration reference.”’ Table VIII shows
the multireference results obtained in that work using the
MR-LCCM and multireference configuration interaction
(MR-CISD) methods at three structures in the C,, insertion
of Be into H,. The details of MR-CISD and MR-LCCM
calculations are described in Ref. 59. For comparison, the
corresponding CASSCF-based linearized CT calculations
with the same Gaussian basis set are also presented. Figure
10 plots the total energies.

Comparing the different calculations, we see that MR-
LCCM generally overestimates the correlation energy, while
MR-CISD generally underestimates the correlation energy.
The CASSCF/L-CTD method yields the best energies out of

TABLE VIII. BeH, energies (]Al state) at three selected geometries (Bohr). The value in parentheses is the difference from the FCI total energy in mE,,.

Method L-CTSD L-CTD
reference CASSCF CASSCF MR-CISD® MR-LCCM®
CAS CASSCF (2¢,20) (2¢,20) CASSCF CASSCF
Points FBeH, FHH orbitals HF FCI (2¢,20) NOs NOs (2¢,20) (2¢,20)
(1) 2.5 2.78 —-15.562 68" -15.622 88 -15.569 57 -15.62220 -15.622 10 -15.622 04 —-15.62550
(60.20) (53.31) (0.68) (0.78) (0.84) (-2.62)
(2) 2.75 2.55 -15.521 19* —-15.602 92 -15.538 57 —15.598 06 —-15.603 07 -15.60091 —-15.605 32
(81.73) (64.35) (4.86) (~0.15) 2.01) (=2.40)
(3) 3.0 2.32 -15.53647° —-15.624 96 -15.55828 -15.62723 -15.626 19 -15.62189 —-15.63046
(88.49) (66.68) (=2.27) (-1.23) (3.01) (-5.50)

“Configuration: 1a?2a21h3.
bConﬁguration: laR2a*1a.
“Reference 59.
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FIG. 10. Plots of total energies of BeH, (IA1 state) at three structures. g %rj TT9
all the methods, at all points, with a maximum absolute error |
of 1.23 mE,. In agreement with our previous findings, the g“ o=
CASSCEF/L-CTSD method is less accurate, with a maximum = F|F e
error of 4.86 mE,. The nonparallelity errors are 2.0 mE, Li a
(CASSCF/L-CTD), 2.2 mE;, (MR-CISD), and 3.1 mE; (MR- = S
LCCM). From this (admittedly small) sample of results, we % =
can say that the CASSCF/L-CTD theory outperforms both g 0 — o
the MR-LCCM and MR-CISD methods. S,’ = gl \OT %
D. Single- and multireference linearized CT = ~
for HF and BH molecules E - oo
O O O
We have so far examined the performance of the canoni- ;::0 S Y
cal transformation theory when paired with a suitable multi- 5 %
reference wave function, such as the CASSCF wave func- ”1_ g
tion. As we have argued, because the exponential operator r
describes dynamic correlation, this hybrid approach is the 2 593
way in which the theory is intended to be used in general 2 21°9%
bonding situations. However, we can also examine the be- E 8 l )
havior of the single-reference version of the theory (i.e., us- é — 3
ing the Hartree-Fock reference). In this way, we can compare k> © v o E
in detail with the related single-reference coupled cluster 8 3 JEC g
theory, and make contact with the perturbative analysis of the g 2 T‘:
cumulant decomposition in Sec. II D. s 8 s
In Tables IX and X we present calculations using single- £ (%)
reference linearized (HF/CTD) and (HF/CTSD) theories on 8 322 |z
several geometries of the HF and BH molecules. Note the g ?3) oons S
HF/CTD theory does not include any semi-internal two- \:/ S S
particle excitations, since the active space is completely oc- o =
cupied. The results of calculations using both standard CC 8 2o %
theories (CCSD, CCSDT, and linearized CCSD), as well as g T|S88|°
two alternative coupled-cluster theories called the expecta- E a
tion value CC (XCC) method and the unitary CC (UCC) Bl 38,2 %
method (introduced in Refs. 29, 48, and 59), are also shown. E g2 Sz & =
The CC energies were obtained from Ref. 29. CASSCF/L- od =% s § é
CTD and CASSCF/L-CTSD calculations are presented for o E
comparison. All calculations used the Dunning DZP basis = & %‘“ %“Q:g E I
sets and the geometries described in Ref. 29 i = =« |lE&x

RIGHTSE LI MN iy



194106-15  Canonical transformation theory

J. Chem. Phys. 124, 194106 (2006)

TABLE X. Energy differences E—E(FCI) for the BH molecule. The units are mE,. FCI energy: E(1.0R,)=-25.227 63 E,, E(1.5R,)=-25.17598 E,, and

E(2.0R,)=-25.12735 E,.

