
Canonicalization of Database Records using
Adaptive Similarity Measures

Aron Culotta
Department of Computer

Science
University of Massachusetts

Amherst, MA 01003

Michael Wick
Department of Computer

Science
University of Massachusetts

Amherst, MA 01003

Robert Hall
Department of Computer

Science
University of Massachusetts

Amherst, MA 01003

Matthew Marzilli
Department of Computer

Science
University of Massachusetts

Amherst, MA 01003

Andrew McCallum
Department of Computer

Science
University of Massachusetts

Amherst, MA 01003

ABSTRACT
It is becoming increasingly common to construct databases
from information automatically culled from many heteroge-
neous sources. For example, a research publication database
can be constructed by automatically extracting titles, au-
thors, and conference information from papers and their
references. A common difficulty in consolidating data from
multiple sources is that records are referenced in a variety of
ways (e.g. abbreviations, aliases, and misspellings). There-
fore, it can be difficult to construct a single, standard rep-
resentation to present to the user. We refer to the task
of constructing this representation as canonicalization. De-
spite its importance, there is very little existing work on
canonicalization.

In this paper, we explore the use of edit distance measures
to construct a canonical representation that is “central” in
the sense that it is most similar to each of the disparate
records. This approach reduces the impact of noisy records
on the canonical representation. Furthermore, because the
user may prefer different styles of canonicalization, we show
how different edit distance costs can result in different forms
of canonicalization. For example, reducing the cost of char-
acter deletions can result in representations that favor ab-
breviated forms over expanded forms (e.g. KDD versus Con-

ference on Knowledge Discovery and Data Mining). We de-
scribe how to learn these costs from a small amount of manu-
ally annotated data using stochastic hill-climbing. Addition-
ally, we investigate feature-based methods to learn ranking
preferences over canonicalizations. We empirically evalu-
ate our approach on a real-world publications database and

show that our learning method results in a canonicalization
solution that is robust to errors and easily customizable to
user preferences.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management; H.2.8
[Information Systems]: Database Applications—data min-

ing

General Terms
Algorithms

Keywords
Data mining, information extraction, data cleaning

1. INTRODUCTION
Record canonicalization is the problem of constructing a sin-
gle, standard representation for a record. In many databases,
canonicalization is enforced with a set of rules that place
limitations or set guidelines for entering data. However, in
many cases, these limitations are overlooked and it is nec-
essary to retroactively canonicalize records. Additionally,
such rules are not applicable to cases where the database
contains records extracted automatically from unstructured
or varying sources.

Consider a research database such as Citeseer1 or Rexa2

that contains information gathered from a variety of sources
using automated extraction techniques. Because the data
is coming from a multiple sources, it is inevitable that an
attribute such as a conference name will be referenced in
multiple ways. Since the data is also the result of extraction,
it may also contain errors.

One might propose the reasonable solution of selecting the
record that is most common in the set. However, one caveat
of this approach is that often incomplete records are more

1www.citeseer.ist.psu.edu
2www.rexa.info



common than complete records. For example, this approach
may canonicalizing a record as “J. Smith” when in fact the
full name (John Smith) is much more desirable. Therefore,
we propose a canonicalization method that selects the string
or record that is most similar to all the others in the set.
This way, the full name may be selected even when outnum-
bered by incomplete representations.

In this paper we propose a system for automatically canoni-
calizing records for databases that are not only derived from
a large number of sources, but contain extraction errors. We
desire that the algorithms produce consistent results. If a
particular format is chosen as the canonical representation
for one record, an analogous format is chosen for another.
We demonstrate the ability to adhere to formats specified
by a user’s preference while alleviating the burden of com-
municating this choice to the system. We propose several
methods for performing canonicalization based on (1) learn-
ing the parameters for string edit distance and (2) combining
multiple string edit models with additional evidence by us-
ing a discriminative models (rank based maximum entropy
and Margin Infused Relaxed Algorithm (MIRA)). Our re-
sults are encouraging and demonstrate that an automatic
canonicalizer can be learned from relatively few training ex-
amples and be robust to the errors incurred in automatic
extraction.

