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Summary. - Our object is a systematic ir~vestigation of some of  the properties of  canonical 

transformations associated with second order problems in the calculus of  variations. 

After the introduction of such transformations~ together with the related concepts of  

Lagrange and t)oisson brackets, the bracket relationships are found which characterize 

canonical transformations. This characterization is also achieved by means of so-called 

reciprocity relations between the original transformation and its inverse (which always 

exists). The effect of  the canonical transformation on the underlying variat ional  problem 

is discussed. I t  is also shown that the Jacobian o f  such a transfo~'mation always has 

the value unity.  

The special ease when the canonical transformation is independent of  the para- 

meter (a generalization of the so-caUed time-independent canonical transformation of 

mechanics) is treated in some detail, l~'inally it is indicated how the present theory can 

be extended to problems of higher order. 

1 .  - I n t r o d u c t i o n .  

A so -ca l l ed  p rob lem of the m - t h  order  in the ca lcu lus  of va r i a t ions  is 

one whose  L a g r a n g e  f u n c t i o n  con ta ins  de r iva t ives  of up  to the m - t h  o rde r  

of the  d e p e n d e n t  var iab les .  T h e  concep t  of a c a n o n i c a l  t r a n s f o r m a t i o n  has  

been  inves t iga ted  t h o r o u g h l y  by  CA~tAT~]~ODOnY ([1], c h a p t e r  6) (~), whi le  the 

i n t ima te  r e l a t i onsh ip  be tween  these  t r a n s f o r m a t i o n s  and va r i a t i ona l  p rob lems  of 

the f i r s t  orde r  has  r e c e n t l y  aga in  been  d e m o n s t r a t e d  v e ry  c l ea r ly  by RUND 

([7], sec t ion  2.12}. I t  is the object  of this a r t ic le  to deve lop  some aspec ts  of 

a t heo ry  of g e n e r a l i z e d  c a n o n i c a l  t r a n s f o r m a t i o n s  which  are  assoc ia ted  w i t h  

the  second  o r d e r  p r o b l e m  i n  the  c a l c u l u s  o f  v a r i a t i o n s ,  and  to ind ica te  how 

these  r e su l t s  can  be e x t e n d e d  to t r a n s f o r m a t i o n s  assoc ia ted  wi th  a p ro b l e m 

of a r b i t r a r y  order .  To a g rea t  e x t e n t  o u r  a p p r o a c h  is a gene ra l i za t ion  of 

tha t  one  of R u N e  ([7], loc. cit.). 

(*) Some of the results of this paper are contained in a doctoral thesis ([2]) which was 

presented to the University of South Africa. The writer wishes to express his gratitude 
to his supervisor~ Professor H. I~UND~ for his interest, encouragement and advice concerning 

this work. 

(~) Numbers in square brackets refer to the literature listed at the end of this article. 
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I-{. S. P. GR,~SSER: Canonical trans]ormations associated, etc. 

Recently RU~D ([5]) obtained a set of relations which characterize an 

extremal congruence of a parameter - invar ian t  second order problem. We obtain 

the integrabil i ty conditions of these relations and show how they immediately 

lead to the concept of Lagrange brackets which are associated with the second 

order problem {section 2). After having introduced our generalized canonical 

t ransformation in terms of a generat ing function, we proceed to find Lagrange 

bracket relations which are characterist ic  of such a t ransformation (section 3), 

and which may immediately be applied to establish the existence of the 

inverse of a generalized canonical transformation (section 4). 

The existence of the inverse then enables us to characterize our trans- 

formations in another significant manner, namely by means of a set of 16n 2 

so-cal led reciprocity relations between the partial derivatives of the original 

functions defining the canonical transformation and thos'e of tile inverse 

functions. An important  consequence of these reciproci ty relations is the fact 

that they give rise, in a very natural  manner,  to Poisson brackets associated 

with our theory. These Poisson brackets  again allow us to characterize the 

generalized canonical t ransformations in terms of Poisson bracket relations 

(section 5). 

As in the first order case, our canonical transformations leave invariant 

the equations of the extremals of the underlying variational problems as is 

shown in section 6. We then proceed with an investigation of some properties 

of the functional  determinant  of the transformation and prove, with the aid 

of associated elementary canonical transformations, that this determinant 

always has the value unity (section 7). 

The penul t imate section of this article is devoted to the so-called t-inde. 

pendent canonical transformations. Final]:( it is briefly indicated how the 

theory developed in this paper  may be extended to canonical t ransformations 

corresponding to variational problems of arbitrary order. 

It should be pointed out that a generalized canonical transformation has 

also been suggested by MEFFnO¥ ([4]). However,  this t ransformation is not 

at all connected with any variational problem, and does not, therefore, have 

any bearing on the theory developed in this paper. 

2. - Lagrange brackets  associated with the second order problem. 

We  consider the fundamental  integral of a second order problem in the 

calculus of variations, viz. 

Q2 

±=f L(t, +, 
C 9~ 
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where (2} C: x~=x~(t), i =  1, 2, ..., n, is some curve of class C ~ in an (n-}-l)- 

dimensional  differentiable manifold X,~+~ with local coordinates (t, x,~}. As 

regards differentiat ion with respect to the curve parameter  t we employ the 

notation x~-----dx~/dt, xi=d~x,~/dt ~. It is also assumed that the Lagrangian 

function L is at least of class C ~. 

The canonical momenta corresponding to this problem are defined as 

usual by 

~L ~L dR~ 
( 2 . 2 )  = = d t  

(cf. [9], p. 266), so that the canonical coordinates are a set of 4n independent  

quantities, namely x ~, x ~, P~, R~. 

A congruence of extremals  of this second erder  problem can be characte- 

rized in a manner  which is analogous to the method of RU~D ([5], pp. 100-i01) 

for the parameter - invar ian t  second order problem: We assume that the dif- 

ferential  equations 

(2.3~ ~ =  +~(t, xi) 

define an n -pa rame te r  family ef curves 

(2.4} x~=x~(t, u ~) 

of class C 2, which cover a finite region o[ X,+~ simply. Differentiation along 

the family (2.3) is denoted by 

If S~-~ S(t, x ~, x ~) is a function of class C -~ which satisfies the ttA~ILTON- 

JXCOBI equation of the theory, the relations 

(2.6) 
~S(t,  J(t, Xk)) 

(2.7) R~(t, x~, +](t, xk), (~i{t, x~ l )= 3Sit. xi, +Jit, xkt) 
, ~ x ~  ' 

ensure that the congruence (2.3) is indeed a congruence of ex, tremals. 

(~ Throughout  this ar t icle  the indices i, j, h, k assume the va lues  1, 2, ..~ n~ and ~, 

run  f rom 1 to n - - 1 ,  wh i l e  the cus tomary  summat ion convent ion  is a lways  applied. 
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The integrabil i ty conditions for the relations (2.6), ~2.7} are easily derived. 

