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Abstract

Early detection of incipient faults in industrial processes is increasingly becoming important, as these

faults can slowly develop into serious abnormal events, an emergency situation, or even failure of critical

equipment. Multivariate statistical process monitoring methods are currently established for abrupt fault

detection. Among these, canonical variate analysis (CVA) was proven to be effective for dynamic process

monitoring. However, the traditional CVA indices may not be sensitive enough for incipient faults. In this

work, an extension of CVA, called the canonical variate dissimilarity analysis (CVDA), is proposed for

process incipient fault detection in nonlinear dynamic processes under varying operating conditions. To

handle non-Gaussian distributed data, kernel density estimation was used for computing detection limits. A

CVA dissimilarity-based index has been demonstrated to outperform traditional CVA indices and other

dissimilarity-based indices, namely DISSIM, RDTCSA, and GCCA, in terms of sensitivity when tested

on slowly developing multiplicative and additive faults in a CSTR under closed-loop control and varying

operating conditions.
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LIST OF ABBREVIATIONS

CSTR Continuous Stirred-tank Reactor

CV Canonical Variable

CVA Canonical Variate Analysis

CVDA
Canonical Variate Dissimilarity

Analysis

DD Detection Delay

DIS-

SIM
Dissimilarity Analysis

FAR False Alarm Rate

GCCA
Generalized Canonical Correlation

Analysis

KDE Kernel Density Estimation

MDR Missed Detection Rate

MSPM
Multivariate Statistical Process

Monitoring

PCA Principal Components Analysis

PLS Partial Least Squares

RDTCSA

Recursive Dynamic Transformed

Component Statistical Analysis

SV Singular Value

SVD Singular Value Decomposition

UCL Upper Control Limit

I. INTRODUCTION

I
NDUSTRIAL process monitoring deals with the detection, identification, diagnosis, and prognosis of

abnormal events, or so-called faults, in industrial processes [1], [2]. A fault is formally defined as

an “unpermitted deviation of at least one parameter of a process from acceptable conditions” [3]. More

specifically, process monitoring methods aim to systematically [4]: (1) determine whether a fault has

occurred (detection); (2) identify the process variables affected by the fault (identification); (3) determine

the type, location, and magnitude of fault (diagnosis); and, (4) predict the evolution of a detected fault



and its effects (prognosis). It is clear that these procedures are important for the safe, reliable, and

environmentally benign operation of plants in any industry. Thus, automated industrial process monitoring

has been an active field of study for decades now [1].

Widely used data-based fault detection methods, namely Multivariate Statistical Process Monitoring

(MSPM) techniques, distinguish faulty from normal process states by establishing statistical thresholds

around feature variables extracted from the process historical data [4]. Currently, MSPM techniques are

being developed for nonlinear dynamic processes with the goals of increased sensitivity, early detection,

and minimal false alarms during normal operation. Notable approaches are those based on principal com-

ponents analysis (PCA) [5]–[8], partial least squares (PLS) [9], [10], independent component analysis [11],

[12], and canonical variate analysis (CVA) [13], [14]. When compared to each other using benchmark case

studies such as the Tennessee Eastman plant [4], [13], [15] and a multiphase flow facility [16], CVA-based

methods were shown to be advantageous for nonlinear dynamic process monitoring in terms of detection

rates and false alarm rates.

However, most existing literature focused on detecting abrupt faults. Isermann [3] distinguished between

three types of fault according to how it progresses in time: abrupt, intermittent, and incipient. Abrupt faults

are stepwise changes; intermittent faults are random occasional changes; while incipient faults are slowly

developing changes. Early detection of incipient faults is more important than detection of abrupt faults

for a number of reasons. When left unmanaged, incipient faults increase in severity, leading to more

serious abnormal conditions. Even worse, it can lead to equipment failure or an emergency situation [17].

Thus, early detection is valuable for preventive maintenance of equipment and safer operations. Moreover,

incipient faults require prognosis [18]. If a fault is detected in its incipient stage, operators may still decide

to continue production; then, predictive monitoring can aid in subsequent production planning and provide

lead time information before failure of critical assets occur [17], [19].

