
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

CANOPUS: A
DOMAIN-SPECIFIC LANGUAGE

FOR MODELING
PERFORMANCE TESTING

MAICON BERNARDINO DA SILVEIRA

Thesis presented as partial requirement for
obtaining the degree of Ph. D. in Computer
Science at Pontifical Catholic University of
Rio Grande do Sul.

Advisor: Prof. Avelino Francisco Zorzo

Porto Alegre
2016

Dados Internacionais de Catalogação na Publicação (CIP)

S587c Silveira, Maicon Bernardino

 Canopus: a domain-specific language for modeling

 performance testing. – 2016.

175 f.

Tese (Doutorado) – Faculdade de Informática, PUCRS.

 Orientador: Prof. Dr. Avelino Francisco Zorzo

1. Engenharia de Software. 2. Simulação (Computadores).

 3. Informática. I. Zorzo, Avelino Francisco. II. Título.

CDD 23 ed. 005.1

Loiva Duarte Novak CRB 10/2079
Setor de Tratamento da Informação da BC-PUCRS

This thesis is dedicated

to my beloved parents,

Who educated me and enabled me

to reach at this level

“Everyone envies the beverage I drink,

but no one knows the falls I take.”

(Brazilian proverb)

ACKNOWLEDGMENTS

À Deus. A força da fé me manteve firme e perseverante.

Agradeço o apoio financeiro obtido durante o período, oportunizado pela DELL, em forma

de bolsa taxas. Além da oportunidade de desenvolver a minha pesquisa como bolsista vinculado

ao Projeto de Desenvolvimento em Tecnologia da Informação (PDTI) no convênio DELL/PUCRS,

como integrante do projeto “Center of Competence in Performance Testing”.

Aos colegas do CePES e aos membros do grupo de pesquisa “CoC Perf” por terem com-

partilhado bons momentos durante o período do doutorado. Ao colega Elder de Macedo Rodrigues

um agradecimento especial por toda a ajuda e colaboração prestada.

Ao meu orientador, professor Avelino Francisco Zorzo, por todos os ensinamentos, críticas

e conselhos e, principalmente, pela confiança. Saiba que os desafios lançados colaboraram muito

com o meu crescimento, tanto pessoal quanto profissional.

Agradeço aos aconselhamentos dos avaliadores, professores Adenilso da Silva Simão, Silvia

Regina Vergilio e Rafael Heitor Bordini pelas considerações e sugestões de melhoria na proposta de

tese e defesa da tese.

Gostaria de agradecer o apoio do professor Flávio Moreira de Oliveira pela oportunidade

profissional e contribuições na publicação de artigos.

MUITO OBRIGADO aos “grandes” e mais que amigos: Elder de Macedo Rodrigues e

João Batista Mossmann pelo incentivo, motivação, conselhos e ajudas. Além das cervejadas e

churrascadas para manter a vida social em dia. E aos demais amigos que contribuíram de alguma

forma para a realização deste trabalho.

À minha família, pelo apoio, carinho e confiança dado em todos os momentos de minha

vida e, por compreenderem minha ausência nos encontros familiares durante este período.

Um agradecimento especial a minha querida mãe, a “Véia”. Obrigado, do fundo do coração

por sempre acreditar e confiar no meu potencial. Eu, o “Maiquinho”, dedico este trabalho a você,

pelo carinho e por ter me ensinado os valores e caráter que tenho hoje.

Agradecimento especial a Raissa pela paciência e por tudo que passamos juntos neste

curto período de convivência. Você fez tudo parecer tão simples. Sem a tua ajuda e apoio nesta

reta final, com certeza não teria conseguido.

CANOPUS: UMA LINGUAGEM ESPECÍFICA DE DOMÍNIO PARA

MODELAGEM DE TESTE DE DESEMPENHO

RESUMO

Desempenho é uma qualidade fundamental de sistemas de software. Teste de desempenho

é uma técnica capaz de revelar gargalos do sistema na escalabilidade do ambiente de produção. No

entanto, na maior parte do ciclo de desenvolvimento de software, não se aplica este tipo de teste

nos seus ciclos iniciais. Deste modo, isto resulta em um fraco processo de elicitação dos requisitos

e dificuldades da equipe em integrar suas atividades ao escopo do projeto. Assim, o teste baseado

em modelos é uma abordagem de teste para automatizar a geração de artefatos de teste com base

em modelos. Ao fazer isto, permite melhorar a comunicação da equipe, uma vez que a informação

de teste é agregada aos modelos desde as fases iniciais do processo de teste, facilitando assim sua

automatização. A principal contribuição desta tese é propor uma linguagem específica de domínio

(Domain-Specific Language - DSL) para modelagem de teste de desempenho em aplicações Web.

A DSL proposta é chamada Canopus, na qual um modelo gráfico e uma linguagem semi-natural

são propostos para apoiar a modelagem de desempenho e geração automática de cenários e scripts

de teste. Além disto, apresenta-se um exemplo de uso bem como um estudo de caso realizado

na indústria para demonstrar o uso da Canopus. Com base nos resultados obtidos, infere-se que

a Canopus pode ser considerada uma DSL válida para modelagem do teste de desempenho. A

motivação para realização deste estudo foi investigar se uma DSL para modelagem do teste de

desempenho pode melhorar a qualidade, custo e eficiência do teste de desempenho. Assim, também

foi realizado um experimento controlado com o objetivo de avaliar o esforço (tempo), quando

comparado Canopus com outra abordagem industrial - UML. Os resultados obtidos indicam que,

estatisticamente, para a modelagem de desempenho usando Canopus o esforço foi menor e melhor

do que usando UML.

Palavras Chave: teste de desempenho, modelagem de desempenho, linguagem específica de do-

mínio, modelagem específica de domínio, teste baseado em modelo, teste de software.

CANOPUS: A DOMAIN-SPECIFIC LANGUAGE FOR MODELING

PERFORMANCE TESTING

ABSTRACT

Performance is a fundamental quality of software systems. Performance testing is a tech-

nique able to reveal system bottlenecks and/or lack of scalability of the up-and-running environment.

However, usually the software development cycle does not apply this effort on the early development

phases, thereby resulting in a weak elicitation process of performance requirements and difficulties

for the performance team to integrate them into the project scope. Model-Based Testing (MBT) is

an approach to automate the generation of test artifacts from the system models. By doing that,

communication is improved among teams, given that the test information is aggregated in the system

models since the early stages aiming to automate the testing process. The main contribution of this

thesis is to propose a Domain-Specific Language (DSL) for modeling performance testing in Web

applications. The language is called Canopus, in which a graphical model and a natural language are

proposed to support performance modeling and automatic generation of test scenarios and scripts.

Furthermore, this work provides an example of use and an industrial case study to demonstrate the

use of Canopus. Based on the results obtained from these studies, we can infer that Canopus can

be considered a valid DSL for modeling performance testing. Our motivation to perform this study

was to investigate whether a DSL for modeling performance testing can improve quality, cost, and

efficiency of performance testing. Therefore, we also carried out a controlled empirical experiment

to evaluate the effort (time spent), when comparing Canopus with another industrial approach -

UML. Our results indicate that, for performance modeling, effort using Canopus was lower than us-

ing UML. Our statistical analysis showed that the results were valid, i.e., that to design performance

testing models using Canopus is better than using UML.

Keywords: performance testing, performance modeling, domain-specific language, domain-specific

modeling, model-based testing, software testing.

LIST OF FIGURES

Figure 2.1 Example of a UCML model for a library system [Bar04] . 38

Figure 2.2 Example of a CBMG model for an occasional buyer of a Web store [MAFM99] . . . 39

Figure 3.1 Research design . 48

Figure 4.1 Class diagram of main ontology concepts and relationships [FV14] 55

Figure 4.2 GOPPRR metatypes from MetaEdit+ language workbench 60

Figure 4.3 Canopus package diagram. 61

Figure 4.4 Graphical representation of the TPC-W Canopus Performance Monitoring

model . 64

Figure 4.5 Graphical representation of a Canopus Performance Metric model of the mem-

ory available Mbytes counter. 65

Figure 4.6 Snippet of textual representation of the TPC-W Canopus Performance Monitoring

model . 65

Figure 4.7 Graphical representation of the TPC-W Canopus Performance Scenario model. 66

Figure 4.8 Graphical representation of the TPC-W Canopus Performance Worload model . 67

Figure 4.9 Textual representation of a parameterized Canopus Performance Scenario model

. 68

Figure 4.10 Textual representation of the TPC-W Canopus Performance Scenario model . 69

Figure 4.11 Graphical representation of the TPC-W Shop Canopus Performance Scripting

model . 70

Figure 4.12 Snippet of textual representation of the TPC-W Shop Canopus Performance

Scripting model . 71

Figure 5.1 Model-based performance testing process using Canopus . 74

Figure 5.2 Graphical representation of the Changepoint Canopus Performance Monitoring

model . 77

Figure 5.3 Graphical representation of the Canopus Performance Metric model 78

Figure 5.4 Snippet of textual representation of the Changepoint Canopus Performance

Monitoring model . 78

Figure 5.5 A partial graphical representation of the Changepoint Canopus Performance

Scenario model . 79

Figure 5.6 Graphical representation of the Changepoint Canopus Performance Workload

model . 80

Figure 5.7 Snippet of textual representation of the Changepoint Canopus Performance

Scenario model . 81

15

Figure 5.8 Graphical representation of the Changepoint Canopus Performance Scripting

model for the Submit Expected Time script. 81

Figure 5.9 Snippet of textual representation of the Changepoint Canopus Performance

Scripting model for the Submit Expected Time script . 82

Figure 5.10 Graphical representation of the Changepoint Canopus Performance Scripting

model for the _Timesheet Alpha PTC Filter script. 82

Figure 5.11 Snippet of textual representation of the Changepoint Canopus Performance

Scripting model . 83

Figure 5.12 Frequency diagram of the graphical elements that compose Canopus, grouped by

metamodel . 84

Figure 6.1 Experiment Design. 93

Figure 6.2 A Moodle Use Case specification . 96

Figure 6.3 UML activity diagram of the Use Case specification from Figure 6.2. 96

Figure 6.4 Canopus Performance Scripting of the Use Case specification from Figure 6.2 97

Figure 6.5 Boxplot - treatments per task . 102

Figure 6.6 Boxplot - treatments per block . 103

Figure 6.7 Frequency diagram of the profile experiment subjects . 104

Figure 6.8 Frequency diagram of the Canopus. 105

Figure B.1 Graphical representation of the Changepoint Canopus Performance Metric model

. 149

Figure B.2 Graphical representation of the Changepoint Canopus Performance Scenario

model . 150

Figure B.3 Graphical representation of the Changepoint Login Canopus Performance Scripting

model . 151

Figure B.4 Graphical representation of the Changepoint Submit Time Canopus Performance

Scripting model . 151

Figure B.5 Graphical representation of the Changepoint Logout Canopus Performance Scripting

model . 151

Figure D.1 UML use case diagram of the Moodle . 163

Figure D.2 UML activity diagram of the Sign In activity . 163

Figure D.3 UML activity diagram of the View Activity activity . 163

Figure D.4 UML activity diagram of the Add Activity activity . 164

Figure D.5 Canopus Performance Scenario of the Moodle . 164

Figure D.6 Canopus Performance Scripting of the Sign In activity 164

Figure D.7 Canopus Performance Scripting of the View Activity activity 165

Figure D.8 Canopus Performance Scripting of the Add Activity activity 165

16

LIST OF TABLES

Table 3.1 Synthesis of the thesis . 49

Table 4.1 Summary of the Canopus metamodels and their GOPPRR metatypes. 62

Table 6.1 Assigning subjects to the treatments for a randomized design 98

Table 6.2 Summarized data of the effort (minutes) . 100

Table 6.3 Effort data per subject (minutes) . 101

Table 6.4 Kolmogorov-Smirnov normality test . 103

Table 6.5 Wilcoxon signed rank test results . 103

Table 7.1 Classification and structure of the achieved thesis contributions 110

17

LIST OF ACRONYMS

BSA – Business System Analyst

CBMG – Customer Behavior Modeling Graph

CPM – Canopus Performance Monitoring

CPSCE – Canopus Performance Scenario

CPSCR – Canopus Performance Scripting

CPW – Canopus Performance Workload

CR – Capture and Replay

DD – Design Decision

DSL – Domain-Specific Language

DSM – Domain-Specific Modeling

DSML – Domain-Specific Modeling Language

DST – Domain-Specific Testing

EFSM – Extended Finite Machine State

EMF – Eclipse Modeling Framework

FSM – Finite Machine State

GME – Generic Modeling Environment

GMP – Graphical Modeling Project

GPL – General-Purpose Language

IEEE – Institute of Electrical and Electronics Engineers

LW – Language Workbench

LL – Lessons Learned

MARTE – Modeling and Analysis of Real-Time and Embedded Systems

MBT – Model-Based Testing

MC – Markov Chain

MDE – Model-Driven Engineering

MDD – Model-Driven Development

MDT – Model-Driven Testing

MPS – Meta Programming System

OMG – Object Management Group

OWL – Ontology Web Language

PN – Petri Nets

PLETS – Product Line of Model-based Testing tools

19

QN – Queueing Network

RQ – Research Question

RE – Requirement

SAN – Stochastic Automata Network

SLA – Service Level Agreement

SPE – Software Performance Engineering

SPL – Software Product Line

SPT – Schedulability, Performance and Time

SUT – System Under Test

SWEBOK – Software Engineering Body of Knowledge

TDL – Technology Development Lab

TPC-W – Transaction Processing Performance-Web

TPS – Transaction Per Second

TDD – Test Driven Development

UCML – User Community Modeling Language

UML – Unified Modeling Language

UTP – UML Testing Profile

VU – Virtual User

XML – eXtensible Markup Language

20

CONTENTS

1 INTRODUCTION . 25

1.1 PROBLEM STATEMENT AND RATIONALE FOR THE RESEARCH 25

1.2 OBJECTIVES . 29

1.3 SUMMARY OF CONTRIBUTIONS AND THESIS OUTLINE 30

2 BACKGROUND . 33

2.1 OVERVIEW . 33

2.2 PERFORMANCE TESTING . 33

2.3 PERFORMANCE MODELING . 36

2.4 DOMAIN-SPECIFIC LANGUAGE . 39

2.4.1 DSL DESIGN METHODOLOGY . 42

2.5 RELATED WORK . 42

2.6 CHAPTER SUMMARY . 46

3 RESEARCH METHODOLOGY . 47

3.1 OVERVIEW . 47

3.2 RESEARCH DESIGN . 48

3.3 RESEARCH CONTEXT . 50

3.4 CHAPTER SUMMARY . 51

4 CANOPUS . 53

4.1 OVERVIEW . 53

4.2 DOMAIN ANALYSIS . 53

4.3 LANGUAGE REQUIREMENTS . 55

4.4 DESIGN DECISIONS . 57

4.5 THE LANGUAGE . 59

4.6 METAMODELS . 60

4.7 EXAMPLE OF USE: TPC-W . 63

4.7.1 CANOPUS PERFORMANCE MONITORING MODEL . 64

4.7.2 CANOPUS PERFORMANCE SCENARIO MODEL . 66

4.7.3 CANOPUS PERFORMANCE SCRIPTING MODEL . 67

4.8 LESSONS LEARNED . 68

4.9 CHAPTER SUMMARY . 72

21

5 CASE STUDY . 73

5.1 OVERVIEW . 73

5.2 A MODEL-BASED PERFORMANCE TESTING PROCESS . 73

5.2.1 MODEL PERFORMANCE MONITORING . 74

5.2.2 MODEL PERFORMANCE SCENARIO . 74

5.2.3 MODEL PERFORMANCE SCRIPTING . 75

5.2.4 GENERATE TEXTUAL REPRESENTATION . 75

5.2.5 GENERATE THIRD-PARTY SCRIPTS . 75

5.2.6 GENERATE CANOPUS XML . 76

5.2.7 THIRD-PARTY . 76

5.3 CASE STUDY . 76

5.3.1 CHANGEPOINT . 76

5.3.2 CANOPUS PERFORMANCE MONITORING . 77

5.3.3 CANOPUS PERFORMANCE SCENARIO . 79

5.3.4 CANOPUS PERFORMANCE SCRIPTING . 80

5.4 CASE STUDY ANALYSIS . 84

5.5 LESSONS LEARNED . 85

5.6 CHAPTER SUMMARY . 86

6 EMPIRICAL EXPERIMENT . 89

6.1 OVERVIEW . 89

6.2 EXPERIMENT CONTEXT . 90

6.3 EXPERIMENT INSTRUMENTS . 90

6.4 EXPERIMENT DESIGN . 92

6.4.1 OBJECTIVE . 92

6.4.2 SELECTING AND GROUPING SUBJECTS . 93

6.4.3 INSTRUMENTATION . 94

6.4.4 THREATS TO VALIDITY . 95

6.5 OPERATION OF THE EXPERIMENT . 98

6.5.1 PREPARATION . 98

6.5.2 EXECUTION . 98

6.6 RESULTS . 99

6.7 CHAPTER SUMMARY . 105

7 FINAL REMARKS . 107

22

7.1 OVERVIEW . 107

7.2 THESIS CONTRIBUTIONS . 108

7.3 LIMITATIONS AND FUTURE WORKS . 111

7.4 PUBLICATIONS . 113

REFERENCES . 115

APPENDIX A – CANOPUS PERFORMANCE SPECIFICATION 127

A.1 CANOPUS PERFORMANCE MONITORING SPECIFICATION 127

A.1.1 CANOPUS PERFORMANCE METRIC SPECIFICATION . 128

A.2 CANOPUS PERFORMANCE SCENARIO SPECIFICATION . 141

A.2.1 CANOPUS PERFORMANCE WORKLOAD SPECIFICATION 142

A.3 CANOPUS PERFORMANCE SCRIPTING SPECIFICATION 144

A.3.1 CANOPUS PERFORMANCE EXTERNAL FILE SPECIFICATION 147

APPENDIX B – CASE STUDY MODELS . 149

APPENDIX C – A SURVEY TO EVALUATE THE DOMAIN-SPECIFIC LANGUAGE

FOR MODELING PERFORMANCE TESTING . 153

APPENDIX D – EXPERIMENT INTRUMENTS . 163

APPENDIX E – QUESTIONNAIRE PRE-EXPERIMENT . 167

APPENDIX F – QUESTIONNAIRE POST-EXPERIMENT 171

23

25

1. INTRODUCTION

“For, usually and fitly, the presence of an introduction is held

to imply that there is something of consequence and

importance to be introduced.”

— Arthur Machen

1.1 Problem Statement and Rationale for the Research

In the last years, the evolution of Web domain technologies provided a significant expansion

of the number of systems and Web applications. Thus, many people are migrating from outdated

client-server or stand-alone applications to some Web-based services or applications, which led

application providers to invest in new technologies for infrastructure to support their applications,

e.g. cloud computing [AFG+10] and virtualization [Vou08]. The adoption of these technologies can

bring several benefits to a provider, such as dynamic provisioning of computational resources and

an adaptable infrastructure. Furthermore, an infrastructure can host several isolated application

servers. Moreover, these servers can have their resources, e.g. memory and processor time, easily

expanded according to the application servers’ demand [MLB+11].

Despite the benefits, the adoption of these technologies also brought about some new

challenges, such as how an infrastructure provider can define a precise amount of resources for an

application server, in a way that respects a predefined Service Level Agreement (SLA) [LBN02]; or,

how an organization can provide a reliable service, even when it is under abnormal workload, that

can be justifiably trusted by their customers [ALRL04].

One of the problems arising with the evolution of these computer infrastructures is related

to achieving quality factors of developed systems hosted on these environments. In other words, one

of the challenges refers to verification and validation of the quality of these systems, in particular,

the performance testing validation or even to evaluate the processing limit of the computer assets

to measure more accurately the SLA established in the contracts of computer service providers.

26

Performance testing can be applied to improve the quality of a Web-based service or

application hosted on cloud computing or virtualization environments since it supports the verification

and validation of performance requirements [MFB+07]. Furthermore, it also supports evaluation of

the infrastructures resource consumption while the application is under different workloads, e.g.,

to measure accurately the resources required by an application that will respect the established

SLA [WB10]. Despite the fact that performance testing is a well-known technique to validate

performance requirements of an application or service, there is a lack of a modeling standard and/or

language to support the particular needs of the performance testing domain.

Nevertheless, there are some notations, languages, and models that can be applied to

represent a system behavior, e.g., Unified Modeling Language (UML) [MDN09], User Community

Modeling Language (UCML) [Bar15], Customer Behavior Modeling Graph (CBMG) [MAFM99], and

WebML [MFV06]. Some available modeling notations, e.g., UML testing profiles [LMdG+09] and

SPT UML profile [OMG05], rely on the use of textual annotations on models, i.e., stereotypes and

tags, to support the modeling of performance aspects of an application. The use of notations,

languages or models improves the performance testing activities, e.g., reducing misinterpretation

and providing a standard document to stakeholders, system analysts and testers. Moreover, the

use of a well-defined and concise notation, language or model can support the use of Model-Based

Testing (MBT) [UL06] to generate inputs to the performance testing automation process.

MBT provides support to automate several activities of a testing process, e.g. test data,

scenarios and scripts can be automatically generated [SKF06]. Besides, the adoption of an MBT

approach provides other benefits, such as a better understanding of the application, its behavior,

and test environment, since it provides a graphical representation of the System Under Test (SUT).

Although MBT is a well-defined and applied technique to automate some testing levels, it is not

entirely explored to test non-functional requirements of an application, e.g. performance testing.

There are some works proposing models or languages to support the design of performance models.

For instance, the Gatling [Gat15] Domain-Specific Language (DSL), which provides an environment

to write the textual representation of an internal DSL based on industrial needs and tied to a

particular testing tool.

Although these models and languages are useful to support the design of performance

models and also to support testing automation, there are a few limitations that restrict their inte-

gration in a testing process using an MBT approach. Despite the benefits of using a UML profile to

model specific needs of the performance testing domain, its use presents some limitations: (a) Most

of the available UML design tools does not provide support to work with only those UML elements

needed for a specialized language. Thus, the presence of unused and unrequired elements may re-

sult in an error-prone and complex activity; (b) The OMG defines UML diagrams restricted to their

semantics. Therefore, in some cases, the available UML elements and their semantics can restrict or

even prevent the modeling of some performance features of the Web domain. For instance, in some

situations, it can be required that another test activity make use of a response data from previous

27

test activities. This situation is frequent in an enterprise scenario, but it is not easily represented

using a UML profile.

It is important to highlight that UML is useful to analyze and design the architecture and

the behavior of a system [HGB08]. Furthermore, it is a standard notation that does not imply an

implementation decision; besides, it is helpful for representing higher level concepts and the initial

domain glossary. When compared to UML, Domain-Specific Languages (DSL) [Fow10] are less

general and are based on an implementation strategy. That is, UML is used at an independent

implementation level, whereas DSL is used at a dependent implementation level. DSL are restricted

languages that can be used to model concepts directly in a particular problem domain. These

languages can be textual, like most programming languages, or graphical. Furthermore, each DSL

is a domain-specific code generator that maps domain-specific models into the required code.

Most of these issues could be mitigated by the definition and implementation of a graphical

and textual DSL to the performance testing domain. However, to the best of our knowledge, there

is little investigation on applying DSL to the performance testing domain. For instance, the Gatling

DSL provides only a textual representation, based on the Scala language [Gat15], which ties to

a particular load generator technology - it is a script-oriented DSL. The absence of a graphical

representation could be an obstacle to its adoption by those performance analysts that already use

some graphical notation to represent the testing infrastructure or the SUT. Furthermore, as already

stated, the use of a graphical notation provides a better understanding of the testing activities and

SUT to the testing team as well as to developers, business analysts, and non-technical stakeholders.

Another limitation is that the Gatling DSL binds to a particular workload solution.

Therefore, it would be relevant to develop a graphical modeling language for the per-

formance testing domain to mitigate some of the limitations mentioned earlier. In this thesis, we

propose Canopus, which aims to provide a graphical and textual DSL to support the design of per-

formance models, and that can be applied in a model-based performance testing approach. Hence,

our DSL scope is to support the performance testing modeling activity, aggregating information

about the problem domain to provide better knowledge sharing among testing teams and stake-

holders, and centralizing the performance testing documentation. Moreover, Canopus will be used

within an MBT context to generate performance test scripts and scenarios for third-party tools/load

generators.

Consequently, the research problem is the lack of a modeling standard and/or language

that aims at meet the particular needs of the performance testing domain for Web applications.

This way, this thesis seeks to study and research a modeling standard for performance testing, i.e.

to develop a DSL that meets the specific needs of the domain for modeling performance testing

in a Web application, as well as its use in the MBT approach. It is highlighted that a DSL can

be represented graphically, i.e. using graphs and diagrams, and when it is applied to the context

of software testing, enables the use of the MBT approach for generating test artifacts. Hence, to

formalize the exposed problem, a research question is defined to guide the research methodology.

28

Research Question: “How to improve model-based performance testing using a

domain-specific language in Web applications?”

The research question is in line with some of the achievements, challenges, and dreams

presented by Bertolino [Ber07] in the software testing research roadmap. The author asserts that

both MBT and DSL are promising approaches and in actual research expansion. Together they define

the dream of test-based modeling and the proposal to hold 100% automatic testing. Domain-Specific

Testing (DST) is a defined term by the author as an efficient solution to allow that domain experts

can express abstract specifications, e.g. models or languages, to be automated in their process,

having as its focus on transforming the domain knowledge to improve the testing process.

Despite the fact that performance testing is an active research field, studies investigate

how to apply MBT approaches to automate the performance testing activities essentially started to

be reported in the last decade, and they are still in its early stages [SKF06] [KSF10] [dSdMRZ+11]

[CCO+12]. Furthermore, the lack of a standard to represent performance testing information is one

of the major challenges for both academic and industrial practitioners.

From the industry perspective, the performance testing process is usually very expensive,

regarding infrastructure resources and generation of test scenarios and scripts [AT10]. Another

significant gap to be highlighted is the lack of non-functional performance requirements in the

system analysis, in addition to the absence of a standard documentation among the stakeholders

about the problem domain, allowing a common understanding and interpretation of goals and aims

of the system.

Regarding academia, several types of research are evolving for the purpose of automating

the testing process with the aim of reducing the cost and effort applied in the activity of the

generation of test scenarios and script activities, which would consequently improve the software

product quality. To support this challenge, one way to operationalize this process is through the

MBT adoption, with the intention of sharing among stakeholders the project information regarding

system behavior. Thus, it enables functional requirements and, mainly, non-functional performance

requirements to be contemplated, annotated and documented into the system models of the early

cycle of software development.

In this context, despite performance testing being a recent field due to distribution and

diversification of the infrastructure (e.g. cloud computing [AFG+10] and virtualization [Vou08])

and technology evolution, (e.g. Web application, Web services) many research studies were de-

veloped over the last decade [RSSP04] [KRM06] [LW08] [AATP12]. The majority is centered on

proper approaches to generate and execute performance testing under the perspective of Capture

and Replay (CR) technique [EAXD+10], a.k.a. Record and Playback. However, as is known to

happen in other fields, such as Model-Driven Development (MDD) [HT06], Test Driven Develop-

ment (TDD) [Bec02], Model-Driven Testing (MDT) [BDG+07], and Behaviour-Driven Development

(BDD -an evolution of TDD) [WH12] this has been a little-explored gap. With the aim of answer-

ing these questions this study seeks to design models using DSL and apply the MBT approach to

automation of performance testing in Web applications.

29

This thesis investigates this gap, and it is characterized by the growing concern about

applications’ performance in detriment of optimization of the infrastructure resources consumption.

In other words, given greater emphasis when the environment is on the cloud or delegated for third-

party providers. Thereunto, we seek to aggregate knowledge with the purpose of identifying and

designing them into a DSL for modeling performance testing in Web applications.

The Web application is the scope of this thesis given our know-how of the research project

developed in the industrial software projects, tools and models studied and tested in a research

project. The scope holds to the premise that the application should run under the network protocol

HTTP (HyperText Transfer Protocol), which falls into client-server architecture [Ser95], multi-

tier architecture [Eck95], among others. This constraint appears due to the load generators -

performance testing tools - often implementing their solutions based on protocols intrinsic to each

application.

The DSL proposed is not restricted only to this scope. Given the incremental development

methodology to the creation of DSL. Future work may extend Canopus for other contexts or perhaps

even other testing paradigms.

1.2 Objectives

The main goal of this research is to propose a domain-specific language for modeling

performance testing in a Web application. To achieve the research goal, we derived the following

objectives:

• Deepening the background concerning models and formalisms for performance testing;

• Studying the models and formalisms for model-based testing;

• Conceiving a DSL for modeling performance testing, characterized by the following represen-

tation factors [WFP07]:

– Representing the features of performance testing;

– Identifying the goals of performance testing;

– Highlighting the performance counters measured by performance testing;

– Modeling the different user profiles and their behavior.

• Validating the DSL for modeling performance testing proposed using a controlled experiment,

in comparison with techniques, methods or usual approaches for performance modeling;

• Evaluating the DSL proposed and analyzing the representation power of the performance test

features by professionals or expert groups in the field whereby the controlled experiment, case

study and/or survey was conducted;

30

• Documenting and reporting the study results, publishing them in scientific conferences, in

addition to the technology and knowledge transfer to industry.

With the aim of answer the research question and to attend the goals outlined, this thesis

presents Canopus, which proposes the following contributions:

• Analyzing the domain of performance testing for automation of their testing process;

• Development of a domain-specific language for modeling performance testing;

• Implementation of a modeling tool that supports the graphical model of Canopus;

• Definition of an abstract structure that represents the natural language of Canopus;

• Translation and mapping of graphical model of Canopus to different technologies of load

generators;

• Creation of an approach for automatic generation of test scenarios and scripts based on models

using domain-specific language in Web applications;

• Generation of empirical evidence of use and application of the DSL and MBT in the perfor-

mance testing context in a Web application.

1.3 Summary of Contributions and Thesis Outline

Chapter 2 brings an overview of the background that supports the main topics investigated

in this thesis. Initially, foundations of performance testing and its main area are described. In

addition to this, information is presented concerning its types, a process to design and execute

performance testing, a variety of testing tools that support the performance testing automation.

It also introduces some notations, languages and models for modeling performance testing. Next,

we extend the discussion about performance modeling. Hence, we present highlights about those

notations, languages, and models that served as inspiration for our ideas to propose our DSL.

We present an overview about formal and semi-formal models used to model performance testing.

The former is concerning early-cycle predictive model-based performance approach. The latter is

regarding late-cycle measurement-based performance approach. Next, we define our DSL as well as

tools to develop one. Finally, we provide an overview of the state-of-the-art regarding the use or the

application of MBT or DSL approaches in the performance testing context.

Chapter 3 presents the research methodology planned and applied in this study. We

characterize our research based on scientific methods. We divided this chapter into two sections as

follows: in the first we describe our research design, presenting how each method was applied in the

context of the research evolution; in the second we introduce the research setting, contextualizing

the environment of the research group, as well as, our industrial partner.

31

The contributions of this thesis are described in Chapters 4, 5, and 6. Chapter 4 discusses

the analysis of the performance testing domain and presents the language and the metamodels that

compose our DSL, as well as the requirements and design decisions. It is important to mention

that during the design and development of Canopus we also considered some requirements from

an industrial partner, in the context of a collaboration project to investigate performance testing

automation [BZR+14]. We also show an example of use to demonstrate the use of Canopus to

support the design of performance testing modeling of a Web application.

Chapter 5 applies Canopus to model an application in an industrial case study [BRZ16].

Thereunto, to demonstrate how our DSL can be used in practice, we applied it throughout an actual

case study from the industry, in the context of a project of collaboration between a Technology

Development Lab (TDL) of Dell Computer Brazil and our university. Firstly, we describe our model-

based performance testing process using Canopus. For this purpose, we present an industrial case

study to evaluate the applicability of Canopus to model performance testing. In short, we aim to

explore two Research Questions (RQ) applying this case study:

RQ1. How useful is it to design performance testing using a graphical DSL?

RQ2. How intuitive is a DSL to model a performance testing domain?

