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A replicating hedge cannot be formed.

Pricing mortality-linked securities is the focus of this study.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

The Problem

Mortality-linked Securities are becoming more popular.

Pricing these securities is not straightforward.

Reasons:

Incomplete market.
A lack of liquidly traded longevity indexes or securities.
A replicating hedge cannot be formed.

Pricing mortality-linked securities is the focus of this study.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

The Problem

Mortality-linked Securities are becoming more popular.

Pricing these securities is not straightforward.

Reasons:

Incomplete market.
A lack of liquidly traded longevity indexes or securities.
A replicating hedge cannot be formed.

Pricing mortality-linked securities is the focus of this study.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

The Problem

Mortality-linked Securities are becoming more popular.

Pricing these securities is not straightforward.

Reasons:

Incomplete market.
A lack of liquidly traded longevity indexes or securities.
A replicating hedge cannot be formed.

Pricing mortality-linked securities is the focus of this study.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

The Problem

Mortality-linked Securities are becoming more popular.

Pricing these securities is not straightforward.

Reasons:

Incomplete market.
A lack of liquidly traded longevity indexes or securities.
A replicating hedge cannot be formed.

Pricing mortality-linked securities is the focus of this study.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

The Problem

Mortality-linked Securities are becoming more popular.

Pricing these securities is not straightforward.

Reasons:

Incomplete market.
A lack of liquidly traded longevity indexes or securities.
A replicating hedge cannot be formed.

Pricing mortality-linked securities is the focus of this study.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

The Problem

Mortality-linked Securities are becoming more popular.

Pricing these securities is not straightforward.

Reasons:

Incomplete market.
A lack of liquidly traded longevity indexes or securities.
A replicating hedge cannot be formed.

Pricing mortality-linked securities is the focus of this study.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

The Wang Transform

The Wang transform (Wang, 1996, 2000, 2001).

Let FP(x) be the d.f. for a future lifetime r.v. under P.

Then, under Q, the distribution function for the r.v. is

FQ(x) = Φ(Φ−1(FP(x)) + λ),

where Φ is the d.f. for a standard normal r.v., and λ is the
market price of risk.
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The Wang Transform

Examples:
1 Lin and Cox (2005): calibrate λ to market quotes of

immediate annuities.
2 Denuit, Devolder and Goderniaux (2007): integrate with the

Lee-Carter model.

Consistent with the classical capital asset pricing model
(CAPM).

Ruhm (2003) and Pelsser (2008) point out that it may not
lead to a price consistent with the arbitrage-free price for
general stochastic processes.
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Risk-neutral dynamics of death/survival rates

Step (1): Define a mortality model in P measure.

E.g., Cairns, Blake and Dowd (2006) model:

ln
qx ,t

1− qx ,t
= A1(t) + A2(t)(x + t),

A(t + 1) = A(t) + µ+ CZ (t + 1),

where

A(t) = (A1(t),A2(t))′,
µ is a constant 2× 1 vector,
C is a constant 2× 2 upper triangular matrix,
Z (t) is a 2-dimensional standard normal r.v.andom variable.
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Risk-neutral dynamics of death/survival rates

Step (2): Adjust the drift term to obtain a model in Q
measure:

A(t + 1) = A(t) + µ̃+ CZ̃ (t + 1),

where

µ̃ = µ− Cλ,
Z̃ (t + 1) is a standard 2-dim. normal r.v. under the
Q-measure,
λ = (λ1, λ2)′ is a vector of market prices of risk.

Cairns, Blake and Dowd (2006) obtain λ by calibrating to the
price of the BNP/EIB longevity bond.
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Problem (1): Parameter risk.

Even if the process is correct, parameters may be wrong.
Can be quantified by MCMC.

Problem (2): Model risk.

The process itself may be incorrect.
May be reduced by considering a less stringent mortality
model.
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Our Idea...

‘Canonical valuation’ (Stutzer, 1996) as an alternative pricing
method.

Advantages:
1 Largely non-parametric – reducing parameter and model risk.
2 Useful even if only a few market prices are available.

Our objective: to develop a framework for pricing
mortality-linked securities using canonical valuation.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

Our Idea...

‘Canonical valuation’ (Stutzer, 1996) as an alternative pricing
method.

Advantages:
1 Largely non-parametric – reducing parameter and model risk.
2 Useful even if only a few market prices are available.

Our objective: to develop a framework for pricing
mortality-linked securities using canonical valuation.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

Our Idea...

‘Canonical valuation’ (Stutzer, 1996) as an alternative pricing
method.

Advantages:
1 Largely non-parametric – reducing parameter and model risk.
2 Useful even if only a few market prices are available.

Our objective: to develop a framework for pricing
mortality-linked securities using canonical valuation.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

Our Idea...

‘Canonical valuation’ (Stutzer, 1996) as an alternative pricing
method.