If  we substi tute from {2.4) into (2.3), and into the arguments  Of Pc, R~ accor- 

ding to (2.5), the congruence (2.4) determines the canonical  coordinates 

(2.sl x~--= x~(t, u~i, ~e__=_ x~(t, u~), Be----P~(t, u~), Re--= R~(t, u ~) 

in terms of the parameters  u ~. The relations (2.6}, (2.7) may thus be wri t ten 

(2.9) P,(t, u ~) = ~S(t, x~(t, u~), x~(t, u~)i ~e(t, u~) ~S(t, x~(t, u~), x~(l, u~}) 

Let us put 

~(t, u ~ ) ~  s(t, x~(t, u~), ~(t, u~)), 

and evaluate ~ / ~ u  ~, substi tuting into the result ing expression from (2.9}. A 

fur ther  differentiat ion with respect to u a then yields the equations 

(2.~o) 
~ ~P~ ~x ~ ~ x  ~ ~Re ~ 

~ua~u ~ - -  ~u ~ ~u ~ -'b P~ ~ u ~ h ~  + ~u ~ ~u ~ + R~ ~uh~uk " 

Since, as a result  of our assumptions, the functions (2.8) as well as z are of 

class C ~, the required integrabilily conditions follow directly, viz. 

(2.11) 3x~ ~P~ 3x e 3Pc ~e  ~R~ ~e  ~Re 0. 
~u k~u  a 8u hSu k + ~ u  h ~u h~u ~ -  

This immediately suggests that we should define the generalized LA@RASGE 

bracket  corresponding to the canonical coordinates of the second order pro- 

blem as follows. Let  

x~--=x~(u, v, ...), x ~ = ~ ( u ,  v . . . .  ), P c = P c ( u ,  v~ ...t, R~-=R~(u, v, ...) 

be functions of class C 1 in r parameters  u, v, .... Then the generalized 

Lagrange bracket of  x ~, ~ ,  P~, R~ with respect to any two of  these parameters, 

say u, v, is defined by 

(2.12) [u, v] d~f ~ i  Sp~ ~x ~ ~Pe ~x~ ~Ri ~xe ~R~ 
~u ~v ~v ~u ~ u  ~v ~v ~u" 

The integrabil i ty conditions (2.11) therefore become 

{2.13} [u k, u hI ~ 0, 
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which is the form in which they appear in the first order theory (e.g. [7], 

p. 29)• 

The LAC~R&~C~E brackets have properties which are analogous to those 

of the latter theory. Ia  part icular,  they are ant i -symmetr ic ,  while admit t ing 

a geometric interpretat ion in terms of the under lying extremal  congruence,  

for the details of which the reader  is referred t o  [2]. We merely r emark  that 

conditions (2.13)are not in general  sufficient to ensure the existence of a 

funct ion S - ~  S(t, x ~, ~ )  for which conditions (2.6), (2.7) hold (cf. [2], p. 236). 

3. - Generalized canonical t r ans format ions  and Lagrange bracket  relations.  

Consider the following transformation to a new set of canonical  variables : 

(3.1a) = 5i,  = 

(3.1b) P~ = P~(x~, xi, Pi ,  Rj ) ,  ,R~--~ R~(xi, x~, P],  R~). 

This is said to constitute a generalized canonical transformation i f  it is of  

class C ~, and  i f  there exists a funct ion 

(3.2) W = W(xi, xt, Pi ,  Rj), 

also of  class C 2, which has the property that 

(3.3) dtI;(xi, xi, Pi ,  Rj) =-- P, dx ~ 4- R,d~ ~ -  P, dx' - -  R~dx ~, 

• 2% 

whenever x ~, x', Pi,  1~ on the r igh t -hand  side are evaluated according to (3.1). 

In  order to find a set of necessary and sufficient conditions for a trans- 

formation (3.1) to be of this type, we expand both sides of the identity (3.3). 

A comparison of the coefficients of dx ~, d~ ~, dP~, dR~ on each side yields 

the following identities 

(3.4a) ~W __/)k 4- ~k --  P~, 
~x ~ ~ ~-~ 

(3.4b) ~x- ~ = ~x i ~x ~ - -  R~, 

Conversely, if a funct ion W satisfies these identities, this implies {3.3}. 
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The obvious integrabil i ty conditions of (3 4} can be wri t ten as follows (~} 

in LA(~nA~GE bracket  form lwhere we now take the definition (2.12} to refer 

_ ~: ~ , / ) ~ ) :  tO X*, X~ 

(3.5) 

t~', x;] = o, [x', x ~ ] - - o ,  [x', ~;~] = 0, 

[~ ,  Pi] = ~{, [~', Rj] = o, [~;', P~] = 0, [~', R~] = ~l, 

[P,, Pj]----o, [p, ,  Ri] = O, [R~, Rt] = O. 

Thus we may formulate 

TI:IEORE5I 1. - The Lagrange bracket relations (3.5) represent a necessary 

and  sufficient condition in  order that the transformation (3 1} (of class C ~) is 

a generalized canonical transformation.  

RE~[ARK.- When  Ri ~ 0, the LAGRA~C~E bracket  (2.12) reduces  to the 

form associated with the first order case. In general, the above formalism 

does not, however, reduce to the formalism of the simple case (which is 

characterized by the condition Ri ~ 0), this being due to the presence of the 

a~ ~ in our theory, whereas  these quanti t ies are eliminated from the canonical 

formalism of the first order theory. 

4. - Tile existence of  the  inverse t ransformat ion .  

The LA(~tiAN~E bracket  relations (3.5) enable us to prove that any cano- 

nical transformation must necessari ly always possess a non-vanishing Jacobian  

J, and therefore an inverse. In fact, if we denote by the indices h, i, j ,  k 

the h-th, (n -[- ii-th, (2n--}-j)-th and (3n-}-k)-th columns of J, and by h', i', 

f ,  k' the corresponding rows of J, then one can show, by e lementary opera. 

tions, that 

(4.1j J~ ~ det 

[x h', Ph],  [x h', R~], [xi, xh'], [£~, x h'] 

[ , [Pi', i%], [P/ ,  ~ ] ,  [xi, P/I,  x" Pi'] 

IRk,, ])~], [Rk,, R,], [xJ, nk,], [~,  n~,] 

If (3 .1)now represents  a canonical transformation, we infer from (3.5) 

that all entries in (4.1) vanish expect  those arising from the diagonal 

(8) Detailed calculations (also as regards sections 4~ 5 and 8 of this article} may be 
found in [2], chapter 3. 
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LnGRA~+E brackets,  which are equal  to ~h, ~,, ~i" ~ '  respectively,  so that 

(4.2) J ~ =  1. 

This proves 

LEMMA 1. - The generalized ca~onical transfo~'mation possesses an inverse 

transformation in some neighbourIwod of each set (x ~, x ~, P, ,  R,) at which it 

is defined. 

In section 7 we shall improve on (4.2) by showing that, in fact, J =  1. 

5. - Reciproci ty  relat ions and generalized Poisson brackets.  

We  now consider the inverse of the canonical t ransformation (3.1), viz. 

