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A canonical transformation changes variables such as coordinates and momenta to new variables preserving 
either the Poisson bracket or the commutation relations depending on whether the problem is classical or 
quantal respectively. Classically canonical transformations are well established as a powerful tool for solving 
differential equations. Quantum canonical transformations have been defined and used relatively recently 
because of the non-commutativeness of the quantum variables. Three elementary canonical transformations 
and their composite transformations have quantum implementations. Quantum canonical transformations have 
been mostly used in time-independent Schrodinger equations and a harmonic oscillator with time-dependent 
angular frequency is probably the only time-dependent problem solved by these transformations. In this work, 
we apply quantum canonical transformations to a harmonic oscillator in which both angular frequency and 
equilibrium position are time-dependent.
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Introduction

In order to integrate the equations of motion in classical 
mechanics, we solve the second-order differential equations 
directly or trivialize the Hamiltonian by eliminating 
conjugate variables using canonical transformations. There 
is one situation where the equation of motion is trivial. That 
is when all the coordinates are cyclic1 and the conjugate 
momenta are all constant and as a consequence the 
Hamiltonian becomes a function of constants. In this case 
the solutions of the Hamilton's equations are simple. Since 
the generalized coordinates would not normally be cyclic, 
we need to transform one set of variables to some other set 
so that new variables contain more than one cyclic 
coordinate. Classically a canonical transformation is a 
change of variables which preserves Poisson bracket (p, 
q} = -1 in which q is a coordinate and p is its conjugate 
momentum.

Due to the non-commutability of operators, canonical 
transformations have not been fully realized in quantum 
mechanics. Unitary transformations have been more often 
used instead because quantum canonical transformations are 
mistakenly understood to be unitary. In quantum mechanics, 
a canonical transformation is naturally defined2 as a change 
of the non-commuting variables which preserves the 
commutation relation [p, q] = -i. Although unitary trans
formations possess the same property they do not represent 
the full class of canonical transformations. A canonical 
transformation is implemented by a function C(q, p) such 
that (p, q) T (p： q) where pf = CpL, qf = CqC-1 and C is 
not necessarily unitary since the definition does not require 
the Hilbert space or inner product. As a consequence, 
quantum canonical transformations may not be unitary and 
they are norm-preserving isometric transformations.3 In order 
to define a quantum canonical transformation, followings 
must be considered; 1) the ordering of new variables qf and 

pf are given; 2) the inverse and fractional powers of 
differential operators are defined. Three elementary trans
formations are widely used and they are the interchange 
transformation, the similarity transformation, and the point 
transformation.3,4 A general quantum canonical transformation 
can be decomposed into a sequence of these elementary 
transformations. Solving a Schrodinger equation is facili
tated by transforming the Hamiltonian to a simpler one with 
the elementary canonical transformations. Tools for solving 
differential equations including raising and lowering oper- 
ators,5 intertwining operators,6,7 and Lie algebraic methods8 

may also be regarded as canonical transformations.
The quantum canonical transformations provide a unified 

approach to the integrability of many time-independent 
systems and exact solutions of the Schrodinger equation are 
obtained for systems including the harmonic oscillator,4 the 
Morse potential, and the Poschl-Teller potential, etc.9 For 
time-dependent problems, however, a harmonic oscillator 
with time-dependent angular frequency is probably the only 
system solved by these transformations.3

In this work, we apply quantum canonical transformations 
to a harmonic oscillator in which both angular frequency and 
equilibrium position are time-dependent.

Quantum Canonic지 Transformations

A quantum canonical transformation is defined to change 
variables preserving the commutator bracket

[q, p] = i = [q'(q, p), p'(q, p)] (1)

New variables are generated by an arbitrary complex 
function C(q, p) as below;

q'(q, p) = CqC t, p'(q, p) = CpC t (2)

There are three elementary canonical transformations which 
have quantum implementations as finite transformations. 
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They are interchange transformations, similarity transfor
mations, and point transformations. A general canonical 
transformation can be obtained as products of these elemen
tary transformations. Each of the elementary canonical 
transformations will be briefly reviewed in the following and 
the readers who are interested in more details are referred to 
ref. 3.