Chapter 6 reports the results of a controlled empirical experiment. Thus, to support our

partner company in the decision process to replace UML by a DSL, we designed and conducted an

experimental study to provide evidence about the benefits and drawbacks when using UML or DSL for

modeling performance testing. In Chapter 6, we validate Canopus presenting an in vitro experiment,

where the subjects analyze the design of annotated UML models and Canopus Performance models.

This is for the purpose of evaluation with respect to the effort and suitability, from the perspective

of the performance testers and engineers in the context of industry and academic environments for

modeling performance testing [BZR16]. Our results indicate that, for performance modeling, the

effort using a DSL was lower than using UML. Our statistical analysis showed that the results were

valid, i.e., that to design performance testing models using our DSL is better than using UML. To

achieve our objective and purpose, we stated the following Research Questions (RQ):

RQ3. What is the effort to design a performance testing model when using UML or Canopus?

RQ4. How effective is it to design a performance testing model when using UML or Canopus?

RQ5. How intuitive/easy is it to design a performance testing model when using UML or Canopus?

Finally, Chapter 7 concludes the thesis, revisiting the achieved thesis contributions, de-

scribing the study limitations, sketching ongoing research and future directions, and summarizing

the academic contribution of the author of this thesis during his academic career.

33

2. BACKGROUND

“The more you learn, the more you have a framework that the

knowledge fits into.”

— Bill Gates

2.1 Overview

The background represents an important research step [Yin13]. In order to base the con-

cepts and definitions about the areas of knowledge and unify the understanding of study topics

related to this thesis, the following sections present the theoretical foundation. Section 2.2 intro-

duces performance testing. Section 2.3 presents languages and notations used to model performance

testing. Section 2.4 defines Domain-Specific Language (DSL) as well as the tools to develop one.

Finally, Section 2.5 provides an overview of the state-of-the-art regarding the use or the application

of an MBT or DSL approach in the performance testing context.

2.2 Performance Testing

“I just want people to focus on the performance.”

— Janet McTeer

Performance engineering is an essential activity of Software Performance Engineering (SPE)

[Smi02]. It’s main focus is to improve scalability and performance, revealing bottlenecks in the SUT.

SPE provides support for the evaluation of systems’ performance through two distinct approaches: an

early-cycle predictive model-based approach and a late-cycle measurement-based approach [WFP07].

In this context, we are interested in a late-cycle measurement-based approach, since in our approach

the generated performance testing scripts and scenarios are applied only when the system has already

been developed, and can therefore be executed and measured. However, our approach is not limited

34

to late-cycle, since our purpose is the engagement of the performance team from early cycles of the

development software process.

The predictive-based approach, unlike the measurement-based approach, can be created

and analyzed without the software being necessarily developed, so its application is commonly per-

formed in the early stages of the software development process. The predictive-based approach

describes how the system operations use the computational resources, and how the limitation and

concurrence of these resources affect such operations. Among the models used in predictive-based

approach, we can identify the following types: Queueing Networks (QN), Petri Nets (PN), Stochas-

tic Automata Network (SAN), among others [WFP07]. As for the measurement-based approach,

it has the aim of modeling user behavior and workload in order to run the SUT to collect perfor-

mance metrics and later analysis of the results. Both approaches have their advantages. While

performance testing based on predictions does not need the infrastructure for analysis, performance

testing based on measurements produces more accurate results, but at a cost of time-consuming

measurements [BDMIS04]. Given its accuracy, a way to guide the implementation of the SPE is by

conducting performance testing based on measurements of software.

In this regard, SPE is a set of activities and heuristics to ensure that the performance analy-

sis effort is used throughout the software development lifecycle. The starting point for a performance

analysis starts from the analysis of non-functional requirements for the performance evaluation of

performance metrics (e.g., response time, throughput), and the expected results of performance

testing [Smi02]. It is noteworthy that the non-functional requirements can be classified in other

classes, not being restricted to performance, such as security, scalability, reliability, etc. [ZG07]. The

non-functional requirements can be conceptualized as attributes or restrictions on a system, because

they refer to “how well” the software does something, unlike the functional requirements in that

their focus is to determine “what” the software does [CPL09].

In summary, a measurement-based approach supports the performance testing activity.

Performance testing aims to identify potential bottlenecks or performance shortfalls, determining the

system processing limits, and verify that the performance of software meets the specified performance

non-functional requirements [WFP07]. For instance, it can be used to determine the application

under test’s behaviour under different conditions, such as insufficient memory or low disk space,

performing testing over part or the whole of the system, under normal and/or stress load. Hence,

performance testing can be classified roughly into two categories [MFB+07]:

(1) Load Testing: The test focuses on determining or evaluating the behavior of a system under

normal workload. Mainly, to verify that the system meets the specified performance non-

functional requirements;

(2) Stress Testing: The test aims to determine the behavior of a system when it performs beyond

the normal workload. Further, this test reveals the failure points when the system is submitted

to huge workloads.

35

Molyneaux [Mol09] asserts that performance testing can be classified as load testing, stress

testing and soak (or stability) testing. This new category proposed by the author intends to test

the SUT over an extended period of time (endurance), in which the aim is to reveal problems only

when submitted in this category. Each one of these differs from each other based on their workload

and the time that is available to perform the test. They can also be applied to different application

domains such as desktop, mobile, Web service, and Web Application.

According to Meier et al. [MFB+07], performance testing determines and validates the

speed characteristics, reliability and/or scalability of a system under a given workload. This type of

testing focuses on measuring the responsiveness of the system (response time), network throughput,

and utilization levels of computing resources (CPU, memory, disk, etc.) to meet the performance

objectives for a given system. Among its main objectives is the definition of system performance

features; identification underperformance of the system, i.e. bottlenecks; suggesting the system

optimization points; estimate an appropriate hardware configuration to the SUT; among others.

The process of designing and executing performance testing is composed by a set of well-defined

activities [MFB+07]:

(1) Identify the test environment. This activity includes the definition of the physical environment

for testing and production, including the resources and tools available to the performance

testing team. Here, the physical environment comprises hardware, software, and network

setup. It becomes an essential activity for a good understanding of the test environment

results in a more efficient planning and test project, supporting the identification of testing

challenges early in the project. In some cases, this process has to be reviewed periodically

throughout the project’s life cycle;

(2) Identify performance acceptance criteria. This activity aims to identify the objectives, as-

sumptions and constraints about response time, throughput, and use of computing resources.

A priori, the response time is a user concern, while throughput is a business problem, and

resource utilization is a concern for the system level;

(3) Plan and design tests. This activity aims to identify key scenarios, determine variability among

representative users, and simulate that variability, define test data and establish performance

metrics as well as collect them.

(4) Configure the test environment. This activity is responsible for preparing the test environment

and the tools and resources needed to perform the test. In some cases, it is important to

make sure that the test environment is instrumented to ensure the monitoring of computer

resources.

(5) Implement the test design. Development of test scripts and scenarios of planned performance

testing.

(6) Execute the tests. Implementation of performance monitoring and running the test. In addition

to validating the tests, test data, and results.

36

(7) Analyze results reports and retest. Responsible for summarizing, consolidating and sharing the

test results. If monitored metrics are within acceptable limits and all desired data are collected,

the test is terminated for a particular scenario and a specific infrastructure configuration.

Based on this, in order to automate some of these activities of performance testing, a

variety of performance testing tools has been developed to support and automate performance testing

activities. The majority of these tools take advantage of one of two techniques: Capture and Replay

(CR) [EAXD+10] or Model-Based Testing (MBT) [UL06]. In a CR-based approach, a performance

engineer must run the tests manually one time on the Web application to be tested, using a tool

on a “capture” mode, and then run the load generator to perform the “replay” mode. There are

several tools for this purpose, to name a few: Apache JMeter [JLH+10], HP LoadRunner [Hew15],

IBM Rational Performance Tester [CDD+08], Borland SilkPerformer [BCM07], Microsoft Visual

Studio [Mic15b], and Neo Load [Neo15]. In an MBT approach, a performance engineer designs the

test models, annotates them with performance information and then uses a tool to automatically

generate a set of performance test scripts and scenarios. There are some notations, languages

and models that can be applied to design performance testing, e.g. Unified Modeling Language

(UML) [OMG15], User Community Modeling Language (UCML) [Bar15] and Customer Behavior

Modeling Graph (CBMG) [MAFM99]. Some of these notations are only applicable during the

designing of the performance testing, to support its documentation. For instance, UCML is a

graphical notation to model performance testing, but it does not provide any metamodels able to

instantiate models to support testing automation. Nevertheless, other notations can be applied

later to automate the generation and execution of performance test scripts and scenarios during the

writing and test execution phases. Another way to design testing for a specific domain is using a

DSL.

In this context, the next section extends the discussion about performance modeling and

highlights the models that support the performance modeling, which were the inspiration for our

ideas to propose our DSL.

2.3 Performance Modeling

With the evolution of SPE [Smi02] [WFP07], numerous types of models can be used to

performance testing. These models, when used for such a test scope, intend to characterize non-

functional performance requirements that the system must meet. Thus, this section presents some

of the different techniques, methods and notations for modeling performance testing, assessing the

particular features of each model so that they may be automated with the MBT approach.

In this context, different formalisms are used to model the performance testing. These

models, when used in this test scope, are intended to formalize the non-functional performance

requirements that the system must meet. Besides, the formal models can also be used to pro-

vide automation through the MBT approach. Finite State Machines (FSM) [Cho78], Markov

37

Chains [Bea78], Stochastic Automata Networks [PA91], Queueing Networks [Cha94] and Petri

Nets [Mol82] are examples of formal models susceptible to integration with the MBT approach.

Another perspective of performance modeling is semi-formal, models that are commonly

used in industrial environments, e.g., User Community Modeling Language (UCML) [Bar15], the

UML profile for SPT (Schedulability, Performance and Time) [OMG05] and the UML profile for

MARTE (Modeling and Analysis of Real-Time and Embedded Systems) [OMG09]. The models of

UML profiles [Sel07] are annotated with stereotypes and labels to write down information related to

performance testing, e.g., number of virtual users, application/server paths, user behavior and/or

workload information.

Creating visual representations of the workload model that both, developers and testers,

can understand intuitively is not a simple abstraction. Typically, this is accomplished by focusing on

the perspective of iterations of users, not system activities. This workload model should contain all

data needed to create the test case or test script, and in turn, generate the workload represented by

the model [Bar04]. One of the alternative documentation and visualization methods that represents

the data workload and meets these requirements is known as the UCML [Bar15] model, popularly

used for performance testing consultants.

The UCML model is a visual notation for modeling the workload distribution of an applica-

tion to performance testing. UCML has a graphical language that consists of symbols that allow the

representation of user profiles, sets of activities that the user interacts with in the system, operations

and transactions in the application, as well as the frequency rates by which these operations can

be performed [Bar15]. However, this model has some limitations to the performance test, such as

representation of the monitoring elements, e.g. SUT and performance metrics; definition of Service

Level Agreement (SLA) [LBN02] (e.g. Response Time,) not to mention the transactions that should

be monitored.

Figure 2.1 presents a UCML model example developed to represent the variability of differ-

ent user profiles of a library system. The profiles are divided into New User, Member, Administrator,

and Vendor. All of them perform some activities in common, which are represented by the black

flows, while the specific activities are colored according to their user profile.

The traditional UML diagrams [OMG15] allow their extensibility so that they can be

applied in different domains. Various types of performance models can be generated from a set

of scenarios depicting the typical response of a system and the consumption of computational

resources. This performance specification can be represented in a UML model with notes, using

the UML profile for SPT [OMG05] [GK09]. The application of the model should be annotated with

performance stereotypes, to assess the scalability of the application in scenarios with higher demand

and competition. Some examples of applications that make use of these stereotypes are shown

in [RVZG10] [TWESAO10] [dOMVR07] [BDH06] [PW04].

The main objective of stereotypes is to help the test team in two activities: improving

application performance; and, providing information to the model that allows the automation of the

generation of performance test scripts and scenarios.

38

Figure 2.1: Example of a UCML model for a library system [Bar04]

Following the same idea as SPT, the UML profile MARTE [OMG09] is a notation for

the Model-Driven Development (MDD) on Real-Time and Embedded Systems (RTES) promoted

by OMG. This UML profile supports the specification, design, verification and validation stages of

RTES systems. It aims to replace its precursor, the UML profile for SPT, to meet the demand for

quantitative aspects of time and express the non-functional properties and execution platforms. All

these are special concerns of designers and developers of RTES [DTA+08].

MARTE notation consists of setting foundations for the description of the model based

on RTES. These basic concepts are refined for modeling and analysis of problems, providing nec-

essary support for the specification of RTES features from specification to detailed design. In this

context, the intention is not to define new techniques for RTES, but to support them. Thus, the

UML MARTE profile provides facilities so that the models can incorporate necessary information

to perform a specific analysis such as performance and scalability. In addition to defining a generic

framework for quantitative analysis with the intention of refining and/or specializing any other type of

analysis, MARTE notation also provides a general purpose mechanism for expressing Non-Functional

Properties (NFP) in UML models (i.e. performance requirements, such as memory size, throughput

or energy consumption), and to specify restrictions on these properties. This mechanism is the

ability to annotate UML diagrams with these stereotypical constraints.

At last, Customer Behavior Model Graphs (CBMG) [MAFM99] [MDA04] is a state tran-

sition graph that can describe a sequence of requests. A sequence of requests defines a session,

whereas a set of sessions represents a workload of a Web application. The CBMG is capable of rep-

resenting every session of a Web Application. Together, these sessions are clustered by an algoritm

39

to obtain patterns of user interaction, i.e. users that have similar behavior in the navigation. The

graph is composed by nodes that represent each one of the states, and transitions between these

states are represented by arrows that bind one element with another. These transitions assign a

probability, which represents the likelihood that a user profile will perform a request. A CBMG is

designed for each user profile identified, since each one of them has different transition probabilities.

Figure 2.2 presents a CBMG model for an occasional buyer of a Web store. This graph

represents the customers that navigate in the Web Store looking for existing products, such as new

books or itineraries for travel, but most of the time end up not buying. This CBMG is composed

of seven states (node symbol). The flow starts in the Entry state. Each state has one or more

transition flows to reach other states or the special state Exit. Note that the CBMG of Figure 2.2

is just a simple example. The complexity of the model depends on the robustness of the Web

application. Therefore, it can have many other states and transitions.

Entry

Browser

Add to Cart

Search

Pay

Select

0.5

0.350.35

0.4

0.4

0.5

0.05

0.3

0.2

Exit

1.0
0.2

0.2
0.425

0.05

0.2

0.425

0.2

Exit0.05

Exit
0.05 0.1

0.05 Exit

Figure 2.2: Example of a CBMG model for an occasional buyer of a Web store [MAFM99]

2.4 Domain-Specific Language

“Domain-specific language (noun): a computer programming

language of limited expressiveness focused on a particular

domain.”
— Martin Fowler

Software Engineering through Software Reuse [Kru92] [FK05] seeks to establish standards

and processes for software reuse in order to consider ways to promote a process able to identify,

organize and group common functionalities into a single application domain. Hence, it is possible

40

to compose a collection of applications with a specific set of features that enable the construction

of reusable software components including, for example, models.

The performance testing process, as well as the development of software, generally pro-

duces a set of artifacts that allows its reuse in applications with similar objectives. Through these

reusable artifacts, it can increase productivity, improve reliability and reduce costs related to the

software development process. In the context of reuse, one can determine a set of concepts, rules

and procedures common to a group of systems with similar objectives. Thus, when grouped, a set

of computer applications that share relevant features, such as requirements, objectives, standards

and procedures, obtains the domain of these applications.

One of the methods available in the literature to model and identify the features of an

application domain is Domain Engineering [WL99] [PBvdL05], which is a key concept in systematic

software reuse that in turn has the domain as its key idea. This area’s main purpose is to enable the

same domain systems to be built from the same process and artifacts, enabling the reuse of common

concepts and features [PDA91]. The Domain Engineering process permits that, from the execution

of their activities, results are obtained as design patterns, code generators, reference architectures, or

the Domain-Specific Language (DSL) [Sof10], also known as Domain-Specific Modeling Language

(DSML), or just Domain-Specific Modeling (DSM) [KT07].

DSL, also called application-oriented, special purpose or specialized languages, are lan-

guages that provide concepts and notations tailored for a particular domain [Fow10]. Nevertheless,

to develop a DSL, a DSM is required to lead to a solid body of knowledge about the domain. DSM is

a methodology to design and develop systems based on Model-Driven Engineering (MDE) [Sch06].

One important activity from a DSM is the domain analysis phase, which deals with a domain’s

rules, features, concepts and properties that must be identified and defined. Hence, domain-specific

modeling languages as well as transformation engines and generators are technologies that com-

bined provide support to develop MDE. MDE is an emerging and promising approach that uses

domain modeling in different levels of abstraction for developing and testing systems increasing their

automation to code generation or model interpretation [BCW12].

From a domain model, one can obtain a DSL aimed at developing particular problems

of a modeled domain, having the main advantages of creating rules and documents, features and

important properties of the domain. Currently, a strategy to support the creation and mainte-

nance of a DSL activity is to adopt metamodeling tools. Such tools are called Language Work-

benches (LW) [Fow09]. There are some available LW, such as Microsoft Visual Studio Visualiza-

tion and Modeling SDK [Mic15a], Meta Programming System (MPS) [Jet15], Eclipse Modeling

Framework (EMF) [EMF15], Generic Modeling Environment (GME) [GME15], Xtext [The15], and

MetaEdit+ [Met15]. There are LW that allow the definition of a DSL through textual definitions in

similar formats to a Backus-Naur Form (BNF) [Bac78]. Moreover, others enable the use of graphical

diagrams for defining a DSL addition of templates for code generation.

Besides implementing the analysis and code generation process, an LW also provides a

better editing experience for DSL developers, being able to create DSL editors with power similar to

41

modern IDE [Fow10]. Thereby, DSL are classified with regard to their creation techniques/design

as: internal, external, or based on LW [Gho11].

Internal DSL are often created on top of an underlying programing language and are embed-

ded within the language that implements it. Therefore, it is also known as embedded DSL [Gho11].

Usually, internal DSL are built with support from General-Purpose Languages (GPL), such as Lisp,

Smalltalk, Ruby, Python, and Boo.

Conversely, external DSL are independent of a programming language. Therefore, it can

be compiled, interpreted or executed in accordance with its implementation. External DSL have

their own syntax or in some cases can be represented by a predefined language, e.g. XML (hence,

it’s a.k.a. stand-alone DSL). However, they need a parser to process it. Moreover, they allow

the developer to create a new syntactic, semantic, and linguistic infrastructure for the problem

domain [Gho11].

In turn, DSL based on LW technique/design are used to express information in a concise

and more abstract way, providing better understanding and visualization of the problem domain.

Furthermore, LW provide support for the use of a graphical representation of the DSL. Thus, DSL

that implement a graphical representation provide a better communication mechanism, e.g. a DSL

user can work with visual elements instead of textual ones. Moreover, unlike the use of internal and

external DSL, graphic-based DSL are easier to use and also provide a better understanding of the

application domain [Fow10].

Therefore, the use of DSL presents some advantages, such as [vDKV00] [Gho11] [GFC+08]:

(a) Better expressiveness in domain rules, allowing the user to express the solution at a high level

of abstraction. Consequently, domain experts can understand, validate, modify and/or develop

their solutions;

(b) Improving the communication and collaboration between testing and development teams, as

well as non-technical stakeholders;

(c) Supporting artifact and knowledge reuse. Inasmuch as DSL can retain the domain knowledge,

the adoption of DSL allows the reuse of the preserved domain knowledge by a mass of users,

including those inexperienced in a particular problem domain;

(d) Enabling better Return On Investment (ROI) in the medium- or long-term than traditional

modeling, despite the high investment to design and deploy a DSL.

Despite that, the use of DSL can present some disadvantages, such as [vDKV00] [Gho11]:

(a) The high cost to design and maintain a DSL, especially if the project has a moderate or high

complexity;

(b) The high cost for training DSL users, i.e. steep learning curve;

42

(c) Difficulty to define an adequate scope for a DSL. It is necessary to understand the problem

domain and involve experts in order to ensure an appropriate abstraction level and language

expressiveness;

(d) A company becoming dependent on an in-house language that is not applied anywhere else.

This can make it difficult to find new staff to their team, as well as to keep up technological

changes;

(e) In case of executable DSL there are issues related to the performance loss when compared to

source code written by a developer.

2.4.1 DSL Design Methodology

The methodology proposed by Bierhoff [Bie06] offers an incremental approach for creating

DSL. This methodology consists in building a DSL from incremental research of a number of existing

applications in a domain. The main advantages of the incremental model of building DSL are

observed primarily in the reduction in costs associated with the DSL creation project, which are

initially lower. The boundaries of the area and, therefore, also the DSL are defined in the process, and

you can still make use of much earlier DSL, since their use may occur according to the advancement

of the creation process. As another approach, proposed by Deursen [vDKV00], developing a DSL

comprises the following steps:

• Analysis: Based on the definition of the scope, the relevant knowledge in this domain has to

be collected and recorded, appropriatelly, in order to translate this knowledge into semantic

elements or notations as well as possible operations in a computer language. Furthermore,

the analysis step is responsible for designing the DSL to describe domain applications;

• Implementation: Must ensure the construction of a library that implements semantic elements

or notations that were documented in the previous step. In the library, this step requires the

development of a compiler to translate programs written in the DSL into a sequence of library

calls.

• Use: Consists in using the DSL to build the desired application in the domain.

2.5 Related Work

“Research is what I’m doing when I don’t know what I’m

doing.”

— Wernher von Braun

Our DSL relies on work from several fields. In this chapter, we briefly described some

essential concepts that underlie our research. The purpose of this chapter is to provide an overview

43

of the state-of-the-art regarding the use or the application of model-based performance testing.

Thus, comparisons and syntheses of the related work considered relevant in the literature have been

analyzed. The adopted inclusion criterion was that a work had to define or use models, notations,

approaches, techniques, methodologies or tools in performance testing. There is a lack of novel

models, languages and supporting tools to improve the performance testing process, mainly in the

automation of scenarios and script generation. To the best of our knowledge, there is little work

describing performance testing tools [RSSP04] [KSF10] [AATP12].

Ruffo et al. [RSSP04] developed their research at the University of Turin in Italy. The

authors propose the solution called WALTy (Web Application Load-based Testing), which is an

integrated toolset with the objective of analyzing the performance of Web applications through a

scalable what-if analysis. This approach is based on a workload characterization being derived with

information extracted from log files. The workload is modeled using Customer Behavior Model

Graphs (CBMG) [MAFM99]. WALTy generates synthetic workload objectively based on the charac-

terization of the user profile. Thus, it applies the following steps in its methodology: (a) To identify

the case study and logical analysis of the Web application; (b) To identify the logic states of the

Web application and map the Web objects for each logical state (HTML pages, Web scripts, etc.);

(c) To analyze the physical infrastructure (servers, network bandwidth, etc.); (d) Automatically

generate the CBMG models from log files; (e) To set the test plan, i.e., replicate the Web appli-

cation to a dedicated test environment; (f) To generate synthetic workload through virtual users

based on CBMG generated models; (g) To collect monitored and reported performance metrics.

This approach focuses in the final phase of the development process, since the system must be

developed to collect the log application and then generate the CBMG. Conversely, our approach

aims to support the performance requirements identification, and it is performed in the initial phase

of the development process to facilitate the communication among project stakeholders.

Krishnamurthy et al. [KSF10], from the University of Calgary in Canada, present an ap-

proach that uses application models that capture dependencies among the requests for the Web

application domain. This approach uses Extended Finite State Machines (EFSM) [LY96], in which

additional elements are introduced to address the dependencies among requests and input test data.

The approach is composed of a set of tools for model-based performance testing. One tool that

integrates this set of tools is SWAT (Session-Based Web Application Tester) [KRM06], which in

turn uses the httperf tool - an open source request generator - to submit the synthetic workload

over the SUT. From the standpoint of performance modeling, it is worth noting that the approach

implements two models: a workload model and an application model, which are transformed into

synthetic workload models to be submitted to httperf. To validate the approach, the study presents

two case studies using systems based on open-source sessions to evaluate the performance of the

applications and determine whether the proposed approach is robust e§nough to model different

types of Web applications. The first is a pet store based on Java technology, and the second is a

bidding system called RUBiS (Rice University Bidding System). However, this approach presents

some disadvantages, such as being restricted to generating workload for a specific workload tool and

44

the absence of a model to graphically design the performance testing, i.e. a model to determine

the performance metrics for which monitoring is desired for each server that composes the SUT

infrastructure. This is one of the requirements contemplated by Canopus. In turn, Canopus aims

to be a modeling language independent of technology, responsible for generating performance test

scenarios and scripts for different workload generators, e.g. HP LoadRunner or MS Visual Studio.

Abbors et al. [AATP12], from Åbo Akademi University in Finland, present a model-based

performance testing tool, henceforth MBPeT. This has a measurement technique based on Master-

Slave architecture through which the performance of Web applications and Web services is measured.

The tool uses Probabilistic Timed Automata (PTA) to model the virtual user behavior and then

to generate workload to the system in real-time. The master server of MBPeT is responsible for

analyzing (Parser) the PTA model as input; next, it generates abstract outputs that will serve

as input to the slaves; finally it generates the test report aggregating the results of the obtained

metrics. The slaves, in turn, have the main function of generating the workload (Load Generator),

and monitoring the resources of the SUT, reporting the metrics collected by the master server and

realizing requests (Adapter) to be submitted to the SUT. The workload generator approach can be

used in two ways to run performance testing: for a certain number of concurrent virtual users; or

for certain Key Performance Indicators (KPI), e.g., response time. Like our approach, the MBPeT

is a measurement-based approach. Nonetheless, this approach, proposed by Abbors et al., does not

include, in its model, the aspects of performance requirements, e.g. response time, for automatic

generation of SLA, such as proposed by Canopus.

Pozin and Galakhov [PG11] describe a study for the organization and execution of auto-

mated performance testing for the information systems class. The approach is based on the proposed

metamodel as tools for describing artifacts’ properties of workload experiments. The proposal is di-

vided into four metamodels: requirements, system, load, and measurement. The interrelationship

among the models used to a particular technology in order to apply the concept of the model-based

performance testing involves the following steps: (a) Determination of testing objectives; (b) De-

velopment of testing program and procedures; (c) Test preparation; (d) Load generation; (e) Data

collection; (f) Interpretation and analysis of results.

The proposed approach uses, as a solution for generating workload, IBM Rational Robot

testing tools. The technology covers all aspects of planning, load experience and analysis of its

results. This is similar to the solution proposed in Canopus, where language is divided into three

metamodels: scenario, monitoring, and scripting, which compared with the approach of Pozin and

Galakhov, would be compatible, respectively, with the models: load, measurement and system.

However, large comparisons between Canopus and the proposed approach by the authors could

not be performed since the study does not provide details about the formalism used to design

performance testing models, nor what technology is used to generate workload. The study presents

no empirical evidence to demonstrate step by step the use of the proposed approach, although it

has several projects analyzed to develop and test the proposed approach.

45

Lutteroth and Weber [LW08], from the University of Auckland in New Zealand, present a

study to model realistic workload for performance testing. They argue that predictive models such as

stochastic models are easier to represent, besides allowing greater coverage of the different system

iteration flows. This analysis is justified, since the load models are limited to reproduce, usually,

the user behavior iterations through sessions recorded with the use of technologies such as Capture

and Replay [EAXD+10], a.k.a. Record and Playback. The proposal of the authors is to further

specifications to software-oriented forms, which are represented graphically by flowcharts. Among

the annotated features needed in the models for generating workload, stand out: (a) Stochastic

iteration of users: the possibility of making stochastic behavior dependent on the session history;

(b) Generation of form parameters stochastically and recognition of returned pages; (c) Suitable

parameters for the workload. The authors assert that the proposed methodology is independent of

technology and can extend its application to other system types based on request-response system

classes, which fall into Web applications. The approach of Lutteroth and Weber aims to just

automate the generation of test scenarios and scripts through workload models and user iteration

behavior with the SUT. On the other hand, the Canopus model has a charge for determining

performance metrics for computational resources utilization, enabling the systematic generation of

SLA. However, it is noteworthy that the analysis of stochastic models presented in this study shows

evidence that predictive models combined with measurement models (scenarios and scripting) can

generate promising results for performance testing.

Although these works introduce relevant contribution to the domain, none of them pro-

posed a specific language or modeling notation to design performance testing. There are a few studies

investigating the development of DSL to support performance testing [BZGL07] [Spa12] [Gat15].

Bui et al. [BZGL07] propose DSLBench for benchmark generation. Spafford [Spa12] presents the

ASPEN DSL for performance modeling in a predictive-based approach [WFP07]. Meanwhile, Gatling

DSL [Gat15] is an internal DSL focused in supporting a measurement-based approach. Differently

from them, Canopus provides a graphical and textual DSL to design performance testing in a

measurement-based approach.

Bui Ngoc Bao et al. [BZGL07] from New South Wales University in Australia used the

approach based on Domain-Specific Modeling (DSM) to develop a new DSL, entitled DSLBench,

for the benchmark generation domain. The DSM approach has some advantages over other bench-

mark generation frameworks. It provides a simple modeling environment that reduces the learning

curve since it directly uses concepts abstracted from the performance testing domain. Furthermore,

DSLBench creates a complete load test suite, able to perform comprehensive load testing includ-

ing data population, generating random data, processing of test cases and collecting performance

metrics. The proposal associated with code generation allows the generation of a benchmark appli-

cation from a high-level model for performance testing. DSLBench is implemented using Microsoft

DSL Toolkit with MS Visual Studio 2005 Team Suite as a plug-in to support the performance test

design capacity. The article presents a case study based on applications developed with the .NET

framework using the C#language. Canopus aims to be a DSL for modeling performance testing

46

of Web applications as well; based on the best of the acquired knowledge, there is no language

that can support performance testing for Web applications in their entirety. However, DSLBench

proved to be the most similar to the approach proposed by Canopus. Despite their similarity, one of

the major disadvantages of DSLBench is to be integrated with the .NET platform, which becomes

totally dependent on proprietary technologies while Canopus aims to become a solution for modeling

performance testing of Web applications independent of the performance testing tool.

Spafford and Vetter [Spa12] present a DSL for performance modeling, entitled Abstract

Scalable Performance Engineering Notation (ASPEN), a scalable abstract notation for performance

engineering. The purpose of the notation includes a formal specification of an application perfor-

mance behavior and an abstract machine model. Unlike Canopus, models through which performance

can be compared with other techniques, in which the focus is on measuring models, ASPEN differs

in considering predictive models through which performance can be compared with other techniques,

such as analytical models (e.g. Matlab), hardware emulation (e.g. RAMP or DEEP), among oth-

ers. The study presents two practical examples of the application of the proposed language: a

three-dimensional model of Fourier (3D Fast Fourier Transform) and an application of molecular

dynamics. The authors also propose a set of tools that allows scientists to balance their applications

and systems on factors such as speed and accuracy.

On the DSL development perspective, different solutions for creating DSL have been pro-

posed, also known as Language Workbenches, including both commercial and open-source. The two

most popular commercial products today are MetaEdit+ from MetaCase [KLR96], and Visual Studio

Visualization and Modeling SDK from Microsoft [Mic15a]. The open-source arena is no different.

Although a plethora of solutions exist, ranging from solutions like Generic Modeling Environment

(GME) [GME15] and Meta Programming System (MPS) [Jet15] from JetBrains, to Eclipse plug-ins

as Eclipse Modeling Framework (EMF) [EMF15], Graphical Modeling Project (GMP) [GMP15], and

Xtext [The15]. A comprehensive list of existing tools with the analysis of their features is presented

in [LJJ07]. Moreover, a systematic mapping study on DSL is summarized in [dNVN+12].

2.6 Chapter Summary

This chapter introduced the key concepts associated with performance testing and domain-

specific language, and also compared the proposed research with related studies. Given the complex-

ity and cost involved in performance testing, the aim of this study is to investigate how a DSL can

contribute to the quality, cost and effectiveness of performance testing. Thereunto, Chapter 3 will

present the research methodology, research design and research context regarding the environment

in which this study was developed.