Unfortunately, incipient faults are more difficult to detect than abrupt faults. At the onset, they may

be small enough to be accommodated by robust process control [20] or masked by noise, disturbances,

or other faults. Thus, the aforementioned MSPM tools and their detection indices may not be sensitive

enough to detect incipient faults.

To address this issue, Harmouche et al. [21] proposed PCA with kernel density estimation (KDE) and

observed subtle differences in the estimated probability distribution of the principal components using

the Kullback-Leibler divergence. The method was able to estimate the fault magnitude even when it is

buried in noise. In a similar work, Harrou et al. [22] used the Hellinger distance metric on the nonlinear

PLS algorithm as a measure of dissimilarity between the probability distribution of the latent variables.

Promising results for incipient faults in a simulated plug flow reactor were presented. Meanwhile, Kano et



al. [15], [23] proposed dissimilarity analysis on data sets (DISSIM), which also observed subtle changes in

the data distribution structure. In DISSIM, the differences between a set of eigenvalues of two data sets are

the features being monitored. In a recent study, Zhao et al. [24] extended the DISSIM algorithm for online

incipient fault diagnosis. A recent MSPM technique called Recursive Dynamic Transformed Component

Statistical Analysis was also proposed by Shang and Chen [25]. Here, orthogonal transformed components

from a sliding window of measurements are obtained recursively. Similar to DISSIM, small changes in the

higher-order statistics of the projected data are quantified to form a sensitive index, which was shown to

be more reliable than DISSIM and dynamic PCA. However, these dissimilarity-based techniques require

a large window width of samples for computing statistical patterns in the data. Also, they do not consider

system dynamics, which is essential for monitoring under varying operating conditions.

On a different perspective, Ge et al. [26] used wavelet analysis combined with residual evaluation

to extract an incipient fault feature, and used an improved KDE to form the thresholds. This method,

however, requires additional steps to select wavelet basis functions and to tune various parameters so as

to achieve acceptable false alarm and missed detection rates. Motivated by the fact that smoothing models

such as the moving average and exponentially weighted moving average can detect small shifts in data,

Ji et al. [27] proposed to combine them with the conventional MSPM tools, and devised novel generic

fault detection indices. Here, “generic” means that the new indices can be applied to any MSPM model

of quadratic form. Results have shown increased sensitivity, but only at certain smoothing parameters and

weighting factors. Still, none of the above accounted for system dynamics.

To address the difficulty of detecting incipient faults for the case of nonlinear dynamic processes under

varying operating conditions, this paper proposes Canonical Variate Dissimilarity Analysis (CVDA). Here,

traditional CVA [13], [18] is extended to form a new index based on the dissimilarity between the past-

projected and future-projected canonical variables, called the canonical variate dissimilarity (CVD) index.

CVDA retains the ability of CVA to handle the dynamic issue, as well as non-Gaussianity in the data

by using KDE to compute detection limits. Using a closed-loop nonlinear process case study, namely a

continuous stirred-tank reactor (CSTR), the CVD index was shown to be superior to the traditional CVA

T 2 and Q indices and also to other recent dissimilarity-based indices, in terms of detection time and

reliability. This remains true for both multiplicative and additive incipient fault scenarios considered in

this work.

In the next section, the procedure for traditional CVA monitoring is revisited. Section III discusses the

motivation behind CVDA and the methodology. Section IV contains the case study description, results,

and discussion. The paper is concluded in Section V, along with intended future work.



II. CANONICAL VARIATE ANALYSIS REVISITED

CVA is a linear dimensionality reduction technique that finds the maximum correlation between any

two data sets [4]. Applications of CVA to industrial processes was pioneered by Larimore [28], [29]. As

an MSPM tool, the data sets that CVA aims to correlate maximally are the past and future data during

normal operation. Details about this method are as follows.