(5.1) 
1'~ = P~(x~, ~ ,  R~ R~(xi , ~ " = xJ, Pi' Ri), 

and we write 

(5.2) 

It is obvious that the inverse t5.1) of the canonical t ransformation is again 

"-" PJ, Ri)" Hence  theorem canonical, its generating function being --W(xi ,  x~, 

1 can be expressed also in terms of the <<barred~ variables.  In  the latter 

case we use the notation 

+ ~h  (5.3~ [x i, xJ]' a~ ~x h ~ l>h ~x h ~Ph ~Rh ~ h  ~Rh 

~x -~ ~xi ~ i  ~x~ ~x~ ~J ~ ~x~ 

The partial  derivat ives of a generalized canonical t ransformation (3.1) 

with respect  to its variables are related in a definite way to those of the 

inverse transformation.  Again the situation in our case is in complete analogy 

with that of the first order problem, for which RUeD ([7], p. 92) obtained 

the so-cal led reciprocity relations. We  shall now indicate how this set of 

reciprocity relations is obtained. 

Let  us subst i tute  back from the inverse functions (5.1) into (3.1), thereby 

obtaining a set of 4n idenlities in x', x', Pi,  t~i. These, in turn, are differen- 

tiated part ial ly with respect  to each of x~, xi, Pi ,  Rf ,  which gives rise to a 

set of 16n 2 identities in these variables. Elementary but  fairly lengthy calcu- 
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la t ions  then  lead to a fu r the r  set of 16n ~ identi t ies ,  of which two typical  

e lements  are the fo l lowing :  

(5~al aTd 8a~ ~ 8x ~ p . aP~ D 1 aR~ 

(5.4b) 

These  ident i t ies  are valid for any  t r ans fo rma t ion  of type (3.1) which is of 

class C ~ and possesses an inverse.  For  a canonica l  t r ans fo rmat ion  the L n 6 I ~ o E  

bracke t  re la t ions  (3.5) reduce  (5.4a}, {5.4b) respect ive]y to 

~x] ~P~' ~oci a~ ~ 

In  this m a n n e r  one thus  obtains  the fol lowing set of generalized reciprocity 

relations as necessary condi t ions  for our  canonica l  t r a n s f o r ma t i o n :  

t5.5t 

ax ~ _ a l ' i  ? ~  8Ri ax ~ axi 8£ ~ 8[ci 

8 - '  a ' 8xi 1~ aaci P~ aPj - -  - -  ~ , '  8Rj - -  - -  82>~' 

a?~* at'j ag~ aRj g~ a~J vg, a£~ 

~c~i Ri ~,~cJ 8Ri ~cP i ~Ri ~R i. ~R~ 

a~, apj ag ~& aF, a~; af~ a.~, 

8xJ ~x ~ c~xJ 8.~ ~'  8Pj c~x i '  8Rj 8x ~' 

~R~ 81)i 8fti 8R i 8Ri 8xJ 8Ri 8x~ 

8xi am % '  8x~ 8oc~ al" i 8x i 8R i a£ i 

Tha t  these condi t ions  also are suff ic ient  can easi ly  be seen as follows. 

If  we are given a t r ans fo rma t ion  (3.1) wi th  inverse  (5.1) for which  the rela- 

t ions (5.5} are valid,  we subs t i tu te  for 8Xh/~X ~, ~Ph/8~d, ~ma/8oc-~, ~Rh/~x ~ in {5.3}. 

ob ta in ing  

a~ ae~ a .~a~  ag, ale~ a ~ a ~  
[a~, m q ' - -  + - -  - -  + + 

a1"h 8xJ ax~ am h aRh a~i axJ ax h 

- - ~  - -  O ,  

~xi 
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with similar conclusions in regard of all other LAGRAN~E bracket  relations. 

Thus we may state 

THEORE~I 2. - The validity of the reciprocity relations (5.5) is a necessary 
and sufficietd condition for the transformation (3.1) to be a canonical transfer. 
marion. 

These reciprocity relations may now be used for the introduction of the 

generalized Poisson brackets  in a very natural  manner. In  fact, if we  sub- 

sti tute for all members  on the r ight-hand side of {5.3) from (5.5), we immediately 

find that 

-~-~x ~ 8P~ 8P~ ~--h q-~c ~ 8R~ 8R~ ~ '  

with similar expressions for the other L A ~ R A ~ E  brackets  in (3.5), referring 

to the <<barred>> variables as in (5.3). 

Now let F =  F(~], ~i, p~, RI), G = G(x~, ~i, Pi, RI) be any two functions 

of class C ~ of the canonical variables. Then the generalized Poisson bracket {~) 

of these functions with respect  to the canonical  coordinates is defined by 

3x ~ ~Pt apt 8x ~ +sj~t  8Rt a r t  8x ~' 

In terms of this definition the above-ment ioned relations for the LAQ~ANGE 

brackets  may thus be wri t ten 

[~t ~q, (_~, Fj), ~" ~ "  = , [ , =~ [x~, x;]'- 

(5.7) [x~, p/]'----(~c:, P~), [~t, :~/], = (x:, ~,), Ix t, Pi]'= (x:, Pt), Ix:, R / ] ' =  (~:, Ri), 

[p~, p , ] , =  (~t, ~:), [p~, R j ] ' =  (~', ~0, [/~'t, R : ] ' =  (x t, x0. 

Since the identities (5.7) are valid under  the assumption that the variables 

(x t, w', Pi ,  Rd and {w~, x ~, Pt ,  Ri} are connected by a canonical transforma- 

tion, we infer from theorem t that for such a transformation the following 

Poisson bracket relations are val id:  
• _L" ~ J  

(x ~, xO = O, (x ~, xJl = O, (x t, : g ) =  O, 

t5.8) (x', zS)=  oj, (x', z0 )=  o, (~t, I ~ ) =  o, (~t, R:)= ,, 

{Pt,  Pi) = O, (P , ,  ffi) -'~ O, ([~t, ff~j) ----- O. 

(4) T h e  P o i s s o n  b r a c k e t  (5.6) h a s  b e e n  u s e d  o c c a s i o n a l l y  i n  t h e  p a s t  ( ap a r t  f r o m  a dif-  

f e r e n c e  in  s ign) .  T h e  f i r s t  d e f i n i t i o n  s e e m s  to be  d u e  to xlV~TESSEL ( [8 ] ) ;  see  [2] f o r  a m o r e  

d e t a i l e d  l i s t  of  r e f e r e n c e s ,  

Annali di Matematica 2 
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Conversely, let us assume that the relations (5.8) hold for some transfor- 

mation {3.1}. One may now show, analogously to section 4, that, for any 

transformation (3.1) of class C ~, one has quite  generally 

(P~., xh), 

(~,., x~), 
J~ ~ dot 

('x~, x 0 ,  

(~,  x~'), 

We subst i tute from (5.8) to find 

(~.., 2~), (F.., pj), (P.., ~.) 

(x ~, xJ~, (P~, x0,  (gk, xl~J' 

( x~, x~'), (Pi, xk'), (Rk, Xk't 

that 

and therefore our t ransformation possesses an inverse (5.1). 