The interchange of coordinates and momenta

p — IpI-1 = -q, q — Iql-1 = p (3)

is done by the Fourier transform operator

I = 一1二「dq'e'qq (4)72^
The wavefunction is transformed

山(1)小、_ 73，(0)小、_ 1 件 刀 / Jqq\lt(0)/d
W' (q)=艸(q) = --= J_8 dq e w (q ) 

where w(0) is the original wavefunction. The 
interchange is

p — q, q — —p
implemented by the inverse Fourier transform

广=丄 r dq,e-tqq, 
国L q

(5) 

inverse

(6)

(7)

The similarity transformation is carried out by e너/) where 
f(q) is an arbitrary complex function of the coordinate(s). 
Applying the generator to q and p, the coordinate is 
unchanged and the momentum is transformed

q — e-f(q)q^(q) = q, p — e顼qpfq = p - i-f (8) 

which can be obtained from Baker-Hausdorff formula.4 The 
wavefunction is transformed

W⑴(q) = e 너3 w(0)(q) (9)

The composite similarity transformation is done by the 
generator

ef = le 项旳- (10)

which is obtained by applying the interchange transfor
mation to e너© to exchange coordinates for momenta. This 
transformation changes q while leaving p unchanged

q — ef) qf，= q + if , p — p (11)

The wavefunction changes

W〕)(q) = e너3)w(0)(q) = le 너虹- w(0)(q) (12)

The point transformation is not explicitly expressed as the 
exponential form, but representatively as Pf(q) and it is 
implemented

q — Pf(q)qPf(q) = f( q), P — PfsP" = f (13) 
l^J 

where f-1(q) represents the inverse function of fq). Actual 
forms of transformed variables are easily realized when f(q) 
is explicitly given. The wavefunction changes by the point 
transformation as

心q)=f)W0)(q) = Wf) (14)

The composite point transformation is done by the 
generator Pfp = IPfW너 which is obtained by applying the 
interchange transformation to Pf(q). Variables change

q — (f q, p — f(p) (15)

which are obtained from Eq. (13) by interchanging variables 
in both sides of equality. The wavefunction is transformed

W*q)=PfpwWq) = If尸 W)(q) (16)

Application: Time-Dependent Harmonic Oscillator

The quantum canonical transformations have been used to 
solve the Schrodinger equation for many time-independent 
systems.9 However they have not been often used in other 
time-dependent problems than a harmonic oscillator with 
time-dependent angular frequency.3 The time-dependent 
harmonic oscillators have been widely studied by a variety 
of methods including the invariant operator,10 the prop- 
agator,11 and the time-space transformation.12,13 It is useful to 
have analytical solutions for the time-dependent harmonic 
oscillator since it may be used as an instructive model14 to 
represent the solute vibrations in solutions. We apply 
quantum canonical transformations to a harmonic oscillator 
in which both angular frequency and equilibrium position 
are time-dependent.

Let us start with the Hamiltonian operator H(0) for the 
time-dependent harmonic oscillator

H(0) = pt + p2 + w2(t)(q-u(t))2 (17)

where pt = -i(d/dt) and p = -i(d/dq) are momentum 
operators in time and in the coordinate respectively. The 
angular frequency w(t) and the equilibrium position u(t) are 
functions of time. Mass of the system is scaled and h is 
assumed to be 1. The Schrodinger equation to be solved is 
H(0)w(0)(q, t) = 0.

The quadratic term in q in Eq. (17) is cancelled by making 
a two-variable similarity transformation

pt— pt -2 (너Jq, p — p - ifq (18)
and the Hamiltonian operator becomes

H a)=pt+p2-2 ifqp+(2 w2- 耳 - 너) q

-2w^uq + w2 U -f (19)

The condition that the quadratic potential be cancelled is 

耳 + 2f = 2 w2 (20)
dt
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This first-order nonlinear equation can be linearized by the

substitution f= as

耳=-4 wp 
dt

(21)

If a specific form of w(t) is given, Eq. (21) can be solved to 
determine f and thus the generator exp ^-f( t )*).