A. CVA Training

Negiz and Cinar [30] established that because industrial processes consist of a large number of process

variables operating at controlled conditions, it is useful to assume that the process being monitored has a

state-space realization, which is equivalent to representing the system in a vector autoregressive moving-

average time-series model with exogenous inputs. In linear state-space form, this model can be written

as

x(t+ 1) = Ax(t) +Bu(t) +Kν(t) (1)

y(t) = Cx(t) +Du(t) + ν(t) (2)

where A,B,C,D and K are coefficient matrices, x(t) is the state vector, y(t) is the output observation

vector, u(t) is the input vector, and ν(t) are independent noises.

Let uk ∈ ℜmu and yk ∈ ℜmy respectively denote the input and output column vectors from the process

at a certain time point k. For each k, the past data vectors pk and future data vectors fk are collected as

pk = [uT
k−1 uT

k−2 . . . uT
k−p

yT
k−1 yT

k−2 . . . yT
k−p

]T ∈ ℜmp (3)

fk =
[

yT
k yT

k+1 yT
k+2 . . . yT

k+f−1

]T

∈ ℜmyf (4)

where m = mu +my, and p and f are the number of lags considered in the past and future windows of

data, respectively. The amount of lag is chosen large enough to capture data autocorrelation. The input

vectors, u, are excluded from the future data vectors considering their statistical independence from the

past. Both data vectors are then normalized to zero mean and unit variance.

For a training set with N number of observations, pk and fk for all k ∈ [p + 1, p +M ] are appended

column-wise to form the past and future Hankel matrices

Yp =
[

pp+1 pp+2 . . . pp+M

]

∈ ℜmp×M (5)

Yf =
[

fp+1 fp+2 . . . fp+M

]

∈ ℜmyf×M (6)

where M = N − p− f + 1.



The sample covariance and cross-covariance of the past and future observations can be estimated as

Σpp =
1

M − 1
YpY

T
p ∈ ℜmp×mp (7)

Σff =
1

M − 1
YfY

T
f ∈ ℜmyf×myf (8)

Σfp =
1

M − 1
YfY

T
p ∈ ℜmyf×mp. (9)

For training, CVA aims to find linear combinations of Yp and Yf with the maximum correlation. This

can be achieved by a singular value decomposition (SVD) on the scaled Hankel matrix, H:

H = Σ
−1/2
ff ΣfpΣ

−1/2
pp = UΣVT (10)

where U and V contains the left and right singular column vectors of H, and Σ is a diagonal matrix

of ordered singular values (SVs), i.e. Σ = diag(σ1, σ2, . . . , σr, 0, . . . , 0) where r is the rank of H and

1 ≥ σ1 ≥ σ2 ≥ . . . ≥ σr.

Projection matrices, J = VTΣ
−1/2
pp and L = UTΣ

−1/2
ff , are now used to transform Yp and Yf to reveal

maximally correlated canonical variables, Cp and Cf , projected from the past and future data, respectively:

Cp = JYp ∈ ℜmp×M (11)

Cf = LYf ∈ ℜmyf×M . (12)

These canonical variables (CVs) are the features used to distinguish normal from faulty process states.

At normal operation, the distributions of Cp and Cf are preserved.

B. CVA Monitoring

Important properties of the SVD in (10) are written below, showing the cross-covariance and covariance

of the CVs:

CfCT
p = LΣfpJ

T = Σ · (M − 1) (13)

CpCT
p = JΣppJ

T = I · (M − 1) (14)

CfCT
f = LΣffL

T = I · (M − 1). (15)

Equation (13) indicates that the SVs, σi (i = 1, 2, . . . , r), are the canonical correlations of the CVs.

Based on the SV trend, there exists only n (< r) strongly correlated CVs which explain most of the

system dynamic behavior. Hence, the CV space can be partitioned into two orthogonal subspaces. The

first n CVs span the state subspace, Z, of the system in (1). In other words, the first n CVs at time t,

zt, represent the state variables of the system, i.e. x(t) = zt [28]. Likewise, the remaining CVs span the



system residual subspace, E. In traditional CVA-based strategies [4], [13], only the past data vectors are

used to reveal the state and residual subspaces:

zk = Jnpk ∈ ℜn (16)

ek = Fpk ∈ ℜmp (17)

where Jn = VT
nΣ

−1/2
pp , F = (I−VnV

T
n )Σ

−1/2
pp , zk is the state vector at time k, ek is the model residual

vector at time k, and Vn is a reduced matrix consisting of the first n columns of V. Matrices Jn and F

represent the projection matrices applied to the past data vectors.