2. RELATED WORK
While there has not been extensive research in automati-
cally constructing canonicalized representations, the utility
of canonicalization has been explored in several papers un-
der various guises. [8] use a discriminatively learned edit
distance to perform deduplication on redundant data sets.
In the task of fact extraction, [7] demonstrates the advan-
tage of “voting”, the process of selecting the fact that ap-
pears in the largest number of sources. While works such
as these may not specifically refer to the problem, the un-
derlying ideas of canonicalization are pervasive throughout
many applications. In this section we review several of these
applications as well as related work in the area of learning
string edit distance costs.

[10]devise a system to automatically extract and consoli-
date information describing objects derived from multiple
sources into unified database records. When a user queries
this database, multiple representations of an attribute are
inevitable due to naming inconsistencies across the various
sources from which they were drawn. Although object dedu-
plication is the primary goal of the this research, canonical-
ization arises and is addressed when the system presents
results to the user. The authors address this problem by
ranking the strings for each attribute based on the user’s
preference for the source from the particular string was ex-
tracted.

One difficulty in this approach is that if the data is ex-
tracted from a large number of sources, a non-trivial bur-
den is placed on the users, who may not have the expertise
or lack the knowledge necessary to make preference choices
about each source. Additionally, the database must store
source-specific meta information for each string of each at-
tribute of each record. In general, this information may not
be available, but even when available, it may be difficult

to justify the large quantity of extraneous space required
for the sole purpose canonicalization. Our canonicalization
methods are able to be adapted to any database, regardless
of whether the source of the information is available.

Other work has focused on learning the parameters of string
edit distance with encouraging results. [11] apply string edit
distances to the task of merging databases. They observe
that parameters cannot be optimized individually due to the
complex interaction between various edit cost weights on
the outcome. Additionally they note that greedy methods
are too likely to converge prematurely in local optima and
that random restarts are unnecessarily expensive. Instead
they propose a genetic algorithm to learn the weights of
each cost and find that it stabilizes after 100 generations.
In lieu of genetic approaches we propose learning the edit
costs using either stochastic search, or an exhaustive search
over a relatively small discrete space of possible parameter
settings.

[9] learn a probability distribution over the atomic string
edit operations (insertion, deletion, substitution) and define
a stochastic transducer that defines the probability of a the
string as either the Viterbi sequence of edit operations or
the sum of all possible sequences of edit operations required
to produce that string. The parameters of this generative
model are learned using the expectation maximization (EM)
algorithm.

[1] presents a method to learn edit distance based similar-
ity measures of each attribute between records in order to
perform deduplication. They extend the work of [9] by ac-
commodating affine gaps. In similar fashion, the weights are
learned iteratively with EM.

Similar to [8] our learning methods differ from those outlined
in [9, 1] in that we are not concerned with learning a gener-
ative model. We propose several methods for learning edit
distance parameter settings including stochastic and exhaus-
tive search. Additionally, we combine the outputs of multi-
ple parameter settings (i.e., multiple edit distance models)
and other sources of evidence by learning a discriminative
model over pairs of strings with rank based maximum en-
tropy and an online MIRA.

Recently, sophisticated frameworks have been devised to
handle uncertainty in databases, particularly those gener-
ated from automatically extracted records. Such systems
store the top n most confident extraction results (along
with corresponding probabilities or confidence measures) for
each desired record leading to multiple candidate represen-
tations for each entity. [4] leverage confidence value out-
puts from the extraction models to improve query results on
databases containing uncertainty. Fundamentally the prob-
lem is canonicalization because the system is faced with a
choice when presenting multiple query results with various
confidence values to the user. It is analogous to our canoni-
calization task except that we do not have the luxury of con-
fidence values. While the inclusion of such values is clearly
beneficial, we propose methods that achieve canonicalization
in absence of such information (and often this information
is strictly unavailable).