Proceeding as we did for the reciproci ty  relations, we subst i tute  from 

(5.1) back into (3 .1)and differentiate to get a set of 16n 2 identities. These 

then yield a set of identities in PoIssoN bracket  form which are very similar 

to (5.4). If we then subst i tute from the Po I s so~  bracket  relations (5.8) into 

these identities, we obtain precisely the reciprocity relations (5.5). In  view of 

theorem 2 we thus have 

T~EOR]~M 3 . -  A necessary and sufficient condition for the transformation 
(3.l) to be canonical is that the Poisson bracket relations (5.8) hold. 

We note that we could have therefore used these relations (5.8), or the 

LAGt~A~E bracket  relations (3.5), to define a cononical transformation, thereby 

dispensing with the requirement  that it be of class C 2. The PoIsso~T bracket  

(5.6) is ant i -symmetr ic  in the sense that for any two functions F, G we have 

(5.9) (F, G)----- (G, F), 

while it also satisfies the JAcOBI identity. 

It  is instructive to note that the relations (5.8) reduce to identities when 

(3.1) is the identity t ransformat ion:  

(x~, x 0  = 0, (x~, x0  = 0, (d~, x0  = 0, 

(5.10~ (x', Pj )=  ~:,, (x~, R~)=0, (x ~, P~)= 0, ix',, Rj )=  ~}, 

(P', PJ)= O, (P¢, Rj).= O, (R~, Ri)--= O, 

those identities being of considerable importance in qhantum mechanics (~). 

(~) As regards  the t rea tment  of cer ta in  aspects of the theory  of e l ementa ry  par t ic les  

by means  of a var ia t iona l  pr inciple  based on a second order  problem in the calculus of 

var ia t ions  we re fer  to [3]. This ar t ic le  also contains an ex tens ive  bibl iography,  wh i l e  some 

fur ther  re ferences  may  be found in [2] (pp. ~-47).  
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6. - A f u r t h e r  relat ion between the  generalized canonical t r ans format ions  

and Poisson brackets.  Some applications. 

Exact ly  as in the case for the  ordinary canonical transformation, our 

t ransformation leaves invariant  the Po~sso~ bracket  of two arbi t rary functions. 

This can be proved as follows: ]rot us subst i tute from the inverse {5.1) of 

(3.1) into the arguments  of F and G to obtain two new functions F~ G of 

the variables  x ~, x ~, I~, R~: 

. .  " -  o . - ' ,  

(6.1) F ( x  ~, x ~, P~, R~) ---- F ( x  ~, x ~, Pi, R~), O(x i, x',  P,, R~) = G(x i, x ~, P~, R~). 

We denote the P o I s s o ~  bracket  with respect  to the ~barred>> variables by a 

prime. If  we now evaluate  the Po I s so~  bracket  (F, G) in terms of /7, G, we 

find the following ident i ty :  

(F, G)--  ~F_ ~G_ (xi, x a) -~ ~-F 3G_G (~,i fin) 4 ~F ~G= (~zi, x h) + 

~x~ ~x ~ ~x~ ~P~ ~x~ ~x ~ 

+ ~ ~---~(x~, [~,~) + ____~F VG (p~, x~ ) + ... + ~T~F ~ ( ~ ,  xh ) + 
~XJ ~Rh ~Pi ?xh ~Ri ~xh 

m 

Hence,  in view of theorem 3 we find that 

~F ~G 
(Rj, Rh). 

~R i ~Rh 

_ J 

(6.2) (F, G ) -  - ] - - - .  . = (F, G)', 
~xi ~Pi ~Pi ~wi ~ci ~R i ~R i ~xi 

which proves the above assertion. 

Let  us now conversely assume that the transformation t3.1) leaves inva. 

riant the P o I s s o ~  bracket  of any two functions of the canonical  variables. 

In part icular,  this holds true for 

t6.3) 

Obviously, in our notation (6.1), 

F~(xJ, x, ,  Pi,  i?s)do~x'~xJ~x ~ =  , , , x~, P~, ~ ) ,  ..., Rj(x~, x~, P~, f i~ ) ) -=  x', 
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and similarly 

2 X ~  ~ " 

Hence~ for example, by the analogue of (5.10} for the (<barred>> variables, 

(6.4) 

while, by assumption, 

so that as a result  of (6.3) and (6.4) 

The remaining members  of the PoIsSO~ bracket  relations (5.8) are also 

easily found, so that we have proved 

TltEOREM 4 . -  The transformation ~3.1) is canonical i f  and only i f  it 

leaves invariant the Poisson bracket of  two arbitrary functions. 

Theorem 4 immediately allows us to show that a product of two canonical 

transformations is itself again a canonical transformation. Furthermore~ we 

have seen that the inverse of a canonical transformation is again canonical, 

and we may therefore state 

T~EORE~[ 5. - The totality of  all generalized canonical transformations 

forms a group. 

The dynamical  application of the fact that the canonical transformations 

associated with the first order problem leave invariant  the canonical equations 

of the latter, is one of the most important  propert ies  of these transformations.  

Whereas  we shall not attempt any dynamical  interpetat ion of a second order 

variational problem, we may nevertheless investigate some effects of the 

generalized canonical transformations on the extremals of problems of this 

kind. 

Let  us init ially consider ~he ~on-parameter-invariant problem defined 

by the integral (2.1). In terms of the corresponding Hamil tonian 

{6.5} H =  H(t, x ~, x ~, Pi, R~) 
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the canonical equations have  the form 

dx ~ ~H dx ~ 8H dP~ ~H dR~ ~H 

(6.6) 'dt - -~P~'  'dt --~I?, '  dt - -  3 x "  dt - -  8x ~ 

(cL [9], p. 266). 

As in (6.1) we now define the [unc t ion  

(6.7) I~(t, x' ,  x', P~, R~)d~H(t, x ~, x' ,  P~, R~), 

• 2 .  . . . 

w h e r e  the x ~, x ~, P~, /~ ar ise  f rom the set ~ ,  x ~, P~, R~ by  means  of a 

canon ica l  t r ans format ion .  Then  

8H ~x~ ~H ~Pi 8H ~R~ (6.8) 3 / /  ~ H  ~xJ  ÷ _ _  - =  + _ _  - =  + . . . . . . . . . .  = ,  

~x i-~xi ~x~ ~xi ~x~ ~P~ ~x~ ~R~ ~x~ 

whi le  

(6.9) d/~ ~J6, dxi ~P~ dx~ ~1~ dP~ 8fi, dR i 

An app l i ca t ion  of the  rec ip roc i ty  re la t ions  (5.5) to the app ropr i a t e  te rms  on 

the r i g h t - h a n d  side of (6.8), fo l lowed by the addi t ion of the r~esulting equa t ion  

to (6.9}, gives r ise to the re la t ions  

dt + + 

3~P~/dP i ~H\ 3~ldRi + 3H t 

Hence ,  if the func t ions  x ~, x ~, P i ,  R~ sat isfy  the 

it fo l lows that  

dt ?x~ 

canonica l  equa t ions  (6.6), 

W e  app ly  a s imi la r  a r g u m e n t  to ~H~/8:c ~, ~I~ /8~ ,  3H/SR~ in con junc t ion  

wi th  df~ffdt, dx'i/dt, dx~/dt respec t ive ly .  In  this way  the fo l lowing equa t ions  

are  found  : 

(6.10) - - - - -  _ ,  - -  , - -  , ------- . . 
dt ~P~ dt ~ R~ dt ~ x ~ dt ~ x ~ 
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These are the canonical equations of a problem with Hamil tonian 
- -  . , 2 - "  

H(t, x ~, x', P~, ll~) which is defined by (6.7). The canonical  transformation 

(3.t) therefore maps extremals of a second order variational problem with 

Hamil louian H into extremals of a problem with Hamilonian H. In  this 

sense the canonical equations (6.6) are invariant under a generalized canonical 

transformation. We note that we have implicitly assumed that the parameter 

t is not affected iu this process. 