47

3. RESEARCH METHODOLOGY

“To achieve great things, two things are needed: a plan, and

not quite enough time.”

— Leonard Bernstein

3.1 Overview

The knowledge is considered scientific if techniques that allow its verification can be ap-

plied, i.e., determining the research methods that achieved such knowledge. We can define a

method as a way to reach a purpose. Thus, the scientific research depends on a set of intellectual

and technical procedures so that its goals are achieved, i.e., research methodology. Hence, research

methodology is a set of process and mental operations that had to apply in the research. In that

sense, this chapter presents a research methodology that we plan and apply in the study developed

in this thesis.

This research is exploratory. Exploratory research enables to define a problem and formulate

hypotheses about the topic under study [Yin13]. Besides, it aims to examine an issue or a non-

studied problem, which has not been discussed previously by other studies [SCL91]. Exploratory

research allows the researcher to determine a set of data collection techniques to conduct the study.

In this research, we choose to use as main methods: literature review, case study, and empirical

experiment. Next, Section 3.2 we present how each method will be applied in the context of the

research design. Section 3.3 presents the research context, describing the environment of research

group as well our industrial partner.

48

3.2 Research Design

“If we knew what it was we were doing, it would not be called

research, would it?”

— Albert Einstein

The research developed in the thesis follows the objectives defined in Chapter 1. Thereby,

we classified the nature of our proposal in applied research, with a strategy quantitative of the

exploratory research type, having as its base the experimental research design. The empirical exper-

iment method having been applied, we follow the protocol proposed by Wholin [WRH+12], using

the instruments of quantitative and qualitative data collection. For this reason, it is an experimental

research, developed in a laboratory, i.e., in vitro. The choice to apply an empirical experiment should

be in fact that the thesis proposal makes “how” and “why” questions, due to needs of validation of

the DSL proposed to compare its performance with other approaches already used by industry.

To develop the research project proposed, we planned a research methodology organized

in three phases: Conception, Validation, Knowledge and Technology Transfer; according

to the presented research design in Figure 3.1. Each phase is described in details as follows:

Figure 3.1: Research design

(1) Conception: The first phase is divided in two blocks: Theoretical Base and Development.

The former block includes the idea definition, the research question, as well as its strategy,

49

the research design, besides a literature review in order to establish the theoretical basis to

main research topics such as performance test modeling, model-based testing, and domain-

specific language. This block is also responsible for defining the requirements of the DSL,

and consequently, the design decisions based on these requirements. The latter block exerts

the function to identify, analyze and implement the domain, in addition to studying the

different frameworks and Language Workbenches (LW) [ESV+13] for creating domain-specific

languages, and also for elaborating the mechanisms to translate the visual model in a textual

language, i.e. the generator module;

(2) Validation: The second phase is divided in two blocks: Utilization and Experiment.

The first block is responsible for applying our DSL in two Web applications: one simple and

didactic, known by academic community, TPC-W [Men02], and the other more complex and

robust, based on an industrial environment, henceforth Changepoint [Cha15]. The second

block is part of the validation of a proper approach. Therefore, we intend to conduct a

controlled empirical experiment with inexperienced and experienced subjects, with the purpose

to plan, execute, collect data, and analyze the experiment results comparing our DSL with

another approach applied by industry. Based on the context enrollment and the previously

conducted research, we chose comparing our DSL with the UML [OMG15] approach;

(3) Knowledge and Technology Transfer: The last phase is responsible for producing scien-

tific essays to the academic community, as well as transfering the technology developed to our

partner with the intention that it adopts our solution to improve its testing process.

Regarding data analysis, we intend to apply statistical methods such as average, median,

and standard deviation, among others based on descriptive statistics proposed by Oates [Oat06],

in order to measure the efficiency and effectiveness of the proposed DSL to answer the research

questions. However, we intend to perform advanced statistical techniques to evaluate, for instance,

the normal distribution and quality of our data. However, it depends on the number of experiment

subjects. Table 3.1 presents a synthesis of the research methodology.

Table 3.1: Synthesis of the thesis

Subject Performance Testing

Topic Performance Test Modeling

Research
Question

How to improve model-based performance testing using the
domain-specific language in Web applications?

Hypothesis The performance test modeling through of a domain-specific lan-
guage in Web applications can improve the quality, cost and ef-
fectiveness of performance testing.

Main Goal To develop a domain-specific language for modeling performance
testing in Web applications.

50

3.3 Research Context

This study was conducted in cooperation with the Technology Development Lab (hereafter

referred as TDL) of Dell Computer Brazil, which is a global IT company. It is a global IT company

whose development and testing teams are located in different regions worldwide to develop and test

in-house solutions in order to attend their own demand systems on a global scale of sales of computer

assets. The aim of this cooperation is to experiment and develop new strategies and approaches for

software testing.

The software process adopted by TDL is briefly described as follows. The development

team implements the unit tests, which performs the preliminary tests in a dedicated development

environment. After a stable version has its requirements properly attended, a version is published

in the test environment for the test team to perform the functional and integration testing. If

the version presents failures, the development team refactors the application and reinitializes the

process. If not, the version is implanted in a performance environment to perform the load and stress

testing. Some applications depend on the complexity of the production environment and the volume

of infrastructure applied, given the high-level costs to maintain the replicated environment [AT10].

Lately, since the application attends to quality requirements established, e.g. performance, a software

publisher is responsible for deploying the version in the production environment.

The TDL develops and tests their solutions in different platforms, languages and Integrated

Development Environments (IDE), which includes, respectively, Windows, Linux; Java, C#, C++,

Phyton, Ruby, PHP, ASP; Eclipse, NetBeans, Visual Studio, RubyOnRails; besides making use of

commercial solutions such as Siebel, PeopleSoft, Changepoint and Oracle, in which they integrate

with their legacy systems.

The performance testing teams use commercial tools, frameworks and open-source to

automate their activities partially. However, often due to the complexity of test, the performance

testing teams need to learn a new technology, tool or framework to allow the testing of non-trivial

applications. This way, the performance testing team constantly has a steep learning curve, due the

complexity of the technologies and tools used to carry out their activities.

In a controlled experiment [RdOC+15] previously performed with the TDL team, we ob-

served that many professionals have little knowledge or familiarity with modeling, even though these

notations, such as UML, are commonly used by the industry. Thus, adopting and training a team to

work becomes the testing process and their teams become more homogeneous. Another factor ob-

served, due to the global teams distribution, in development, test or infrastructure, the performance

testing teams do not follow the standard process to execute their performance testing activities,

resulting in redundancy, low reuse, rework, and expensive costs, etc.

We propose a pilot study in order to mitigate or eliminate these factors, by creating a

domain-specific language for modeling performance testing to adopt the MBT approach by the

partner through the TDL. We intend to perform an empirically controlled experiment to validate

51

the proposed DSL in a software project of our partnership associated with Systems Engineering

Research Center (Centro de Pesquisa em Engenharia de Sistemas – CePES1), being conducted and

supervised by Experimental Software Engineering Lab (Laboratório de EXperimentos em Engenharia

de Software - LEXES), involving both inexperienced and experienced performance engineers. In a

positive scenario, our intention is deploying the approach integrating to performance testing tools

derived from Software Product Line (SPL), PLeTs [RVZG10], as a component. The PLeTs is an SPL

of model-based testing tools, with an architecture based on components to generate and execute

the test scripts and scenarios of performance testing.

The proposed DSL aims to model the behavior of Web application and to derive test

scenarios and scripts of performance testing based on models developed. Before of any proposal

of creating a domain-specific language, a set of activities was proposed to the research project of

CePES, like performance testing for a software project and Proof of Concept (PoC).

3.4 Chapter Summary

Chapter 3 presented research methodology, research design and research context where

this study was developed. Hence, we focused our efforts on formalizing our research, showing

how research methods and techniques were applied to plan, conduct and evaluate our research.

Thereunto, we divided this chapter into two sections as follows: in the former, we described our

research design, presenting how each method was applied in the context of the research evolution;

in the latter, we introduced the research setting, contextualizing the environment of the research

group as well as our industrial partner.

Chapter 4 discusses the analysis of the performance testing domain and presents the

language and their metamodels that compose our DSL, as well as their requirements and design

decisions. We also show an example of how to demonstrate the use of our DSL to support the

performance testing modeling design of a Web application.

1http://www.cepes.pucrs.br

53

4. CANOPUS

“Canopus (kǫnopu; α Carinae, Alpha Carinae), is a white

binary star in the Keel of the ship Argo Navis, is the brightest

star in the southern constellation of Carina, and the second

brightest star in the night-time sky, after Sirius. Canopus is

essentially white when seen with the naked eye. It is located

in the far southern sky, at a declination of −52° 42’ and a

right ascension of 06h24m. Its name comes from the

mythological Canopus, who was a navigator for Menelaus,

king of Sparta. The Greeks called it Kanobos, and Kanopus,

transcribed into Canobus and now it universally is Canopus.”

— Wikipedia

4.1 Overview

In Chapter 3, we focused our efforts on formalizing our research, showing how research

methods and techniques were applied to plan, conduct and evaluate our DSL. In this chapter,

Section 4.2 discusses the analysis of the performance testing domain, as well as its requirements and

design decisions in, Section 4.3 and Section 4.4, respectively. Section 4.5 presents Canopus. Next,

Section 4.6 presents the metamodels that compose our DSL. Section 4.7 shows an example of use

to demonstrate the utilization of our DSL to support the design of performance testing modeling

of Web applications. Section 4.8 points out lessons learned. Finally, we summary the chapter in

Section 4.9.

4.2 Domain Analysis

Before we start to describe our DSL, it is important to mention some of the steps that

were taken prior to the definition of the requirements and design decisions, as well as to clearly define

54

our problem domain. These steps were taken in collaboration with researchers from our group and

test engineers from the Technology Development Lab (TDL) of Dell Computer Brazil, a global IT

company.

The aim of the proposed DSL is to allow a performance engineer to model the behavior of

Web applications - although, we focus on Web Application, our DSL is not intended to be limited

to this domain - and their environment. Through the developed models it is possible to generate

test scenarios and scripts that will be used to execute performance testing.

The first step was related to the expertise that was acquired during the development of

a Software Product Line (SPL) [CNN01] to derive MBT tools called PLeTs [RVZG10]. These SPL

artifacts can be split into two main parts: one that analyzes models and generates abstract test

cases from those models, and one that takes the abstract test cases and derive concrete test scripts

to be executed by performance testing tools. Several models were studied during the first phase

of the development of our SPL, e.g. User Community Modeling Language (UCML) [Bar15], UML

profiles, such as Schedulability, Performance and Time (SPT) [OMG05] and Modeling and Analy-

sis of Real-Time and Embedded Systems (MARTE) [OMG09], Customer Behavior Model Graphs

(CBMG) [MAFM99], and Finite State Machines (FSM) [Gil62]. Likewise, several performance test-

ing environments and tools were studied, such as Apache Jmeter [JLH+10], HP LoadRunner [Hew15],

IBM Rational Performance Tester [CDD+08], Borland Silk Performer [BCM07], Microsoft Visual

Studio [Mic15b], LoadUI [Bea15], Grinder [GZ15], and Neo Load [Neo15].

The second step was to apply some of the models and tools identified in the previous

step to test some open-source applications, such as TPC-W (Transaction Processing Performance-

Web) [Men02] and Moodle Learning Management System [Moo15]. Furthermore, we also applied

some of the MBT tools generated from our SPL to test those applications and to support the test

of real applications in the context of our collaboration with the TDL (see, for example, [RBC+15]).

Those real applications were hosted in highly complex environments, which provided us with a deep

understanding on the needs of the performance testing teams.

Besides that, we also based our DSL on well-known concepts from Software Engineering

Body of Knowledge (SWEBOK) [SBF14], IEEE Standard Glossary of Software Engineering Terminol-

ogy (IEEE Std. 610.12-1999) [IEE90], IEEE Standard for Software and System Test Documentation

(IEEE Std. 829-2008 [IEE08] and other literature, such as Meier et al. [MFB+07], Menascè et

al. [MV00] and Molineux [Mol09]. These references were chosen to mitigate the bias, provide a the-

oretical basis and ensure the coherency among concepts, features, and properties of the performance

domain.

Regarding domain analysis, some works present an approach based on the formalization

of domain analysis through ontologies [TMG09] [WSPS09]. Therefore, to determine the concepts,

entities and functionalities that represent the performance testing domain, we adopted a strategy

to identify and analyze the domain using an ontology [FV14]. This ontology provides the basis

for determining the concepts, relationships, and constraints that represent the performance testing

domain. Figure 4.1 shows a UML class diagram to resume the main terms represented in the

55

performance testing ontology [FV14]. Each class in the diagram represents a concept and each

association represents a property. Furthermore, the origin of a property denotes its domain in

OWL (Ontology Web Language) [BvHH+04], while its destination is the image (or range) of such

relationship between concepts.

Figure 4.1: Class diagram of main ontology concepts and relationships [FV14]

In addition to this ontology, we used an initial performance testing body of knowledge based

on steps aforementioned to provide the basis for determining the objects, relationships, and con-

straints to express the performance testing domain. Furthermore, this body of knowledge was used

as a base to define the performance testing requirements and design decisions for our DSL [BZR+14].

Before creating any DSL to support modeling performance testing in the target DSL, the TDL first

considered the use of off-the-shelf solutions, provided that specific requirements were met. Thus,

we describe these requirements in detail in the next sections.

4.3 Language Requirements

This section enumerates the requirements (RE) we collected from our expertise and also

from the software engineers from TDL. These requirements are related to features and concepts

from performance testing domain. Moreover, we discuss some mechanisms for implementing the

proposed DSL.

RE1) The DSL must allow to represent the performance testing features. One of the main

functions of the performance testing is to reveal bottlenecks of a system. Therefore, the applications

should be measured and controlled in small parts that can be defined as transactions. This allows to

measure the performance quality for each activity of a system. For instance, to define the response

time SLA based on these transactions.

56

RE2) The technique for developing our DSL must be based on Language Workbench (LW). Since

we do not want to develop new tools, i.e., editor or compiler, as in an external DSL; neither we

intend to embed our DSL in a GPL, we will base our DSL on a LW. This will allow us to focus

on the analysis domain and development of the new DSL rather than spend effort on implementing

new tools or having to choose a General-Purpose Language (GPL) that might not be appropriate

for the DSL that we want.

RE3) The DSL must support a graphical representation of the performance testing features. This

requirement does not concern the language itself, but the LW that will support its development.

Thereunto, we desire that the LW supports a graphical-based editor for creating DSL. Moreover,

the LW should allow to implement the domain concepts, their translation rules, designing symbols

and elements of the language, and also to generate different code for different tools.

RE4) The DSL must support a textual representation. The proposed DSL should also include a

custom language that is close to a natural language. This will facilitate its adoption by test engineers

that are used to use textual representation. The language should have features and keywords that

remember the performance testing domain.

RE5) The DSL must include features that illustrate performance counters. In performance testing

there are many performance counters, e.g., response time or network throughput, that provide means

to analyze both application quality level and host infrastructure.

RE6) The DSL must allow the modeling of the behavior of different user profiles. This requirement

is a specific function of the performance domain, which should allow that the behavior of different

user profiles, such as a buyer or new clients, is modeled according to the SUT. In our context we

will focus on Web applications.

RE7) Traceability links between graphical and textual representations should require minimal

human intervention/effort. Traceability is an important feature in software solutions, mainly when

involve model transformation, e.g., translation from a graphical to a textual representation. The

proposed DSL should automate the mapping process of graphical elements of the model to their

respective textual counterparts.

RE8) The DSL must be able to export models to formats of specific technologies. This require-

ment should ensure that models written in our proposed DSL can be exported to the format of the

input of specific testing tools, e.g., HP LoadRunner [Hew15], Microsoft Visual Studio [Mic15b], or

Neo Load [Neo15].

RE9) The DSL must generate model information in a XML file. This requirement aims to ensure

that we can export our DSL to any other technology in the future. That is, we export all information

from the system model into an eXtensible Markup Language (XML) file, so anyone that wants to

use our solution can import the XML into their technology.

RE10) The DSL must represent different performance test elements in test scripts. The modeled

diagram using the proposed DSL must represent multiples elements of test scripts, such as conditional

or repetition control flows, among others.

57

RE11) The DSL must allow the modeling of multiple performance test scenarios. Performance

testing is responsible to carry out testing of part of or the whole system under normal and/or stress

workload. The DSL, therefore, should be able to generate multiples performance test scenarios, i.e.,

under normal and stress workload conditions.

Currently, to the best of our knowledge, no existing language or model (commercial or

not) meets all of the presented requirements. Therefore, given the automation needs of performance

testing, we propose a DSL for modeling performance testing of Web applications.

4.4 Design Decisions

In this section, we describe our design decisions for creating a DSL that supports the

requirements discussed in Section 4.3. For each design decisions, we mention the associated re-

quirements that are being dealt with.

DD1) To use a LW that supports graphical DSL (RE2, RE3). To attend these requirements we

performed a literature review on existing LW, including academic, commercial or open-source. The

study of Erdweg et al. [ESV+13] presents the state-of-the-art in LW and defines some criteria (the

authors call them features) that help someone to decide which tool should be adopted. Given the

requirements of our proposed DSL, we chose the MetaEdit+ from MetaCase [KLR96], because it

supports most of the proposed features in the study of Erdweg.

DD2) The features of the performance testing domain will be used in an incremental way (RE1,

RE5). Developing a DSL requires a series of phases, such as analysis, design, implementation,

and use [MHS05]. Usually researchers focus their attention to the implementation phase, but

only a few of them focus on the analysis of the domain and design of the DSL. Nevertheless,

there are some methodologies for domain analysis, which helps to unravel the knowledge about

the problem domain analyzed. Among them we can highlight Domain Specific Software Architec-

tures (DSSA) [TTC95], Feature-Oriented Domain Analysis (FODA) [KCH+90], and Organization

Domain Modeling (ODM) [SA98]. Some works present an approach based on the formalization of

domain analysis through ontologies [TMG09] [WSPS09]. Thus, in order to determine the features

that represent the performance testing domain, we adopted a strategy to identify and analyze the

domain using an ontology [FV14]. This ontology provides the basis for determining the concepts,

relationships, and constraints that represent the performance testing domain. Besides the ontology,

we used the performance testing body of knowledge (Section 4.2).

DD3) To provide a graphical language capable of representing the behavior of user profiles for

different performance test scenarios (RE6, RE11). To attend these requirements we analyzed differ-

ent models and graphical representations that support performance testing. Among the approaches

and techniques, the most relevant for our work were UML profiles. Besides that, it is also important

to mention a theoretical language proposed by Scott Barber for modeling users behavior, called

UCML. Based on these different approaches and techniques, the graphical language will have visual

58

elements capable of representing the behavior of different user profiles. Besides the flow of activities

that the user performs in the SUT, the graphical language will have visual elements to represent

the performance test scenarios settings, including information about the performance testing do-

main, such as number of virtual users (VU), test duration, metrics to be evaluated (response time,

memory available, processor time, among others). It is also possible to include the randomization

and percentages of execution for each interaction that a VU executes during performance testing.

Another very important feature is that the DSL can represent abstract data that will be instantiated

in activity of the performance testing process, for example, during the generation of the performance

test scripts.

DD4) To create a textual representation in a semi-natural language (RE4). Behavior-Driven

Development (BDD) [WH12] is an agile software development process, in which acceptance test-

ing, mainly functional testing, is essential to advance to next phase of a software project, since

it facilitates the understanding among testing and development teams and stakeholders. Usually,

tests are described in natural language in order to ensure this common understanding regarding the

system requirements for all project members. Even though it is common to find languages that use

natural language to describe functional testing, e.g., Gherkin [WH12], to the best of our knowledge

none of them includes performance testing features. Therefore, we intend to extend this language,

to include the performance testing features. Gherkin is interpreted by a command line tool called

Cucumber, which automates the acceptance testing execution.

DD5) To provide automated traceability between the graphical and textual representations (RE7,

RE10). Traceability is an important feature that should be mapped in the implementation of a

DSL. Thus, it is required that the LW allows the creation of translation rules among models. In

this case, the mapping among the graphical elements with their respective assets of the textual

representation must be provided. It is important that this mapping is not an one-to-one mapping.

Some graphical elements can be mapped to several instances of the textual elements. For example, a

graphical decision point can be mapped to several textual scripts, one for each branch present in the

graphical representation. In order to solve this mapping, algorithms such as the Chinese Postman

Problem [Edm73] can be used.

DD6) To support the integration of the DSL with other technologies (RE8, RE9). It should be

able to export the models (test scenarios, abstract test cases, etc.) described in the DSL to other

formats, such as XML or HP LoadRunner [Hew15] and Microsoft Visual Studio [Mic15b] input

formats. The ability to export data in XML format will allow future users of the language to use it

with other technologies or IDEs.

59

4.5 The Language

“Works of imagination should be written in very plain

language; the more purely imaginative they are the more

necessary it is to be plain.”

— Samuel Taylor Coleridge

This section presents the DSL that we developed to meet the requirements described in

Section 4.3 and based on the design decision from Section 4.4. Our DSL is composed of three parts:

monitoring, scenario, and scripting.

Monitoring: The performance monitoring part is responsible for determining all servers

used in the performance testing environment. For each server (i.e., application, databases, or even

the load generator), information on the actual testing environment has to be included, e.g., IP

address or host name. It is worth mentioning that even the load generator has to be described in

our DSL, since we can also monitor the performance of the load generator. Sometimes, the load

generator has to be split into several servers if we really want to stress the application or database

server. For each host, it is possible to indicate the performance counters that will be monitored.

This monitoring part requires that at least two servers have to be described: one that hosts the

application (SUT) and another to generate the workload and to monitor the performance counters

of the SUT.

Scenario: The performance scenario part allows setting user and workload profiles. Each

user profile is associated to test scripts. If a user profile is associated with more than one test

script, a percentage is attributed between the user profile and each test script, i.e., it describes the

percentage that that test script is executed. In addition to setting user profiles, in this part, it also

is important to set one or more workload profiles. Each workload profile is composed of several

elements, defined as follows: a) Virtual users (VU): refers to the number of VU who will make

requests to the SUT; b) Ramp up time: defines the time it takes for each set of ramp up users to

access the SUT; c) Ramp up users: defines the number of VU who will access the SUT during each

ramp up time interval; d) Test duration: refers to the total time of performance test execution for

a given workload; e) Ramp down users: defines the number of VU who will leave the SUT on each

ramp down time; f) Ramp down time: defines the time it takes for a given ramp down user to stop

the testing.

Scripting: The performance script part represents each of the test scripts from the user

profiles in the scenarios part. This part is responsible for determining the behavior of the interaction

between VU and SUT. Each test script includes activities, such as transaction control or think time

between activities. The same way as there is a percentage for executing a test script, which is defined

in the scenarios part, each test script can also contain branches that will have a user distribution

associated to each path to be executed, i.e., the number of users that will follow each path.

60

This set of elements composes the metamodels of Canopus, which will be described in the

next section.

4.6 Metamodels

To define the Canopus, we need a model to create our performance testing models, i.e. a

metamodel, which can be used to create abstract concepts for a certain domain [KT07]. A meta-

model is composed of metatypes, which are used to design a specific DSL. The development process

of generating such metamodels is called metamodeling, which is a framework defined by meta-

metamodels to generate metamodels [KBJV06]. There are several metamodeling environments,

a.k.a. Language Workbenches (LW), such as Generic Modeling Environment (GME) [GME15],

Eclipse Modeling Framework (EMF) [EMF15] and MetaEdit+ Workbench [Met15]. To support the

creation of our DSL, we chose MetaEdit+, one of the first successful commercial tools. MetaEdit+

supports the creation and evolution of each of the Graph, Object, Port, Property, Relationship and

Role (GOPPRR) [KT07] metatypes.

A Graph metatype is a collection of objects, relationships and roles. These are bound

together to show which objects a relationship element connects through which roles. A graph is

also able to maintain information about which graphs its elements decompose into. A graph is one

particular model, usually shown as a diagram. The Object metatype is the main element that can

be placed in graphs. Examples of objects are the concepts of a domain that must be represented

in a graph. It is worthwhile to highlight that all instances of a created object can be reused in

other graphs. The Relationship metatype is an explicit connection among two or more objects.

Relationships can be attached to an object via roles. The Role metatype specifies how an object

participates in a relationship. A port is an optional specification of a specific part of an object to

which a role can connect. Normally, roles connect directly to objects, and the semantics of the

connection are provided by the role type. If you want a given role type to be able to connect to

different places on an object with different semantics, you can add ports to the object’s symbol.

For example, an Amplifier object might have a port for analog input, a port for digital input, and

an analog output port. Roles connecting to each of these will have different semantics. Ports are

defined for an object type, and all instances share those same ports. In Figure 4.2, some examples

of the basic elements of these metatypes are labeled.

Figure 4.2: GOPPRR metatypes from MetaEdit+ language workbench

61

Canopus has 7 metamodels presented by 7 packages (see Figure 4.3). The main meta-

models that compose our DSL are Canopus Performance Monitoring, Canopus Performance

Scenario, and Canopus Performance Scripting, which together compose the Canopus Perfor-

mance Model.

Figure 4.3: Canopus package diagram

Canopus Performance Monitoring Metamodel

The Canopus Performance Monitoring (CPM) metamodel is intended to be used to

represent the servers deployed in the performance testing environment, i.e. application, databases,

or even the load generators. Moreover, for each one of these servers, information about the testing

environment must be provided, e.g. server IP address or host name. It is worth mentioning that

even the load generator must be described in our DSL, since in several cases it can be desirable to

monitor the performance of the load generator. Furthermore, some load generator solution provides

support to generate load from several servers if we really want to stress the application or database

server.

The CPM metamodel requires that at least two servers have to be modeled: one that

hosts the SUT and another that hosts the load generator and the monitoring tool. The second

row of Table 4.1 presents the metatypes supported by the CPM metamodel: 3 objects (SUT, Load

Generator (LG), Monitor); 2 relationships (Flow, Association); and, 4 roles (From, To, Source,

Target). Moreover, these metatypes are bound by 4 bindings. For instance, a Flow relationship

connects, using the From and To roles, the LG to the SUT objects. Furthermore, two objects (LG and

SUT) from the metamodel can be decomposed (i.e, into subgraphs) in a Canopus Performance

Metric model.

Canopus Performance Scenario Metamodel

The Canopus Performance Scenario (CPSce) metamodel is used to represent the

users workload profiles. In the CPSce metamodel, each user profile is associated to one or more

scripts. If a user profile is associated with more than one test script, a percentage must be attributed

62

Table 4.1: Summary of the Canopus metamodels and their GOPPRR metatypes
Metamodel Objects Relationships Roles Bindings Subgraphs

Canopus

Performance

Model

Monitoring

Scenario

Scripting

Group Model

Project Label

Monitoring ->Canopus Performance Monitoring

Scenario ->Canopus Performance Scenario

Scripting ->Canopus Performance Scripting

Canopus

Performance

Monitoring

SUT

Load Generator

Monitor

Flow

Association

From

To

Source

Target

Association (Source[SUT]->Target[SUT])

Flow (From[LG]->To[SUT])

Flow (From[Monitor]->To[SUT])

Flow (From[Monitor]->To[LG])

LG ->Canopus Performance Metric model

SUT ->Canopus Performance Metric model

Canopus

Performance

Scenario

User Profile

Script

Workload

Association
From

To
Association (From[User Profile]->To[Script])

Script ->Canopus Performance Scripting

Workload ->Canopus Performance Workload

Canopus

Performance

Scripting

Initial

Final

Activity

DataTable

Thinktime

SaveParameters

Association

Fork

Join

Transition

From

To

Read

Write

Association (Read[Activity]->Write[SaveParameters])

Association (Read[DataTable]->Write[Activity])

Association (Read[SaveParameters]->Write[Activity])

Fork (From[Activity]->To[Activity])

Join (From[Activity]->To[Activity])

Transition (From[Activity]->To[Activity])

Transition (From[Activity]->To[Final])

Transition (From[Activity]->To[ThinkTime])

Transition (From[Initial]->To[Activity])

Transition (From[ThinkTime]->To[Activity])

Activity ->Canopus Performance Scripting

DataTable->Canopus External File

Canopus

Performance

Metric

Metric

Counter

Threshold

Criteria

Association

Bifurcation

From Metric

To Counter

From Counter

To Criteria

To Threshold

“Association (From Metric[Metric]->

To Counter[Counter])”

“Bifurcation (From Counter[Counter]->

To Criteria[Criteria] && From Counter[Counter]->

To Threshold[Threshold])”

Canopus

Performance

Workload

Ramp Down Time

Ramp Down User

Ramp Up Time

Ramp Up User

Test Duration

Virtual User

Canopus

External File

Rows

Columns
Traceability

From

To
Traceability(From[Rows]->To[Columns])

to every script belonging to this profile, i.e. it defines the number of users that will execute a test

script. In addition to setting user profiles, in the CPSce metamodel it is also important to set

one or more workload profiles. Each workload profile is decomposed into a subgraph, a Canopus

Performance Workload (CPW) metamodel, which in turn is composed by 6 objects, defined as

follows:

• Virtual Users (VU): refers to the number of VU who will make requests to the SUT;

• Ramp Up Time (RUT): defines the time each set of ramp up users takes to access the SUT;

• Ramp Up Users (RUU): defines the number of VU who will access the SUT during each ramp

up time interval;

• Test Duration (TD): refers to the total performance test execution time for a given workload.

It is important to mention that the test duration will take, at least, the ramp up time multiplied

by the number of intervals of ramp up time plus the ramp down time multiplied by the number

of intervals of ramp down time, i.e. TD ≥ n×RUT +m×RDT , where n = ⌈V U/RUU⌉−1

and m = ⌈V U/RDU⌉ − 1;

• Ramp Down Users (RDU): defines the number of VU who will leave the SUT on each ramp

down time;

• Ramp Down Time (RDT): defines the time a given set of ramp down users takes to leave the

SUT.

63

As shown in Table 4.1, the CPSce metamodel is composed by 3 objects (User Profile,

Script, and Workload); 1 relationship (Association); 2 roles (From and To). Besides, there is

a unique binding, which connects a User Profile to Script objects, respectively, through From

and To roles. Moreover, each Script object attached to a scenario model must be decomposed

into a subgraph, i.e. a Canopus Performance Scripting metamodel.

Canopus Performance Scripting Metamodel

The Canopus Performance Scripting (CPScr) metamodel represents each of the scripts

from the user profiles in the scenarios part. The CPScr metamodel is responsible for determining

the behavior of the interaction between VU and SUT. Each script includes activities, such as, trans-

action control or think time between activities. Similarly to the percentage for executing a script,

which is defined in the CPSce metamodel, each script can also contain branches that will have a

user distribution associated to each path to be executed, i.e. the number of VU that will execute

each path. During the description of each script, it is also possible to define a set of parallel or

concurrent activities. This feature is represented by a pair of fork and join objects. Our DSL also

allows an activity to be decomposed into another CPScr metamodel. The CPScr metamodel also

supports that a parameter generated in runtime can be saved to be used in other activities of the

same script flow (the SaveParameters object handles this feature). Table 4.1, fourth row, shows

the composition of the CPScr metamodel: 6 objects, 4 relationships, 4 roles, 9 bindings and 2

metamodels.

4.7 Example of Use: TPC-W

“Example is not the main thing in influencing others. It is the

only thing.”

— Albert Schweizer

In order to present an example of use of the proposed DSL, we selected an e-commerce Web

application provided by the TPC-W benchmark [Men02]. TPC-W is a transactional benchmark for

e-commerce sites developed to conduct performance testing of the infrastructure in which the Web

site will be hosted. It can be used, for instance, to check the number of users that an environment

can attend, or if it has the amount of resources required for providing that service. TPC-W simulates

a set of user activities, reproducing the main operations performed during a site visit.

This section presents a small sample of both the graphical and textual representations

described in previous sections. We instantiate the modeling performance testing process through the

proposed DSL for the TPC-W e-commerce Web application. The goal is to give some understanding

of the requirements and design decisions of a language to model user behavior, as well as, the

performance test scenarios. The graphical representation contains elements for virtual users, test

duration, ramp up time, ramp up users, ramp down time, think time, among others.