3. PROBLEM DEFINITION
Let a record R be a set of fields, R = {F1 . . . Fk}. Let field
Fi be an attribute-value pair 〈a, v〉. Table 1 shows three
example records.

Systems that compile records from a variety of sources of-
ten accumulate multiple versions of the same record. The
problem of detecting these different versions is called record

deduplication. For example, Table 1 shows three records
that have been predicted to be duplicates. In fact, record
(c) is a reference to a book chapter version of the paper,
whereas (a) and (b) refer to conference proceedings.

Record deduplication is a difficult problem that has been
well-studied. However, in this paper we are interested in
a subsequent step: how to present the user one canonical

representation of a record with many versions.

We define the canonicalization problem as follows: Given a
set of duplicate records R = {R1 . . . Rk}, create a canonical

record R∗ that summarizes the information in R. We refer
to the canonicalization operation as C(R)

Note that it is not always clear what the optimal canoni-
calized record should be. Indeed, different users may prefer
different forms of canonicalization. For example, some users
may prefer the abbreviated conference string IJCAI, while
others may prefer the expanded string International Joint

Conference on Artificial Intelligence. However, there are a
few desiderata of a good canonicalization:

• Error-free: The canonical record should not contain
errors, such as misspellings or incorrect field values.
This is especially a concern when the data has been
automatically extracted from noisy sources (e.g. when
the source is OCR text and field assignments are au-
tomated). In these cases, there may exist outlying

records that contain erroneous data. The canonicalizer
should attempt to minimize the effect of these errors.

• Complete: The canonical record should contain all
the accurate information contained in the duplicate
records. Thus, even if all records do not contain a
date field, the field should be included in the canonical
record.

• Representative: The canonical record should reflect
the commonality among the duplicate records. Thus,
the canonical record should in some sense be similar

to all of the duplicate records.

4. THREE CLASSES OF CANONICALIZA-

TION SOLUTIONS
We now outline three classes of canonicalization solutions,
in increasing order of ambition.

4.1 Record Selection
The record selection approach to canonicalization selects an
existing record as its output. For example, C(R) must se-
lect from the three records in Table 1. Record selection
algorithms must ensure that the selected record contains no
errors, and that is is representative of other records. Note

that this approach is most prone to errors of incompleteness,
since one record may not contain all the fields present in the
duplicates. For example, selecting record (a) in Table 1 will
omit the page numbers, but selecting record (b) will omit
the full first name of the author.

4.2 Record Merging
The record merging approach to canonicalization constructs
a canonical record by piecing together fields from different
records.

While this approach can increase the completeness of canon-
icalization, it does so at the risk of introducing errors. In
the worst case, an error in record deduplication may merge
together records that in fact refer to different objects. Con-
structing one record containing fields from these non-duplicate
records can result in a canonical record containing invalid
information. For example, a record merging approach may
return the following record:

author Brian Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects
venue Intl. Conf. on AI
editor L. Getoor and B. Taskar
pages 1352-1359

While this result is complete, it erroneously includes the
editor field from record (c), which is not truly a duplicate.

4.3 Record Generation
The record generation approach to canonicalization is an ex-
tension of the record merging approach that may also posit
field values that do not explicitly exist in any of the record
duplicates.

For example, a record generation approach may return the
following record:

author Brian Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects

venue
International Joint Conference

on Artificial Intelligence
editor
pages 1352-1359

Here, the system has generated an expanded venue value
from the abbreviated form, even though this expanded form
does not appear among the duplicate records. This predic-
tive operation can be accomplished either by learning sta-
tistical patterns in the database, or by a pattern-matching
approach.

While in this case record generation succeeded, in general
positing field values that do not exist in any of the records
can be quite dangerous and lead to unacceptable errors.



author Brian Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects
venue IJCAI
editor
pages

(a)

author B. Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects
venue Intl. Conf. on AI
editor
pages 1352-1359

(b)

author Brian Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects
venue
editor L. Getoor and B. Taskar
pages

(c)

Table 1: Three publication records predicted to be duplicates. Note that a de-duplication error has erro-
neously merged record (c) (a book chapter) with the other two conference papers. De-duplication errors, as
well as misspellings, abbreviations, and aliases, can make canonicalization difficult.