Before elaborating on the last statement, let us~ conversely, investigate 

those transformations (3.][) which leave invariant  the equations (6.6) for 

arbitrary H(t, x ~, x ~, P+, R~), i.e. t ransformations which are such that equations 

(6.6) always imply equations (6.10) (subject to (6.7)). But, from (6.8), (6.9), 

(6.10), we have 

0 = - -  + . . . . . .  ~ -  

~x" dt ~xi ~x~ ~xi ~-x ~ -~- "$Pi ~x~ "+- ~Ri ~x~ + 

+ 4xJ + + d:5 + gR , 

3xi dt $.~J dt ~Pj dt 3R i dt 

into the r igh t -hand  side of which we substitute from (6.6) to find that 

. . . . .  

Since H is arbi t rary it follows that the first column of the set of reciprocity 

relations (5.5) must hold. The remaining members  of these relations are easily 

obtained in an analogous fashion, so that the transformations must be cano- 

nical. 

As regards the above-mentioned effect of the canonical  t ransformation 

on the parameter  t, it is wel l -known that in a non-paramete r - invar ian t  

variational problem t can be considered as an additional x-coordina te  (for 

first order problems cf. [7], pp. 44.48; a similar approach may be made 

regarding problems of the second order as is indicated in [5], p. 84). In  fact, 

let us consider an integral  

f ( dx~ dZxa~ (6.11) I :  L t, x ~, dt ' -d~)  dt 

in (l, x~)-spaee. We put t -~ -x"  and introduce an arbi t rary parameter  T, now 

denoting differentiation with respect to -: by dots:  x~---dx~/d'~, etc. Then 
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(6.11) becomes 

(6.12) 

where  

I = f L*(x i, .~, [~i)dz, 

L*(x ~, x i, x ~) -= L x '~, x% -:- - - : - x "  x ~ 
x~'  (x~)~( x ~ 

([5], p. 84). The canonical  t ransformat ion (3.1), as applied to the canonical  

coordinates corresponding to (6.12), may be regarded as a t-dependent trans- 
formation in terms of the problem (6.11) if the above const ruct ion is kept  

in mind.  One can then prove that  this t ransformat ion leaves invar iant  the 

canonical  equat ions of the problem defined by (6.11) in the following sense :  

There  exists a funct ion H(t, x% x~, l;~, R~) such that  equations (6.6) (with 

indices i replaced by a) give rise to the set 

d ~  ~ dS~ ~ d ~  ~// dff~ ~/f 

d[ --SP~'  d[ 8R~' dt 3x ~' dt 3x ~ 

where  t = x ~-. 

We shall  not do so here, however,  and instead turn  to the parameter-inva- 
riant problem (where we note that  (6.12) is an example  of a pa ramete r - inva r i an t  

integral). The above method does MOt apply here, since in general  no un ique ly  

def ined Hami l ton ian  exists for such problems,  and the canonical  equat ions  

corresponding to (6.6) involve two arbi t rary parameters  {see [6] for tl~e canonical  

formal ism in this case). The Lagrangians  of these problems are characterized 

by the identi t ies 

L = P ~ x ~ + R ~ x  i, R~x~-O, 

so that  the fundamenta l  integral  s imply reads 

Q~ 

I = f (P~dx ~ + R~dxq d~. 

C ql 

I t  immedia te ly  follows from (3.3) that  a canonical  t ransformat ion 

this in tegral  into 

[ :  f ( t ,  dx~ + R~dxqd~-= I + f dW. 

changes  
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In other words, the two integrals are equivalent and the canonical transfor- 

mation therefore maps extremals of the one into extremals of the other. 

If we re turn  to the canonical equations (6.6) of the non-parameter- inva-  

riant problem, we immediately note that they Can be wri t ten as follows in 

terms of the Po I s so~  brackets  (5.6): 

dx ~ dx ~ dP~ dRi (R, H). 
= (x  H) ,  - d Y =  (x',  H) ,  = H), = ' 

Furthermore,  if an arbi t rary function F ~  F(t, xi, .J/, Pj, Ri) is different iated 

along an extremal, one finds, that 

dF ~F 
dt - - ~ t  -F (F, H). 

7. - Proper t ies  of  the  Jaeobian Jr. 

We  now derive some further  propert ies of the generalized canonical 

transformation, and, in particular,  we introduce the concept of elementary 

canonical transformations,  with the help of which one can show that the 

canonical t ransformation (3.1) can also be generated by a function @(x ~, x ~, x i, x ~) 

instead of (3.2). This leads to the conclusion that {4.2) can be replaced by 

the statement that J : - ~  1. 

Let  (a~. ~2, ..-, ~) ,  ~ ,  ~2, .... ~ )  be two arbi t rary  permutat ions of the 

numbers  1, 2, ..., n. Then a direct evaluation of the Po~ssoN bracket  relations 

t5.8) (in which the identities {5.10) are used) shows that the following two 

transformations are canonical :  

Both transformations represent  a mere relabell ing of the coordinates, and it 

is important  to note that in (7.2) the roles of the x ~, x ~ are interchanged, 

and similarly those of the P~, R~. It  is also easily seen by direct  manipulat ion 

that the Jacobian of each of these transformations is .equal to -~-1. 

A more general  t ransformation {which includes {7.1), ~7.2} as special 

cases) may be de[ined as follows: The 2n quanti t ies x ~, x i are permuted  

arbit.rarily, after which the first n are denoted by x ~, and the remaining n 

by x ~. Then the same permutat ion is applied to the set Pi ,  Ri, this process 
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yielding P i ,  R~. We shall denote this t ransformation by P,  i.e. 

(7.3) 

The lat ter  is again a generalized canonical  t ransformation with Jacobian 

to + 1 .  

W e  shall also be concerned with a different type of generalized canonical  

transformation.  Let  N be some number :  0 ~ N ~ 2 n .  Then we have the 

the following possibi l i t ies:  

(i) l ~ h T ~ n .  W e  let the indices ~, v run from 1 to N and, if N ~ n ,  

~', v' from N +  1 to n, and consider the t ransformation 

(7.4) x~  ---- x~, x~" = - -  P~,, x ~ -~- - -  R~; P~ = P~, Pe, -= x~', R,  = x ~. 