64

4.7.1 Canopus Performance Monitoring Model

Figure 4.4 shows the Canopus Performance Monitoring model, which illustrates the

performance testing environment where the TPC-W application is deployed to. This environment

is composed of seven hosts: ZION and BACO are a Cloud Service (CS) hosting the MySQL TPC-

W’s database; ZEUS and POSEIDON are a Virtual Machine (VM) hosting a Web Application server

(Apache service); BIG_BROTHER is a Physical Machine (PM) server hosting a performance monitoring

tool; and, similarly, the RUNNER and LOAD are physical servers hosting a workload generator tool.

The RUNNER and LOAD load generatores are used to generate VU (synthetic workload) to exercise

the ZEUS and POSEIDON Web servers, and their monitoring module is hosted on the BIG_BROTHER

server for monitoring the level of resources used by ZEUS, POSEIDON, as well as ZION and BACO

database servers.

Figure 4.4: Graphical representation of the TPC-W Canopus Performance Monitoring model

The monitoring module can be set up with a set of performance metrics, as well as the

acceptable thresholds of computational resources, e.g. processor, memory, and disk usage. For

instance, Figure 4.5 presents a single metric of the Canopus Performance Metric model. This

figure depicted four types of objects; metric, counter, criterion and threshold. In this case, the metric

is memory that is related to the Available MBytes counter. In turn, each counter can be related to

two or more criteria and threshold. This model presents a memory metric composed of three criteria

based on available memory, each one of them is associated to a number of VU that are accessing the

SUT. For instance, when there are less than 350 users, a host must have at least 3000 MB of available

memory. A snippet of a textual representation of the Canopus Performance Monitoring model

is depicted in Figure 4.6. It is important to highlight that the textual representation supports the

65

definition of several metrics, including the set up infrastructure information (hostname, IP address)

based on the monitoring model (Figure 4.4) such as monitors, load generators, and SUT servers.

The range of lines between seven and ten from Figure 4.6 represents information annotated based

on the metric model from Figure 4.5.

Figure 4.5: Graphical representation of a Canopus Performance Metric model of the memory
available Mbytes counter

1 Feature: Monitor the performance counters of the system and environment.

2 Monitoring: Control the performance counters of the application.

3 Given that "ZEUS:192.168.1.1" WebApp monitored by "BIG_BROTHER:192.168.1.3" monitor

4 And workload generated through "RUNNER:192.168.1.6" load generator for the WebApp on

"ZEUS"

5 And workload generated through "LOAD:192.168.1.7" load generator for the WebApp on

"ZEUS"

6 And the #TPC-W Canopus Performance Scenario# test scenario

7 When the "Memory" is monitored

8 Then the "Available MBytes Counter" should be at least "2000" when the number of

virtual users are between "350" and "700"

9 And at least "1000" MB when the number of virtual users is greater than or equal to

"700"

10 And at least "3000" MB when the number of virtual users is less than "350"

11 When the "Disk" is monitored

12 Then the "% Idle Time Counter" should be less than "90" when the number of virtual

users is less than "1000"

13 When the "Web Resources" is monitored

14 Then the "Throughput Mbytes" should be less than "60000" when the number of virtual

users is less than "1000"

15 When the "Transaction" is monitored

16 Then the "Transaction Per Second (TPS)" should be less than "55000" when the number of

virtual users is less than "1000"

17 And the "Transaction Response Time" should be less than "3" when the number of virtual

users is less than "1000"

18 When the "Processor" is monitored

19 Then the "% Processor Time Counter" should be less than "70" when the number of

virtual users is less than "1000"

Figure 4.6: Snippet of textual representation of the TPC-W Canopus Performance Monitoring

model

66

4.7.2 Canopus Performance Scenario Model

Figure 4.7 gives an example of a Canopus Performance Scenario (CPSce) model that

represents the SUT functionalities divided into three scripts: Browser, Shop and Order. Each script

has a percentage of the VU that will execute such script. For each script, a VU has a percentage

of buying a product from the site. This percentage is bigger for script Order and smaller for script

Browser. The model also shows the interaction behavior of three different user profiles: Browsing,

Shopping and Ordering. In short, the user profiles differs from one another on the percentage

that they will order, shop or browse.

Figure 4.7: Graphical representation of the TPC-W Canopus Performance Scenario model

The CPSce is also composed of three workload profiles: Load Testing, Stress Testing,

and Endurance Testing. Each workload profile associated to the percentage of each user pro-

file determining the total number of VU. Figure 4.8 shows the Load Testing workload profile, a

Canopus Performance Workload model. This workload model defines that 1000 VU will be run-

ning over TPC-W during 4 hours (test duration time). Besides, this model also presents information

about the users ramp up and ramp down. For instance, during the test execution 100 VU will be

added during every 1-minute interval, while the ramp down defines that 200 VU will leave the SUT

during 30-seconds interval. Thus, the Load Testing workload defines that 1000 VU will be simul-

taneously executing during 3h47min30s, the users ramp up time (10min) and the users ramp down

67

time (2min30s), therefore, completing 4 hours of test duration time. In short, the other workload

testing differ from one another on the number of VU and test duration time.

Figure 4.8: Graphical representation of the TPC-W Canopus Performance Worload model

Figure 4.9 presents a snippet, in textual representation, for the graphical CPSce model

shown in Figure 4.7. The textual representation, as mentioned before, is structured based on the

Gherkin language, but with elements that represent the semantics for performance testing, e.g.,

RUUsers or RUTime. The name of the files that store the performance test scripts is shown between

#. Furthermore, Figure 4.9 also shows all information that describe the scenarios settings and

distributions scripts in a table format. This is interesting since we can describe different scenarios

settings and distribution scripts in just one place. Notice that each column in the table format is

associated with a name, delimited by { and }, that are used in the scenario description.

Regarding Figure 4.10 that depicts the whole workload profiles associated to the same

performance scenario. The great advantage of this textual representation is that the number are

not just a variable (parameter), but a solved number dynamically generated.

4.7.3 Canopus Performance Scripting Model

Figure 4.11 presents a snippet of the Shop script. The model is composed of six activities,

five of them with transaction control, shown by dashed border figures. The model also contains

a Think Time of 5 seconds (Clock element) and three Data Table elements, e.g., Books by

Category.CSV. In some cases, there is the necessity to store the results of processing of an activity

into global variables or parameters, so that other activities can use these data. For example, to

decide a path to a decision point (see Category Choice), this feature is called Save Parameters

that is represented by a floppy disk element. In such script, there is an activity with loop feature

drawn on the bottom activity element, which allows to perform many instances of the same activity.

A textual representation of the Canopus Performance Scripting model from Figure 4.11

is shown in Figure 4.12. An advantage of using a textual representation is to present all perfor-

68

1 Feature: Execute the scenario test for a workload.

2 Scenario: Evaluate the {Scenarios.Workload} workload for {Scenarios.VU} users simultaneously

3 Given {Scenarios.RUUsers} users enter the system every {Scenarios.RUTime}

4 And {Scenarios.RDUsers} users leave the system every {Scenarios.RDTime}

5 And {Scenarios.VU} users register into the system simultaneously

6 And performance testing execute during {Scenarios.Time}

7 When each user executes a script likelihood of profile {Distribution.Profile}

8 When {Distribution.Percentage} of the virtual users execute the {Distribution.Profile}

user profile:

9 Then {Distribution.Browser} of them execute the #Browser# script

10 And {Distribution.Shop} of them execute the #Shop# script

11 And {Distribution.Order} of them execute the #Order# script

12 Examples: Scenarios.csv

13 | Workload | VU | Time | RUUsers | RUTime | RDUsers | RDTime |

14 | Load Testing | 1000 | 04:00:00 | 100 | 00:01:00 | 200 | 00:00:30 |

15 | Stress Testing | 1000 | 02:00:00 | 100 | 00:00:15 | 200 | 00:00:15 |

16 | Endurance Testing | 8000 | 20:00:00 | 200 | 00:01:00 | 200 | 00:00:30 |

17 Examples: Distribution.csv

18 | Profile | Percentage | Browser | Shop | Order |

19 | Browsing | 60% | 60% | 25% | 15% |

20 | Shopping | 25% | 25% | 45% | 30% |

21 | Ordering | 15% | 20% | 30% | 50% |

Figure 4.9: Textual representation of a parameterized Canopus Performance Scenario model

mance testing information annotated in the model, facilitating the view of all relevant information.

Although the graphical representation provides a better way to represent the main domain concepts,

there is some information that are better represented by elements from the textual representation.

Further, some activities have a dynamic parameter that refers to a data table, such as the New

Products activity (line 5) that refers to the {Books by Category.Book_Id} parameter (line 6),

which in turn refers to a data table presented at the end of the script (line 30). Note that the

test data associated to the {Books by Category.Book_Id} parameter will be updated on each

interaction of a VU based on a random strategy. Last but not least, the script solves the loop

anotation tagged into Search Request activity, it is represented by loop symbol on the bottom

activity element as can be seen in Figure 4.11. Hence, the interval lines from 10 to 15 (Figure 4.12)

represents this loop feature. If someone wants to repeat not only one button a set of activities, it

is possible to associate a subgraph model into an activity. This feature is represented by "+" (plus

symbol) on the bottom Search Request activity.

4.8 Lessons Learned

In short, the main lessons we have learned from the development and the use of Canopus

are as follows:

69

1 Feature: Execute the test scenario for a workload.

2 Scenario: Evaluate the #Load Testing# workload for "1000" users simultaneously

3 Given "100" users enter the system every "00:01:00" /* Ramp Up hh:mm:ss */

4 And "200" users leave the system every "00:00:30" /* Ramp Down hh:mm:ss */

5 And "1000" users register into the system simultaneously /* Virtual Users */

6 And performance testing execution during "04:00:00" /* Test Duration hh:mm:ss */

7 When "60%" ("600") of the virtual users execute the #Browsing# user profile:

8 Then "60%" ("360") of them execute the #Browser# script

9 And "25%" ("150") of them execute the #Shop# script

10 And "15%" ("90") of them execute the #Order# script

11 When "15%" ("150") of the virtual users execute the #Ordering# user profile:

12 Then "20%" ("30") of them execute the #Browser# script

13 And "30%" ("45") of them execute the #Shop# script

14 And "50%" ("75") of them execute the #Order# script

15 When "25%" ("250") of the virtual users execute the #Shopping# user profile:

16 Then "25%" ("63") of them execute the #Browser# script

17 And "45%" ("113") of them execute the #Shop# script

18 And "30%" ("75") of them execute the #Order# script

19 Scenario: Evaluate the #Stress Testing# workload for "1000" users simultaneously

20 Given "100" users enter the system every "00:00:15" /* Ramp Up hh:mm:ss */

21 And "200" users leave the system every "00:00:15" /* Ramp Down hh:mm:ss */

22 And "1000" users register into the system simultaneously /* Virtual Users */

23 And performance testing execution during "02:00:00" /* Test Duration hh:mm:ss */

24 When "60%" ("600") of the virtual users execute the #Browsing# user profile:

25 Then "60%" ("360") of them execute the #Browser# script

26 And "25%" ("150") of them execute the #Shop# script

27 And "15%" ("90") of them execute the #Order# script

28 When "15%" ("150") of the virtual users execute the #Ordering# user profile:

29 Then "20%" ("30") of them execute the #Browser# script

30 And "30%" ("45") of them execute the #Shop# script

31 And "50%" ("75") of them execute the #Order# script

32 When "25%" ("250") of the virtual users execute the #Shopping# user profile:

33 Then "25%" ("63") of them execute the #Browser# script

34 And "45%" ("113") of them execute the #Shop# script

35 And "30%" ("75") of them execute the #Order# script

36 Scenario: Evaluate the #Endurance Testing# workload for "8000" users simultaneously

37 Given "200" users enter the system every "00:01:00" /* Ramp Up hh:mm:ss */

38 And "200" users leave the system every "00:00:30" /* Ramp Down hh:mm:ss */

39 And "8000" users register into the system simultaneously /* Virtual Users */

40 And performance testing execution during "20:00:00" /* Test Duration hh:mm:ss */

41 When "60%" ("4800") of the virtual users execute the #Browsing# user profile:

42 Then "60%" ("2880") of them execute the #Browser# script

43 And "25%" ("1200") of them execute the #Shop# script

44 And "15%" ("720") of them execute the #Order# script

45 When "15%" ("1200") of the virtual users execute the #Ordering# user profile:

46 Then "20%" ("240") of them execute the #Browser# script

47 And "30%" ("360") of them execute the #Shop# script

48 And "50%" ("600") of them execute the #Order# script

49 When "25%" ("2000") of the virtual users execute the #Shopping# user profile:

50 Then "25%" ("500") of them execute the #Browser# script

51 And "45%" ("900") of them execute the #Shop# script

52 And "30%" ("600") of them execute the #Order# script

Figure 4.10: Textual representation of the TPC-W Canopus Performance Scenario model

70

Figure 4.11: Graphical representation of the TPC-W Shop Canopus Performance Scripting

model

LL1) Requirements elicitation. There are several techniques to achieve the best possible results

from requirements elicitation process, such as interviews, ethnography, domain analysis, among

others. We used domain analysis to understand and capture our domain knowledge, and to identify

of reusable concepts and components. Thus, we learned that eliciting requirements based on domain

analysis, having as output an initial performance testing body of knowledge, was effective to identify

what we needed for our DSL;

LL2) Domain analysis. Domain analysis based on ontologies is a good alternative to transform

the concepts and relationships from the ontology into entities and functionalities of the DSL. There

are several methods and techniques for describing this approach, for instance [TMG09] [WSPS09];

LL3) Learning curve. One of the disadvantages of using DSL is the high cost of training users who

will use the DSL, i.e., steep learning curve [Gho11]. However, based on our previous experience using

several load generator tools in an industrial setting, this disadvantage can be handled pragmatically,

since the cost for a new staff to learn several load generators technologies is higher than compared

to our DSL. Nonetheless, this drawback must be demonstrated with empirical evidences;

LL4) Incremental development methodology for creating DSL. We adopt an incremental develop-

ment methodology [Bie06] for developing our proposed DSL. This methodology allows us to improve

the DSL on each interaction, which is composed by the following steps: analysis, implementation,

and use [vDKV00];

LL5) Requirements and Design Decisions. Through a pilot study and based on our performance

testing body of knowledge, we collected specific needs for performance modeling adoption to create

a DSL for modeling performance testing, and argue that existing models and languages do not meet

the specificity of the requirements at hand. We then presented our design decisions for creating a

DSL. We claim that the reported requirements and design decisions as the two of the contributions of

this work, since currently few studies bring such discussion. Our work adds to that in the sense that

the elicited requirements can evidence practical scenarios that other load generators may consider

supporting; the design decisions, in turn, may be reused or adapted to improve existing DSL, models

or languages, or even new ones, targeting similar requirements.

71

1 Feature: Execute the performance test script for different user profiles

2 Script: the users performs purchase interactions based on Test Case N1 from #TPC-W Shop#

3 Given the #Home Page# transaction activity through "http://localhost:8080/tpcw/

TPCW_home_interaction" action, which is loaded in "1.5" seconds

4 When I click on "Subject" link {Subject.Category}, which is dynamically generated and

update on "Each Interaction" based on a "Random" strategy

5 Then I will be taken to "/TPCW_new_products_servlet" action in the #New Products#

transaction activity, which is loaded in "5" seconds

6 And I click on "Product" link {Books by Category.Book_Id}, which is dynamically

generated and update on "Each Interaction" based on a "Random" strategy

7 And I need to wait thinktime during "00:00:05"

8 Then I will be taken to "/TPCW_product_detail_servlet" action in the #Product Detail#

transaction activity, which is loaded in "3" seconds

9 /* Repeat block three times to perform searching of random books */

10 And I press the "Search" button {Search}

11 Then I will be taken to "/TPCW_search_request_servlet" action in the #Search Request#

transaction activity, which is loaded in "2.7" seconds

12 And I press the "Search" button {Search}

13 Then I will be taken to "/TPCW_search_request_servlet" action in the #Search Request#

transaction activity, which is loaded in "2.7" seconds

14 And I press the "Search" button {Search}

15 Then I will be taken to "/TPCW_search_request_servlet" action in the #Search Request#

transaction activity, which is loaded in "2.7" seconds

16 And I select "Type" drop-down list with {Search Data.Type}, which is dynamically

generated and update on "Each Interaction" based on a "Random" strategy

17 And I fill in "Search" input field within {Search Data.Search}, which is dynamically

generated and update on "Each Interaction" based on a "Same As" "TYPE" strategy

18 And I press the "Submit" button {Submit}

19 Then I will be taken to "/TPCW_execute_search" action in the #Search Result# transaction

activity, which is loaded in "2.9" seconds

20 [50.0%]

21 Script: the users performs purchase interactions based on Test Case N2 from #TPC-W Shop#

22 Given the #Home Page# transaction activity through "http://localhost:8080/tpcw/

TPCW_home_interaction" action, which is loaded in "1.5" seconds

23 ...

24 [50.0%]

25 Examples: Subject.csv

26 | CATEGORY | SUBCATEGORY |

27 | Suspense | Thriller |

28 | Romantic | Historical |

29 | Fiction | Action Adventure |

30 Examples: Books by Category.csv

31 | SUBJECT | BOOK_ID |

32 | COMPUTERS | 2187 |

33 | COMPUTERS | 1145 |

34 | COMPUTERS | 2123 |

35 Examples: Search Data.csv

36 | TYPE | SEARCH |

37 | Author | John |

38 | Title | Performance Testing |

39 | Subject | Performance |

Figure 4.12: Snippet of textual representation of the TPC-W Shop Canopus Performance

Scripting model

72

4.9 Chapter Summary

This chapter discussed the analysis of the performance testing domain and presented a

set of elicited requirements in the context of an industrial partner, its design decisions, as well as,

the language and its metamodels that compose our DSL. In order to demonstrate that our DSL is

suitable to design the performance testing modeling, we selected an e-commerce, our SUT, as an

example of use to model the performance testing using Canopus. We also showed and explained

how to instantiate for each the Canopus metamodel its respective model of the SUT. Finally, we

point out the main lessons learned that we identified during the development and utilization of our

DSL.

Chapter 5 presents a case study conducted in collaboration with our partner company.

In this case study, we show how to apply our model-based performance testing process that uses

Canopus to model performance testing to test an industrial Web application.

73

5. CASE STUDY

“If you wait until there is another case study in your industry,

you will be too late!”

— Seth Godin

5.1 Overview

In this chapter, we present how Canopus was designed to be applied with an MBT approach

to model performance test scenarios and scripts. To demonstrate how our DSL can be used in

practice, we applied it throughout an actual case study from the industry, in the context of a project

of collaboration between a Technology Development Lab (TDL) of Dell Computer Brazil and our

university. Inittialy, we describe our model-based performance testing process (Section 5.2) using

Canopus. After, this we present an industrial case study (Section 5.3) to evaluate the applicability

of Canopus to model performance testing. Section 5.4 presents our case study analysis. Section 5.5

points out lessons learned. Finally, we summarize the chapter in Section 5.6.

5.2 A Model-Based Performance Testing Process

The aim of our Domain-Specific Modeling (DSM) process, using Canopus, is to improve

a performance testing process to take advantage of MBT. Figure 5.1 shows our process for mod-

eling performance testing using Canopus. The process incorporates a set of activities that have

to be performed by two different parties: Canopus and Third-Party. The main activities that

define our model-based performance testing process are: Model Performance Monitoring, Model

Performance Scenario, Model Performance Scripting, Generate Textual Representation,

Generate Third-Party Scripts, Generate Canopus XML, Execute Generated Scripts, Monitor

Performance Counters, and Report Test Results. The details related to the activities of our

DSM process are described next.

74

Figure 5.1: Model-based performance testing process using Canopus

5.2.1 Model Performance Monitoring

The designing of the performance monitoring model is the first activity of our process,

which is executed by the Canopus party. In this activity, the SUT, monitor servers and performance

metrics that will be measured are defined. The milestone of this activity is the generation of a

Canopus Monitoring Model. This model is composed of SUT, Load Generator (LG) and Monitor

objects. A Monitor object is enabled to monitor the SUT and LG objects; this object is controlled

by a Canopus Performance Metric that can be associated with one or more of these objects. A

Canopus Performance Metric model represents a set of predefined metrics, for instance, memory,

processor, network, throughput, etc. Each one of them is associated with a metric counter, which

in turn is linked to a criterion and a threshold.

5.2.2 Model Performance Scenario

The next activity of our process consists of modeling the performance test scenario. The

Canopus Scenario Model is the output of this activity. This model is composed of user profiles

that represent VU that can be associated with one or more script objects. Each one of these scripts

represents a functional requirement of the system from the user profile point of view. Furthermore,

a script is a detailed VU profile behavior, which is decomposed into a Canopus Scripting Model.

Besides, each scenario allows modelling several workloads in a same model. A workload (Canopus

75

Performance Workload) is constituted of setup objects of test scenario, i.e. ramp up, ramp down,

test duration (time) and number of VU.

5.2.3 Model Performance Scripting

In this activity, each script object, modeled in the Canopus Performance Scenario

Model, mimics (step-by-step) the dynamic interaction by VU with the SUT. This activity generates

a Canopus Scripting Model that is composed of several objects, such as, activity, think time,

save parameters and data table. It is important to notice that two objects, i.e. activity and data

table, can be decomposed into new sub-models. The former can be linked to a Canopus Scripting

Model that allows encapsulating a set of activities to propose its reuse into other models. The latter

is associated with a Canopus External File that fills a dynamic model with external test data

provided by a performance engineer.

After the three first activities from our process, the performance engineers have to decide

whether they generate a textual representation from the designed models (Monitoring, Scenarios

and Scripts), an input for a third-party tool, or even a generic XML representation that might be

integrated to any other tool that accepts XML as input.

5.2.4 Generate Textual Representation

This activity consists of generating a textual representation in a semi-natural language, a

DSL based on the Gherkin [WH12] language that extends it to include performance testing informa-

tion. Our design decision to deploy this feature in Canopus is to facilitate the documentation and

understanding among development, testing teams and stakeholders. It is important to highlight that

a partial textual representation can be generated, for example, to a particular Canopus Performance

model.

5.2.5 Generate Third-Party Scripts

Canopus was designed to work also as a front-end to third-party performance tools. There-

fore, even though we can generate a "generic" textual representation, our process allows integration

of new features in Canopus to generate input for any testing tool. Hence, it can be integrated with

different load generator tools such as HP LoadRunner [Hew15], Microsoft Visual Studio [Mic15b]

or Neo Load [Neo15].

76

5.2.6 Generate Canopus XML

This activity is responsible for generating a Canopus XML file. We included this feature

to support the integration of Canopus with other technologies. Hence, Canopus can export entire

performance testing information from Canopus Performance models to an XML file. The ability to

export data in XML format might allow future Canopus users to use other technologies or IDEs. For

instance, in a previous work, we developed a model-based performance testing tool, called PLeTsPerf

tool [RBC+15]. This tool can parse our Canopus XML file and process the automatic generation of

performance test scenarios and scripts to HP LoadRunner [Hew15].

5.2.7 Third-Party

The other three activities, shown in Figure 5.1, are not part of the Canopus process and

are just an example of one possible set of steps that can be executed by a performance engineer,

depending on the third-party tool that is used. For example, the Execute Generated Scripts

activity consists of executing the performance scenarios and scripts generated for a third-party

tool. During the execution of this activity the load generator consumes the test data mentioned

in the data table object in Canopus Performance Scripting model; Monitor Performance

Counters activity is executed if the third-party tool has a monitoring module; and, Report Test

Results activity is also only executed if the performance tool has an analysis module. Some of

these activities can use annotated information in the Canopus Performance models, e.g. the Canopus

Performance Monitoring model and the Canopus Performance Scripting model.

5.3 Case Study

In this section we present an industrial case study, using the Changepoint application, in

which Canopus is applied to model performance testing information supported by the model-based

performance testing presented in Section 5.2.

5.3.1 Changepoint

Changepoint [Cha15] is a commercial solution to support Portfolio and Investment Plan-

ning, Project Portfolio Management and Application Portfolio Management. This solution can be

adopted as a “out of the box solution” or it can be customized based on the client needs. In the

context of our case study, Changepoint is customized in accordance with the specific needs of a

large IT company. Moreover, as Changepoint is a broad solution, in our case study we focus on

how our DSL is applied to model the Project Portfolio Management module. That is, we show how

77

to instantiate the modeling performance testing process. The goal of this case study is to evaluate

and also demonstrate how our DSL can be used throughout an actual case study in an industrial

setting.

To provide a better understanding of how Canopus was applied in the context of our

case study, we show how to model performance testing using each one of the Canopus Performance

metamodels described in Section 4.6. In short, we intend to explore the following Research Questions

(RQ):

RQ1. How useful is it to design performance testing using a graphical DSL?

RQ2. How intuitive is a DSL to model a performance testing domain?

5.3.2 Canopus Performance Monitoring

Figure 5.2 shows the performance testing environment where the Changepoint applica-

tion is deployed to. This environment is composed of five hosts: Database_Server is a physical

server hosting the Changepoint database; Web_Server is a virtual machine hosting a web server;

APP_Server is a virtual machine hosting the applications server; Spy is a physical server hosting a

performance monitoring tool; and, the Workload is a physical server hosting a workload generator

tool.

Figure 5.2: Graphical representation of the Changepoint Canopus Performance Monitoring

model

The LoadRunner load generator (Workload) is used to generate VU (synthetic workload)

to exercise the Web_Server and APP_Server servers, and its monitoring module is hosted on

the Spy server for monitoring the level of resources used by the Web_Server, APP_Server and

Database_Server servers. The monitoring module can be set up with a set of performance metrics,

as well as the acceptable thresholds of computational resources, e.g. processor, memory, and disk

78

usage. For instance, Figure 5.3 presents a single metric of the Canopus Performance Metric

model. This figure depicted four elements; metric, counter, criterion and threshold. In this case, the

metric is Processor that is related to the % Processor Time counter. This measurement is the

amount of processor utilization, which is set so that the percentage of time the processor is busy

must be lower than 70 percent for up to one thousand VU.

Figure 5.3: Graphical representation of the Canopus Performance Metric model

In turn, each counter can be related to two or more criteria and thresholds. A snippet

of a textual representation of the Canopus Performance Monitoring model is depicted in Fig-

ure 5.4. For instance, line 18 of this figure represents the translation of the Canopus Performance

Metric model shown in Figure 5.3, which describes the percentage of processor time counter for

the Processor metric. It is important to highlight that the textual representation supports the

definition of several metrics, including the set up infrastructure information (hostname, IP address)

based on the monitoring model (Figure 5.2) such as monitors, load generators, and SUT servers.

1 Feature: Monitor the performance counters of the system and environment.

2 Monitoring: Control the performance counters of the application.

3 Given that "APP_Server:192.168.1.2" webapp monitored by "Spy:192.168.1.5" monitor

4 And workload generated through "Workload:192.168.1.6" load generator(s) for the

WebApp on "AppServer"

5 And the #Changepoint Performance Scenario# test scenario

6 When the "Memory" is monitored

7 Then the "Available MBytes Counter" should be at least "2000" MB when the number of

virtual user are between "350" and "700"

8 And at least "1000" MB when the number of virtual user is greater than or equal to

"700"

9 And at least "3000" MB when the number of virtual user is less than "350"

10 When the "Disk" is monitored

11 Then the "% Idle Time Counter" should be less than "90" when the number of virtual

user is less than "1000"

12 When the "Web Resources" is monitored

13 Then the "Throughput Mbytes" should be less than "60000" when the number of virtual

user is less than "1000"

14 When the "Transaction" is monitored

15 Then the "Transaction Per Second (TPS)" should be less than "55000" when the number of

virtual user is less than "1000"

16 And the "Transaction Response Time" should be less than "3" when the number of virtual

user is less than "1000"

17 When the "Processor" is monitored

18 Then the "% Processor Time Counter" should be less than "70" when the number of

virtual user is less than "1000"

Figure 5.4: Snippet of textual representation of the Changepoint Canopus Performance

Monitoring model

79

5.3.3 Canopus Performance Scenario

The Changepoint usage scenarios and workload distribution were defined based on the ap-

plication requirements, describing the user profiles and their respective interactions. Figure 5.5 shows

part of the graphical representation of the Canopus Performance Scenario model for the Change-

point application (full models designed during this case study can be found in Appendix B). This

model contains 7 user profiles: Business Administrator, Development Team, Post Sales, Pre

Sales, Project Manager, Resource Manager and Solution Architect. There are 63 script

objects associated with these user profiles, which represent the behavior of each user profile when

interacting with a system functionality. Moreover, each association relationship, between a script

object and a user profile, has a percentage that defines the number of VU, from the total number

of users defined in the workload model, e.g. 96.1%.

Figure 5.5: A partial graphical representation of the Changepoint Canopus Performance

Scenario model

The user profile total number of VU is defined by the percentage annotated in the user

profile element in this model. For instance, the Development Team user profile represents 77% of

the workload of an entire Changepoint scenario. This workload is applied to execute the Submit

Expected Time script based on the Stability Testing workload object. This object is decom-

posed in a Canopus Performance Workload model, depicted in Figure 5.6. This workload model

80

defines that 1000 VU will be running over Changepoint during 4 hours (test duration time). Besides,

this model also presents information about the users ramp up and ramp down. For instance, during

the test execution 100 VU will be added during every 10-minute interval. In the same way, the

ramp down defines the way in which the VU will leave the SUT. Thus, the Stability Testing

workload defines that 1000 VU will be simultaneously executing during 2h10min, the users ramp

up time 1h40min and users ramp down time 10min therefore, completing 4 hours of test duration

time. For instance, our Development Team user profile will execute 77% of all amount of VU (see

Figure 5.7) from of 1000 VU (line 5), i.e. 770 (line 12). Thus, this user profile has association with

two scripts: Submit Expected Time with 96.1%, i.e. 740 VU (line 14) from 770 VU this user

profile.

Figure 5.6: Graphical representation of the Changepoint Canopus Performance Workload model

A textual representation of the graphical performance test scenario, depicted in Figure 5.5

and Figure 5.6, is presented in Figure 5.7. This textual representation, as mentioned before, is

structured based on the Gherkin language, but with elements that represent the semantics for

performance testing, e.g. virtual users, ramp up and ramp down. It is worth to highlight that in

this textual representation the percentage distribution among VU is already expressed in terms of

values based on the workload.

5.3.4 Canopus Performance Scripting

As presented in Section 4.6, it is possible to associate a subgraph model for each script

element from a Canopus Performance Scenario model. Therefore, each script element presented

in the Changepoint scenario model is decomposed into a Canopus Performance Scripting model,

which details each user interaction with the SUT functionalities. Figure 5.8 presents a snippet of

the Submit Expected Time script. This model is composed of four activities, each one of them

has another subgraph model associated, represented by “+” (plus) on the bottom script element.

This decomposition allows reusing part of the modeled performance scripts. For instance, in this

81

1 Feature: Execute the test scenario for a workload.

2 Scenario: Evaluate the #Stability Testing# workload for "1000" users simultaneously

3 Given "100" users enter the system every "00:10:00"

4 And "100" users leave the system every "00:01:00"

5 And "1000" users register into the system simultaneously

6 And performance testing execution during "04:00:00"

7 When "1%" ("10") of the virtual users execute the #Business Administrator# user profile

:

8 Then "10%" ("1") of them execute the #Partner Expense Association# script

9 And "30%" ("3") of them execute the #Order Association# script

10 And "30%" ("3") of them execute the #Order Unprocessing# script

11 And "30%" ("3") of them execute the #View Performance Dashboard# script

12 When "77%" ("770") of the virtual users execute the #Development Team# user profile:

13 Then "3.9%" ("30") of them execute the #Adjust Approve Time# script

14 And "96.1%" ("740") of them execute the #Submit Expected Time# script

15 When "0.8%" ("8") of the virtual users execute the #Post Sales# user profile:

16 Then "50%" ("4") of them execute the #Update Request Fields# script

17 And "50%" ("4") of them execute the #Upload Signed Documents# script

18 When "0.2%" ("2") of the virtual users execute the #Pre Sales# user profile:

19 Then "100%" ("2") of them execute the #Create New Request# script

20 When "1%" ("10") of the virtual users execute the #Resource Manager# user profile:

21 Then "10%" ("1") of them execute the #RM Configure Stream And Type Report# script

22 And "10%" ("1") of them execute the #RM Configure Stream Variant# script

23 And "20%" ("2") of them execute the #RM View Stream Roles Skill Items# script

24 And "20%" ("2") of them execute the #RM Export Skills And Streams# script

25 And "20%" ("2") of them execute the #RM Import Skills And Streams# script

26 And "20%" ("2") of them execute the #Select RM Request# script

27 When "2%" ("20") of the virtual users execute the #Solution Architect# user profile:

28 Then "20%" ("4") of them execute the #Customer Approval# script

29 And "20%" ("4") of them execute the #Gate Review# script

30 And "20%" ("4") of them execute the #Project Manager Needed# script

31 And "20%" ("4") of them execute the #RR In Progress# script

32 And "20%" ("4") of them execute the #Solutioning Complete# script

Figure 5.7: Snippet of textual representation of the Changepoint Canopus Performance Scenario

model

case study a _Login script element is decomposed into a model that is included into several others

scripts.