These three solution classes motivate a number of imple-
mentations and experiments. In this paper, we describe our
implementation of a record selection method and perform
experiments to measure its effectiveness.

5. THREE PROPOSALS FOR RECORD SE-

LECTION CANONICALIZATION
5.1 Edit distance with fixed costs
The motivation for our approach is to minimize the effect
of pre-processing errors on canonicalization. As we have de-
scribed, errors from OCR, misspellings, and incorrect dedu-
plication can lead to poor canonicalization choices.

We make two assumptions about the behavior of pre-processing
errors:

• Correct records are more common than incorrect records.
That is, most records are error-free.

• Errors have high variance. For example, it is unlikely
for many records to have the same exact spelling mis-
take.

With these assumptions in mind, we propose selecting the
records that has the greatest average similarity to every
other document. We define the distance between two records
as the string edit distance between them.

Let D : Ri × Rj 7→ R be the edit distance between two
records. Given a set of duplicate records R = {R1 . . . Rk},
we define the average edit distance of records Ri as

A(Ri) =

P

Rj∈R
D(Ri, Rj)

k
(1)

The canonical record we return is the one with minimum
average distance to every other string:

C
d(R) = argmin

Ri∈R

A(Ri)

We refer to Cd(R) as the edit distance canonicalizer.

We now must decide on the form of D, the metric defining
the distance between two strings. A natural choice is the
Levenshtein distance: the number of character insertions,
deletions, and replacements required to transform one string
into another [5]. The recursive definition of the Levenshtein

distance for strings sn and tm with length n and m is the
following:

D(sn
, t

m) = min

8

>

<

>

:

cr(sn, tm) + D(sn−1, tm−1)

ci + D(sn−1, tm)

cd + D(sn, tm−1)

(2)

where cr(sn, tm) is the replacement cost for swapping char-
acter sn with character tm, ci is the insertion cost, and cd

is the deletion cost. We can further define the replacement
cost as

cr(sn, tm) =

(

c6=r if sn 6= tm

c=
r if sn = tm

(3)

That is, c6=r is the cost of replacing one character with an-
other, and c=

r is the cost of copying a character from one
string to the next. We refer to c6=r as the substitution cost,
and c=

r as the copy cost.

The value of the edit distance costs greatly effects the out-
put of the system. For example, if ci is small, then abbre-
viated strings will have a small distance to their expanded
version. Abbreviated strings will therefore have lower values
of A(Ri).

Rather than requiring the user to manually tune these costs,
in the next section we propose ways of learning these costs
automatically given labeled examples.

5.2 Edit distance with learned costs
Suppose the user provides a labeled training set

S = {〈R1
, l1〉 . . . 〈Rn

, ln〉}

where each set of duplicate records Ri = {R1 . . . Rk} is an-
notated with labels li ∈ {1 . . . k}, indicating which of the
duplicates should be selected as the canonical record (i.e.,
Rli ∈ R is the true canonical record). We wish to use S to
learn the weights of D.

There has been a fair amount of work on methods to auto-
matically learn edit distance costs, mostly applied to record
de-duplication (See Section 2). However, we are not aware of
any work that learns edit distance costs for canonicalization.

We propose two simple but effective methods to learn edit
distance costs from training data: exhaustive search and
stochastic hill climbing.

5.2.1 Exhaustive search



Algorithm 1 Exhaustive cost search

1: Input:
Training set S

Initial costs c = {ci, cd, c=r , c
6=
r }

max, min, step
2: while More Costs do
3: c ⇐ NextCosts(c, max, min, step)
4: if L(c,S) <bestLoss then
5: bestLoss ⇐ L(c,S)
6: c∗ ⇐ c
7: end if
8: end while

The simplest method is to exhaustively enumerate settings
of each cost and maximize the canonicalization performance
on the training set.