Then one immediately finds that 

(x~, P~)----(x~, P~), (x~, P c ) =  (xe,  x Q ,  

(x~', P~) (--Pc,  P~), - "  = (x~,  ~+) = ( -  p~,, x+) = (x+, p~,), 

and it follows from the identities (5.10) that ( x  ~, P j ) - =  ~.. The other members  
J 

of the PoIssoN bracket  relations (5.8) are derived in a similar fashion, and 

thus {7.4) indeed consti tutes a generalized canonical  transformation.  By redu- 

cing its Jacobian to diagonal form, we also find that the lat ter  has the 

value -~- 1. 

(ii) If  N - - 0  the t ransformation (7.4) is defined as 

(7.5) ~ = - -  P ~  , x ~ = - R~ ; P i  = x ~, R ~  = ~. 

These two transformations may be formally combined in terms of the 

notation 

= = i ..., +,  . . . ,  , \P~ ; R j  ~ ; Ri  \ P 1 ,  ..., P~,  x lv+I, .... ~c '~ ; xJ 

Annali di Matematica 3 
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(7.7) 

(iii) If  N ~ n  + 1 we define a similar t ransformation T2 by 

P~ ; Rj \ ~ ;  /7'~ 

~ ;  'X 1, ...~ 

. , n + l ~ N ~ 2 n ,  

which is also a generalized canonical t ransformation with J ~ - - +  1. 

The transformations P, T~ and T2 have the following fundamental  pro- 

perty. Let  K :  (x ~, ~i; Ph, R~) be a set of canonical variables, and q be an 

arbitrary member  of the subset  (w'~+~, ..., x ", x,i), 0 ~ m ~__ n, of K. Then it 

follows from the definitions of P and T~ that a successive application of 

these transformations enables us to t ransform K into the set K: tx i, xi; Ph, ~'k), 

with 

(7.8) 5 ~ - - x  ~, ..., ~ = x , ~ ;  D ~ - - p , ,  ..., _P~ = p ~ ;  i),o+~=q. 

If q belongs to (P~+~, ..., Pn, RD we only need to apply the transformation 

P to ensure that the members of K satisfy (7.8). 

Similarly, if m ~ n  + t, a combination of T2 and P allows us to find a 

set /~ for which the conditions 

(7.9) 

hold if q is some member  of the set (J~'~-', ..., ~' ,  Rm_n, ..., Rn). 

Any combination of the transformations P, TI, T2 (and their inverses) 

will be called an elementary canonical transformation. For  such a transfor- 

mation the Jacobian J =  + 1, while it may also be proved that the totality 

of these transformations forms a group. 

The elementary canonical t ransformations now enable us to prove 

TgEORE~ 6. - Each generalized canonical transformation can be considered 

as the product of an elementary canonical transformation and one for which 

(7.10) det ~o. 
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Pnool~. - The theorem is proved by induction. Since, by theorem 3, 

(m ~, / ) 1 ) = 1 ,  not all of the quanti t ies ~x:/~x ~, ~c:/~P~, ~ / ~ x  ~, ~x:/aR, can 

vanish simultaneously.  One can thus effect an e lementary  canonical transfor- 

mation on x ~, ~ ,  P~, /~i such that 

aP,  =~ 0. 

We  now assume that for a number  m, 1 < m < n, 

(7.12) ~(~" "" 5~) ~(&, ..., ~ )  + o, 

if necessary after  suitable elementary canonical t ransformations have been 

carr ied out. 

In what follows the indices a, b, c run from 1 to m, and a', b', c' run 

from m-{-1  to n, the summation convention being applied to these indices 

as well. 

The matr ix  

(7.13} He,,,+:) aa 

~t'b ' ~Pb' ' ax t ' Om* ' ~R~ 

~.,+~ ~.,+: ~+~ ~ + ,  a~,~+~ 
J 

clearly has rank m-+-1, since otherwise 

~(x ~ x,, p~, R~) 
J ~  ' = 0 ,  

which would violate (4.2). We now investigate the following set of 4 n - - 2 m  

determinants  of order m-{-1,  in which a denotes the a - t h  row, and b the 

b-th column, while the last column is determined by the par t icular  value of 

of b' or i under  considera t ion:  

D2(b') aef det 

VPb' ~P~, 

Vx~+~ a5,~+, 

aP~ ' aPb, 

, DR(i) aef det 

~Pb ~R~ 

~ + 1  ~,~+, 

aPb ' aR~ 
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D~(b'} d+~ det 

P~ ~ ~ '  

~ + ~  ~5.~+~ 

~p~ ' ~x~, 

, D~(i) aa det 

~x.~+~ ~,~+~ 

If each one of these were to vanish, there would, because of (7.12), exists m 

multipliers ),o, not all zero, such that the relations 

(7.1~) 

~ + ~  Oxo ~x~+ ~ --: ~o ~xo ~-~+~ = ~o ~x o 
~p~ - zo ~ ,  ~p~, ~P~,' ~ t ~  ~ '  

would hold simultaneously.  

An expansion of the PoIsso~ bracket  (x ~, ~c'~+ I) according to the defini- 

tion (5.6), followed by a substitution from (7.14) into the expression thus obtained, 

now shows that 

Since we are dealing with a generalized canonical t ransformation we infer 

from (5.8) tha~ the le f t -hand side of (7.15) vanishes, so that, as a result of 

the assumption (7.12), 

(7.16) ~x'~+l ~x~ 
~ b  - -  ~ ~xb" 

But the relations (7.14) and (7.16) together contradict  our s tatement  that 

the matr ix H(,~+I> has rank  m ~ 1. Therefore at least one of the determinants  

~(b ), D~(i) is non-vanishing,  say D~,(b'), DR(i), D ' 

(7.17) det  

~Pb ~q 

~z-~+1 2~+~ 

~Pb ' ~q 

O, 

where q is some member  of the set (Pb', R~, ~b,, :v~). We have seen above 

that~ in this case, we may apply an e lementary  canonical  t ransformation to 
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the set of canonical variables (~, ~ ,  P~, R~) to obtain a new set for which 

relations corresponding to (7.8) hold. The lat ter  equations imply that the P~ 

remain  unchanged,  while q becomes P,,+~ (if we denote the new set again 

by (w*, x ~, P,,  R~)), so that (7.171 now reads 

(7 .18)  ~(x~'  . . . .  ' ~ " + ~ )  ~ O. 
~(P~, ..., P,,+~) 

By induction the inequali ty (7.18) thus holds for m ~ 1, 2, ..., n -  1. 