Advantages:
1 Largely non-parametric – reducing parameter and model risk.
2 Useful even if only a few market prices are available.

Our objective: to develop a framework for pricing
mortality-linked securities using canonical valuation.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Background
Previous Work
Our idea

Our Idea...

‘Canonical valuation’ (Stutzer, 1996) as an alternative pricing
method.

Advantages:
1 Largely non-parametric – reducing parameter and model risk.
2 Useful even if only a few market prices are available.

Our objective: to develop a framework for pricing
mortality-linked securities using canonical valuation.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

A General Set-up
Intuitions behind the Theory
Implementing the Theory

The Principle

Assume there are m distinct primary securities.

Each has a time-zero price of Fi and a random discounted
payoff of fi (ω).

Let Q is the set of all equivalent martingale measures.

We require, for any Q in Q,

EQ [fi (ω)] = Fi , i = 1, 2, . . . ,m. (1)
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The Principle

The Kullback-Leibler (1951) information criterion (KLIC):

D(Q,P) = EP

[
dQ

dP
ln

dQ

dP

]
We should choose an equivalent martingale measure Q0 that
minimizes the criterion, i.e.,

Q0 = arg min
Q∈Q

D(Q,P),

subject to the constraints in equation (1).
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Statistical Justifications

D(Q,P) represents the information gained by moving from P
to Q.

From a Bayesian viewpoint, we may regard P as the prior
distribution.

Given m market prices, we can update the prior by
incorporating the information contained in equation (1).

No information other than equation (1) should be
incorporated.
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Expected Utility Hypothesis

Rittelli (2000) proved that maximizing the expected
exponential utility is equivalent to minimizing the KLIC.

The result also holds true in a multi-period setting.

It implies linkages to the Esscher transform (Gerber and Shiu,
1994).
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Implementation

Generate N equally probable scenarios by the bootstrap.

The p.f. for ω under P

Pr(ω = ωj) = πj =
1

N
, j = 1, 2, . . . ,N.

Let π∗j , j = 1, 2, . . . ,N, be the p.f. of ω under Q.

We require

N∑
j=1

fi (ωj)π
∗
j = Fi , i = 1, 2, . . . ,m. (2)
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Implementation

We can rewrite KLIC as

N∑
j=1

π∗j ln
π∗j
πj
.

To find the canonical measure Q0, we solve

Q0 = arg min
π∗j

N∑
j=1

π∗j ln
π∗j
πj
,

subject to
∑N

j=1 π
∗
j = 1 and equation (2).
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Age and Time Dependency
The Bootstrap Procedure
Making a Mortality Forecast

The Challenge

An empirical distribution of the mortality-linked security’s
payoff is needed.

Generate from a time-series of past mortality rates or values
of a longevity index.

The data involve two dimensions: age and time.

Potential dependency over both dimensions.
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Age Dependency

Mortality rates at different ages are correlated with one
another.

Wills and Sherris (2008) point out that it is a critical factor in
pricing mortality-linked securities.

We consider mortality rates at different ages jointly by
treating them as a vector.

That is, we treat the data as a multivariate time-series of
mt = (m65,t ,m66,t , ...,m90,t)′.
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Time Dependency
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Time Dependency

We require the time-series to be weakly stationary.

m(x , t) has a clear downward trend, suggesting it is not
weakly stationary.

To solve this problem, we consider the transformation of
rx ,t =

mx,t+1

mx,t
.

This may be interpreted as a one-year mortality reduction
factor.

We observe no systematic change in rx ,t over time.
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Simplified sample cross-correlation matrices constructed from rx,t at

ages: 70, 75, 80, 85, and 90.
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The Block Bootstrap

The näıve bootstrap will lose the serial dependency in the
data.

We use the block bootstrap method (Carlstein, 1986; Künsch,
1989) to retain serial dependency.

The sample CCMs indicate the cross-correlations taper off as
the lag increases.

Blocks of observations that are separated far enough will be
(approximately) uncorrelated.
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The Block Bootstrap

We have 55 vectors of rt (1950 – 2004).

Assuming a block size of 5, we have 51 blocks:
(r1950, r1951, r1952, r1953, r1954), (r1951, r1952, r1953, r1954, r1955),
..., (r2000, r2001, r2002, r2003, r2004).

The optimal block size is not always evident.

Hall et al. (1995) recommend a block size of n1/5.

We use a block size of 2 (551/5 = 2.23 ≈ 2).
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Empirical distributions of the survival probabilities for the cohort aged 65

in year 2005, on the basis of 46, 56, and 66 years of data.
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Comparing with Model-Based Methods

Non-parametric Lee-Carter Cairns, Blake and Dowd

10p65 0.7790 0.7755 0.7814

15p65 0.6048 0.6011 0.6135

20p65 0.3999 0.3995 0.4132

25p65 0.2080 0.2039 0.2146

Central estimates of the survival probabilities for the cohort aged 65 in

year 2005, on the basis of the non-parametric bootstrap, the Lee-Carter

model and the Cairns, Blake and Dowd model.
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The BNP/EIB Longevity Bond

We use the BNP/EIB bond for the price constraint.