Hotelling’s T 2 and the Q statistics, two widely used indices in process monitoring, are computed at

each time point k:

T 2
k = zTk zk (18)

Qk = eTk ek. (19)

Upper control limits (UCLs) for these two indices can be obtained analytically by assuming that the

underlying process data follows a Gaussian distribution. However, this is no longer valid for nonlinear

processes under varying operating conditions. To address this, kernel density estimation (KDE) is used

to estimate the probability distributions of T 2 and Q [13]. The chosen kernel in this paper is the radial

basis function:

K(g) =
1√
2π

exp

(

−g2

2

)

. (20)

The UCLs serve as thresholds between normal and abnormal conditions. Given a significance level,

α, the UCLs denoted by T 2
UCL and QUCL can be obtained such that P (T 2 < T 2

UCL) = α and P (Q <

QUCL) = α, with

P (x < b) =

∫ b

−∞

1

Mh

M
∑

k=1

K

(

x− xk

h

)

dx (21)

where xk, k = 1, 2, · · · ,M are the samples of x and h is the kernel bandwidth. More details for KDE

are given in [13].

Finally, for online monitoring, the state and residuals are continuously calculated from real-time data

using (16) and (17). The T 2 and Q at every sampling point are then obtained using (18) and (19). A fault

is detected when any one of these indices exceed its corresponding UCL, T 2
UCL or QUCL, respectively.



III. CANONICAL VARIATE DISSIMILARITY ANALYSIS

Process incipient faults manifest as small shifts in the data caused by decay in process parameters,

unwanted material build-up, or sensor drifts, etc. Motivated by the ability of CVA to find maximum

correlations between past and future data, one can detect small data shifts by checking how well future

CVs are predictable from past CVs, based on the state-space model trained during normal conditions.

This leads to the notion of assessing the dissimilarity between the past- and future-projected CVs for

indicating process health.

A statistical index that quantifies model residuals in the CVA state-subspace has been suggested by

Larimore [29]. In that work, the residuals, ǫ, are generated as

ǫk = Lnfk −ΣnJnpk ∈ ℜn (22)

where subscript k denotes the kth sample, subscript n denotes the number of states in the CVA model

(which reduces J and L to the first n rows), and Σn = diag(σ1, σ2, . . . , σn). To our knowledge, the T 2
ǫ

index formed from the residuals in (22) is underexplored among numerous CVA-based fault detection

methods. In one study, Juricek et al. [31] found that an index similar to (22) outperforms a Kalman filter

residuals-based index with respect to sensitivity, although their index requires state-space matrices to be

calculated, hence is not data-driven. Analogous formulations of (22) are also found in recent works by

Jiang et al. [32] and Chen et al. [33] except that canonical correlation analysis was applied between

process inputs and outputs instead of past and future data. For our work, the residuals in (22) are taken

as dissimilarity features which can have a new meaning for detecting incipient faults. These features

are measures of the departure of the current actual states (estimated from the future vector that includes

current measurements) from the states predicted by the CVA model using past data.

To derive an index from (22), let d denote the dissimilarity features, i.e. d := ǫ. Also, let Zf = LnYf

and Zp = JnYp denote the future- and past-projected states, respectively. Since ZfZ
T
f = ZpZ

T
p = I and

ZfZ
T
p = Σn, the covariance of d can be estimated as

Σdd =
1

M − 1
(Zf −ΣnZp)(Zf −ΣnZp)

T (23)

= I−Σ2
n ∈ ℜn×n. (24)

At normal operation, the dissimilarity features are distributed around a zero mean. Thus, a detection

index can be formed as the squared Mahalanobis distance of the dissimilarity features from zero, i.e.

by taking the sum of squares of the dissimilarities dk ∈ ℜn, for each time point k, normalized by the

covariance matrix, Σdd:

Dk = dT
k (I−Σ2

n)
−1dk. (25)



Fig. 1. Initial stage of a fault and how it is captured by (a) traditional CVA indices; and (b) CVD index. Legend: past vector - pink;

future vector - blue.