We therefore assume that 

2-) 
(7.19) ~(P~, Rb) ~: 0, a, b-~ 1, 2, ..., m, 

for some m, 0 ~ m  < n  (where t7.19) reduces to ~(~)/~(P~) if m~---0). The 

matr ix  (7.13} is replaced by 

~i~( def 

~m+l  ~x~+~ ~x~+~ ~.,+~ ~,~+~ 

~P~ ~Rb ~R~, ~xi ' ~xi 

the rank of the lat ter  being m - ~  n- t -1 .  A simultaneous vanishing of those 

determinants  D(q) which consist of the first n - { - m  columns of H(m+,+l) 

together with I] ~x~/Sq, ~~/~q, ~x~+~/~q II as last column (where q denotes each 

one of Rb,, x b' in turn), immediately implies the existence of n - l - m  non-  

trivial constants ),k, ~%, such that 

(7.20) 

_ 

- -  . - - ~ , k - -  + ~ .  
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Fur thermore ,  if we evaluate the .express ions  (.x ~, m"+~)--).~(x ~, a~ ) - -  

- -  ~e(~v ~, ~vel, l~ -:'~, ~c -'~+~) --- ~(x-", x ~) -- ~t~(~c a, me), and then take (5.8) into account,  

we find that  

(7.21) 

where  

). axk ~ ax,.+~ ~k  ~¢ ~.,+~ 
Ai = k - -  + t~o Bo = ~k + 

axJ axJ axi ' ~ ~ a x  ~ a6 b 

In view of (7.t9) we infer f rom (7.21) that A i = 0 .  Bb~---0, and these equat ions 

cannot  hold together  with (7.20j if the rank  of H(,,,+,+~) is m + n + 1. This 

implies  that  D ( q ) ~ 0  for at least one member  q of (Ra,, m~'), so that  we only 

need to apply an e lementary  canonical  t ransformat ion which leaves Pi, Ra 

unchanged  and identif ies q with R,,~_~ (cf. (7.9)) to prove that  

(7.22) 3(x~' xa' x~+~):4: O. 
~(t)j, Rb, R,,+~) 

This  immedia te ly  completes  the proof of the theorem. 

Let  us now, for the t ime being, restr ict  our  a t tent ion to general ized 

canonical  t ransformat ions  (3.1) for which the inequal i ty  (7.i01 holds. Then  

we may solve equat ions (3.1a) for 

(7.23) 
• ° "-  

• • -  ~ ) .  
Pi----7:~(xi, xT, a~J, xi), R~----~Jxl, x~, xl, 

A subst i tut ion into (3.1b) yields P~, /~ also as funct ions  of M, xi, xi, xJ: 

• . - -  " , _ _  _ L ,  

t7.24) P~ = f,(x], x~, x~, ~cJ), _~ = gi(xJ, x~, x~, xi). 

The genera t ing  funct ion  (3.2) then also becomes a funct ion of these variables, 

namely 

(7.25) ~¢(x;, ~J, ~:j, ei)d'fOg(xJ, ~J, xi, x0, 

so that  (3.3) now reads 

(7.26) dO9 = f~d# .-{- gid~ ~ - -  ¢:idx ~ - -  ~dx  ~. 
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H e r e  the  x i, x ~, ~', ~i are  to be cons ide red  as the  i ndependen t  var iab les .  

W e  may  the re fo re  conc lude  that  

3q) 3(1) 399 ~ 

(7.27) 3x," f~, ~x i gi, 3m i ~i,-:---~3x i ~ ,  

or, keep ing  (7.,3) and {7.24) in mind, 

(7.28~ ~ P~ a-~ = - -  P~, - -  R~. 

The  above resu l t s  now enab le  us to prove  the pr inc ipa l  r e su l t  of this  

section,  viz. 

THEOREM 7. - The value of the funclional determinant of  an arbilrary 

canonical transformation is ahvays unity.  

P ~ o o F . -  In  v iew of theorem 6, and the fact  that  the J a e o b i a n  of an 

e l e m e n t a r y  canon ica l  t r ans fo rma t ion  has  been  obse rved  to be  equa l  to one, 

t heo rem 7 wil l  be  proved  if we show its asser t ion  to be val id  for  all  canonica l  

t r ans fo rma t ions  wh ich  are  sub jec t  to {7.10). 

The  m~, m~, x ~, x ~ are  the re fore  chosen as i ndependen t  var iables ,  and we 

have  qui te  genera l ly  that  

- - P,, ~ , ) _  ~(~, " , . < t a ( ~ '  " ~ ) i  - ~ ,  (7.29) J - -  ?(mi' ~ '  m', fi gD x k, ~:k, 
i 

where  we  have  subs t i t u t ed  from (7.23), i7.24). Bu t  c lear ly  

(7.30} 

whi le  

(7.31) 

~(xs, ~, ~i, xJ) ~(xS, xi)' 

a(x k, x k, =k, ~ k ) _  ~(=k, ek) 

For  the de t e rminan t s  on the r i g h t - h a n d  sides 

obta in  wi th  the help of (7.27} 

32¢ 3 ~  

a(f~, g~)_ det 

- ° 

of (7.30) and (7.31) we  now 
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together with 

- -  det 
~ i  ~x~' ~xi ~o~ i ~---(--1) ~'D = D ,  

where we have used the fact that (I) is of class C:. Hence,  subst i tut ing from 

{7.30), (7.31) into {7.29), we find that 

J - ~ l ,  

and, in view of the r e m a r k s  made above, this now holds for arbitrary cano- 

nical transformations as well. 

REM_at~K.- The abo~e results  may also be derived for a generalized 

canonical t ransformation which is defined in terms of the POISSON bracket  

(or LAGRA~GE bracket) relations, and where the functions concerned are only 

required to be of class C 1. We  shall not do so here  however;  the approach 

is analogous to  that of CARA~H]~ODOI{Y ([1], § 98 el seq.) for the ordinary 

canonical transformation. 

8. - t - independent  generalized canonical t ransformat ions .  

We have observed in section 6 that in a non-parameter - invar ian t  problem 

the parameter  t can be considered as an addit ional x-coordinate .  Conversely, 

in an integral of type (6.12j, one of the coordinates (usually x ')  may be assi- 

gned the special role of the parameter  t (thereby rendering the problem 

non-parameter - invar iant ,  whether (6.12} is parameter - invar ian t  or not). In 

this case one may regard the canonical t ransformation considered above as 

t -dependent ,  and it is interesting to investigate the relation of such a trans- 

formation to the so-cal led t - independent  canonical t ransformations which we 

now proceed to define. (Our approach is a generalization of the method of 

RU~D ([7]. pp. 96-99)). 

W e  find it convenient  to write the t ransformation (3.1) in the following 

manner, where the indices ~, ~ again assume the values 1, 2, ..., n - - 1 :  

18. ) 

• . . 

= ocJ, Pi, Ri), 

~ = R:,,(x], xJ, Pi, Ri), 
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This  canonica l  t r ans fo rma t ion  is said to be / - i ndependen t  if x ~) z~) P~) /~ do 

do not  d e p e n d  exp l i c i t ly  on x ~ and ~% and if 

(s.2) ~ . = x - ,  ~ - = ~ - .  

S u c h  a t r ans fo rma t ion  is thus  

(8.3a, b, c, d) 

cha rac te r i zed  by  (8.2) toge ther  wi th  the re la t ions  

8 ~ _ 0 ,  8~,~--0) • = 0 ,  . = 0 )  
8x" ~x'* Da n 

DP, DE 
{8.4a, b, c, d) - -  O, - - =  O, 

Dx" 8&" 
D~, o, ~ '  o. 