The second two-variable similarity transformation is 
carried out to remove the quadratic term in the momentum

Pt — Pt - q — q + 就 (22)

This changes the Hamiltonian operator to be

Hb) = pt + f 2-i쯔 +
V dt

-2ifqp - 2iw2ugp

- 2w2uq + w2u2-f

To eliminate the quadratic term of momentum, we have

i 岑=4g+2 
dt

(23)

(24)

With f determined from above, Eq. (24) is integrated to give

g = -2ie (25)

The third two-variable similarity transformation is performed 
to remove the linear term in q,

pt — pt-啥)q， p — p -ih (26)

and the Hamiltonian operator will be

H© = pt - fi 쓰 + 2fh + 2w2u)q-2ifqp

-2 iw2 ugp-2 w2 ugh + w2 U -f (27)

From the condition that the linear term of coordinate be 
cancelled, h is determined

h = J ■脚dt (28)

The next two-variable similarity transformation is done to 
eliminate the linear term in p,

pt—pt-啥》， q — q +ir (29)
and the Hamiltonian operator changes to

H肉=pt - (i*- + 2iw2ug-2fr)p-2ifqp

-2 w2 ugh + w2u2-f (30)

The linear term in p would be cancelled if r is to be

2iJfdt -2 iJ.fdt

r = 2 e J w2uge dt (31)

with g given in Eq. (25).
Next, the following point transformation eliminates the 

coordinate from H(d)

p — e~qp, q — e어 (32)

and the Hamiltonian operator will be

H(e) = pt - 2ifp - 2w2ugh + w2u2 - f (33)

Finally, the two-variable similarity transformation

pt — pt + 2ifp + 2w^ugh - w2u2 + f, q — q - 2i Jfdt (34)

is carried out to trivialize the Hamiltonian operator

H⑴=pt (35)

Since the Schrodinger equation would be trivialized as

H⑴伊)=ptW、'1 = 0 (36)

and 卩⑴ is any t-independent function, W0)(q, t) is formally 
obtained

(0)/a 顶t)q2/2 g(t)p2/2 h(t、)q r(t)pW%q, t) = e 너 eg)p e ^e )p

-2pJfdt+i J (2w1 ugh - w2u2 + f)dt (】)

Due to the ambiguity in i^(1)(q), the explicit form of W(0)(q, t) 
can not be determined by Eq. (37). This ambiguity can be 
eliminated if W(0)(q, t) is sought starting from 俨(q, t) which 
is the wavefunction of H(e) in Eq. (33)

i J [(2w2ugh - w2u2 + (2c +1)f)]dt
甲"(q, t) = ecqe (38) 

where c is a constant. This constant turns out to be a non
negative integer n according to the normalizability 
requirement. ^^°(q, t) is then obtained

(0)/ 八 f t)q2/2 g(t)p2/2 h(t)q r(t、)p 卩 (e)z 、
甲n (q, t) = e 顷 e" 오 e '%5*优 q)

J [(2病ugh - ”頌 + (2" +1)f)]dt

= e
ft)q2/2 g(t)p2/2 h(t)q / . —、、n /cc、

x e 디 eg )p e 너 (q - ir(t)) (39)

Application of eg(t" /2 on eh(t)q (q - ir(t))n produces the 
shifted Hermite polynomial15 and the final expression of 
unnormalized 甲0)( q, t) would be

— —?gh2+i J [2w2ugh - w2u2+ (2n +1)f] dt 
甲°)(q, t) = g 2 e

2fq2+ hq H
-h (40) 
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with ft), g(t), h(t), and r(t) are determined from Eqs. (21), 
(25), (28), and (31) respectively.

Conclusion

In this work, we have solved the Schrodinger equation by 
a series of elementary canonical transformations for the 
time-dependent harmonic oscillator in which both angular 
frequency and equilibrium position change in time. Successive 
applications of canonical transformations are carried out 
until the Hamiltonian operator is trivialized. Solutions of the 
trivialized Hamiltonian operator are sequentially transformed 
back to obtain solutions of the original Schrodinger equation.

The canonical transformations will be a good approach to 
many other time-dependent problems than the harmonic 
oscillators and they are expected to extend to problems like 
time-dependent Morse oscillators and time-dependent Eckart 
barriers.
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