Hereafter, D is referred to as the canonical variate dissimilarity (CVD) index. Unlike the CVA T 2 and

Q indices in (18)-(19) which only take information from the past data, the CVD index takes information

from both past and future data. For online monitoring using CVA, each new sample enters only the past

data vector of length p. On the other hand, for CVD, each new sample enters the future data vector, while

the past data vector is formed from p samples, f lags earlier. Thus, in the early stage of an incipient fault

shown in Fig. 1 (where p = f = 3), small shifts can be better captured as discrepancies found between

the past and future data.

In this paper, KDE is adopted to estimate the distribution of D, and subsequently solve for the upper

control limit of D, denoted by DUCL. All three indices T 2, Q, and D, will be used for monitoring incipient

faults in nonlinear dynamic processes under the framework referred to as canonical variate dissimilarity

analysis (CVDA). A sample is considered faulty if either T 2, Q, or D, exceeds their respective thresholds,

T 2
UCL, QUCL, and DUCL, for that sample.

In summary, the CVDA procedure for incipient fault detection is given in Fig. 2. The goal of offline

training is to generate the UCLs and the projection matrices. On the other hand, online monitoring consists

of the continuous collection of a moving window of samples of length p + f (Fig. 1b), which are used

to check if the process is normal or faulty.

IV. CASE STUDY

In this section, the proposed CVDA is evaluated using a closed-loop continuous stirred-tank reactor

(CSTR) case study, designed especially for simulating incipient faults.

A. Process Description

A number of works, such as [6], [8], [10], [17], [18], [31], used different versions of a CSTR for

evaluating process monitoring methods. A general first-principles model of a constant-holdup, jacketed

tank that continuously carries out an exothermic first-order reaction, A → B, is given as



PROCESS

Collect data 
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conditions

Real-time data: 

Obtain 𝑝 + 𝑓
no. of samples

Online Monitoring
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Eq. (16)-(17)
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N

Y

k ≔ 1 k ≔ k + 1

Eq. (18)-(19), 

and Eq. (25)
Eq. (18)-(19), 

and Eq. (25)

Projection matrices

Choose 𝛼
(significance level)

Fig. 2. CVDA procedure for process incipient fault detection.

dC

dt
=

Q

V
(Ci − C)− akC + ν1 (26)

dT

dt
=

Q

V
(Ti − T )− a

(∆Hr)kC

ρCp

− b
UA

ρCpV
(T − Tc) + ν2 (27)

dTc

dt
=

Qc

Vc

(Tci − Tc) + b
UA

ρcCpcVc

(T − Tc) + ν3 (28)

where the inputs are u =
[

Ci Ti Tci

]T

, the outputs are y =
[

C T Tc Qc

]T

, νi are process noise, and

k is an Arrhenius-type rate constant, k = k0 exp
(

−E
RT

)

. Table I gives the parameter values in Eq. (26)-(28).

The CSTR Simulink model used in this work is available online [34].

The CSTR schematic in Fig. 3 shows the measurement locations and the control strategy: Reactor

temperature, T , is maintained by manipulating the coolant flow rate, Qc. To be more realistic, the controller

(Kc = 1.0 and τI = 0.2) is set to saturate below 10 L/min and above 200 L/min. Saturation is important

for simulating cases where an incipient fault becomes too severe to be accommodated by controls. In the

model, a and b are both equal to 1.00 at normal operation. By decaying their values toward zero, one can

simulate catalyst decay and heat transfer fouling, respectively. Other faults in the system are sensor drifts

on each of the 7 measured variables. Details on these incipient fault scenarios are given in Table II.