Figure 5.8: Graphical representation of the Changepoint Canopus Performance Scripting model
for the Submit Expected Time script

The textual representation of the Changepoint Canopus Performance Scripting model

for the Submit Expected Time script is shown in Figure 5.9. This is based on performance infor-

mation annotated into the graphical representation from Figure 5.8. Since each activity from the

graphical representation has a subgraph model associated, the interval of lines three to six present

82

a description of their respective subscripts. Exploring each one of them, it is possible to see details

of their scripts, as presented in Figures 5.10 and 5.11.

1 Feature: Execute the performance test script for different user profiles.

2 Script: book submit time based on Test Case N.1 from #Submit Expected Time#

3 SubScript: based on Test Case N.1 from #_Login#

4 SubScript: based on Test Case N.1 from #_Timesheet Alpha PTC Filter#

5 SubScript: based on Test Case N.1 from #_Submit Time#

6 SubScript: based on Test Case N.1 from #_Logout#

Figure 5.9: Snippet of textual representation of the Changepoint Canopus Performance

Scripting model for the Submit Expected Time script

Figure 5.10 shows the Canopus Performance Scripting model of the Timesheet Alpha

PTC Filter script from the main model presented in Figure 5.8. This model is designed with 15

activity elements, 2 data tables (Server.dat and TaskId.dat) elements, a think time element

(Clock element), and a couple of join and fork elements, i.e., the Cal JQ, Time Sheet Status,

Cal JQ Time Sheet Status and Form Time Sheet are executed in parallel. In some activities,

test data must be dynamically generated. These data can be parametrized using data table elements.

For instance, the TaskId.dat element provides test data for four activities, e.g. Time Sheet Open

Task.

Figure 5.10: Graphical representation of the Changepoint Canopus Performance Scripting model
for the _Timesheet Alpha PTC Filter script

A textual representation of the performance scripting model from Figure 5.10 is shown

in Figure 5.11. An advantage of using a textual representation is to present all performance testing

information annotated in the model, facilitating the view of all relevant information. Although

83

1 Feature: Execute the performance test script for different user profiles.

2 Script: performance test script based on Test Case N. 1 from "Timesheet Alpha PTC Filter"

3 Given the #Utility Post Xml# activity through "http://{Server}/Utility/UtilityPostXml.aspx

?rid={{rId}}&sno={{sno}}&ui=W&Action=0" action

4 When the system randomize the "Server" data within {Server.Server}, which is dynamically

generated and updated on "Each Interaction" based on a "Random" strategy

5 ...

6 Then I will be taken to "http://{Server.Server}/Core/TimeSheet/vwTimeSheet.asp?rid={{rId

}}&sno={{sno}}&ui=W" action in the #View Time Sheet# activity

7 And the system loaded the "rid" data values previously stored

8 And the system loaded the "sno" data values previously stored

9 And I need to wait thinktime during "00:00:15"

10 ...

11 Then I will be taken to "http://{Server.Server}/Projects/popCalJQ.asp?rid={{rId}}&sno={{

sno}}&ui=W" action in the #Cal JQ# parallel activity

12 ...

13 Then I will be taken to "http://{Server.Server}/core/time_Sheet/frmTimeSheet_Status.asp?

rid={{rId}}&reId=&sno={{sno}}&ui=W" action in the #Time Sheet Status# parallel activity

14 ...

15 Then I will be taken to "http://{Server.Server}/Projects/popCalJQ_TimesheetStatus.asp?rid

={{rId}}&sno={{sno}}&ui=W" action in the #Cal JQ Time Sheet Status# parallel activity

16 ...

17 Then I will be taken to "http://{Server.Server}/core/time_Sheet/frmTimeSheet.asp?rid={{

rId}}&reId=&sno={{sno}}&ui=W" action in the #Form Time Sheet# parallel activity

18 ...

19 Then I will be taken to "http://{Server.Server}/Core/Treeviews/ifrtvTimeSheet.aspx?cid=

tvEngTime&rid={{rId}}&reId=&sno={{sno}}&ui=W&searchFor=Perf&LoadFor=0&cptype=OpenTime&id

=OpenTime&FirstLoad=1&view=PTC&render=alphabetic&showwbs=0" action in the #Time Sheet

Open Time# activity

20 And The system randomize the "Server" data within {Server.Server}, which is dynamically

generated and update on "Each Interaction" based on a "Random" strategy

21 ...

22 Then I will be taken to "http://{Server.Server}/Core/Treeviews/ifrtvTimeSheet.aspx?cid=

tvEngTime&rid={{rId}}&reId=&sno={{sno}}&ui=W&searchFor=Perf&LoadFor=0&cptype=eng_u_ex&id

={EngagementId}&FirstLoad=1&view=PTC&render=alphabetic&showwbs=0" action in the #Time

Sheet Engagement Id# activity

23 And The system randomize the "TaskId" data within {TaskId.TaskId}, which is dynamically

generated and update on "Each Interaction" based on a "Random" strategy

24 ...

25 And The system randomize the "Engagement Id" data within {TaskId.EngagementId}, which is

dynamically generated and update on "Each Interaction" based on a "Same" as "TaskId"

strategy

26 ...

27 Examples: Server.dat

28 | Server |

29 | ausdwebsrv66 |

30 | ausdwebsrv69 |

31 Examples: TaskId.dat

32 | CustomerId | EngagementId | ProjectsId | TaskId |

33 | C8DDF527-4A13 | 9E988BD0-AD4D | FA13E2DC-FE3E | E9DD7653-13BB |

34 | C8DDF527-4A13 | 555549F3-3473 | E8453F8B-F8B7 | C8AFD538-A7C7 |

Figure 5.11: Snippet of textual representation of the Changepoint Canopus Performance

Scripting model

84

the graphical representation provides a better way to represent the main domain concepts, there

are some information that are better represented in the elements from the textual representation.

Furthermore, some activities (see Figure 5.11) have a dynamic parameter that refers to a data table,

such as the Time Sheet Engagement Id activity (line 22) that refers to the {EngagementId}

parameter, which in turn refers to a data table presented at the end of the script (line 25). Note

that the test data associated to the {EngagementId} parameter will be updated on each interaction

of a VU based on the {TaskId} parameter (line 23). It is worthwhile to highlight that in the textual

representation the variability of flows for each test case (different paths through a graph and its

subgraphs) is solved and is presented as a linear set of activities.

5.4 Case Study Analysis

We investigated and answered each one of the research questions stated previously in

Section 5.3.1, based on the results of our case study and interviews conducted with a performance

testing team. The performance testing team were formed by three performance engineers. Moreover,

a web-based survey was answered by fifteen performance test experts. The purpose of this survey was

to evaluate the graphical elements and their representativeness1 to symbolize performance elements

that compose each Canopus Performance metamodel (Scripting, Scenario, Monitoring). rammstein

The subjects answered a web-based survey composed of:

(a) Statements to find whether the element is representative for a specific metamodel, based on a

five points Likert scale [Lik32]: Disagree Completely (DC), Disagree Somewhat (DS), Neither

Agree Nor Disagree (NAND), Agree Somewhat (AS) and Agree Completely (AC);

(b) Open questions to extract their opinions on each metamodel.

0 10 20 30 40 50 60 70 80 90 100

Monitoring

Scenario

Scripting

60.5

73.3

67.6

21

17.3

18.1

7.2

6

7.1

7.7

0.7

5.3

3.6

2.7

1.9

M
et

am
o
d
el

s

Disagree Completely (DC) Disagree Somewhat (DS) Neither Agree nor Disagree (NAND)

Agree Somewhat (AS) Agree Completely (AC)

Figure 5.12: Frequency diagram of the graphical elements that compose Canopus, grouped by
metamodel

The answers were summarized in the frequency diagram shown in Figure 5.12. The num-

bers in this figure are based on the evaluation of 37 elements: 13 elements for the Canopus

1Representativeness: regards to how much the graphical elements proposed by our DSL represent the performance
testing domain.

85

Performance Scripting metamodel, 10 for Canopus Performance Scenario metamodel and

14 for Canopus Performance Monitoring metamodel. The frequency diagram presents the re-

sults grouped by each set of elements evaluated for each metamodel. As can be seen in Figure 5.12,

81.5% (60.5% AC + 21% AS) of the answers agree that the Monitoring elements are represen-

tative for the Canopus Performance Monitoring metamodel. For the Canopus Performance

Scenario metamodel, 90.6% (73.3% AC + 17.3% AS) agree that the elements for that metamodel

are representative. Finally, 85.7% (67.6% AC + 18.1% AS) agree that the elements represent the

features they intend for the Canopus Performance Scripting metamodel. These results are used

as part of the evaluation of Canopus.

Each of the research questions mentioned in Section 5.3, are answered next.

RQ1. How useful is it to design performance testing using a graphical DSL? The graphical

representation of a notation, language or model is useful to better explain issues to non-technical

stakeholders. This was also confirmed by the performance team that reported that using our ap-

proach, it is possible to start the test modeling in early phases of the development process. Further-

more, it would be possible to engage other teams during all process, mainly the Business System

Analyst (BSA). The BSA is responsible to intermediate the business layer between the developer

team and the product owner. Another interesting result pointed out by the subjects is that the

textual representation is also very appropriate, since it allows to replace the performance testing

specification. However, as expected, there is a steep curve on the understanding of the DSL nota-

tion and an initial overhead when starting using an MBT-based approach instead of a Capture and

Replay (CR)-based approach.

RQ2. How intuitive is a DSL to model a performance testing domain? The case study

execution indicates that the use of Canopus is quite intuitive, since the performance testing domain

is represented throughout graphs, objects, relationships and properties. Visually, for instance, the

scripting model can show the different flows that have been solved in several test cases on the fly,

and also the decomposition and explosion features that can map objects into other graphs. This

feature is also related to the reuse of partial models, characteristic of a DSL that allows to improve

the productivity and to reduce the spent time on performance testing modeling activity.

5.5 Lessons Learned

In summary, the main lessons we have learned from the application of our model-based

performance process, as well as the use of Canopus in an industrial case study are:

LL1) DSL over a General Purpose Language (GPL). A DSL can express better semantic of a

domain than an adapted GPL, e.g. UML profile. In our previous works [RSO+14] [RBC+15], we

empirically investigated the advantages and disadvantages on using an MBT approach or a CR

approach. The results provided evidence towards proposing our DSL, since the UML approach that

was applied did not completely support the entire domain concepts and rules. We are aware that

86

we must conduct further investigation to discuss the advantages on using a DSL instead of UML or

other GPL on the performance testing domain;

LL2) Global Software Development. The GSD [CR09] refers to software development geographi-

cally, remotely or globally distributed, which aims to streamline the process of product development.

In such scenario, it is common that infrastructure and performance teams are located in different

countries. For this reason, it is important to adopt a standard language for creating scripts and

models for performance testing, hence, we chose the English as default for the textual representation

of Canopus, implicitly we avoid a cacophonous language [Fow10];

LL3) Graphic design. During the development of Canopus, we had some problems to design our

graphical elements that compose our DSL. This drawback is due to lack of graphical design skills of

developers. Also worth to note that the Language Workbench Meta Edit+ [Met15] aided to develop

Canopus is compatible just SVG (Scalable Vector Graphics) format, which limits and requires more

ability to build the graphical vector images. However, the reached results were satisfactory since the

quality of graphical elements is the same, without quality loss, even when it is scaled;

LL4) Performance testing engagement. The experience with our industrial partner points out

that it is common to the performance team to engage only on the final steps of software development.

Canopus brings the performance team to engage in early stages of the software development process;

LL5) More reuse using models than scripts. It is easier to reuse a Canopus model to create/

compose other models than when reusing scripts in a CR-based approach. Moreover, the use of

a CR-based approach could limit the reuse of previously generated artifacts, inducing the tester to

rewrite new scripts from scratch;

LL6) A picture is worth a thousand words. The power of a graphical representation to help

understand the problem domain and the business knowledge among teams is more efficient than

using a common document specification. To integrate an inexperienced performance engineer in

the performance team sometimes it is necessary to spend time reading the entire document. For

instance, depending on the complexity of the software project, its specification can have more than

300 pages, including all change requests, and the worst is that this information is common and can

not be reused to automate.

5.6 Chapter Summary

This chapter presented the Canopus being applied in the context of a collaboration between

our university and a TDL from an Information Technology company. Throughout an industrial case

study, we discussed the process to integrate Canopus to model-based performance testing in the

context of a real environment. Canopus may be used to design performance testing models. In turn,

the model-based performance testing process may be considered to support the performance testing

automation, from a DSL to generate performance scripts and scenarios for different load generators.

87

Analyzing the threats to the validity of our proposal, we understand that having applied

Canopus to a single industrial case study addressing only one application, could be a threat to the

conclusions of the viability of our DSL. We are aware that we must further investigate the suitability

of Canopus to other real industrial scenarios. Moreover, the selection of an ideal case study, as well

as the complexity and the size of the models designed during the study may not be representative

to generalize the results. Nevertheless, to mitigate this threat, we interviewed several performance

engineers, as well as selected a set of distinct software projects from our TDL partner to choose

the most representative case study to evaluate Canopus. Furthermore, the SUT used here is an

off-the-shelf tool, a typical of a broad category of project management systems, which encourages

us to try finding relevant results based on quality analysis of our scenario.

Currently, we are working close to our partner, which is trying Canopus to other actual

projects. This cooperation will give us some good insights on which elements should be improved,

altered or even included in Canopus. It is worthwhile to highlight that only a snippet of the Canopus

Performance models is presented in this chapter. Hence, full models designed during this case study

can be found in Appendix B, as well as survey details can be found in Appendix C.

Next, Chapter 6 will present an experimental study for evaluating Canopus, and for pro-

viding evidence about the benefits and/or drawbacks when using UML or Canopus approaches for

modeling performance testing.

89

6. EMPIRICAL EXPERIMENT

“No experiment is ever a complete failure. It can always be

used as a bad example.”

— Paul Dickson

6.1 Overview

Performance testing modeling is a relative new research field. Researches investigating how

to apply models to document performance testing information essentially started to be reported in

the last decade. Motivated by the lack of a standard to represent performance testing information,

our research group, in collaboration with an IT company, proposed a UML approach and lately a DSL

to support performance testing modeling (see Chapter 4). To support our partner company on the

decision process to replace UML by a DSL, we conducted an experimental study to provide evidence

about the benefits and drawbacks when using UML or DSL for modeling performance testing.

In this chapter, we report an in vitro experiment, where the subjects designed UML models

and Canopus Performance models. This is for the purpose of evaluation with respect to the effort and

suitability, from the perspective of the performance testers and engineers in the context of industry

and academic environments for modeling performance testing. In our experiment, we follow the

process and best practices presented by Wohlin et al. [WRH+12], which describes how to execute

experiments in Software Engineering.

Our results indicate that, for performance modeling, the effort using a DSL was lower

than using UML. Our statistical analysis showed that the results were valid, i.e., that to design

performance testing models using our DSL is better than using UML. Despite all our expertise on

performance testing modeling, there was a lack of knowledge about the benefits and drawbacks of

using DSL or UML to design performance testing model. Hence, we understand that some of the

limitations are due to UML being a General-Purpose Language (GPL). To the best of our knowledge,

there is no work that shows that UML performs better, in performance testing, than a DSL. This

90

chapter is organized as follows. Section 6.2 presents some context related to the company in place,

as well as motivations for the study. Section 6.3 introduces the experiment instruments and the

test documents. Section 6.4 presents the experiment design and introduces our research questions.

Section 6.5 describes the execution of the experiment, while Section 6.6 presents our analysis and

interpretation of results. Finally, we summarize the chapter in Section 6.7.

6.2 Experiment Context

In the past years our research group in performance testing has been investigating, in

cooperation with a Technology Development Lab (TDL) of a global IT company, novel approaches,

languages, notations and tools to support performance testing (see Section 3.3). One of our main

research focus is the automation of performance testing process, mainly through the application

of Model-based Testing (MBT) [UL06] approaches and its related languages and modeling nota-

tions. In this context we have proposed and empirically evaluated several approaches [RdOC+15],

notations [CCO+12] [dSdMRZ+11], languages [BZR+14] and tools [RBC+15].

Essentially, all of our research topics are aligned with the industrial needs of our partner

company. For instance, our research on performance testing automation wants to cover all the phases

of performance engineering to apply model-based performance testing, from models and notations to

supporting tools, providing a complete MBT solution in accordance with the company’s needs. To

reach this goal, we initially proposed the use of annotations on UML diagrams to model performance

testing. After that, we developed a tool [RBC+15] that accepts these models as input and then

generates performance scripts and scenarios for third-party tools/load generators. As time progressed

and the use/interest in our solutions increased, we received feedback from the testing teams reporting

some issues related to the use of UML diagrams to model performance testing. Based on that, we

decided to implement a DSL, henceforth Canopus (see Chapter 4), for the performance testing

domain in order to replace the UML models as our performance testing standard modeling notation.

The decisions on the replacement of a technology, specially in an enterprise context, must

be based on strong evidences. Therefore, to provide evidence about the benefits and drawbacks on

the replacement of UML by Canopus, we designed and setup an empirical experiment in collaboration

with the TDL of our partner company.

6.3 Experiment Instruments

In this section we briefly present the UML approach for modeling performance testing, and

LimeSurvey and Moodle1 used as Systems Under Test (SUT) during the experiment training and

execution:

1https://www.limesurvey.org | https://www.moodle.org/

91

• UML profile for performance testing [RBC+15]: Allows the use of UML use case and

activity diagrams annotated with stereotypes and tagged values to model performance testing.

Our approach to model performance information into UML models relies on stereotypes2 to

annotate test scenario information into use case diagrams and the test case information into

activity diagrams. The performance stereotypes are the following:

– PApopulation: This stereotype has six tags (denoted by the TD prefix): TDpopulation

represents the number of virtual users that will be accessing the application; TDhost

represents the host where the application is executed (defined in all actors of the use

cases diagram); TDrampUpTime defines how long it takes for all users to access the

SUT; TDrampUpUser represents the rate at which the number of users enter the SUT;

TDrampDownTime defines how long it takes for all users to leave the SUT; TDramp-

DownUser represents the rate at which the users leave the SUT;

– PAprob: Defines the probability of execution for each existing activity;

– PAtime: Its related tag, TDtime, represents the expected time to execute each use case;

– PAthinkTime: The TDthinkTime tag denotes the time between the moment the activity

becomes available to the user and the moment the user decides to execute it, for example,

the time for filling a form before its submission;

– PAparameters: Defines the tags for the input data that will be provided to the appli-

cation when running the test scripts (TDparameters), the user action (TDaction) and

the method3 (TDmethod);

• LimeSurvey: Is an open source Web application that allows non-technical users to quickly

create online question-and-answer surveys. In the context of this experiment the application

will be used as an SUT for training the subjects in the use of the modeling languages. Thus,

the experiment’s subject must design UML diagrams and Canopus Performance models to

represent several users answering a survey. A detailed description about the training activities

can be found at the experiment repository4;

• Moodle: Is an open source learning management platform that provides a customized virtual

environment for educators and students. This application was used as an SUT during the

execution of the experiment. Therefore, the subjects must design a set of models, using

both notations, to simulate a professor creating an activity into a course and then a set

of students assigned to this course loggin into the application and visualize the activity. A

detailed description about the experiment execution activities can be found at the experiment

repository.

2A detailed description can be found in [CCO+12].
3HTTP method, i.e., GET or POST.
4http://tiny.cc/SAC-SVT

92

6.4 Experiment Design

In this section we define the experiment objective and introduce our research questions.

6.4.1 Objective

The goal of this experiment is to provide evidence about the effort (spent time), intuitive-

ness and effectiveness when using UML or Canopus to create performance testing models.

Purpose

The purpose of the experiment is to evaluate the effort and suitability to design performance

testing models when using Canopus.

Research Questions

To achieve our objective and purpose, we stated the following research questions:

RQ3. What is the effort to design a performance testing model when using UML or Canopus?

Null hypothesis, H0: effort is the same when using UML and Canopus to design a perfor-

mance testing model.

Alternative hypothesis, H1: the effort is lower when using UML to design a performance

testing model than when using Canopus.

Alternative hypothesis, H2: the effort is lower when using Canopus to design a performance

testing model than when using UML.

RQ4. How effective is it to design performance testing model when using UML or Canopus?

RQ5. How intuitive/easy is it to design performance testing model when using UML or Canopus?

Summary of Definition

Analyze the design of annotated UML models and Canopus Performance models

for the purpose of evaluation

with respect to the effort and suitability

from the perspective of the performance testers and the performance engineers

in the context of industry and academia environments

for modeling performance testing.

93

6.4.2 Selecting and Grouping Subjects

We chose an in-vitro approach to avoid external influences during the execution of the

experiment. Therefore, all activities executed by the experiment subjects were performed in a

laboratory, under controlled conditions. After the definition of the experiment design (see Figure 6.1),

we focused on the selection of the subjects, which is one of the most important activities in an

experimental study. Thus, we spent a considerable effort on inviting and selecting subjects from

industry and academia. First and foremost, we focused on the selection of subjects based on the

information provided by the partner company about the target subject profiles: junior and senior

performance analysts and testers. Therefore, we invited experienced performance engineers and

testers from a local company and from a global IT company. We also invited undergraduate students

from an university, in order to select subjects with non-industrial experience on performance testing.

After selecting the subjects we set the dates to run the experiment sessions - a whole day for both

training and execution sessions. Moreover, before the training session we asked the subjects to

answer a background survey. From the data extracted from that survey, we randomly assigned the

subjects into two groups (randomization). Furthermore, we also kept each group with the same

number of subjects and with similar skills (balancing). During the execution session, each group

started modeling with a different notation. While Group 1 started modeling with UML, Group 2

designed the models using Canopus. In the next phase, Group 1 started modeling with Canopus and

Group 2 modeled using UML - all subjects executed both treatments (a paired comparison design).

After all the subjects had executed the last experiment phase, they answered a post-experiment

survey. It is important to highlight that we monitored the time spent by each subject to complete

each phase. Thus, the time spent data and the survey results from all the subjects were used to

draw the experiment conclusions.

Figure 6.1: Experiment Design

The experiment design addressed according to general principles as follows:

94

Balancing: The subjects are randomly placed into each group (randomized block design), so that

each approach is performed by the same number of subjects (UML or Canopus);

Blocking: The selected subjects for this experiment had different backgrounds in performance

testing. Thus, to minimize the effect of those differences, the subjects were classified in

two groups according to their skills in performance testing (inexperienced and experienced

groups - see Table 6.1). To define if a subject was inexperienced or experienced, we applied

a survey, prior to the experiment, to qualify the subject background on performance testing,

software modeling with UML and professional experience with modeling performance testing

(see Appendix E);

Randomization: The subjects were randomly allocated to each testing approach - UML or Cano-

pus. Moreover, as all subjects executed all treatments (paired comparison design), we randomly

defined their execution sequence;

Standard Design Types: The design type presented aims to evaluate whether the effort of UML

and Canopus are different. Thus, it is necessary to compare the two treatments against each

other. As defined in [WRH+12], the One Factor with Two Treatments design type must be

applied. This factor is the performance testing modeling approach that will be used and the

treatments are the UML and Canopus approaches. The response variable is measured on a

ratio scale, i.e., to allow us to rank the items that are measured and to quantify and compare

the sizes of differences between them.

The context of the experiment is characterized according to four dimensions:

(1) Process: We used an in-vitro approach, since it refers to the experiment in laboratory under

controlled conditions. This experiment is not an industrial software testing, i.e., it is off-line;

(2) Participants: Undergraduate, master and doctoral students, performance testers and engi-

neers;

(3) Reality: The experiment addresses a real problem, i.e. the differences in individual effort to

model performance testing using UML and Canopus approaches;

(4) Generality: It is a specific context since Canopus used in this experiment is a specific DSL to

attend the performance domain, however, Canopus can be extended to other test paradigms.

6.4.3 Instrumentation

The main objects of the instrumentation for our experiment are the performance testing

models composed of performance scripts, scenarios and workloads, designed in accordance with both

approaches (UML and Canopus) for testing the Moodle application. Furthermore, guidelines were

95

provided for supporting the subjects on the execution session, such as performance requirements,

technical specification and use cases. Moreover, we used two tools to support each one of the

approaches: Astah Professional [Ast15] version 6.9.0, for modeling the use case and activity diagrams

when applying the UML approach, and; MetaEdit+ [Met15] version 5.1, for designing the graphs

supported by the metamodels developed by Canopus [BZR+14].

In the training session (using LimeSurvey), the UML approach was introduced to the

subjects through an oral presentation using videos to demonstrate how the approach was applied

to a real case study. Additionally, we provided the subjects with a manual about UML modeling

for performance testing and a detailed instruction on how to use Astah to design performance

models. Similarly, Canopus was introduced to the subjects through an oral presentation, which we

demonstrated how Canopus could be applied for modeling performance testing. We provided the

subjects with a manual about Canopus and also a detailed instruction on how to use MetaEdit+

to design Canopus Performance models. After that, the subjects had to design a user interaction

with a Web-based survey. Furthermore, the subjects could ask open questions for each approach or

clarify how to use the tools to design the performance models.

In the execution session, the subjects interacted with a different Web application - Moo-

dle. To execute the tasks that compose the experiment, the subjects were introduced to guidelines,

describing in details the test specification. Figure 6.2 shows one of the use cases used in the experi-

ment. Based on those documents, the subjects had to design the performance models, in accordance

with the approach guidelines. Figure 6.3 presents the UML activity diagram designed in accordance

with the Moodle use case described in Figure 6.2. Figure 6.4 presents a Canopus Performance

Scripting model designed in accordance with the same specification. More details and complete

specification of experiment instruments can be found in Appendix D.

Due to the heterogeneity of subjects sources, we decided to execute the experiment in

loco, but in vitro, controlling the environment against external interferences. We collected effort

metrics for each subject to answer our RQ3. To answer RQ4 and RQ5 we collected data from the

post-experiment survey.

6.4.4 Threats to Validity

In this section, we describe the threats to the experiment validity, and how we work to

mitigate them. We adopted the threat classification scheme published by [CC79], which is divided

in four types of threats:

• Conclusion validity: Threats to the conclusion validity affect the power of our conclusion

about the relations between the use of modeling languages and the results of the experiment.

In this experiment context, the small number of subjects, in special the small group of subjects

from industry, is a significant threat to the conclusion validity. Other threats to our experi-

ment conclusion validity are the following: Measures reliability : this type of threat is related

96

Use Case: Add Activity

#Description: The assignment activity module enables a teacher to communicate tasks,

collect work and provide grades and feedback to students.

#Actors: Teacher.

#Finality: Allow teacher to assign activity to course.

#Pre-Condition: The teacher has logged in the Moodle.

1. Select Course

action: go to "http://www.cepes.pucrs.br/moodle/" where id equal 22

2. Enable Editing

action: submit "Turn editing on" button

3. Click Add an Activity or Resource

action: click on "Add an Activity or Resource" link

4. Select Assignment Option

action: select on "Assignment" option and submit "Add" button

5. Click

action: type "Name" text field and type "Description" text area

5.A. Save and Display

action: submit "Save and Display" button

5.B. Save and Return to Course

action: submit "Save and Return to Course" button

#Pos-Condition: Activity assignment in the course.

Students able to upload yours answer.

Figure 6.2: A Moodle Use Case specification

to the researcher bias when analysing the experiment results. To mitigate this threat, the ex-

perimental results were independently validated by two researchers. Moreover, the analysis of

quantitative data do not involve human judgment; Random irrelevancies in the experimental

setting : this type of threat entangles our ability to see a relationship between the treatments

and the experiment results. To mitigate this threat, all the experiment activities involving

the subjects were executed in a laboratory, isolated from external influences (noise, interrup-

tions, etc.). Moreover, the subjects were not allowed to use mobile phones or any other type

of communication with the external world; Random heterogeneity of subjects: we selected

Figure 6.3: UML activity diagram of the Use Case specification from Figure 6.2

97

Figure 6.4: Canopus Performance Scripting of the Use Case specification from Figure 6.2

a diverse group of subjects: seven from a large IT company, six from a local company and

thirteen undergraduate students. The selection of some subjects with no industrial experience

on performance testing, and others with years of experience in software testing and modeling

may be a threat to the validation of the experiment results. To mitigate this threat we defined

experience on performance testing as blocking variables: inexperienced (IN) and experienced

(EX);

• Internal validity: We identified the following threats to the internal validity of our experiment:

History : we chose to perform the training and execution sessions in a single day. The definition

of the date was chosen collaboratively with the subjects, to avoid defining a date in which

they may be committed with others activities, e.g., we did not execute the experiment in

an exam period (inexperienced subjects) and close to the start/end of an important project

(experienced subjects); Maturation: we ran the experiment in a single day. In the morning,

we ran the training session. Then, the subjects had an interval to rest. In the afternoon,

we ran the experiment execution session. We chose to split the experiment session to avoid

overwhelming the subjects. Nonetheless, we chose to execute both sessions in a single day to

avoid that subjects forgot what was presented in the training session; Selection: a survey was

applied to assess the knowledge and the experience of subjects and then used to select and

group (block) the subjects;

• External validity: We identified the following threat to the external validity of our experiment:

Subjects: the selection of the subjects that may not be representative to the performance

testing community is a threat to the external validity of our experiment. To mitigate this

threat, we invited software testing professionals with different levels of expertise in performance

testing from two companies. Our decision on inviting undergraduate students was made in

order to provide data on the use of the languages for subjects with no knowledge/expertise in

performance testing;

98

• Construct validity: A threat to the construct validity is that we use a single application as

SUT, and the subjects modeled a limited set of test cases of the application (mono-operation

bias).

6.5 Operation of the Experiment

This section discusses the preparation and execution steps performed during the experiment

operation.

6.5.1 Preparation

Our preparation to the experiment execution includes: to identify what application require-

ments will be modeled during the training and execution sessions; to prepare the approach guidelines,

and; to identify and create practical examples to show during the training session5. Furthermore, all

laboratory computers were prepared with all the necessary documents, as well as the proper tools

(Astah and MetaEdit+). Moreover, we also applied a pre-experiment survey to obtain background

information on the subjects. Based on this information, we blocked the subjects and categorized

them into two equivalent groups (balancing, randomization).

6.5.2 Execution

The experiment took place in June of 2015. During the training session, both approaches

were applied, and for each approach two tasks are executed: performance scenario and scripting

modeling.

The performance scenario specification of LimeSurvey is composed of two user profiles: a

student and a professional respondent. The workload is composed of one thousand virtual users for

a testing duration of four hours. This workload executes one script, named “Answer The Survey”,

which is composed of twelve activities that represent each one of the questions that comprises a

survey. The performance script model is based on performance requirements to the SUT training.

Table 6.1: Assigning subjects to the treatments for a randomized design

Treatments Blocks Number of Subjects

UML
Inexperienced (IN) 13

Experienced (EX) 13

Canopus
Inexperienced (IN) 13

Experienced (EX) 13

5The experiment instruments are available at http://tiny.cc/SAC-SVT

99

Table 6.1 presents the distribution of experiment subjects between the treatments and their

respective block variables. Hence, twenty-six subjects were assigned with two groups (13 subjects

per group). Each group started the execution of one of the two treatments (UML or Canopus).