It is 25-year amortising bond, which pays $50I (t), for
t = 1, . . . , 25.

I (t) is defined as:

I (t) = I (t − 1)(1−m64+t,2002+t), t = 1, 2, . . . , 25,

where

I (0) = 1,
mx,t is the crude central death rate for the E&W male
population at age x and in year t.
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The BNP/EIB Longevity Bond

The issue price was determined by discounting at LIBOR
minus 35 basis points the anticipated coupon payments.

The time-0 value of the bond is £561.
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Step (1)

Generate a number, say N, of equally probable mortality
scenarios.

From each scenario, calculate the longevity index I (t) at
t = 1, 2, . . . , 25.

The time-0 value of the BNP/EIB bond in the jth scenario is

v(ωj) = 50×
25∑

t=1

B(0, t)I (t, ωj),

where I (t, ωj) be the index value at time t in the jth scenario,
and B(0, t) is the time-0 price of a risk-free zero-coupon bond
that pays £1 at time t.
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Step (2)

Let π∗j be the probability associated with v(ωj) under Q.

We require
∑N

j=1 v(ωj)π
∗
j = 561 and

∑N
j=1 π

∗
j = 1.

We minimize the KLIC as follows:

L =
N∑

j=1

π∗j lnπ∗j −λ0

 N∑
j=1

π∗j − 1

−λ1

N∑
j=1

(
v(ωj)π

∗
j − 561

)
.
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Step (2), Continued

Let π̃∗j , j = 1, 2, . . . ,N, be the solution.

We have

π̃∗j =
exp(λ1v(ωj))∑N
j=1 exp(λ1v(ωj))

, j = 1, 2, . . . ,N.

λ1 = arg min
γ

N∑
j=1

exp(γ(v(ωj)− 561)).
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Incorporating More Prices

What if more market prices are available?

The method can be extended to incorporate additional
primary securities.

Assume the ith securitiy has a time-0 price of Vi and a
discounted payoff of vi (ωj) in the jth scenario.

To price m securities correctly, we require

N∑
j=1

vi (ωj)π
∗
j = Vi , i = 1, 2, . . . ,m. (3)
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Incorporating More Prices

We minimize the KLIC subject to the m constraints and∑N
j=1 π

∗
j = 1.

It can be shown that the resulting canonical measure π̃∗j ,
j = 1, 2, . . . ,N is

π̃∗j =
exp(

∑m
i=1 λiv(ωj))∑N

j=1 exp(
∑m

i=1 λiv(ωj))
, j = 1, 2, . . . ,N,

where ~λ = (λ1, λ2, . . . , λm)′ can be expressed as

~λ = arg min
γ1,...,γm

N∑
j=1

exp

(
m∑

i=1

γi (vi (ωj)− Vi )

)
.
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With One Primary Security, m = 1 

the set of all measures 
equivalent to P 

P 

Q0 

the set of all equivalent 
martingale measures 

The canonical measure Q0 when m = 1.
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With Two Primary Securities, m = 2 
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the set of all equivalent 
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The canonical measure Q0 when m = 2.
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With Infinitely Many Primary Securities, m→∞ 

the set of all equivalent 
martingale measures 

the set of all measures 
equivalent to P 

P 
Q0 

The canonical measure Q0 when m→∞.



Introduction
The Theory of Canonical Valuation

Non-Parametric Mortality Forecasting
An Equivalent Martingale Measure

An Illustration

Pricing Vanilla Survivor Swaps

We consider vanilla survivor swaps with a fixed proportional
premium θ and a fixed maturity T .

At t = 1, 2, . . . ,T , the fixed-payer pays a preset amount of
(1 + θ)K (t).

The fixed-reciever pays a random amount of S(t), which is
linked to the realized survival function of the reference
population.

The reference population is the same as that of the BNP/EIB
longevity bond.
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Pricing Vanilla Survivor Swaps

We set

S(t) = S(t − 1)(1− q64+t,2002+t), t = 1, 2, . . . ,T ,

where S(0) = 1, and qx ,t is the realized death probability.

We set K (t) to the projected survival function for the
reference population, on the basis of GAD’s projection.

K (t) for declines over time.
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The Calculated Swap Premium
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Comparing with Other Pricing Methods
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Conclusions

The pricing framework is reasonably robust relative to the
amount of data used.

It avoids model risk and parameter risk.

Additional prices can be incorporated into the canonical
measure easily.

Due to its non-parametric nature, our framework can be
applied to reference populations with limited volume of data
available.
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