TABLE I

CONSTANT VALUES IN THE CSTR MODEL

Parameter Description Value Units

Q Inlet flow rate 100.0 L/min

V Tank volume 150.0 L

Vc Jacket volume 10.0 L

∆Hr Heat of reaction −2.0× 105 cal/mol

UA Heat transfer coefficient 7.0× 105 cal/min/K

k0 Pre-exponential factor to k 7.2× 1010 min−1

E/R Activation energy 1.0× 104 K

ρ, ρc Fluid density 1000 g/L

Cp, Cpc Fluid heat capacity 1.0 cal/g/K

TABLE II

INCIPIENT FAULT SCENARIOS IN THE CSTR

Fault ID Description† Value of δ‡ Type

1 a = a0 exp (−δt) 0.0005 Multiplicative

2 b = b0 exp (−δt) 0.001 Multiplicative

3 Simultaneous Faults 1 and 2 Multiplicative

4 Ci = Ci,0 + δt 0.001 Additive

5 Ti = Ti,0 + δt 0.05 Additive

6 Tci = Tci,0 + δt 0.05 Additive

7 C = C0 + δt 0.001 Additive

8 T = T0 + δt 0.05 Additive

9 Tc = Tc,0 + δt 0.05 Additive

10 Qc = Qc,0 + δt −0.1 Additive

† All t in minutes. Subscript 0 refers to nominal value.

‡ The δ commands the rate of fault progression.

Fault-free and faulty data sets were generated from the CSTR simulation for 20 h of operation, while

varying the operating conditions by perturbing the inputs, u, randomly around their nominal values every

60 min as in Fig. 4. The sampling interval for all variables is 1 min. Note that input disturbances can bring

out system dynamics, such that measurements become temporally correlated and non-Gaussian-distributed

due to the process nonlinearity. This merits the use of CVA and KDE for the CSTR case study, as these are



Fig. 3. Schematic of the closed-loop CSTR.

Fig. 4. Input variables sample data set from CSTR simulation.

recommended for nonlinear dynamic process monitoring [13]. In faulty data sets, the fault is introduced

only after 200 min of normal operation. To evaluate the performance robustly, 250 faulty data sets are

generated in each fault scenario, differing in the random seeds for the process noise, measurement noise,

and input disturbances. Performance metrics for monitoring (see Section IVc) are averaged across all

trials.

B. CVDA Training

A single fault-free data set was used for CVDA training. Firstly, the number of time lags to consider

in the past and future data (p and f ) were chosen using autocorrelation analysis [30] on the output

training data, y. For the case study, it was found that five number of lags is the maximum after which

autocorrelations in data become insignificant at 5% confidence bounds. Thus, p and f are both set to 5.

SVD was then performed on the scaled Hankel matrix, which was formed based on p and f . The

number of states, n, in the CVA model was then estimated from the training data. A plot of the singular

values (SVs) computed from (10) is shown in Fig. 5a, which are the non-zero elements in the diagonal

matrix, Σ. One can estimate n to be the point where a “knee” appears in the SV curve [30]. This is



Fig. 5. Analysis on choosing the number of CVA states, n, using: (a) Singular Value (SV) plot; and (b) DUCL-vs-n plot (99.9%

significance level).

commonly called the dominant singular value method of selecting n. Other ways of selecting n include

using the Akaike Information Criterion [4] or minimizing false alarms during cross-validation [16].

In this work, we propose to use DUCL-vs-n plots to augment the dominant singular value method in

selecting n. If we proceed with the CVDA procedure until DUCL is computed, we can produce a plot

of DUCL’s against increasing choices of n (Fig. 5b). Intuitively, DUCL measures how precisely the CVA

model predicts the future state. For small values of n, prediction is precise because the dissimilarities

between the first n past and future CVs are small, i.e. DUCL is low. For large n, the dissimilarities become

large due to capture of weakly correlated CVs, i.e. DUCL is high. Therefore, a large jump in the DUCL-vs-n

curve indicates a sudden entry of unnecessary noise into the model, i.e. the clear boundary between the

state and residual subspaces. Figure 5b shows the DUCL-vs-n plot for the CSTR training data. The point

right before the jump in the curve is located at n = 8. This choice agrees with the SV plot on Fig. 5a,

where the “knee” appears at n ≥ 6. Thus, for the case study, n is set to 8. From here, the CVA model is

now trained and the actual detection limits are computed using KDE at 99.9% significance level.