Method
reference L-CTSD L-CTD
CAS L-CTSD L-CTD CASSCF CASSCF CASSCF
THF orbitals HF CCSD* CCSDT* L-CCSD XCCSD(4) XCC(4)* UCCSD(4) UCC(4)* HF HF (4,30) (4e,30) (4e,30)
1.0R,.,h 102.37  1.78 0.06 -3.86 1.99 0.65 1.92 0.57 -487 =292 95.98 -2.43 -0.21
1.5Reb 113.76  2.64 0.02 -6.44 2.94 0.82 2.81 0.67 -8.33 -3.38 80.42 -3.38 -1.72
2.0Reb 139.15 5.04 0.02 -26.74 5.60 0.91 5.01 0.17 -3532 -11.89 77.08 —5.48 -3.62

“The numbers for CCSD, CCSDT, XCC, and UCC are from Ref. 29.
°R,=2.329 bohr.

In both the HF molecule and BH molecule, the HF/L-
CTSD and HF/L-CTD theories give energies comparable to
CCSD at the equilibrium geometry. However, as the bond is
stretched, they both display significantly increased errors,
typical of a single reference theory. At stretched geometries,
the errors of the HF/L-CTSD method are worse than those of
CCSD and comparable to those of the linearized CCSD
theory.

The perturbative analysis in Sec. II D showed that
single-reference L-CTSD is exact through third order in the
fluctuation potential, much like the L-CCSD theory, and our
results are consistent with this analysis. This suggests that
one of the things we can do to improve the linearized CT
results would be to treat properly some of the higher-order
particle terms in E* [see Eq. (21)] which the present linear-
ized theories approximate using the cumulant expansion. The
importance of these high-order terms is lessened with a
multi-reference starting point, as illustrated by the CASSCF/
L-CTSD and CASSCF/L-CTD results, where even a very
small active space restores the correct quantitative behavior
across the entire potential energy curve, as we have found in
our earlier calculations.

V. CONCLUSIONS

We have proposed a canonical transformation (CT)
theory to describe the dynamic correlation in bonding situa-
tions where there is also significant nondynamic character.
By pairing this theory with a suitable multireference descrip-
tion of the nondynamic correlation, such as provided by the
CASSCF wave function, we have obtained consistently
quantitative descriptions for a variety of molecules over a
wide range of different geometries. The best performing
method we have found is the linearized CT with doubles
model with a CASSCEF reference (CASSCF/L-CTD). Using
this method, the accuracy obtained is comparable to or better
than that of CCSD theory in the equilibrium region of a
potential energy curve, but unlike in coupled cluster theories,
this accuracy persists all the way out to bond dissociation.
The CASSCF/L-CTD nonparallelity errors are competitive
with, or better than those obtained with multireference per-
turbation theory.

In addition to the encouraging numerical results, the ca-
nonical transformation theory has a number of appealing for-
mal features. It is based on a unitary exponential, and is
therefore a Hermitian theory; it is size consistent; and it has
a cost comparable to that of single-reference coupled cluster

RIGHTSE LI MN iy

theory. Cumulants are used in two places in the theory, to
close the commutator expansion of the unitary exponential,
and to decouple the complexity of the multireference wave
function from the treatment of dynamic correlation.

There are a number of clear directions to improve the
current theory. A perturbative analysis demonstrates that the
linearized CT method used here is an approximation to a
“full” CT theory, since it neglects certain higher-order terms,
in much the same way that linearized coupled cluster theory
neglects certain terms in the full coupled cluster equations.
In addition, the numerical solution of the CT equations can
be challenging due to the presence of low energy intruder
excitations. These and other topics are currently under active
investigation.
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