W e  d e d u c e  f rom (8.2) that  

(8.5a, b) D2" Dx" a ~ - o ,  = o .  
Dx n 

Our aim is to cons t ruc t  a canonica l  t r ans fo rma t ion  involv ing  only the 

4 n - - 4  va r i ab le s  x ~, ~ )  Pa) R~. I f  the" rec ip roc i ty  re la t ions  (5.5) are app l ied  

to (8.3)) (8 4), and (8.5), the fo l lowing equa t ions  are ob t a ined :  

0 - -  D ~ _ DP,, 0 . . . .  0 = 
3x ~ DP~ ' ~x '~ 3 Pi " 

D~ ~ D P,, D~ 8 R,, 

~x" DR~ Dx" DR~ 

(8.6) 0 - -  8 / ~ -  3 P ,  0 =  - -  0 - -  - -  - -  0 . . . . .  
8R,  

Ox ~) 

~ -  pP. Dx- DR. 
1 = -  1 - -  - -  _ ) 

3x" @P, ~x" 8R,  

W e  i m m e d i a t e l y  conc lude  that  

(8,7) P .  = P . - } - k l ,  R , ~ = R . - i - k ~ ,  

where  kl,  ks are  a rb i t r a ry  constants .  

I t  is obv ious  f rom (8.3), (8.4) and  (8.5) 

(8.1) we  again  f ind that  

(s.s) ~ - =  ~., ~- = ~-. 

that  if we take  the inverse  of 

Annali di Matematica 4 
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Hence ,  apply ing  the rec iproc i ty  re la t ions  (5.5) once more,  we see that  

(8.9) 

- -  = O ,  . . . . . .  : . . . .  O ,  O ,  = - -  - -  

~"-o, aP°-a~"=o, ~=~."-=o, ~;'~-~"-o. 

I f  we now take (8.6), (8.7), (8.9) into cons idera t ion  we deduce  that  any  

canonica l  t r ans fo rma t ion  (8.1) wh ich  is subject  to (8.2), (8.3) and (8.4) has  the 

expl ic i t  fo rm 

(8.20) 
• ~ = 2~(x~, x~, P~, R~), ~ = i,(x~, ~,, P~, R~), 

~)~ =/~(x~, ~ ,  P~, R~), 

(8.11) 

where  the  func t ions  in (8.10) a re  ident ica l  wi th  the co r respond ing  ones in (8.1). 

In  order  to see what  happens  to the gene ra t ing  func t ion  13.2), we eva- 

luate  the n - t h  member s  of each of the equat ions  (3.4), e.g. (3.4a): 

~W 

which,  as a resu l t  of (8.2), (8.3a), (8.3c), (8.5b) and (8.7}, r educes  to 

~W 

~x n 

S imi la r ly  we f ind f rom (3.4b), (8.3b), (8.5a), (8.2), (8.3d} and  (8.7) that  

- -  k 2  . 

In  a s imi la r  fashion  the n - t h  member s  of equat ions  (3.4c, d) 

r e d u c e  to 

~W ~W 
~p~ - -  0, ~R. - -  O. 

are  found to 
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The last four relations thus show that the generating function (3.2) must 

have the form 

(s.i.9) W(x ~, "~, P~, R~)~--~(x% ~ ,  P~, R ~ ) -  k~x"--k~x",  

where  ~ is some function of c-lass C z. 

But,  by (8.12), 

d~ : dW ~ k~dx? ) + k~d~", 

so that, in view of (3.3) and (8.11), 

d~ = ff~d2 ~ + R~dx ~ -- P~dx ~ - -  R~d~ a, 

which is precisely of the form (3.3) in terms o[ the 4 n - - 4  variables x% ~ ,  P~, R~. 

We  have thus proved 

T~EORE~ 8. - The t-independent canonical transformation (8.1) with 

generating function qg(xJ, xi, Pj ,  Rj) may be written explicitly in the form 

(8.10), (8.11), where k~, k,. are two arbitrary constants. The transformation 

{8.10), which only involves the 4 n - - 4  variables x ~, x% P~, R~, is a canonical 

transformation with generating function ~(x ~, x ~, P~, R~) related to • accor- 

ding to (8.12). 

W e  note that when k~ ~ k2-----0 we are confronted with the trivial  case 

for which the generat ing [auct ions are identical and {8.11} reduces to the 

identity transformation, 

9 . -  Extension to canonical transformations associated with problems 

of arbitrary order. 

We merely state some of the main results  of the theory associated with 

an m- th  order variat ional  problem whose Lagrangian is 

• ~ . ~ for some m ~__ 1, L ~ L(t, x', x(1), ..., x(,~)), 

were we have employed the notation 

i clef " i d x i  i d r ~ t  

x(o) ..... x ~, x(1)-- dt ' "'" x(~)-- dr" ' r ~  1, 2, .... 

It is assumed that L is of class C 2m and that the curve C : x ~ x ~ ( t )  in X,+I 

is of class C m. 
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The canonical momenta are defined as fol lows:  

- .  . . . .  , e ~ O,  1 ,  . . . ,  m ~ 2 ,  
, i 

~x(,~l ~x(~+~) dt 

(eL [9], p. 266). Thus the canonical  coordinates of the theory are the 2ran 

quanti t ies  

re(o),  x ( 1 ) ,  . . . ,  X,(m--1); ~ , --+ , . . . ,  * i  } = { X ( p ) ,  , 

where in this section the bracketed indices p, ~ run from 0 to ~,m- 1, while 

the summat ion  convention is also applied to indices of  this type. 

Consider the transformation 

which is said to consti tute a canonical transformalion associated wi th  the 

m- th  order problem in the calculus of  variations if it is of class C ~, and if a 

function Wm(w~p), P~)) of class C 2 exists such that 

whenever  we subst i tute on the r ight -hand side from I9.1}. 

We now define the Lagrange bracket of the canonical coordinates 

x~p)(u, v, ...), l~¢/(u, v, ...) with respect  to any two parameters  on which they 

depend {being at least of class C ~ in them) by 

~u ~v ~v 8u ' 

and the Poisson bracket of any two functions 

F =  F(t, x~p), P~)), e = G(I, xi~), P~P)}, 

of class C ~ in the canonical coordinates, by 

iF, G) ~ 8F ~e 8F ~G 



H. S. P. GP£ss~ :  Canonical trans]ormations associated, etc. 29 

We  then  have the fo l lowing three  sets of charac te r iz ing  proper t ies  of the 

canonica l  t r ans fo rma t ion  (9.1): 

(a) The LA~RAI,~E bracke t  re la t ions  (cf. (3.5) and  theorem 1) 

= , = ~ ~ ,  [ / V )  -~'I~)~ = O, 

(b) the rec iproc i ty  r e l a t i o n s  (cf. (5.5) and t h e o r e m  2) 

(c) the POrSSON bracket  re la t ions  (cf. (5.8) and  theorem 3) 

The other  theorems of this  ar t ic le  may  also be ex tended  to hold for th is  

genera l  ease. 
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