C. CVDA Monitoring

In this work, monitoring performance is evaluated according to detection delay (DD), false alarm rate

(FAR), missed detection rate (MDR), and visually using monitoring charts (Fig. 6). Note that because we

are monitoring slowly developing faults, detection time could be ambiguous, i.e. the index may spend a

considerable amount of time fluctuating around the detection limit before it fully registers a fault. Thus,

detection time is defined as the first time after 5 consecutive alarms were raised. Accordingly, DD is the

period between the start of the fault and the detection time. FAR and MDR are computed as:

FAR =
no. of samples (J > JUCL|fault-free)

total samples (fault-free)
× 100% (29)

MDR =
no. of samples (J < JUCL|fault)

total samples (fault)
× 100% (30)



Fig. 6. Monitoring charts for Fault 3 using: (a,b) GCCA; (c,d) CVA; (e) RDTCSA; (f) CVDA. See Section IVc for implementation

details. Legend: Dashdot - upper control limit (UCL); Dash - start of fault; Solid - detection index.

Fig. 7. Output variables sample data set under Fault 3 conditions: catalyst decay and heat transfer fouling were both introduced at

200 min.

where J = {T 2, Q,D}. A good detection index must have low DD, low FAR, and low MDR. DD is

particularly important for assessing the sensitivity of a detection index.

Table III compares the proposed CVD index with the traditional CVA indices [18] and other dissimilarity-

based indices from recent works: dynamic DISSIM [23], Recursive Dynamic Transformed Component

Statistical Analysis (RDTCSA) [25], and Generalized Canonical Correlation Analysis (GCCA) [33]. For

the dynamic DISSIM and RDTCSA indices, five lagged variables (same as CVDA) and a window width

of 120 samples were used. For RDTCSA, the sample mean, variance, skewness, and kurtosis are included

in the feature vector, scalarized by the ℓ∞-norm. For GCCA, both T 2
r1 and T 2

r2 were used as defined

in [33], except that the UCL was not computed using randomized algorithms. Rather, all UCLs in this

study were computed using KDE at 99.9% significance level. Detection delays in Table III are reported



in units of hours due to the slow rate of progression designed for the incipient faults (see Table II). This

design also makes the distinction between methods more pronounced.

In terms of DD and MDR, the CVD index is seen to be most sensitive for all fault scenarios. The

dynamic DISSIM and RDTCSA incurred non-detection for some faults, as they do not consider the system

dynamics that can be inferred from the temporal correlation in the data. Although the RDTCSA index

detected Fault 5 the earliest, the high MDR reveals that the index struggles to cross the detection limit.

The GCCA indices, T 2
r1 and T 2

r2, are more reliable, as one of them is sensitive to the faults where the

other is not (e.g. Faults 5 and 6). Consistent with the findings in [33], T 2
r2 is often more sensitive than T 2

r1.

Also, the GCCA indices appear to incur the least false alarms during normal operation. Indeed, although

the CVD index is most sensitive, it incurs slightly more false alarms. Nonetheless, the CVD index is

most reliable in terms of combined FARs and MDRs. These results validate the importance of using the

dissimilarity between past and future states for incipient fault detection, rather than past states only, as in

traditional CVA.

To appreciate the performance of the CVD index, sample monitoring charts for Fault 3 are shown in

Fig. 6, with the corresponding y data in Fig. 7. Fault 3 leads to conflicting behavior (at 600 min) in

the affected variables because the rates of catalyst decay and heat transfer fouling were set so as to keep

opposing each other [18]. Eventually, failure occurs after 1085 min. Fig. 6f shows how the proposed CVD

index achieves the earliest detection time among the indices being compared, at 295 min. This detection

time may not be achieved by mere human inspection on Fig. 7. Thus, using this index, more lead time

before failure is realized. Furthermore, it is beneficial for an index to properly reflect fault severity even

as it progresses above the UCL. This trait is best observed in the CVD index as well.