During the experiment execution session, which followed the same systematic approach

applied in the training phase. Thus, the subjects must performed two tasks. One task was to design

performance models using UML and another was to design performance models using Canopus.

Each session is described next:

• UML: To design performance models in accordance to the experiment guidelines using UML

profile for performance testing:

– Scenario Task : This task consists of designing a UML model from scratch, based on the

performance requirements, using Astah. The performance scenario model, represented

here by a use case diagram, is composed of two actors: students and teachers. These

actors are associated with three use cases, which will be detailed into activity diagrams;

– Scripting Task : The experiment subject had to design the performance scripts using the

modeling strategy described in Appendix D, aggregating performance test information

to the model. Therefore, they had to design three activity diagrams to represent a test

case describing the interaction between the user and the SUT;

• Canopus: To design performance models in accordance to the experiment guidelines using

Canopus:

– Scenario Task : In this task the subjects had to use Canopus to design the Canopus

Performance Scenario in accordance with the provided guidelines. In order to model

that, the experiment subject had to use MetaEdit+, which contains the Canopus Perfor-

mance metamodels. It is important to highlight that Canopus Performance Scenario

has elements that may be decomposed into other elements, e.g. Canopus Performance

Workload, which is modeled to represent features such as test duration, numbers of vir-

tual users, ramp up and ramp down;

– Scripting Task : Similarly to Scripting Task from the UML approach, in this task the sub-

jects had to model the Canopus Performance Scripting to represent the interaction

between a virtual user (VU) and the SUT. Figure 6.3 shows the Canopus Performance

Scripting designed in accordance with the Moodle use case specification described

in Figure 6.2. Additionally, the entire task comprises two more diagrams that represent

the Sign In and View Activity use cases.

6.6 Results

RQ3. What is the effort to design a performance testing model when using UML or

Canopus? Table 6.2 presents the summarized effort data (time spent by subjects) to perform

100

each task using each approach, as mentioned in Section 6.5.2. In Table 6.2, the columns Scenario

and Scripting present the average time per blocks and treatments, respectively. The Total column

represents the sum of the previous columns (Scenario+Scripting). Based on the results summarized

in Table 6.2, the average effort using Canopus was lower than with UML in all scenarios, either to

experienced or inexperienced subjects. The average time spent to design the performance testing

modeling using Canopus was lower than with UML (51.08 min vs 63.69 min).

Table 6.2: Summarized data of the effort (minutes)

Treatments Blocks
Blocks Average Time Treatments Average Time

Scenario Scripting Total Scenario Scripting Total

UML
Inexperienced 15.69 52.62 68.31

13.62 50.08 63.69
Experienced 11.54 47.54 59.08

Canopus
Inexperienced 10.54 39.31 49.85

10.23 40.85 51.08
Experienced 9.92 42.38 52.31

Table 6.3 shows the subject’s effort data, in minutes, per task. A first glance at the table

identifies the parting between inexperienced and experienced subjects, so using them as control

variables (blocks) was important in our case. In Table 6.3, we grouped each task effort in one of

three parts: 1) 29.5% had the best performance (first quartile); 2) 41.7% represent the median

performance (median) from all subjects; and, 3) 28.8% had the worst performance (third quartile).

On one hand, as can be seen in Table 6.3, most of the subjects that performed worse, i.e.

66.7%, were among the ones blocked as inexperienced subjects. Naturally, some of the subjects did

not have the expected results due to their skills and knowledge. For instance, subject IN05 from

inexperienced had one of the best performance from all subjects; also, subjects IN07 and IN11 had

some of the worst performances in this block. In turn, subject EX04 had the best performance of

both treatments. Also, subject EX01 from experienced group had one of the worst performances.

This could be expected, since we do have subjects that are above the average in several aspects, and

also an experienced subject that could not yet have the experience necessary to achieve good results

as a whole. Such a result was foreseen as a threat for our experiment as explained in Section 6.4.4.

On the other hand, from experienced subjects, 80.8% were among the subjects that we

classified in the first and median quartile, and only 19.2% are in the third quartile (worst per-

formance). Experienced subjects from UML approach had their results concentrated in the third

quartile (10.3%). We infer that experienced subjects from UML approach had improved their results

when comparing with inexperienced, which had major results in the third quartile while experienced

subjects concentrated their results in the first and median quartile with 89.7%. Possibly, these re-

sults had influences from previous skills and knowledges about UML (see Figure 6.7). Inexperienced

subjects were distributed nearly equally among the three parts, respectively, 29.5%, 32%, and 38.5%.

Figure 6.5 depicts the Box-Plot graph of the Scenario Task data set, represented by

UMLScen and DSLScen boxes. In the Scenario task, the median of execution time with UML was

12.5 minutes and with Canopus it was 10 minutes. Moreover, the UML standard deviation was 5.02

101

Table 6.3: Effort data per subject (minutes)

Treatments
UML Canopus

Blocks
Blocks Subject Scenario Scripting Total Scenario Scripting Total

Inexperienced

IN01 19 37 56 11 37 48
IN02 12 47 59 11 40 51
IN03 15 50 65 7 40 47
IN04 21 39 60 10 35 45
IN05 12 33 45 8 33 41
IN06 9 70 79 17 51 68
IN07 20 60 80 15 45 60
IN08 7 68 75 5 23 28
IN09 9 51 60 8 50 58
IN10 20 54 74 10 37 47
IN11 20 60 80 15 45 60
IN12 25 75 100 10 40 50
IN13 15 40 55 10 35 45

Experimenced

EX01 10 62 72 17 51 68
EX02 5 26 31 15 52 67
EX03 12 41 53 9 39 48
EX04 10 40 50 8 37 45
EX05 11 39 50 5 32 37
EX06 14 48 62 7 53 60
EX07 7 41 48 7 39 46
EX08 18 60 78 15 41 56
EX09 14 53 67 8 43 51
EX10 12 51 63 9 38 47
EX11 9 49 58 10 38 48
EX12 15 53 68 9 49 58
EX13 13 55 68 10 39 49

First quartile (≤) 10 40.25 55.25 8 37 46.25
Median (≬) 12.5 50.5 62.5 10 39.5 48.5

Third quartile (≥) 17.25 58.75 73.5 11 45 58

Legend - Hashed cells: first quartile; Blank cells: median; Dotted cells: third quartile

minutes, against 3.43 minutes for Canopus. It is important to highlight that there is one outlier in

the data set for Canopus that took 17 minutes.

From another point of view, Figure 6.5 also presents the Box-Plot graph of the Script task.

This task is represented by UMLScr and DSLScr boxes, where the median time to execute the UML

treatment was 50.5 minutes, while for Canopus it was 39.5 minutes. Moreover, the UML standard

deviation was 11.84 minutes, greater than the 7.12 minutes for Canopus. Again, notice that there

is one outlier in the data set for Canopus that took 23 minutes.

Figure 6.5 also shows the Box-Plot graph of the summarized data set, i.e., the sum of

Scenario and Script tasks, identified by UMLT otal and DSLT otal boxes. Here, the median of execution

time with UML was 62.5 minutes, inasmuch as Canopus was 48.5. It is important to highlight that

102

the Canopus standard deviation (9.46 minutes) represents 66.8% of variation of the UML treatment

(14.16 minutes). Once again, notice that there is one outlier in the data set for Canopus treatment

that took 28 minutes.

UMLScen DSLScen UMLScr DSLScr UMLTotal DSLTotal

0

20

40

60

80

100

m
in

ut
es

Figure 6.5: Boxplot - treatments per task

Figure 6.6 presents the box-plot graph grouped by blocks. The medians of execution times

with UMLIN, UMLEX, DSLIN and DSLEX were, respectively, 65, 62, 48 and 49 minutes. Moreover,

the standard deviation for each block was, respectively, 14.65, 12.53, 10.11 and 9.0.

It is worthwhile to highlight that of all the data sets analyzed, the standard deviations of

Canopus presents their values smaller than UML, e.g., it gives us an idea of how close their data

sets are, respectively, to the average value. How much more precise and tightly grouped the data

set is. This is better from a statistical point of view.

As for hypothesis testing, we used the PortalAction statistical package [Por15] integrated

with MS Excel to test our hypothesis from the collected data sets. We performed the Kolmogorov-

Smirnov [Por15] test to verify the normality of data distribution (Table 6.4). In this context, we

followed the best practice in Statistics and chose a significance level of α = 0.05. Although, almost

all results had a normal distribution, there was one exception. The Scenario data set, which showed

a p-value (0,002396184) lower than α. For this reason, we assumed that the distribution was not

normal. Therefore, we applied a non-parametric test: Wilcoxon [Por15] signed rank test. We applied

a non-parametric test since it uses the median instead of average as used in the parametric test.

This solves the problem with outliers. For each data set (Scenario, Scripting and Total), we applied

the statistical test to the paired samples, i.e. to compare the effort spent to model performance

using UML or Canopus (RQ3). As presented in Table 6.5, for all samples pairs, the results of the

Wilcoxon test reject the H0 hypothesis. Therefore, we can conclude that there is, statistically, a

noticeable difference in effort to design a performance testing model when using UML and Canopus.

Thus, for all data sets we confirmed the alternative hypothesis H2.

103

UMLIN DSLIN UMLEX DSLEX

0

20

40

60

80

100

m
in

ut
es

Figure 6.6: Boxplot - treatments per block

The major concern of the experiment is the fact that we made the experiment on only

one system, Moodle, and with few people, statistically, not enough. Despite of that, the statistical

analysis demonstrated that the sample is normal and relevant.

Table 6.4: Kolmogorov-Smirnov normality test

Treatment Scenario Scripting Total
Test p-val Test p-val Test p-val

UML 0,126 0,355 0,124 0,377 0,086 0,886
Canopus 0,219 0,002 0,162 0,074 0,157 0,098

Table 6.5: Wilcoxon signed rank test results

Treatment Scenario Scripting Total

UML/Canopus 0.007055169 0.000603644 0.000124493

RQ4. How effective is it to design a performance testing model when using UML or

Canopus? RQ5. How intuitive/easy is it to design a performance testing model when using UML

or Canopus?

After designing the performance models using both approaches, the subjects answered a

survey composed of:

(a) Assertions to answer how they rate with their technical knowledge in their different back-

grounds according to the context of the experiment, based on a four points scale: “Low,

no prior knowledge”; “Regular, read a book or followed a course”; “Average, some industrial

experience (less than 6 months)”; and, “High, industrial experience”;

104

(b) Statements to survey how much they concur with our Canopus features, based on a five

points Likert scale [Lik32]: Strongly Disagree (SD), Disagree (D), Neither Agree nor Disagree

(NAD), Agree (A) and Strongly Agree (SA);

(c) Open questions to extract their opinions.

As shown in Figure 6.7, most of the experiment subjects have litle knowledge and few skills

of technical issues, where most of them answered that they have more technical knowledge, having

chosen the “Regular, read a book or followed a course” option, influenced by their university time.

Despite the experiment subjects having had more skills and knowledge of UML than other perfor-

mance modeling languages, or DSL, it did not influence the achieved outcomes, which corroborated

that Canopus approach is more productive than UML.

0 10 20 30 40 50 60 70 80 90 100

UML

DSL

Performance Testing (PT)

Modeling PT-non-UML

Modeling PT-UML

7.723.1

11.5

3.9

11.5

57.7

11.5

38.4

26.9

11.5

11.5

88.4

50

69.2

77

T
ec

h
n
ic

al
P

ro
fi
le

Low, no prior knowledge
Regular, read a book or followed a course

Average, some industrial experience (less than 6 months)
High, industrial experience

Figure 6.7: Frequency diagram of the profile experiment subjects

As can be seen in Figure 6.8, the statement most accepted is that Canopus has Expres-

siveness6 (61.5% SA, 27% A and 11.5% NAD), followed by that it has Representativeness7 (50%

SA, 34.6% A, 15.4% NAD) and Easy to Design (30.8% SA, 65.4% A, 3.8% NAD). The statement

that received the worst mark was with respect to Intuitiveness8 (53.9% A, 26.9% NAD and 19.2%

D).

The main advantages on the use of the UML approach, by the subjects point of view were:

(a) It was easier because I already had some experience with UML; (b) I already had used Astah

tool to design UML, so it was easier to use; (c) There are tons of documentation and discussion

groups on the Internet. The subjects also pointed some disadvantages on the use of UML: (a) Lack

6Expressiveness: defines the quality of graphical elements composed by visual variables (color, size, brightness,
shapes, and textures) used in a notation for supporting the usability of graphical modeling languages.

7Representativeness: regards to how much the graphical elements proposed by our DSL represent the performance
testing domain.

8Intuitiveness: regards to how much the graphical elements proposed by Canopus works the way the user does
what it should do enough way through intuition without any training or rational thought is necessary, feeling to do
it naturally. It means something that can be naturally and instinctively understood and comprehended.

105

0 10 20 30 40 50 60 70 80 90 100

Intuitiveness

Easy to Design

Representativeness

Expressiveness

30.8

50

61.5

53.9

65.4

34.6

27

26.9

3.8

15.4

11.5

19.2

F
ea

tu
re

s

Strongly Disagree (SD) Disagree (D) Neither Agree nor Disagree (NAD)

Agree (A) Strongly Agree (SA)

Figure 6.8: Frequency diagram of the Canopus

of interaction/reuse of models with parameters; (b) Higher probability of making a syntax error

when typing the tag values; (c) Some performance testing information cannot be easy to design

with UML.

Similarly, the subjects reported advantages on the use of Canopus: (a) Modeling was

simple and intuitive. Promotes the code reuse in all modeling phases. Easy and fast understanding

of the interface; (b) It is intuitive to realize the relations that are being performed. The scenario

creation is intuitive and the probability of making a syntax error is smaller ; (c) Very intuitive. Allows

to add many performance testing information to the models. Adding parameters is much easier.

The subjects pointed out the following disadvantages: (a) Learning curve - at the beginning it was

complex to use. It was difficult to understand which element should be used ; (b) Lack of mechanism

to duplicate an element.

6.7 Chapter Summary

In this chapter, we have presented an in vitro experimental study for evaluating our DSL,

and for providing evidence for the benefits and/or drawbacks when using UML or DSL approaches

for modeling performance testing. The experimental results indicate that the use of Canopus reduces

the effort required to create models when compared to UML. Moreover, the experiment subjects

pointed out that Canopus has more expressiveness and representativeness, and is easier to design

than UML. Hence, these findings can provide support to our partner company in the decision process

to replace UML by Canopus for modeling performance testing. We are aware that the sample size

that was used to base some of our conclusions is not geographically relevant. Moreover, a group of

subjects did not have an adequate experience level or knowledge on performance testing. Therefore,

we designed our experiment protocol with the intention to replicate it in the future to collect more

results. Furthermore, based on the achieved findings, testimonials from experiment subjects and our

lessons learned to conduct this experiment, we intend to improve our DSL, ensuring the evolution

of Canopus for a new version of graphical and textual language, as well as new features.

107

7. FINAL REMARKS

“It’s more fun arrive to a conclusion than to justify it.”

— Malcolm Stevenson Forbes

7.1 Overview

It is well-known that the testing phase is one of the most time-consuming and laborious

phases of a software development process [YHL+08]. Depending on the desired level of quality for

the target application, and also its complexity, the testing phase can have a high cost. Normally

defining, designing, writing and executing tests require a large amount of resources, e.g. skilled

human resources and supporting tools. In order to mitigate these issues, it would be relevant

to define and design the test activity using a well-defined model or language and to allow the

representation of the domain at a high level of abstraction. Furthermore, it would be relevant to

adopt some technique or strategy to automate the writing and execution of the tests from this test

model or language. One of the most promising techniques to automate the testing process from the

system models is Model-Based Testing (MBT) [UL06].

Although MBT is a well-defined and applied technique to automate some testing levels,

it is not entirely explored to test non-functional requirements of an application, in particular, per-

formance testing. One strategy to automate the testing process for a single testing level would

implement a Domain-Specific Language (DSL) [Fow10] to deal with this particular problem do-

main. DSL can provide a graphical, textual or hybrid language to instantiate models based on their

metamodels designed. Therefore, it would be relevant to develop a modeling language for the per-

formance testing domain in order to expand the domain-specific testing as an efficient solution. By

doing this, domain experts could express abstract models or languages to generate testing artifacts

automatically, focusing on transforming the domain knowledge to improve the performance testing

process. In this thesis, we proposed Canopus, which aims providing a graphical and textual DSL to

108

support the design of performance models and which can be applied in a model-based performance

testing approach.

In this context, this thesis has contributed to theoretical and empirical studies to advance

the performance testing area by applying MBT using a domain-specific language to support the

design of performance modeling. The results have provided evidence for a positive answer to our

general research question proposed in Chapter 1, i.e., “How to improve model-based performance

testing using the domain-specific language in Web applications” Section 7.2 revisits the achieved

thesis contributions that support answering such a question. Section 7.3 summarizes the study lim-

itations, and also sketches ongoing research and planned future work. Finally, Section 7.4 describes

the academic contribution of the author in terms of publication.

7.2 Thesis Contributions

This section states the achievements of this thesis as follows.

Canopus - a domain-specific language for modeling performance testing: We proposed,

designed and developed Canopus (Chapter 4). Canopus is a graphical and textual language to

model performance testing. MetaEdit+ [Met15] was the Language Workbench (LW) [KLR96]

applied to implement Canopus. The LW allows one to design the graphical elements that

compose our DSL. Hence, the code generation module of MetaEdit+ makes it possible to

transform the graphical representation in a textual representation. Thereby, to design our

textual representation, we extend the Gherkin [WH12] language to include performance testing

information. We chose to implement both graphical and textual languages, because even

though graphical may be more rich visually, not all information can be represented. It important

to highlight that the standard modeling language is graphical. The architecture of Canopus

is composed of three parts: monitoring, scenario and scripting. Each part is represented by a

metamodel, which in turn compounds a set of concepts of the performance domain.

Mechanisms to support the integration with third-party performance tools: Mechanisms

to support the integration with third-party performance tools: the MetaEdit+ [Met15] has

a feature that allows applying model transformation between the models instantiated from

metamodels to code generation. Canopus was proposed to support dual output, graphical

and textual representation. Also, we were careful about the integration with third-party per-

formance tools. Therefore, we proposed an XML structure as another output option. The

idea is applying this strategy to integrate Canopus with other load generators technologies,

e.g. HP LoadRunner [Hew15]. Even so, a particular script generation for each technology

as a new feature of Canopus can be also implemented. However, our proposal for model-

based performance testing process supports the generation performance artifacts to specific

technologies parsing the XML Canopus using PLeTsPerf [RBC+15], which in turn supports

automatic generation of test scenarios and scripts to third-party performance tools.

109

Model-based performance testing process: Our DSL was designed to use integrated to an MBT

approach. Thus, we propose a model-based performance testing process (see Section 5.2),

which uses Canopus as a performance testing modeling tool. The process incorporates a

set of activities that have to be performed by two distinct parties: Canopus and a Third-

Party. Among of the set of activities, we highlighted the design, graphically, of the Canopus

Performance models, as well as the generation of textual representation, generation of XML,

and generation of third-party scripts. Hence, these activities produce and/or consume as input

or as output testing artifacts generated in previous activities.

Industrial case study validation: We validated Canopus and its representativeness, intuitiveness,

and usefulness in an industrial case study (Chapter 5). This case study applied the process

mentioned in Section 5.2. Thus, an experience with real-world applications - Changepoint -

within an IT corporation was reported (see Section 5.3). This case study provided evidence that

Canopus is feasible in real and less controlled contexts. Moreover, an analysis (see Section 5.4)

of a web-based survey to evaluate the graphical elements and their representativeness and

intuitiveness to symbolize performance elements, was answered by fifteen performance test

experts. The case study results also provided empirical evidence that the DSL proposed can

be applied to larger and complex software projects, having an excellent analysis from the view

point of the communication among stakeholders. In addiction to this, the performance team

argued that Canopus could replace the textual specification used nowadays since the team

evaluated that both languages, graphical and textual, represent their necessary specification

to deal with other teams engaged in the software project. Furthermore, the main lessons we

have learned from this industrial case study is summarized in Section 5.5.

Experimental evaluation of the proposed DSL: We designed and conducted a controlled em-

pirical experiment to compare two approaches for modeling performance testing (Section 6.2).

The experiment objective was to support our partner company in the decision process to re-

place UML by a DSL (Section 6.3). In Chapter 6, we validated Canopus report of an in vitro

experiment, where the subjects analyze the design of annotated UML models and Canopus

Performance models. This was done, for the purpose of evaluation with respect to the effort

and the suitability, from the perspective of the performance testers and engineers in the context

of industry and academic environments for modeling performance testing (Section 6.4). Thus,

the experiment was executed with twenty-six subjects associated with two groups (one-half

each): inexperienced and experienced. Moreover, the experiment results (Section 6.6) provide

evidence of the benefits and drawbacks when using UML or DSL for modeling performance

testing. Our findings indicate that, for performance modeling, the effort of using a DSL was

lower than that of using UML. Our statistical analysis showed that the results were valid, i.e.,

that for designing performance testing models, using our DSL is better than using UML.

110

Table 7.1 binds the stated achievements with three types of contributions: (i) theoretical

definitions, (ii) experimental studies, and (iii) supporting tools. The table also presents the section

in which the contribution was described and associated publication.

Table 7.1: Classification and structure of the achieved thesis contributions

Chapter Description Location (i
)

T
he

or
et

ic
al

D
efi

ni
ti

on
s

(i
i)

E
m

pi
ri

ca
l

S
tu

di
es

(i
ii)

S
up

p
or

ti
ng

T
o

ol
s

Publication

Domain analysis for performance testing. Section 4.2 X

Language requirements collected from the soft-
ware engineers from TDL based on our domain
analysis.

Section 4.3 X

Design decisions for creating a DSL that sup-
ports the requirements colleted.

Section 4.4 X

4 Proposal of the architecture of the DSL. Section 4.5 X [BZR+14]

Proposal of the set of elements that composes
the metamodels of the DSL.

Section 4.6 X

Example of the feasiabity of using TPC-W to
validate the applicability of the DSL.

Section 4.7 X

Lessons learned to use the proposal DSL to
evoluate de language.

Section 4.8 X

Model-based performance testing process. Section 5.2 X

An exploratory study, the Changepoint case
study.

Section 5.3 X

5 Representativeness, intuitiveness, and useful
analysis of the DSL.

Section 5.4 X [BRZ16]

Lessons learned from industrial experience. Section 5.5 X

Instruments used during experiment training
and execution.

Section 6.3 X

Design and plan of the controlled empirical ex-
periment.

Section 6.5 X

6 Operation of the of the controlled empirical ex-
periment

Section 6.5 X [BZR16]

Effort, expressiveness, representativeness, intu-
itiveness, and easy-to-design analysis of the ex-
periment results from the comparizon between
UML and DSL aproaches.

Section 6.6 X

111

7.3 Limitations and Future Works

Despite this thesis having presented real contributions to the performance testing, model-

based testing, and domain-specific language areas, we identified limitations of the thesis contributions

that can be dealt with in the future. It is worth remembering that previous chapters already discussed

specific limitations. Hence, we herein describe in this section broader limitations to be overcome as

well as opportunities for future works made during short and medium term research.

Limitations of the Canopus metamodels: The architecture of Canopus for performance test-

ing is composed of three main metamodels: monitoring, scenario, and scripting. Each one

of theses metamodels requires improvements in its properties, graphical elements, or even

the translation to textual representation. At first, the Canopus Performance Monitoring

metamodel needs to add new properties to SUT, Load Generator, and Monitor elements - those

represented by computers. For instance, besides IP address and hostname, it is interesting to

maintain the basic information about its configuration, e.g. operating system (OS). Another

limitation is regarding the metrics, in which the solution designed is dependent of each type

of metrics instead of an abstract and generic solution, i.e., if a new metric is created, this

new feature must be added manually in Canopus to generate a new DSL version. Next, the

Canopus Performance Scenario metamodel does not provide the decomposition feature

among scenarios. Our industrial experience points out that this feature is necessary to express

a real synthetic workload. It would be interesting to create a mechanism by which to enable

a relationship between Canopus Performance Scenario models, i.e., a scenario model can

decompose into another scenario model. Finally, during the case study with real-world ap-

plications shown in Chapter 5, and empirical experiment presented in Chapter 6, limitations

on the Canopus Performance Scripting metamodel were identified. Hence, some graph-

ical elements have not classified as intuitive. For instance, the Activity element has several

forms and ways to draw, depending on the value of its properties. Further investigations into

strategies for designing these graphical elements can shed some light on this topic.

Canopus is not exclusive to performance testing: Canopus is not exclusive to performance

testing. Foremost, our intention was to design the DSL to support performance testing.

Nevertheless, the proposed DSL is not restricted only this scope. In future work, we may

extend Canopus for other contexts or, who knows, to other testing paradigms, e.g. functional

testing. For this reason, the name attributed for each metamodel takes the performance on

its behalf. As a first interest, our studies with a TDL partner had the interest in investigating

improvements for the performance testing process. Nowadays, the research migrated towards

functional testing with the intention of the automating testing process.

Multiple industrial case studies: We conducted a single case study to find evidence of ap-

plicability our DSL. Hence, we understand that having applied Canopus addressing only one

application, it is a threat to the conclusions of the generalization the viability of Canopus.

112

Thus, we plan to perform a multiple case study in a real context. Using multiple sources of

evidence are essential tactic to collect data from several distinct software projects. However,

this method is a challenge that makes the research becomes “hard” since we need to converge

retrieved data in a triangulating fashion [Yin13]. Therefore, we will have software projects with

different complexity and size of models for designing, as well as more subjects to interview or

answer a survey to perform a qualitative analysis and then generalize these findings.

Replication of controlled empirical experiment: Despite the fact that we conducted a con-

trolled empirical experiment to validate our results, we were aware that the scope of the

number of experiment subjects that participated was limited, and opportunities to investigate

better benefits were manifold. Thus, in this experiment, the most interesting dimensions were

the effort (time spent/cost) dedicated to the subjects for performance testing modeling both

approaches. However, we were aware that it was necessary to evaluate the deviation of the

error rate from the models designed during experiment execution. This dimension character-

izes the effectiveness of the performance models designed. The error rate is an important

dimension to guarantee that the difficulty level of the tasks performed by experiment subject

is independent of each approach. Hence, we would ensure more precisely that time is spent

meaningfully when compared with both approaches. Therefore, we are planning the replication

of the experiment with a large sample of experiment subjects.

Comparison of Canopus and Capture & Replay techniques: As already stated, we performed

an experiment to compare UML models and DSL models for modeling performance testing.

We decided to make this comparison between two equivalent approaches to model performance

testing based on the MBT paradigm. However, for most of the industry players, MBT is not

yet a standard, for this reason, we believe that an empirical study comparing a Capture and

Replay (CR) [EAXD+10] based technique is necessary. Therefore, the empirical investigation

between DSL-based and CR-based approaches also requires evidence. In the previous study, our

research group performed a similar comparison. In this context, we conducted an experiment

to compare a UML-based approach and a CR-based approach [RdOC+15].

Performance testing body of knowledge: During the domain analysis of the performance test-

ing, we investigated a broad scope of literature as well as practiced several software projects

that applied performance testing. Besides, another recent study previously developed in our

research group proposed an ontology for performance testing [FV14], mapping the main con-

cepts, relationships, and constraints that represent the performance testing domain. Because

of that, we are already sketching an initial performance testing body of knowledge. Our goals

with this work are reaching the consensus through the body of knowledge and their set of core

activities. Our aims are towards the evolution of performance testing professional status. This

“guide” is a small alpha version of our body of knowledge that compose the core of perfor-

mance testing activities, which are divided into their knowledge areas, as well as composed of

their process groups. We intend to strive for this document to become a guide recognized and

113

adopted by the software industry. For this reason, we claim the participation and engagement

of the industry and researchers interested in the performance testing area to write this guide

with multi-hands to achieve such a consensus.

Human–Computer Interaction (HCI) evaluation of Canopus: Although we performed two

empirical studies that perform qualitative analyzes based on survey results, our approach does

not apply a rigorous method supported by a widely known technique. In the meantime,

there are other research fields in our Postgraduate Program in Computer Science. One of

them investigates the HCI [Boo89] in software engineering. HCI studies the design and use

of computer technology and its interface with users. Thus, HCI is an iterative cycle through

analysis, design, implementation, and evaluation. Hence, usability engineering is applied based

on human activity factors to deal with software projects. Jakob Nielsen proposed general

principles for interaction design. These principles are called “heuristics" since they are wide

general guidelines and not a particular guide of usability [NM90]. Some examples of these

heuristics are as follows: consistency and standards, error prevention, flexibility and efficiency

of use, help and documentation, and others. Therefore, we already began to investigate how

to evaluate the usability heuristics for user interface design of Canopus.

7.4 Publications

During the development of this thesis we presented and discussed our research results in

the following papers:

• Bernardino, M.; Zorzo, A.; Rodrigues, E. “Canopus: A Domain-Specific Language for Mod-

eling Performance Testing”, forthcoming. In: Proceedings of the 9th IEEE International

Conference on Software Testing, Verification and Validation (ICST’16), 2016, pp. 1–11.

• Bernardino, M.; Rodrigues, E.; Zorzo, A. “Performance Testing Modeling: an empirical eval-

uation of DSL and UML-based approaches”, forthcoming. In: Proceeding of the 31st ACM

Symposium on Applied Computing (SAC-SVT’16), 2016, pp. 1–6.

• Bernardino, M.; Zorzo, A. F.; Rodrigues, E.; de Oliveira, F. M.; Saad, R. “A Domain-Specific

Language for Modeling Performance Testing: Requirements Analysis and Design Decisions”.

In: Proceedings of the 9th International Conference on Software Engineering Advances (IC-

SEA’14), 2014. pp. 609–614.

Also, we have a submission under review for a journal, as follows:

• Bernardino, M.; Rodrigues, E.; Zorzo, A. “A Systematic Mapping Study on Model-Based

Testing: Tools and Models”, under review, IET Software, 2016.

114

As we already stated, part of this research was performed in collaboration with a TDL

of an IT company. Therefore, the research group collaborates to assist our partner as well as to

produce research studies related to our initial proposal. Hence, we present a list of the other related

publications that contributed indirectly to this thesis:

• Rodrigues, E.; Bernardino, M.; Costa, L.; Zorzo, A.; Oliveira, F. “ PLeTsPerf - A Model-

Based Performance Testing Tool”. In: Proceedings of the 8th IEEE International Conference

on Software Testing, Verification and Validation (ICST’15), 2015, pp. 1–8.

• Rodrigues, E.M.; De Oliveira, F.; Bernardino, M.; Costa, L.T.; Zorzo, A.F.; Souza, S.R.S.;

Saad, R. “An Empirical Comparison of Model-based and Capture and Replay Approaches for

Performance Testing”. Empirical Software Engineering (Online), v.20, n.6, pp. 1831–1860,

2015.

• Rodrigues, E. M.; Saad, R. S.; Oliveira, F. M.; Costa, L. T.; Bernardino, M.; Zorzo, A. F.

“Evaluating Capture and Replay and Model-based Performance Testing Tools: An Empirical

Comparison”. In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM’14), 2014. pp. 9:1–9:8.

• Costa, L.T.; Zorzo, A.F.; Rodrigues, E.M.; Bernardino, M.; Oliveira, F.M. “Structural Test

Case Generation Based on System Models”. In: Proceedings of the 9th International Confer-

ence on Software Engineering Advances (ICSEA’14), 2014. pp. 276–281.

• Guarianti, P.; Bernardino, M.; Zorzo, A.F.; Oliveira, F.M. “Uma Abordagem de Análise do

Tempo de Resposta para Teste de Desempenho em Aplicações Web”. In: Anais do XV

Workshop de Testes e Tolerância a Falhas (WTF’14), 2014. p. 17–30.

• Endo, A.T.; Bernardino, M.; Rodrigues, E.M.; Simao, A.; Oliveira, F.M.; Zorzo, A.F.; Saad,

R. “An Industrial Experience on using Models to Test Web Service-Oriented Applications”. In:

Proceedings of the 15th International Conference on Information Integration and Web-based

Applications & Services (iiWAS’13), 2013. pp. 240–249.