Let L(c,S) be the loss function for an assignment to c. For
example, L may be the proportion of records in S for which
Cd(R) returns a non-canonical record; i.e. Cd(Ri) 6= Rli .

We wish to optimze c as follows:

c∗ = argmin
c

L(c,S) (4)

Since we must discretize the cost settings to perform exhaus-
tive search, the input is the following:

• min: The minimum cost value

• max: The maximum cost value

• step: The amount to perturb each cost to obtain a
new setting.

Search proceeds by simply cycling through each setting of
c and returning the best setting. The details are given in
Algorithm 1. The method NextCosts simply generates the
next cost setting as determined by the step size.

5.2.2 Stochastic hill-climbing
Computing L(c,S) requires computing Cd(R) for all Ri ∈
S. This computational cost limits the number of settings
we can enumerate using exhaustive search. Instead, we pro-
pose a simple stochastic hill-climbing algorithm to optimize
Equation 4. Given an initial setting for c, the algorithm pro-
poses a modification to c and accepts the change if L(c,S)
decreases. This can be understood as simulated anneal-
ing without the temperature parameter. The details of this
method are given in Algorithm 2.

The method SampleCostElement samples a cost uniformly
from the cost vector. The method RandomUpdate uni-
formly chooses between incrementing or decrementing c by
step.

5.3 Feature-based Ranking Models
While the adaptive edit distance approach to record selec-
tion can be simple and effective, it is limited by the small
number of tunable parameters (the four costs), which limits
the expressivity of the model.

Algorithm 2 Stochastic cost search

1: Input:
Training set S

Initial costs c = {ci, cd, c=r , c
6=
r }

max, min, step
2: for i <NumIterations do
3: c ⇐ SampleCostElement(c)
4: c ⇐ RandomUpdate(c, step, max, min)
5: c ⇐ NextCosts(c, max, min, step)
6: if L(c,S) <bestLoss then
7: bestLoss ⇐ L(c,S)
8: c∗ ⇐ c
9: end if
10: i ⇐ i + 1
11: end for

In this section, we propose two feature-based learning ap-
proaches that enable the use of arbitrary features over the
records, including the output of various edit distance mea-
sures.

Consider a set of duplicate records R = {R1 . . . Rk}. Let
Fi = {f1(Ri) . . . fm(Ri)} be a vector of binary feature func-

tions that compute evidence indicating whether Ri should
be selected as the canonical record. For example, fj(Ri)
may be 1 if record Ri is the longest record in R.

Let Λ = {λ1 . . . λm} be a vector of real-valued weights asso-
ciated with each feature.

We can compute a score for the event that Ri is chosen as the
canonical record by taking the dot product of the features
and weights:

τ(Ri, Λ) = Fi · Λ

Below we describe two methods to estimate Λ from the train-
ing set S.

5.3.1 Logistic Regression
The first method is to minimize the log-likelihood loss func-
tion of logistic regression, modified to reflect a ranking over
records.

Let the binary random variable Ci be 1 if and only if record
Ri is the true canonical record of R. Given Λ and F , we
can compute the probability of Ci as follows:

p(Ci|R, Λ) =
τ(Ri, Λ)

P

Rj∈R
τ(Rj , Λ)

where the score for record Ri is normalized by the scores for
every other record.

We can estimate Λ from the training set S by minimizing
the negative log-likelihood of the data given Λ:

L(Λ,S) = −
X

Ri∈S

log p(Cli |R, Λ) (5)

Note that this is the sum of probabilities for each of the cor-

rect canonical records for the current setting of Λ. We also
add a Gaussian prior over Λ with fixed mean and variance
to mitigate over-fitting. We find the setting of Λ that min-
imizes Equation 5 using limited-memory BFGS, a gradient
ascent method with a second-order approximation [6].