The charts in Fig. 6 also marked false alarms. It was found that false alarms mostly occur at times

when inputs change abruptly (Fig. 4), causing unrecognized transients in the data (Fig. 7). Thus, one way

to lessen false alarms is to train a nonlinear model [14] for CVDA that may recognize these transients.

This is left for future work.

V. CONCLUSION

In this paper, the importance of incipient fault detection, rather than abrupt fault, in industrial processes

is highlighted. For dynamic process monitoring, the traditional CVA detection method is recognized. This

work now extends the CVA framework to emphasize that the assessment of dissimilarity between past

and future states gives a more sensitive index than the traditional T 2 and Q for incipient fault detection.

A method for subspace partitioning using DUCL-vs-n plots is also proposed. The new framework, called

canonical variate dissimilarity analysis (CVDA), is intended for nonlinear dynamic process monitoring of

incipient faults under varying process operating conditions.



Using a CSTR case study designed to simulate ten slowly developing faults, the CVD index was shown

to be superior to the CVA T 2 and Q indices, the dynamic DISSIM, RDTCSA, and the GCCA indices

in terms of sensitivity. However, the CVD index incurred more false alarms, mostly occurring when

operating conditions change abruptly. This can be lessened by using a nonlinear feature extraction step

for CVDA. Other ways to quantify statistical pattern dissimilarity between CVs also require further study.

Lastly, diagnosis and prognosis methods from the CVDA framework can be developed for incipient fault

monitoring in the future.
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TABLE III

MONITORING PERFORMANCE
†

FOR THE CSTR INCIPIENT FAULTS

Fault
DISSIM RDTCSA GCCA CVA CVDA

D D T 2
r1 T 2

r2 T 2 Q D

Multiplicative Faults

1 3.38a 3.05 11.05 10.54 4.18 2.74 1.46

1.19b 5.27 0.07 0.13 0.57 0.57 0.89

23.91c 37.15 51.78 49.12 29.12 17.65 8.95

2 5.77 ND 9.47 2.95 4.82 2.63 1.59

1.40 4.41 0.05 0.12 0.59 0.64 0.93

48.05 82.62 60.05 16.81 30.26 16.49 10.02

3 3.21 3.36 8.33 2.93 3.39 2.42 1.54

0.76 4.35 0.04 0.09 0.46 0.53 0.75

21.45 36.28 46.03 16.49 22.57 14.96 9.68

Additive Faults

4 ND 3.75 2.33 2.30 2.00 2.35 1.44

1.03 4.90 0.07 0.11 0.52 0.67 0.83

94.62 34.73 13.54 13.27 11.48 14.45 8.62

5 ND 1.74 3.66 9.13 2.82 4.41 2.50

0.77 4.04 0.05 0.08 0.33 0.50 0.57

96.62 42.75 21.77 52.78 17.10 28.26 16.00

6 ND 3.12 8.73 3.07 3.90 2.90 2.19

0.95 5.71 0.08 0.12 0.57 0.54 0.89

96.70 58.90 51.64 17.53 23.34 18.08 13.88

7 ND 2.60 0.41 0.38 0.36 0.23 0.15

1.10 4.01 0.07 0.11 0.55 0.52 0.83

94.41 44.93 2.22 2.07 1.96 1.31 0.82

8 ND ND 2.29 0.88 0.87 0.53 0.37

0.89 4.36 0.07 0.11 0.51 0.64 0.77

94.19 86.12 12.81 4.76 4.85 3.07 2.08

9 ND ND 6.62 0.80 1.48 0.80 0.53

1.18 5.49 0.09 0.14 0.66 0.66 1.12

93.04 76.73 37.75 4.38 8.51 4.58 3.05

10 ND ND 10.51 4.35 5.22 3.38 2.37

0.87 3.98 0.06 0.09 0.34 0.50 0.60

94.75 87.39 62.10 24.74 31.73 21.11 15.01

† All results were averaged across 250 faulty data sets monitored in each

Fault ID. Boldfaced entries are the best values in each row.