• Costa, L.T.; Czekster, R.M.; Oliveira, F.M.; Rodrigues, E.M.; Silveira, M.B. ; Zorzo, A.F.

“Generating Performance Test Scripts and Scenarios Based on Abstract Intermediate Models”.

In: Proceedings of the 24th International Conference on Software Engineering and Knowledge

Engineering (SEKE’12), 2012. v.1. pp. 112–117.

115

REFERENCES

[AATP12] Abbors, F.; Ahmad, T.; Truscan, D.; Porres, I. “MBPeT - A Model-Based

Performance Testing Tool”. In: 4th International Conference on Advances in System

Testing and Validation Lifecycle, 2012, pp. 1–8.

[AFG+10] Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A. D.; Katz, R.; Konwinski, A.; Lee, G.;

Patterson, D.; Rabkin, A.; Stoica, I.; Zaharia, M. “A View of Cloud Computing”,

Communication ACM, vol. 53–4, apr 2010, pp. 50–58.

[ALRL04] Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr, C. “Basic Concepts and

Taxonomy of Dependable and Secure Computing”, IEEE Transaction on Dependable

Secure Computing, vol. 1–1, 2004, pp. 11–33.

[Ast15] Astah. “Astah Professional”. Available in: http://astah.net/, Dec 2015.

[AT10] Abbors, F.; Truscan, D. “Approaching Performance Testing from a Model-Based

Testing Perspective”. In: 2nd International Conference on Advances in System Testing

and Validation Lifecycle, 2010, pp. 125–128.

[Bac78] Backus, J. “Can Programming Be Liberated from the Von Neumann Style?: A

Functional Style and Its Algebra of Programs”, Communications of the ACM, vol. 21–

8, aug 1978, pp. 613–641.

[Bar04] Barber, S. “Creating Effective Load Models for Performance Testing with Incomplete

Empirical Data”. In: 6th IEEE International Workshop on Web Site Evolution, 2004,

pp. 51–59.

[Bar15] Barber, S. “User Community Modeling Language (UCML) for performance test

workloads”. Available in: http://www.ibm.com/developerworks/rational/library/

5219.html, Sep 2015.

[BCM07] BCM Software. “Performance Benchmarking Kit Using Incident Management with

SilkPerformer”, Technical Report, BMC Software, 2007, 66p.

[BCW12] Brambilla, M.; Cabot, J.; Wimmer, M. “Model-Driven Software Engineering in

Practice”. San Rafael, CA, USA: Morgan & Claypool Publishers, 2012, 1st ed., 182p.

[BDG+07] Baker, P.; Dai, Z. R.; Grabowski, J.; Haugen, O.; Schieferdecker, I.; Williams,

C. “Model-Driven Testing: Using the UML Testing Profile”. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2007, 184p.

[BDH06] Beyer, M.; Dulz, W.; Hielscher, K.-S. “Performance Issues in Statistical Testing”.

In: 13th GI/ITG Conference Measuring, Modelling and Evaluation of Computer and

Communication Systems, 2006, pp. 1–17.

116

[BDMIS04] Balsamo, S.; Di Marco, A.; Inverardi, P.; Simeoni, M. “Model-based performance

prediction in software development: A survey”, IEEE Transactions on Software

Engineering, vol. 30–5, may 2004, pp. 295–310.

[Bea78] Beaudry, M. D. “Performance-Related Reliability Measures for Computing Systems”,

IEEE Transactions on Computers, vol. C-27–6, jun 1978, pp. 540–547.

[Bea15] Bear, S. “Software LoadUI”. Available in: http://www.loadui.org, Jan 2015.

[Bec02] Beck. “Test Driven Development: By Example”. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2002, 240p.

[Ber07] Bertolino, A. “Software Testing Research: Achievements, Challenges, Dreams”. In:

Future of Software Engineering, 2007, pp. 85–103.

[Bie06] Bierhoff, Kevin; Liongosari, Edy S.; Swaminathan, Kishore S. “Incremental

Development of a Domain-Specific Language That Supports Multiple Application

Styles”. In: OOPSLA Workshop on Domain-Specific Modeling, 2006, pp. 79–86.

[Boo89] Booth, P. A. “An Introduction to Human-Computer Interaction”. Hove, GB, Hillsdale,

NJ: Lawrence Erlbaum Associates, 1989, 268p.

[BRZ16] Bernardino, M.; Rodrigues, E.; Zorzo, A. “Performance Testing Modeling: an

empirical evaluation of DSL and UML-based approaches (forthcoming)”. In: 31st

ACM Symposium on Applied Computing, 2016, pp. 1–6.

[BvHH+04] Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness, D. L.; Patel-

Schneider, P. F.; Stein, L. A. “OWL Web Ontology Language Reference”, Technical

Report, W3C, 2004.

[BZGL07] Bui, N.; Zhu, L.; Gorton, I.; Liu, Y. “Benchmark Generation Using Domain Specific

Modeling”. In: 18th Australian Software Engineering Conference, 2007, pp. 169–180.

[BZR+14] Bernardino, M.; Zorzo, A. F.; Rodrigues, E.; de Oliveira, F. M.; Saad, R.

“A Domain-Specific Language for Modeling Performance Testing: Requirements

Analysis and Design Decisions”. In: 9th International Conference on Software

Engineering Advances, 2014, pp. 609–614.

[BZR16] Bernardino, M.; Zorzo, A.; Rodrigues, E. “Canopus: A Domain-Specific Language

for Modeling Performance Testing (forthcoming)”. In: 9th International Conference

on Software Testing, Verification and Validation, 2016, pp. 1–8.

[CC79] Cook, T. D.; Campbell, D. T. “Quasi-Experimentation: Design and Analysis Issues

for Field Settings”. Boston, MA, USA: Houghton Mifflin, 1979, 420p.

117

[CCO+12] Costa, L. T.; Czekster, R.; Oliveira, F. M.; Rodrigues, E. M.; Silveira, M. B.;

Zorzo, A. F. “Generating Performance Test Scripts and Scenarios Based on Abstract

Intermediate Models.” In: 24th International Conference on Software Engineering

and Knowledge Engineering, 2012, pp. 112–117.

[CDD+08] Chadwick, D.; Davis, C.; Dunn, M.; Jessee, E.; Kofaldt, A.; Mooney, K.; Nicolas, R.;

Patel, A.; Reinstrom, J.; Siefkes, K.; Silva, P.; Ulrich, S.; Yeung, W. “Using Rational

Performance Tester Version 7”. Riverton, NJ, USA: IBM Redbooks, 2008, 572p.

[Cha94] Chang, C.-S. “Stability, Queue Length, and Delay of Deterministic and Stochastic

Queueing Networks”, IEEE Transactions on Automatic Control, vol. 39–5, may 1994,

pp. 913–931.

[Cha15] Changepoint. “Changepoint”. Available in: http://www.changepoint.com,

Dec 2015.

[Cho78] Chow, T. S. “Testing Software Design Modeled by Finite-State Machines”, IEEE

Transaction on Software Engineering, vol. 4–3, may 1978, pp. 178–187.

[CNN01] Clements, P.; Northrop, L.; Northrop, L. M. “Software Product Lines: practices and

patterns”. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001,

608p.

[CPL09] Chung, L.; Prado Leite, J. C. “Conceptual Modeling: Foundations and Applications”.

In: On Non-Functional Requirements in Software Engineering, Borgida, A. T.;

Chaudhri, V. K.; Giorgini, P.; Yu, E. S. (Editors), Berlin, Heidelberg: Springer-

Verlag, 2009, vol. 5600, pp. 363–379.

[CR09] Casey, V.; Richardson, I. “Implementation of Global Software Development: A

Structured Approach”, Software Process, vol. 14–5, sep 2009, pp. 247–262.

[dNVN+12] do Nascimento, L. M.; Viana, D. L.; Neto, P. A. M. S.; Martins, D. A. O.; Garcia,

V. C.; Meira, S. R. L. “Systematic Mapping Study on Domain-Specific Languages”.

In: 7th International Conference on Software Engineering Advances, 2012, pp. 179–

187.

[dOMVR07] de Oliveira, F. M.; Menna, R. d. S.; Vieira, H. V.; Ruiz, D. D. A. “Performance

Testing from UML Models with Resource Descriptions”. In: 1st Brazilian Workshop

on Systematic and Automated Software Testing, 2007, pp. 47–54.

[dSdMRZ+11] da Silveira, M. B.; de M. Rodrigues, E.; Zorzo, A. F.; Costa, L. T.; Vieira, H. V.;

de Oliveira, F. M. “Generation of Scripts for Performance Testing Based on UML

Models”. In: 23rd International Conference on Software Engineering and Knowledge

Engineering, 2011, pp. 258–263.

118

[DTA+08] Demathieu, S.; Thomas, F.; Andre, C.; Gerard, S.; Terrier, F. “First Experiments

Using the UML Profile for MARTE”. In: 11th IEEE International Symposium on

Object Oriented Real-Time Distributed Computing, 2008, pp. 50–57.

[EAXD+10] El Ariss, O.; Xu, D.; Dandey, S.; Vender, B.; McClean, P.; Slator, B. “A Systematic

Capture and Replay Strategy for Testing Complex GUI Based Java Applications”. In:

7th International Conference on Information Technology: New Generations, 2010,

pp. 1038–1043.

[Eck95] Eckerson, W. W. “Three Tier Client/Server Architecture: Achieving Scalability,

Performance, and Efficiency in Client Server Applications.”, Open Information

Systems, vol. 10–1, 1995.

[Edm73] Edmonds, Jack; Johnson, E. L. “Matching, Euler tours and the Chinese postman”,

Mathematical Programming, vol. 5–1, 1973, pp. 88–124.

[EMF15] EMF. “Eclipse Modeling Framework”. Available in: http://www.eclipse.org/

modeling/emf/, Dec 2015.

[ESV+13] Erdweg, S.; Storm, T.; Völter, M.; Boersma, M.; Bosman, R.; Cook, W.; Gerritsen,

A.; Hulshout, A.; Kelly, S.; Loh, A.; Konat, G. D.; Molina, P.; Palatnik, M.;

Pohjonen, R.; Schindler, E.; Schindler, K.; Solmi, R.; Vergu, V.; Visser, E.; Vlist, K.;

Wachsmuth, G.; Woning, J. “The State of the Art in Language Workbenches”. In:

Software Language Engineering, Erwig, M.; Paige, R.; Wyk, E. (Editors), Springer

International Publishing, 2013, vol. 8225, pp. 197–217.

[FK05] Frakes, W. B.; Kang, K. “Software Reuse Research: status and future”, IEEE

Transactions on Software Engineering, vol. 31–7, jul 2005, pp. 529–536.

[Fow09] Fowler, M. “A Pedagogical Framework for Domain-Specific Languages”, IEEE

Software, vol. 26–4, july-aug 2009, pp. 13–14.

[Fow10] Fowler, M. “Domain Specific Languages”. Boston, MA, USA: Addison-Wesley

Professional, 2010, 1st ed., 640p.

[FV14] Freitas, A.; Vieira, R. “An Ontology for Guiding Performance Testing”. In:

IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent

Agent Technologies, 2014, pp. 400–407.

[Gat15] Gatling. “Gatling Stress Tool”. Available in: http://gatling.io/, Dec 2015.

[GFC+08] Gray, J.; Fisher, K.; Consel, C.; Karsai, G.; Mernik, M.; Tolvanen, J.-P. “DSLs: the

Good, the Bad, and the Ugly”. In: Companion to the 23rd ACM Special Interest

Group on Programming Languages Conference on Object-Oriented Programming

Systems Languages and Applications, 2008, pp. 791–794.

119

[Gho11] Ghosh, D. “DSL for the Uninitiated”, Queue, vol. 9–6, Jun 2011, pp. 10:10–10:21.

[Gil62] Gill, A. “Introduction to the Theory of Finite State Machines”. New York, NY, USA:

McGraw-Hill, 1962, 207p.

[GK09] Gherbi, A.; Khendek, F. “From UML/SPT Models to Schedulability Analysis:

Approach and a Prototype Implementation Using ATL”, Automated Software

Engineering, vol. 16–3-4, Dec 2009, pp. 387–414.

[GME15] GME. “Generic Modeling Environment”. Available in: http://www.isis.vanderbilt.

edu/projects/gme, Dec 2015.

[GMP15] GMP. “Graphical Modeling Project”. Available in:

http://www.eclipse.org/modeling/gmp/, Dec 2015.

[GZ15] Gómez, P.; Zadrozny, P. “Software Grinder”. Available in: http://grinder.sourceforge.

net, Jan 2015.

[Hew15] Hewlett Packard HP. “Software HP LoadRunner”. Available in: http://goo.gl/

JU2R5d, Dec 2015.

[HGB08] Hasling, B.; Goetz, H.; Beetz, K. “Model Based Testing of System Requirements

using UML Use Case Models”. In: 1st International Conference on Software Testing,

Verification, and Validation, 2008, pp. 367–376.

[HT06] Hailpern, B.; Tarr, P. “Model-Driven Development: The Good, the Bad, and the

Ugly”, IBM Systems Journal, vol. 45–3, Jul 2006, pp. 451–461.

[IEE90] “IEEE Standard Glossary of Software Engineering Terminology”, IEEE Std 610.12-

1990, Dec 1990, pp. 1–84.

[IEE08] “IEEE Standard for Software and System Test Documentation”, IEEE Std 829-2008,

July 2008, pp. 1–150.

[Jet15] JetBrains. “Meta Programming System”. Available in: http://www.jetbrains.com/

mps, Dec 2015.

[JLH+10] Jing, Y.; Lan, Z.; Hongyuan, W.; Yuqiang, S.; Guizhen, C. “JMeter-Based Aging

Simulation of Computing System”. In: International Conference on Computer,

Mechatronics, Control and Electronic Engineering, 2010, pp. 282–285.

[KBJV06] Kurtev, I.; Bézivin, J.; Jouault, F.; Valduriez, P. “Model-Based DSL Frameworks”.

In: Companion to the 21st Special Interest Group on Programming Languages

Symposium on Object-oriented programming systems, languages, and applications,

2006, pp. 602–616.

120

[KCH+90] Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novak, W. E.; Peterson, A. S. “Feature-

Oriented Domain Analysis (FODA) Feasibility Study”, Technical Report CMU/SEI-

90-TR-21, Carnegie-Mellon University Software Engineering Institute, 1990, 161p.

[KLR96] Kelly, S.; Lyytinen, K.; Rossi, M. “MetaEdit+: A Fully Configurable Multi-User

and Multi-Tool CASE and CAME Environment”. In: 8th International Conference on

Advances Information System Engineering, 1996, pp. 1–21.

[KRM06] Krishnamurthy, D.; Rolia, J. A.; Majumdar, S. “A Synthetic Workload Generation

Technique for Stress Testing Session-Based Systems”, IEEE Transaction Software

Engineering, vol. 32–11, nov 2006, pp. 868–882.

[Kru92] Krueger, C. W. “Software Reuse”, ACM Computing Surveys, vol. 24–2, jun 1992,

pp. 131–183.

[KSF10] Krishnamurthy, D.; Shams, M.; Far, B. H. “A Model-Based Performance Testing

Toolset for Web Applications”, Engineering Letters, vol. 18–2, may 2010, pp. 92–

106.

[KT07] Kelly, S.; Tolvanen, J.-P. “Domain-Specific Modeling: Enabling Full Code

Generation”. New York, NY, USA: John Wiley & Sons, 2007, 444p.

[LBN02] Lee, J.; Ben-Natan, R. “Integrating Service Level Agreements: Optimizing Your OSS

for SLA Delivery”. New York, NY, USA: John Wiley & Sons, 2002, 464p.

[Lik32] Likert, R. “A Technique for the Measurement of Attitudes”, Archives of Psychology,

vol. 140–55, 1932.

[LJJ07] Langlois, B.; Jitia, C.; Jouenne, E. “DSL Classification”. In: 7th OOPSLA Workshop

on Domain-Specific Modeling, 2007, pp. 1–11.

[LMdG+09] Lamancha, B. P.; Mateo, P. R.; de Guzmán, I. R.; Usaola, M. P.; Velthius, M. P.

“Automated Model-Based Testing Using the UML Testing Profile and QVT”. In: 6th

International Workshop on Model-Driven Engineering, Verification and Validation,

2009, pp. 6:1–6:10.

[LW08] Lutteroth, C.; Weber, G. “Modeling a Realistic Workload for Performance Testing”.

In: 12th International IEEE Enterprise Distributed Object Computing Conference,

2008, pp. 149–158.

[LY96] Lee, D.; Yannakakis, M. “Principles and Methods of Testing Finite State Machines-A

Survey”, Proceedings of the IEEE, vol. 84–8, 1996, pp. 1090–1123.

[MAFM99] Menascé, D. A.; Almeida, V. A. F.; Fonseca, R.; Mendes, M. A. “A Methodology

for Workload Characterization of E-commerce Sites”. In: 1st ACM Conference on

Electronic Commerce, 1999, pp. 119–128.

121

[MDA04] Menascé, D. A.; Dowdy, L. W.; Almeida, V. A. F. “Performance by Design: Computer

Capacity Planning By Example”. Upper Saddle River, NJ, USA: Prentice Hall PTR,

2004, 480p.

[MDN09] Mohagheghi, P.; Dehlen, V.; Neple, T. “Definitions and approaches to model quality

in model-based software development - a review of literature”, Information and

Software Technology, vol. 51, dec 2009, pp. 1646–1669.

[Men02] Menascé, D. “TPC-W: a Benchmark for e-Commerce”, IEEE Internet Computing,

vol. 6–3, 2002, pp. 83–87.

[Met15] MetaCase. “MetaEdit+”. Available in: http://www.metacase.com/mep/, Dec 2015.

[MFB+07] Meier, J.; Farre, C.; Bansode, P.; Barber, S.; Rea, D. “Performance Testing Guidance

for Web Applications: Patterns & Practices”. Redmond, WA, USA: Microsoft Press,

2007, 221p.

[MFV06] Moreno, N.; Fraternalli, P.; Vallecillo, A. “A UML 2.0 Profile for WebML Modeling”.

In: 6th International Conference on Web Engineering, 2006, pp. 11–20.

[MHS05] Mernik, M.; Heering, J.; Sloane, A. M. “When and How to Develop Domain-Specific

Languages”, ACM Computing Surveys, vol. 37–4, Dec 2005, pp. 316–344.

[Mic15a] Microsoft. “DSL Tools web site”. Available in: http://msdn.microsoft.com/en-us/

library/bb126259.aspx, Dec 2015.

[Mic15b] Microsoft. “Visual Studio”. Available in: http://www.visualstudio.com, Dec 2015.

[MLB+11] Marston, S.; Li, Z.; Bandyopadhyay, S.; Zhang, J.; Ghalsasi, A. “Cloud Computing:

The Business Perspective”, Decision Support Systems, vol. 51–1, 2011, pp. 176–189.

[Mol82] Molloy, M. K. “Performance Analysis Using Stochastic Petri Nets”, IEEE

Transactions on Computers, vol. 31–9, 1982, pp. 913–917.

[Mol09] Molyneaux, I. “The Art of Application Performance Testing: Help for Programmers

and Quality Assurance”. Sebastopol, CA, USA: O’Reilly Media, 2009, 1st ed., 158p.

[Moo15] Moodle Pty Ltd. “Software Moodle”. Available in: http://moodle.org, Jan 2015.

[MV00] Menascé, D. A.; Virgilio, A. F. A. “Scaling for E-Business: Technologies, Models,

Performance, and Capacity Planning”. Upper Saddle River, NJ, USA: Prentice Hall

PTR, 2000, 1st ed., 462p.

[Neo15] Neotys. “Neo Load”. Available in: http://www.neotys.com/neoload, Jan 2015.

[NM90] Nielsen, J.; Molich, R. “Heuristic Evaluation of User Interfaces”. In: ACM Special

Interest Group on Computer-Human Interaction Conference on Human Factors in

Computing Systems, 1990, pp. 249–256.

122

[Oat06] Oates, B. J. “Researching Information Systems and Computing”. London, UK: SAGE

Publications, 2006, 360p.

[OMG05] OMG. “UML Profile for Schedulability, Performance, and Time Specification -

OMG Adopted Specification Version 1.1, formal/05-01-02”. Available in: http:

//www.omg.org/spec/SPTP/1.1/PDF, Jan 2005.

[OMG09] OMG. “UML Profile for Modeling and Analysis of Real-Time and Embedded Systems

- MARTE specification v.1.0 (2009-11-02)”. Available in: http://www.omgmarte.

org, Nov 2009.

[OMG15] OMG. “Unified Modeling Language”. Available in: http://www.uml.org/, Dec 2015.

[PA91] Plateau, B.; Atif, K. “Stochastic Automata Network of Modeling Parallel Systems”,

IEEE Transactions on Software Engineering, vol. 17–10, oct 1991, pp. 1093–1108.

[PBvdL05] Pohl, K.; Böckle, G.; van der Linden, F. J. “Software Product Line Engineering:

Foundations, Principles and Techniques”. Secaucus, NJ, USA: Springer-Verlag New

York, Inc., 2005, 467p.

[PDA91] Prieto-Diaz, R.; Arango, G. “Domain Analysis and Software Systems Modeling”. Los

Alamitos, CA, USA: IEEE Computer Society Press, 1991, 312p.

[PG11] Pozin, B. A.; Galakhov, I. V. “Models in Performance Testing”, Programming and

Computer Software, vol. 37–1, jan 2011, pp. 15–25.

[Por15] Portal Action. “System Action Statistical Package”. Available in: http://www.

portalaction.com.br, Dec 2015.

[PW04] Petriu, D. B.; Woodside, M. “A Metamodel for Generating Performance Models

from UML Designs”. In: UML 2004 - The Unified Modelling Language, Baar, T.;

Strohmeier, A.; Moreira, A.; Mellor, S. J. (Editors), Springer Berlin / Heidelberg,

2004, vol. 3273, pp. 41–53.

[RBC+15] Rodrigues, E.; Bernardino, M.; Costa, L.; Zorzo, A.; Oliveira, F. “PLeTsPerf -

A Model-Based Performance Testing Tool”. In: 8th International Conference on

Software Testing, Verification and Validation, 2015, pp. 1–8.

[RdOC+15] Rodrigues, E. M.; de Oliveira, F. M.; Costa, L. T.; Bernardino, M.; Zorzo, A. F.;

Souza, S. d. R. S.; Saad, R. “An Empirical Comparison of Model-Based and Capture

and Replay Approaches for Performance Testing”, Empirical Software Engineering,

vol. 20–6, 2015, pp. 1831–1860.

[RSO+14] Rodrigues, E. M.; Saad, R. S.; Oliveira, F. M.; Costa, L. T.; Bernardino, M.; Zorzo,

A. F. “Evaluating Capture and Replay and Model-based Performance Testing Tools:

123

An Empirical Comparison”. In: 8th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement, 2014, pp. 9:1–9:8.

[RSSP04] Ruffo, G.; Schifanella, R.; Sereno, M.; Politi, R. “WALTy: A User Behavior Tailored

Tool for Evaluating Web Application Performance”. In: 3rd IEEE International

Symposium on Network Computing and Applications, 2004, pp. 77–86.

[RVZG10] Rodrigues, E. M.; Viccari, L. D.; Zorzo, A. F.; Gimenes, I. M. “PLeTs Tool -

Test Automation using Software Product Lines and Model Based Testing”. In: 22th

International Conference on Software Engineering and Knowledge Engineering, 2010,

pp. 483–488.

[SA98] Simos, M.; Anthony, J. “Weaving the Model Web: a Multi-Modeling Approach to

Concepts and Features in Domain Engineering”. In: 5th International Conference on

Software Reuse, 1998, pp. 94–102.

[SBF14] Society, I. C.; Bourque, P.; Fairley, R. E. “Guide to the Software Engineering Body

of Knowledge (SWEBOK): Version 3.0”. Los Alamitos, CA, USA: IEEE Computer

Society Press, 2014, 3rd ed., 346p.

[Sch06] Schmidt, D. C. “Guest Editor’s Introduction: Model-Driven Engineering”, Computer,

vol. 39–2, feb 2006, pp. 25–31.

[SCL91] Sampieri, R. H.; Collado, C. F.; Lucio, P. B. “Metodologia de la Investigación”.

Ciudad de México, México: McGraw Hill, 1991, 200p.

[Sel07] Selic, B. “A Systematic Approach to Domain-Specific Language Design Using UML”.

In: 10th IEEE International Symposium on Object and Component-Oriented Real-

Time Distributed Computing, 2007, pp. 2–9.

[Ser95] Serain, D. “Client/server: Why? What? How?” In: International Seminar on

Client/Server Computing. Seminar Proceedings (IEE Digest No. 1995/184), 1995,

pp. 1–11.

[SKF06] Shams, M.; Krishnamurthy, D.; Far, B. “A Model-Based Approach for Testing the

Performance of Web Applications”. In: 3rd International Workshop on Software

Quality Assurance, 2006, pp. 54–61.

[Smi02] Smith, C. U. “Software Performance Engineering”. New York, NY, USA: John Wiley

& Sons, 2002, 570p.

[Sof10] Software Engineering Institute (SEI). “Software Product Lines (SPL)”. Available in:

http://www.sei.cmu.edu/productlines/, sep 2010.

124

[Spa12] Spafford, Kyle L. and Vetter, Jeffrey S. “Aspen: A Domain Specific Language

for Performance Modeling”. In: International Conference on High Performance

Computing, Networking, Storage and Analysis, 2012, pp. 84:1–84:11.

[The15] The Eclipse Fundation. “Xtext - Language Development Framework”. Available in:

http://www.eclipse.org/Xtext/, Dec 2015.

[TMG09] Tairas, R.; Mernik, M.; Gray, J. “Models in Software Engineering”. , Chaudron,

M. R. (Editor), Berlin, Germany: Springer–Verlag, 2009, chap. Using Ontologies in

the Domain Analysis of Domain-Specific Languages, pp. 332–342.

[TTC95] Taylor, R. N.; Tracz, W.; Coglianese, L. “Software Development Using Domain-

specific Software Architectures: CDRl A011—a Curriculum Module in the SEI Style”,

ACM Special Interest Group on Software Enginnering Notes, vol. 20–5, dec 1995,

pp. 27–38.

[TWESAO10] Traore, I.; Woungang, I.; El Sayed Ahmed, A.; Obaidat, M. “UML-based Performance

Modeling of Distributed Software Systems”. In: International Symposium on

Performance Evaluation of Computer and Telecommunication Systems, 2010, pp.

119–126.

[UL06] Utting, M.; Legeard, B. “Practical Model-Based Testing: A Tools Approach”. San

Francisco, CA, USA: Morgan Kaufmann, 2006, 456p.

[vDKV00] van Deursen, A.; Klint, P.; Visser, J. “Domain-Specific Languages: An Annotated

Bibliography”, ACM Special Interest Group on Programming Languages Notices,

vol. 35, Jun 2000, pp. 26–36.

[Vou08] Vouk, M. A. “Cloud Computing: Issues, Research and Implementations”. In: 30th

International Conference on Information Technology Interfaces, 2008, pp. 31–40.

[WB10] Wu, L.; Buyya, R. “Service Level Agreement (SLA) in Utility Computing Systems”,

Computing Research Repository (CoRR), vol. abs/1010.2881, Dec 2010.

[WFP07] Woodside, M.; Franks, G.; Petriu, D. C. “The Future of Software Performance

Engineering”. In: Future of Software Engineering, 2007, pp. 171–187.

[WH12] Wynne, M.; Hellesøy, A. “The Cucumber Book: Behaviour-Driven Development for

Testers and Developers”. The Pragmatic Bookshelf, 2012, 336p.

[WL99] Weiss, D. M.; Lai, C. T. R. “Software Product-Line Engineering: a family-

based software development process”. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1999, 426p.

[WRH+12] Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M. C.; Regnell, B. “Experimentation in

Software Engineering”. Berlin, Germany: Springer–Verlag, 2012, 1st ed., 236p.

125

[WSPS09] Walter, T.; Silva Parreiras, F.; Staab, S. “OntoDSL: An Ontology-Based Framework

for Domain-Specific Languages”. In: 12th International Conference on Model Driven

Engineering Languages and Systems, 2009, pp. 408–422.

[YHL+08] Yang, Y.; He, M.; Li, M.; Wang, Q.; Boehm, B. “Phase Distribution of Software

Development Effort”. In: 2nd ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement, 2008, pp. 61–69.

[Yin13] Yin, R. “Case Study Research: Design and Methods”. London, UK: SAGE

Publications, 2013, 5th ed., 312p.

[ZG07] Zhu, L.; Gorton, I. “UML Profiles for Design Decisions and Non-Functional

Requirements”. In: 2nd Workshop on Sharing and Reusing Architectural Knowledge

- Architecture, Rationale, and Design Intent, 2007, pp. 8–8.

127

APPENDIX A – CANOPUS PERFORMANCE SPECIFICATION

A.1 Canopus Performance Monitoring Specification

Object: SUT

Description: System Under Test;

Properties:

Hostname (String): A label assigned to a computer;

IP (String): IP address;

Type ((String:Fixed List): Type of host, e.g. DesktopApp, Database, WebApp,

WebService;

Hardware (String:Fixed List): Physical Machine (PM), Virtual Machine (VM),

Cloud Service (CS);

Metrics (CanopusPerformanceMetric metamodel): Associated with Canopus Performance

Metric model (see Section A.1.1). A monitor icon appears on the top-left

side when there is an associated metric model.

Object: Load Generator

Description: Load generator workload machine;

Properties:

Hostname (String): A label assigned to a computer;

IP (String): IP address;

Monitor (Boolean): Defines if the LG is also the monitoring machine, i.e.,

the same machine exercises a double function. A magnifier icon appears

on the top-left side of monitor when this property is set to true.;

Hardware (String:Fixed List): Physical Machine (PM), Virtual Machine (VM),

Cloud Service (CS);

Metrics (Canopus Performance Metric metamodel): Associated with Canopus

Performance Metric model (see Section A.1.1). A monitor icon ap-

pears on the top-left side when there is an associated metric model.

128

Object: Monitor

Description: Machine responsible for monitoring the performance metrics of the

SUT. This object is optional, since the Load Generator object, besides generating

workload for virtual users, can also play the role of monitoring;

Properties:

Hostname (String): A label assigned to a computer;

IP (String): IP address;

Hardware (String:Fixed List): Physical Machine (PM), Virtual Machine (VM),

Cloud Service (CS);

Object: Frame

Description: Used to visually group other objects that compose the Canopus

Performance Monitoring model. On the top-left side of frame the project

name is rendered;

Properties: There are none.

Relashionship: Flow

Description: Binds a Load Generator object or a Monitor object on a SUT (target of arrow) object,

or binds a Monitor object on a Load Generator (target of arrow) object.

Properties: There are none.

Relashionship: Association

Description: Binds a SUT on another SUT. For instance, to demonstrate the communication

networking between a Web application server and a database server.

Properties: There are none.

A.1.1 Canopus Performance Metric Specification

Object: Memory

Description: Represents the Memory metric that will be measured;

Properties:

Name (String): Metric name;

Object: Memory Counter

Description: A shortage of RAM is often evident indirectly as a disk performance

problem, when excessive paging to disk consumes too much of the available disk

bandwidth. Consequently, paging rates to disk are an important memory performance indicator.

When observing a shortage of available RAM, it is often important to determine how the allocated

physical memory is being used and count resident pages of a problematic process known as its

129

working set.

Properties:

Counter (String:Fixed List):

Available MBytes Counter : Indicates the amount of physical memory available to processes

running on the computer;

Pages/Sec Counter : Indicates the number of resident pages of each process;

Page Reads/Sec Counter : Indicates the rate at which pages are read from or written to disk

to resolve hard page faults;

Working Set Counter : Indicates that the working set of the process is too large for the

physical memory and that it is paging to disk;

Pool Nonpaged Bytes Counter : Indicates the size of an area of system memory (physical

memory used by the operating system) for objects that cannot be written to disk, but

must remain in physical memory as long as they are allocated;

Paged Pool Bytes Counter : Indicates memory leaks;

Paged Pool Failures Counter : Indicates the number of times allocations from the paged pool

have failed;

Cache Bytes Counter : Indicates the size of the static files cache.