5.3.2 MIRA
MIRA (Margin Infused Relaxed Algorithm) is a relaxed, on-
line maximum margin training algorithm [3]. It iteratively
cycles through the training set and updates the parameter
vector with two constraints: (1) the true canonical record
must have a higher score than any other record by a given
margin, and (2) the change to Λ should be minimal. This
secondconstraint is to reduce fluctuations in Λ. Using the
same scoring function τ as in the previous section, this opti-
mization is solved through the following quadratic program:

Λt+1 = argmin
Λ

||Λt − Λ||2

s.t.

τ(Rli , Λ) − τ(Rj , Λ) ≥ 1 ∀Rj 6= Rli (6)

In this case, the MIRA parameter update is a quadratic
program with constraint size equal to the number of non-
canonical records in the training example. This QP can be
solved efficiently using the Hildreth and D’esopo method [2].
To improve the stability of this online method, we average
the parameter vectors from each update at the end of train-
ing.

6. EXPERIMENTS

6.1 Data
We collected 3,683 citations to 100 distinct papers from
Rexa, an online publications search engine. These citations
were automatically extracted from the headers of research
papers as well as from the reference section, and record
deduplication was performed automatically by Rexa. The
data therefore contains misspellings, OCR errors, abbre-
viations, and possibly deduplication errors. To construct
a labeled data set, we collect the corresponding citations
to these papers from the Digital Bibliography and Library
Project (DBLP)3. The DBLP citations are manually curated
to ensure accuracy, so they provide a good source of canon-
ical examples. In fact, as part of its pipeline, Rexa crawls
the DBLP repository and performs record deduplication to
merge citations together.

For these experiments, we focus on constructing the canon-
ical representation of the conference string for each paper.
This is arguably the most difficult field to canonicalize, since
conferences strings appear in many different forms because
of acronyms, abbreviations, and misspellings.

Using the DBLP data, we construct two versions of the
dataset. In the first, the true canonicalization is the con-
ference title acronym. This simulates the use case when the
user desires abbreviated canonical forms. In the second ver-
sion, the true canonicalization is the expanded conference
title. This simulates the case when the user does not desire
any abbreviations in the canonical form. We refer to the
former version as the acronym dataset, and the latter as the
expanded dataset.

Table 2 shows an example with labels from each of the
datasets. We can see that the duplicate records contain a va-

3http://dblp.uni-trier.de
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Figure 1: Distribution of number of duplicates per
record.

riety of abbreviated forms, as well as OCR errors in the first
and fourth duplicate records (Artifici al,Conferenceonarti

cial) that make canonicalization difficult.

Figure 1 shows the distribution of the number of duplicates
for each record in the dataset. As we can see, most records
have around 20 duplicates, but a few records have over 200
duplicates.

We perform 5-fold cross validation on the data, with each
split containing 80 training examples and 20 testing exam-
ples. To evaluate performance, we consider two measures:

• Mean Reciprocal Rank (MRR): The average rank
among the duplicates given to the true canonical record.
This measure is commonly used in information retrieval
to evaluate search results.

• Accuracy (Acc): The proportion of predicted canon-
ical records that are truly canonical. This can also be
understood as MRR at rank 1.

6.2 Systems
We evaluate eight different systems:

• Edit-Distance, Fixed Costs (ED-F) - Levenshtein
string distance canonicalizer with the default costs ci =
1, cd = 1, c 6=r = 1, c=

r = 0. (See Section 5.1.)

• Edit-Distance, Exhaustive Cost Search (ED-E)
- Levenshtein string distance canonicalizer with costs
set by exhaustive search (See Section 5.2.1.) We set
max = 1.0, min = −1.0, and step = 0.5, resulting in
81 different settings.

• Edit-Distance, Stochastic Cost Search (ED-S)
- Levenshtein string distance canonicalizer with costs
set by stochastic search (See Section 5.2.2.) We set
step = 0.2 and perform 20 iterations.



acronym canonical record
In AAAI

expanded canonical record
In proceedings of the Ninth National Conference on Artificial Intelligence

duplicate records
In proceedings of the Ninth National Conference on Artifici al Intelligence

proc the 9th National Conf on AI
in proc AAAI

in proceedings of the Ninth National Conferenceonarti cial Intelligence

Table 2: An example of a set of conference strings to be canonicalized annotated with two versions of preferred
canonicalization: acronym and expanded forms.

• Logistic Regression (LR) - Feature-based ranking
model with exponential loss function. (See Section
5.3.1.)

• MIRA (M) - Feature-based ranking model with large-
margin loss function. (See Section 5.3.2.)

• Shortest (S) - A baseline method that ranks records
in increasing order of length.

• Longest (L) - A baseline method that ranks records
in decreasing order of length;

• Most Common (C) - Assign each record a count
equal to the number of exact string duplicates con-
tained in the record set. Rank records in decreasing
order of count.

The features for the feature-based canonicalizers are as fol-
lows:

• Edit-distance features: We construct four different
edit-distance canonicalizers with four different setting
of the Levenshtein costs. For each cost setting, we
compute Cd(R) as in Equation 1. The binary features
for a record indicate if it is the first, second, or third
highest ranked record according to Cd(R) (for exam-
ple, one feature is ranked-second-by-canonicalizer-three).
These features allow the classifier to serve as a “meta-
canonicalizer” by aggregating the output of many dif-
ferent canonicalizers.

• Text features: We compute several features that ex-
amine the properties of the strings themselves.

– Acronyms: This feature is true if the record con-
tains a token on a list of known acronyms (e.g.,
ICML).

– Abbreviations: This feature is true if the record
contains a token on a list of known abbreviations
(e.g., conf for conference and proc for proceed-

ings).

– Relative length: We compute the character length
of each record and create features that indicate if
a record is the first, second, or third longest or
shortest record.

canonicalizer MRR Acc Time (s)
LR .708 (.017) .6 (.015) 75 (5)
M .661 (.017) .55 (.035) 80 (4)

ED-S .597 (.053) .5 (.061) 278 (26)
ED-E .578 (.053) .5 (.061) 925 (65)

C .551 (.023) .53 (.043) .05 (.02)
ED-F .438 (.034) .37 (.04) 6 (1)

L .426 (.033) .28 (.03) .06 (.05)
S .087 (.007) 0 (0) .07 (.06)

Table 3: Mean reciprocal rank, accuracy, and run-
ning time on expanded dataset. The numbers in
parentheses are the standard error over five cross-
validation trials.

canonicalizer MRR Acc Time (s)
M .94 (.014) .92 (.012) 103 (5)
LR .935 (.02) .92 (.025) 63 (5)

ED-E .868 (.027) .82 (.04) 866 (99)
ED-S .865 (.028) .82 (.04) 254(33)

S .767 (.038) .64 (.043) .02 (.004)
C .126 (.033) .06 (.024) .05 (.03)

ED-F .059 (.004) 0 (0) 6 (2)
L .049 (.003) 0 (0) .011 (.001)

Table 4: Mean reciprocal rank, accuracy, and run-
ning time on acronym dataset. The numbers in
parentheses are the standard error over five cross-
validation trials.

6.3 Results
Tables 3 and 4 display results for the eight different methods
on the acronym and expanded datasets. We can see that for
the expanded data logistic regression (LR) outperforms the
fixed cost edit-distance (ED-F) by 27% MRR, and further
outperforms the stochastic search edit distance (ED-S) by
11% MRR.

From these results, we can conclude that the feature-based
canonicalizers consistently outperform the edit-distance canon-
icalizers. The difference between the two feature-based canon-
icalizers is small: logistic regression outperforms MIRA (M)
by nearly 5% MRR on the expanded data, but MIRA out-
performs logistic regression by .5% MRR on the acronym

data. Similarly, the difference between the two cost learn-
ing methods is small (ED-S versus ED-E).

Furthermore, we can conclude that cost-learning greatly im-



features MRR Acc
edit-distance .496 (.027) .29 (.033)

edit-distance + text .708 (.017) .6 (.015)

Table 5: Mean reciprocal rank and accuracy on the
expanded dataset. The numbers in parentheses are
the standard error over five cross-validation trials.

proves the performance of the edit-distance canonicalizers,
increasing MRR by nearly 16% on the expanded data and
by 80% on the acronym data. The pronounced difference on
the acronym data can be attributed to the fact that the de-
fault setting used in ED-F has unit cost for inserting char-
acters. This gives acronym records a large distance from
non-acronym records, making it unlikely they will have the
lowest average distance. However, the cost learning methods
can discover settings that do not penalize insertions, thereby
reducing the average edit-distance of acronyms.

None of the simpler baseline methods perform consistently
well across the two datasets. Simply choosing the shortest
or longest record is significantly worse than using one of
the more complex record selection algorithms we propose.
Similarly, choosing the most common record

6.4 Impact of features
We investigate the impact of features on the performance
of the feature-based canonicalizers. Table 5 displays perfor-
mance with and without the textual features described in
Section 6.2. These results show that using edit-distance fea-
tures alone outperforms the fixed-cost edit-distance canon-
icalizer ED-F by nearly 6% (.496 versus .438 from Table
3).

6.5 Learning rates
In a real-world application, it may be difficult to obtain la-
beled data from the user. We therefore perform experiments
to evaluate how many labeled examples are needed to ob-
tain accurate results. Figures 2 and 3 plot performance as
the proportion of training data used increases. As we can
see, using only 10% of the data (8 examples), performance
is already quickly approaching its maximum.

6.6 Robustness to noise
We perform additional experiments to measure how robust
the methods are to the introduction of non-canonical records.
For each training example R, we introduce records as fol-
lows:

• Select an incorrect record uniformly at random Ri ∈ R
s.t. Ri 6= Rli .

• Add n duplicates of of Ri to R.

Figures 4 and 5 show results as n varies from 0 to 20. We
compare the four learning methods, as well as the Most

Common baseline (C). These figures show that the feature-
based methods are quite robust to noise, as their accu-
racy drops only slightly as n increases. The Most Common

baseline degrades significantly, which is unsurprising since

as n increases it is very likely that it chooses the incor-
rect record. The exhaustive cost-learning method also ap-
pears relatively robust; however the stochastic cost-learning
method degrades significantly.

6.7 Scalability
In Table 3 and 4 we report the wall-clock running time of
each method. Note that this includes the time to train each
method. The logistic regression requires about one minute
to train and evaluate on 80 training examples and 20 test-
ing examples. Note that the long running times of the cost-
learning methods is high because for each setting of costs,
the average edit-distance for each record must be recom-
puted to calculate the loss function. This is in contrast to
the feature-based methods, which uses fixed costs for the
edit-distance features.

For databases containing many records with many dupli-
cates, the computation of the average edit-distance may be-
come burdensome. The edit distance computation has time
complexity O(n2) where |R| = n. A(Ri) requires iterat-
ing over all records, and we must compute this n times.
Since the edit distance canonicalizer is used as input to
the feature-based canonicalizers, these have time complexity
Ω(n2). Thus, to canonicalize m records will require Ω(n2m)
time.

We can alleviate the quadratic dependence on n by pruning
elements of Ri that are unlikely to be chosen as the canonical
record. We propose the following method to prune records
for the feature-based canonicalizers:

• Build a feature-based canonicalizer C′ that only uses
text features, not edit-distance features. Thus, this
canonicalizer does not require the n2 computation to
compute edit-distance.

• Score each element of R using C′.

• Remove all Ri with scores less than threshold δ.

This method therefore prunes records from consideration
prior to computing the edit-distance. We leave empirical
evaluation of this approximation for future work.

7. CONCLUSION AND FUTURE WORK
In this paper, we have introduced the canonicalization prob-
lem and proposed three broad classes of solutions. We have
implemented one class of solution and empirically evaluated
it on manually annotated data. These experiments show
that it is possible to build a system to accurately learn
canonicalization preferences with only a few examples. In fu-
ture research, we plan to consider record merging and record
generation approaches to canonicalization, as well as joint
models that perform deduplication and canonicalization to-
gether.
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