Object: Processor

Description: Represents the processor (CPU) metric that will be measured;

Properties:

Name (String): Metric name;

Object: Processor Counter

Description: Program execution threads consume processor (CPU) resources.

These threads can be part of user-mode processes or the operating system kernel.

Available performance counters measure how much CPU processing time threads

and other executable units of work consume. These processor utilization measurements allow to

determine which applications are responsible for CPU consumption.

Properties:

Counter (String:Fixed List):

% Processor Time Counter : Indicates the percentage of elapsed time that the processor

spends to execute a non-idle thread;

% Privileged Time Counter : Indicates the percentage of elapsed time that the process threads

spent executing code in privileged mode;

% Interrupt Time Counter : Indicates the time the processor spends receiving and servicing

hardware interrupts during sample intervals;

Processor Queue Length Counter : Indicates the number of threads in the processor queue;

Context Switches Counter : Indicates the combined rate at which all processors on the com-

puter are switched from one thread to another;

130

System Up Time Counter : Indicates the indicator of overall system availability;

Object: Disk

Description: Represents the Disk (I/O) metric that will be measured. Disk I/O latency

can be defined as a measurement of the time delay from the time a disk I/O request is

created, until the time the disk I/O request is completed.

Properties:

Name (String): Metric name;

Object: Disk (I/O) Counter

Description: Through the I/O Manager stack, an operation system maintains

physical and logical disk operations. A logical disk represents a single file system

with a unique drive letter. A physical disk is the internal representation of specific

storage device - be it SCSI, RAID, SATA, or other technology. When using complex storage systems

such as array controllers or RAID, the underlying physical disk hardware characteristics are not

directly visible to the operating system. These characteristics - namely, the number of disks, the

speed of the disks, their seek time, rotational speed, and bit density as well as some optimization

features such as on-board memory buffers - can have a major impact on performance. Advance

features like memory buffers and command-queueing can boost the performance by 25–50 percent.

It is important to be proactive about disk performance because it tends to degrade rapidly, particularly

when disk-paging activity occurs.

Properties:

Counter (String:Fixed List):

Avg. Disk secs/transfer Counter : Indicates physical disk potential bottleneck;

% Idle Time Counter : Indicates physical disk utilization;

Disk Transfers/sec Counter : Indicates whether physical disk is a potential bottleneck;

Avg. Disk Queue Length Counter : Indicates, although in conjunction with other counters, a

potential bottleneck of a disk;

Split IO/sec Counter : Indicates possible defragmentation;

Free Megabytes Counter : Indicates logical disk space usage.

Object: Network

Description: Represents the Network metric that will be measured.

Properties:

Name (String): Metric name;

Object: Network Counter

Description: Networking performance has become ever more important today

with the proliferation of distributed and cloud applications. However, some op-

erating systems usually provide limited statistics on various levels: At the lowest

level hardware interface, and at higher level of network protocol such as TCP/IP. Network interface

131

statistics are gathered by software embedded in the network interface driver layer. This software

counts the number of packets that are sent and received. Networking bottlenecks are tricky to catch

and analyze. Packet rates, collision rates and error rates do not always point to the cause of the

problem.

Properties:

Counter (String:Fixed List):

Bytes Total/Sec : Indicates total throughput;

Server Bytes Total/Sec : Indicates overall server utilization in terms of network;

Datagrams/Sec : Indicates IP protocol load;

Connections Established : Indicates TCP protocol connection success rate;

Segments Received/Sec : Indicates number of TCP data segments received

% Interrupt Time: Indicates the time the processor spends on hardware devices interrupts,

such as network card.

Object: Web Resources

Description: Represents the WebResources metric that will be measured.

Properties:

Name (String): Metric name;

Object: Web Resources Counter

Description: These are vital counters for assessment of application ability to

sustain the simulated workload.

Properties:

Counter (String:Fixed List):

Throughput Mbytes: Shows the amount of throughput on the server during each second of

the load test scenario run. Throughput measures the actual rate at which work requests

are completed. Throughput is measured in bytes or megabytes and represents the amount

of data that the Vusers received from the server at any given second;

Hits per second : Shows the number of requests per second;

HTTP responses per second : shows the number of HTTP status codes returned from the

Web server during each second of the load test scenario run, grouped by status code.

HTTP status codes indicate the status of HTTP requests, for example, “the request was

successful”, “the page was not found”;

Pages downloaded per second : Shows the number of Web pages downloaded from the server

during each second of the load test scenario run. Like the Throughput graph, the Pages

Downloaded per Second represents the amount of data that the VU received from the

server at any given second. However, the Throughput takes into account each resource

and its size (for example, the size of each .gif file, the size of each Web page);

Connections: Shows the number of open TCP/IP connections at each point in time of the

load test scenario;

132

SSL per second : Shows the number of new and reused SSL Connections opened in each

second of the load test scenario. An SSL connection is opened by the browser after a

TCP/IP connection has been opened to a secure server.

Object: Transaction

Description: Represents the Transaction metric that will be measured.

Properties:

Name (String): Metric name;

Object: Transaction Counter

Description: During load test scenario execution, VU generate data as they per-

form transactions. This metric enables collecting data that shows the transaction

performance and status throughout script execution.

Properties:

Counter (String:Fixed List):

Transaction Response Time: Different response time values under different load. Average

response time, maximum, percentile, and so on;

Transaction Per Second (TPS): Shows the number of transactions generated per second;

Transaction Success Rate: Shows the number of transactions that passed, failed, or stopped.

Object: Process

Description: Represents the Process metric that will be measured. This same metric

can be associated with different process counters, e.g. .NET, Java, Apache, etc.

Properties:

Name (String): Metric name;

Object: Process .NET Counter

Description: When monitoring .NET applications, it can add .Net performance

counters that cover every aspect of the Common Language Runtime (CLR) op-

erations ranging from exception processing to security checking.

Properties:

Counter (String:Fixed List):

Exception # of Excep Thrown/Sec : Indicates the number of managed code exceptions

thrown per second;

Exception Throw to Catch Depth/Sec : Indicates the number of stack frames;

Memory Large Object Heap Size: Indicates the current size of the Large Object Heap in

bytes;

Memory # Bytes in all Heaps: Indicates the current memory allocated in bytes on the GC

heaps;

Memory # of Pinned Objects: Indicates the number of pinned objects encountered in the

last GC;

133

Memory % Time in GC : Indicates the percentage of elapsed time that was spent in performing

a garbage collection (GC) since the last GC cycle;

Threads # of Current Logical : Indicates the number of current .NET thread objects in the

application;

Threads # of Current Physical : Indicates the number of native OS threads created and

owned by the CLR;

Threads # of Current Recognized : Indicates the number of threads currently recognized by

the CLR;

Threads # of Total Recognized : Indicates the total number of threads recognized by the

CLR since the start;

Threads Contention Rate/Sec : Indicates the rate at which threads in the runtime attempt

to acquire a managed lock unsuccessfully;

Loading Current Assemblies : Indicates the number of assemblies that are loaded in the

process;

Loading Rate of Assemblies: Indicates the rate at which assemblies are loaded into the

memory per second;

Loading Bytes in Loader Heap: Indicates the number of bytes committed by the class loader;

Security Total Runtime Checks: Indicates the percentage of elapsed time spent in performing

runtime Code Access Security;

Security Stack Walk Depth: Indicates the depth of the stack during that last runtime Code

Access Security check.

Object: Process Java Counter

Description: The Java platform provides comprehensive monitoring and man-

agement support. It not only defines the management interfaces for the Java

Virtual Machine (JVM), but also provides out-of-the-box remote monitoring and

management on the Java platform and of applications that run on it.

Properties:

Counter (String:Fixed List):

Common Uptime: Indicates how long the JVM has been running;

Common Total Compile Time: Indicates the amount of time spent in just-in- time (JIT)

compilation;

Common Process CPU Time: Indicates the total amount of CPU time consumed by the

JVM;

Memory Current Heap Size: Indicates the number of kilobytes currently occupied by the

heap;

Memory Maximum Heap Size: Indicates the maximum number of kilobytes occupied by the

heap;

Memory Committed Memory : Indicates the total amount of memory allocated for use by the

heap;

134

Memory GC Time: Indicates the cumulative time spent on garbage collection and the total

number of invocations;

Live Threads: Indicates the current number of live daemon threads plus non-daemon threads;

Peak Threads: Indicates the highest number of live threads since JVM started;

Daemon Threads: Indicates the current number of live daemon threads;

Total Started Threads: Indicates the total number of threads started since JVM started

(including daemon, non- daemon, and terminated);

Current Classes Loaded : Indicates the number of classes currently loaded into memory;

Total Classes Loaded : Total number of classes loaded into memory since the JVM started,

included those subsequently unloaded;

Total Classes Unloaded : Number of classes unloaded from memory since the JVM started.

Object: Process Apache Counter

Description: The Apache HTTP server is an open source, configurable and

extensible, multi-platform Web server. In time, the Apache HTTP server became

one of the most commonly used Web servers for commercial Web sites and Web-

based applications.

Properties:

Counter (String:Fixed List):

CPU Load Counter : The current percentage of CPU consumed by the Apache server;

Requests Per Sec Counter : The number of requests per second (a.k.a. hits per second);

Bytes Per Sec Counter : The number of bytes transferred per second;

Bytes Per Request Counter : The number of bytes transferred per request;

Busy Workers Counter : Number of active threads serving requests;

Idle Workers Counter : Number of inactive/idle threads.

Object: Process IIS Counter

Description: Microsoft Internet Information Services (IIS) is the world’s second

most popular Web server after the Apache HTTP Server. IIS is available within all

Windows operating system editions in different flavors. IIS includes the following

servers: FTP/FTPS, SMTP, NNTP, and HTTP/HTTPS.

Properties:

Counter (String:Fixed List):

• WWW Service:

Bytes Sent/Sec : The rate, in seconds, at which data bytes have been sent by the WWW

service;

Bytes Received/Sec : The rate, in seconds, at which data bytes have been received by

the WWW service;

Current Connections: The number of active connections to the WWW service;

135

Not Found Errors/Sec : The rate, in seconds, at which requests were not satisfied by

the server because the requested document was not found;

Locked Errors/Sec : The rate, in seconds, at which requests were not satisfied because

the requested document was locked;

Current ISAPI Extension Requests: The number of ISAPI extension requests that are

being processed simultaneously by the WWW service;

ISAPI Extension Requests/Sec : The rate, in seconds, at which ISAPI extension requests

are being processed by the WWW service;

• WWW Service Cache:

Current File Cache Memory Usage: The number of bytes currently used for the user-

mode file cache;

Current Files Cached : The number of files whose content is currently in the user-mode

cache;

Current URIs Cached : The number of URI information blocks that are currently stored

in the user-mode cache;

Current Metadata Cached : The current number of metadata information blocks in the

user-mode cache;

Kernel : URI Cache Hits/Sec: The average number of kernel URI cache hits that are

being made per second;

• ASP.NET :

Requests Disconnected : The number of requests that were disconnected because a

communication failure occurred;

Requests Queued : The number of requests in the queue waiting to be serviced. If this

number increases as the number of client requests increases, the Web server has

reached the limit of concurrent requests that it can process. The default maximum

for this counter is 5,000 requests;

Requests Rejected : The total number of requests that were not executed because

insufficient server resources existed to process them. This counter represents the

number of requests that return a 503 HTTP status code, which indicates that the

server is too busy;

Errors Total/Sec: The average number of errors that occurred per second during the

execution of HTTP requests. Includes any parser, compilation, or run-time errors;

Output Cache Turnover Rate: The average number of additions to and removals from

the output cache per second. If the turnover is great, the cache is not being used

effectively;

Sessions Active: The number of sessions that are active. This counter is supported only

with in-memory session state.

Transactions/Sec : The average number of transactions that were started per second;

Transactions Pending : The number of transactions that are in progress;

• Active Server Pages (ASP):

136

Errors/Sec : The average number of errors that occurred per second;

Requests/Sec : The average number of requests that were executed per second;

Requests Executing : The number of ASP requests currently executing (for example,

the number of active worker threads);

Requests Queued : The number of queued ASP requests that are waiting to be pro-

cessed. The maximum number for this counter is determined by the metabase

property AspRequestQueueMax;

Transactions/Sec : The average number of transactions that have been started, per

second.

Object: Process WebSphere Counter

Description: The IBM WebSphere Application Server is the flagship product

in the IBM WebSphere platform. It is one of the top J2EE application servers.

WebSphere architecture and infrastructure are oriented for performance and scala-

bility, and allow deployment of many types of distributed applications such as Web-based applications

and Web services. WebSphere Application Server provides a Performance Monitoring Infrastructure

(PMI) which is a server side monitoring infrastructure that offers client-side API. Using PMI can

monitor the overall health and performance of the application server. The performance data is made

available via JMX.

Properties:

Counter (String:Fixed List):

• Enterprise Java Beans (EJB):

Ready Counter : The number of concurrently ready beans (entity and session);

Live Counter : The number of concurrently live beans;

Method Response Time: The average response time (in milliseconds) on the bean

methods (home, remote, local);

Active Method Counter : The number of concurrently active methods - the number of

methods called at the same time;

Message Counter : The number of messages delivered to the bean onMessage method

(message driven beans);

Message Backout Counter : The number of messages that failed to be delivered to the

bean onMessage method (message driven beans);

Pooled Counter : The number of objects in the pool (entity and stateless);

Wait Time: The average time taken to obtain a ServerSession from the pool (message

driven bean).

• JDBC Connection Pool :

Concurrent Waiters: The number of threads that are currently waiting for a connection;

Faults: The total number of faults, such as timeouts, in the connection pool;

Percent Used : The average percent of the pool that is in use.

• Java Virtual Machine (JVM):

137

Free Memory: The free memory in the JVM run time;

Process CPU Usage: The CPU Usage (in percent) of the Java virtual machine;

Used Memory: The used memory in the JVM run time.

• Servlet Session:

Active Count: The number of concurrently active sessions. A session is active if the

WebSphere Application Server is currently processing a request;

Live Count: The number of local sessions that are currently cached in memory.

• Transaction:

Active Counter : The number of concurrently active global transactions;

Local Active Counter : The number of concurrently active local transactions;

Rolledback Counter : The total number of global transactions rolled back;

Local Rolledback Counter : The number of local transactions rolled back;

Global Timeout Counter : The number of global transactions timed out;

Local Timeout Counter : The number of local transactions timed out.

• Thread Pool :

Active Counter : The number of concurrently active threads;

Pool Size: The average number of threads in pool;

Percent Maxed : The average percent of the time that all threads are in use;

Declared Thread Hung Counter : The number of threads declared hung.

• Web Application:

Concurrent Requests: The number of requests that are concurrently processed;

Service Time: The response time (in milliseconds) of a servlet request;

Concurrent Requests: The number of requests processing concurrently for a URI asso-

ciated with a servlet;

Service Time: The average service response time (in milliseconds) for a URI associated

with a servlet.

• System:

CPU Usage Since Last Measurement: The average system CPU utilization taken over

the time interval since the last reading;

Free Memory : The amount of real free memory available on the system.

Object: Process Oracle Database Counter

Description: The Oracle database is a relational database management system

(RDBMS) produced by the Oracle Corporation. The Oracle database is rich with

features that contribute to its high availability, scalability, performance, manage-

ability, and security. These features make Oracle an enterprise class RDBMS and one of the top

leaders in this realm. The Oracle database has comprehensive support for application development

owing to different capabilities and features. Oracle also offers data access methods for both Java

and .NET.

138

Properties:

Counter (String:Fixed List):

Sorts (disk): Number of sort operations that required at least one disk write. Sorts that

require I/O to disk are quite resource intensive;

Sorts (memory): Number of sort operations that were performed completely in memory and

did not require any disk writes. Sorting is usually caused by selection criteria specifications

within table join SQL operations.

Db block gets: Number of blocks accessed in buffer cache for INSERT, UPDATE, DELETE,

and SELECT FOR UPDATE. Represent block logical reads (from cache). The logical

reads ALWAYS include the physical reads. Low number of physical reads is preferable;

Consistent gets: Number of blocks accessed in buffer cache for normal queries (SELECTs

without for update clause). Represent block logical reads (from cache). The logical

reads ALWAYS include the physical reads. Low number of physical reads is preferable;

Physical reads: Total number of data blocks read from disk. This number equals the value

of physical reads direct plus all reads into buffer cache. Low number of physical reads is

preferable. This number must be compared to logical reads to calculate cache hit ratio.

Logical reads is the sum of database block gets and consistent gets;

Physical writes: Total number of data blocks written to disk. This number equals the value

of physical writes direct plus all writes from buffer cache;

Redo writes: Total number of writes by LGWR to the redo log files. redo blocks written

divided by this statistic equals the number of blocks per write;

Redo entries: Redo entries contain the information necessary to reconstruct, or redo, changes

made to the database by INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP

operations. Redo entries are used for database recovery, if necessary. Redo entries ->

successful redo writes. Ratio Redo buffer allocation retries / Redo entries should be less

than 1%;

Redo buffer allocation retries: Total number of retries necessary to allocate space in the redo

buffer. Retries are needed either because the redo writer has fallen behind or because

an event such as a log switch is occurring. Redo buffer allocation retries -> failed redo

writes. Ratio Redo buffer allocation retries / Redo entries should be less than 1%;

Redo log space requests: Number of times the active log file is full and Oracle must wait for

disk space to be allocated for the redo log entries. Such space is created by performing a

log switch. Log files that are small in relation to the size of the SGA or the commit rate

of the work load can cause problems. When the log switch occurs, Oracle must ensure

that all committed dirty buffers are written to disk before switching to a new log file;

Parse count (hard): Total number of parse calls (real parses). A hard parse is a very expensive

operation in terms of memory use, because it requires Oracle to allocate a workheap and

other memory structures and then build a parse tree. Should be minimized. The ratio

of Hard Parse to Total should be less than 20%;

139

Parse count (total): Total number of parse calls (hard and soft). A soft parse is a check

on an object already in the shared pool, to verify that the permissions on the underlying

object have not changed. The ratio of Hard Parse to Total should be less than 20%;

Parse time CPU : Total CPU time used for parsing (hard and soft) in 10s of milliseconds;

Parse time elapsed : Total elapsed time for parsing, in tens of milliseconds. Subtract parse

time cpu from this statistic to determine the total waiting time for parse resources;

CPU used by this session: Amount of CPU time (in tens of milliseconds) used by a session

from the time a user call starts until it ends. If a user call completes within 10 milliseconds,

the start- and end-user call times are the same for purposes of this statistic, and 0

milliseconds are added;

Bytes sent via SQL*Net to client: Total number of bytes sent to the client from the fore-

ground processes. Gives a general indication regarding the amount of data transferred

over the net;

Bytes received via SQL*Net from client: Total number of bytes received from the client over

Oracle Net Services. Gives a general indication regarding the amount of data transferred

over the net;

Logons current: Total number of current logons.

Object: Process MS SQL Server Database Counter

Description: Microsoft SQL Server is one of the most widely used database

systems. It has grown from handling small departmental tasks to serving up

the largest databases on the planet. No longer a simple “database”, Microsoft

SQL Server is now a complete data architecture solution capable of handling the data storage and

manipulation needs of any organization. Organizations can use this solution to store and manage

many types of data, including XML, email, time/calendar, file, document, geospatial, and so on,

while providing a rich set of services to interact with the data: search, query, data analysis, reporting,

data integration, and robust synchronization. Developers can write applications that access SQL

Server from a server to a desktop or mobile device using a variety of technologies, whether Microsoft

based or third party vendors. SQL Server is available in many editions to help meet the needs of any

organization. From Express and Compact to Workgroup to Standard and Enterprise, each edition

delivers sets of features targeted to specific needs while maintaining the same level of functionality

for developers and end users. It used to be said that SQL Server works great right out of the box

and performance is never an issue. However, the advent of cheaper hardware and the explosion of

data is pushing more users against the limits of the out-of-the-box performance of SQL Server. It is

the job of the performance engineer to find these problems by using various monitoring techniques.

Properties:

Counter (String:Fixed List):

• CPU :

SQL Compilations/Sec : Indicates the number of times compilations occurred per sec-

ond;

140

SQL Re-Compilations/Sec : Indicates the number of times re-compilations occurred per

second;

Batch Requests/Sec : Indicates the number of Transact-SQL command batches received

per second.

• Memory :

Total Pages: Indicates the number of pages in the buffer pool. Target Pages: Indicates

the ideal number of pages in the buffer pool;

Total Server Memory (KB): Indicates the amount of memory the KB SQL Server is

currently using;

Target Server Memory (KB): Indicates the amount of memory the KB SQL Server needs

to operate efficiently.

Buffer Cache Hit Ratio: Indicates the percentage of pages that were found in the

memory;

Page Life Expectancy : Indicates the number of seconds a page will stay in the buffer

pool without reference;

Stolen Pages: Indicates the number of pages used for miscellaneous server purposes

(including procedure cache);

Cache Hit Ratio: Indicates the ratio between cache hits and lookups;

Memory Grants Pending : Indicates the total number of processes waiting for a workspace

memory grant;

Checkpoint Pages/Sec : Indicates the number of pages flushed to disk per second by a

checkpoint or other operation that requires all dirty pages to be flushed;

Lazy Writes/Sec : Indicates the number of buffers written per second by the buffer

manager’s lazy writer.

• Disk :

Full Scans/Sec : Indicates the number of unrestricted full scans per second;

Page Splits/Sec : Indicates the number of page splits per second that occur as a result

of overflowing index pages;

Temp Tables Creation Rate: Indicates the number of temporary tables/table variables

created per second;

Locks - Average Wait Time (ms): Indicates the average amount of wait time (in mil-

liseconds) for each lock request that resulted in a wait.

Relationship: Association Counter Criteria Threshold

Description: Binds a Process object on a pair of targets: a Criteria object and a

Threshold object. It is important to mention that the cardinality of the connection

Criteria object is minimum 1 and maximum 2. The maximum cardinality is applied when the Between

association criteria property is set.

Properties:

Association Criteria (String:Fixed List):

141

Between: When a performance counter binds with two Criteria objects;

Greater than or equal to: Used when the value of Threshold object is greater than or equal

to the performance counter for the established criterion (Number of Virtual Users);

Less than: Used when the value of Threshold object is less than the performance counter for

the established criterion (Number of Virtual Users).

Relationship: Association Metric Counter

Description: Binds a Metric object on a Counter object.

Properties: There are none.

A.2 Canopus Performance Scenario Specification

Object: User Profile

Description: A user profile represents a set of virtual users, in which similar interations

with the SUT are performed.

Properties:

Name (String): User profile name;

Description (Text): A textual note about the user profile description;

Percentage (Number): If there are more than one User Profile objects in a Canopus

Percentage Scenario model, a percentage must be attributed to every one of

these profiles, i.e. it defines the distribution of number of users that will execute

a test in accordance with their user profile. By default, if there is just one User

Profile object, the percentage is set to 100%.

Object: Script

Description: A test Script object represents a set of activities performed by

a User Profile object. This Script object allows a Canopus Performance

Scripting model to be associated, i.e., this object can decompose in a sub-

graph. This object refers to the Canopus Performance Scripting model, i.e. each Script object

is detailed in a subgraph, being enriched with other performance information, such as activities,

transactions, thinktime, test data, etc.

Properties:

Name (String): Test script name;

Description (Text): A textual note about the test script description.

Object: Workload

Description: A Canopus Performance Scenario allows setting one or more

Workload objects. A Workload object represents a workload profile which is

142

composed of several workload objects, such as number of VU, ramp up users and

time, ramp down users and time, and test duration.

Properties:

Workload (CanopusPerformanceWorkload metamodel): Allows to associate with a Canopus Performance

Workload model (see Section A.2.1). The name of the associated workload is rendered on

the right side of the “hourglass” icon, e.g. Load Testing.

Object: Frame

Description: Used to visually group other objects that compose the Canopus

Performance Scenario model. The model name is rendered on the top-left

side of the frame;

Properties: There are none.

Relationship: Association

Description: Connects a User Profile object to a Script object.

Properties:

Percentage (Number): If a User Profile object is associated with more than one test Script object,

a percentage must be attributed to every association from the script belonging to this user

profile, i.e. it defines the distribution of the number of users that will execute a test script.

By default, if a user profile is associated with just one Script object, the percentage is set to

100%. In this case, the percentage is hidden with just the association line being rendered.

A.2.1 Canopus Performance Workload Specification

Object: Virtual Users

Description: Represents the total number of virtual users who will make requests to

the SUT for a given performance workload scenario.

Properties:

Virtual Users (Number): Determines the number of virtual users who will make requests to the

SUT.

Object: Test Duration

Description: Refers to the total time of performance test execution for a given workload.

This duration time includes total ramp up time and total ramp down time.

Properties:

Time (String): Determines the total time of performance test execution for a given

Canopus Performance Workload model. It is defined in the format (hh:mm:ss:ms).

143

Object: Ramp Up User

Description: Represents the number of virtual users who will access the SUT during

each ramp up time interval.

Properties:

Virtual Users (Number): Determines the number of virtual users who will access the

SUT.

Object: Ramp Up Time

Description: Represents the time it takes for each set of ramp up users to access the

SUT.

Properties:

Time (String): Determines the time defined in the format (hh:mm:ss:ms).

Object: Ramp Down User

Description: Represents the number of virtual users who will leave the SUT on each

ramp down time.

Properties:

Virtual Users (Number): Defines the number of virtual users who will leave the SUT on

each ramp down time.

Object: Ramp Down Time

Description: Defines the time it takes for a given ramp down user stop the testing.

Properties:

Time (String): Determines the time defined in the format (hh:mm:ss:ms).

Object: Frame

Description: Used to visually group other objects that compose the Canopus

Performance Workload model. The model name is rendered on the top-left

side of the frame;

Properties: There are none.

Object: Workload Group

Description: A Workload Group is a simple box ren-

dered for grouping workload objects in a Canopus

Performance Workload model.

Properties: There are none.

144

A.3 Canopus Performance Scripting Specification

Object: Initial

Description: Determines the start of the interaction of a virtual user within a test script.

Every script must have only one Initial object. The graphical notation for the Initial object

is shown as a double circles.

Properties: There are none.

Object: Final

Description: Defines the end of the interaction of a virtual user within a test script.

Every script must have only one Final object. The graphical notation for the Initial object

is shown as a thick single circle.

Properties: There are none.

Object: Activity

Description: Characterizes the interactions of virtual user behavior from the

point of view of the SUT. Every script must have at least one Activity object.

This object allows to repeat not only one but a set of activities, it is possible to

associate a subgraph model (another Canopus Performance Scripting) into

an Activity object. This feature is represented by “+” (plus symbol) on the

bottom of the Activity object.

Properties:

Name (String): Activity name;

Action (String): HTTP address of the SUT request;

Method (String:Radio Button Set): HTTP method, i.e. GET or POST;

Type Action (Fixed List): Defines the type of HTML elements that a user will interact, such

as: Body, Button, Checkbox, Drop-down list, Input field, Image, Link, Radio button, Save

Parameter, Submit button, Textarea;

Parameters (Collection:Parameter): One or more Parameter object can be associated to an Activity

object. It is possible to create a new or add an existing Parameter object already previously

pre-defined. When at least one Parameter object is associated, a “Tag” icon is rendered on

the top-left side of the Activity object;

Loop Instances (Number): Defines the number of repetitions of the activity. By default, the

standard value is 1. When a number is more than one, a “Loop” icon is rendered on the

bottom of the Activity object;

Transaction Activity (Transaction): Allows to define activities that will be controlled by their

transactions. There are two transaction response performance counters: Response Time

Seconds and Response Size Bytes. Both are defined by number values. When a Transaction

object is associated with an Activity object, the border of activity becomes dashed.

145

Object: Think Time

Description: Denotes the time between the moment the activity becomes available to

the user and the moment the user decides to execute it, for example, the time of filling in

form before its submission.

Properties:

Name (String): Think time name;

Time (String): Defined in the format (hh:mm:ss:ms). This time value is rendered on the bottom

of the Think Time object.

Object: Save Parameters

Description: Supports that a parameter generated in runtime can be saved to

be used in other activities of the same script flow.

Properties:

Name (String): Save parameters name. This name is rendered on the right side of the Save

Parameters object;

Parameters (Collection:Parameter): One or more Parameter objects can be associated to an Save

Parameters object. It is possible to create a new or add an existing Parameter object already

previously pre-defined.

Object: Data Table

Description: Determines the data that is consumed by the activities. Specified

by filename that must contain a data table, e.g. a .CSV file.

Properties:

Attached File (String: External Element): File name;

Delimiter (String): Specifies the delimiter among file data, e.g. “;” (semicolon);

Parameter List (Collection:Columns): Sets the data tables parameter list (fields or columns).

Object: Frame

Description: Used to visually group other objects that compose the Canopus

Performance Scripting model. The test script name is rendered on the top-

left side of frame;

Properties: There are none.

Object: Parameter (Hidden Object)

Description: Determines the data that is consumed by the activities. Specified by a filename that

must contain a data table, e.g. a .CSV file.

Properties:

Type Action (Fixed List): Defines the type of HTML elements that a user will interact, such

as: Body, Button, Checkbox, Drop-down list, Input field, Image, Link, Radio button, Save

Parameter, Submit button, Textarea;

146

Parameter Name (String): Parameter name of the SUT. For instance, the property name of a

HTML form element;

Static Value (String): Static value defined for the parameter;

Dynamic Value (Columns): Allows to define a dynamic value base on a Columns object.

Object: Columns (Hidden Object)

Description: Defines the strategy that each column from the test data will be randomized.

Properties:

Parameter Name (String): Name of dynamic parameter;

Updated Value On (String: Fixed List): Specifies the update method for a Columns object that

will associate with a Parameter object.

EachInteraction: It instructs the VU to use a new value for each iteration;

EachOccurence: It instructs the VU to use a new value for each occurrence of the parameter;

Once: It instructs the VU to update the value of the parameter only once during the execu-

tion.

Select Next Row (String: Fixed List): Defines the way the data should be selected for the parameter

during execution:

Sequential : The parameter will hold the same value during the same iteration.

Random: A value randomly selected;

Unique: The parameter will hold a unique value for each virtual user. When this option is

selected the total rows of data should at least be as many as the total virtual users;

SameAsOtherParam: The data row for the parameter can be aligned with that of another

parameter. For instance, suppose we have two parameters, one for the user name (pUsr)

and one for the password (pPwd) then the next row selected for the password will be set

to the same line as “pUsr” parameter.

Referended Parameter (String): Defines the referenced parameter name when the “SameAsOther-

Param” option is selected in the Select Next Row property.

Relationship: Association

Description: Connects an Activity object to a Data Table. It also allows to

connect an Activity object to a Save Parameters object in dual directions.

Properties: There are none.

Relationship: Transition

Description: The main binding, which connects to a different pair of objects,

such as: from an Initial to an Activity; from an Activity to another Activity or a

Final or a Think Time object; and, from a Think Time to an Activity. It is determining the flow

iterations performed by the virtual user to the SUT.

Properties:

147

Percentage (Number): If an object is associated with more than one Transition relationship, a

percentage must be attributed to every Transition relationship from this object to sum 100%,

i.e. it defines the distribution of the number of virtual users that will execute each of the

derived test scripts. By default, if a Transition relationship is associated with just one object,

the percentage is set to 100%. In this case, the percentage is hidden, with only the transition

line being rendered.

Relationship: Fork

Description: It is a control object that has one incoming edge and multiple out-

going edges and is used to split incoming flow into multiple concurrent flows. Fork

objects are introduced to support parallelism in activities. The graphical notation

for a Fork object is a line segment with a single Transition edge entering it, and two

or more edges leaving it.

Properties: There are none.

Relationship: Join

Description: It is a control object that has multiple incoming edges and one

outgoing edge and is used to synchronize incoming concurrent flows. Join objects

are introduced to support parallelism in activities. The graphical notation for a

Join object is a line segment with several Transition edges entering it, and only

one edge leaving it.

Properties: There are none.

A.3.1 Canopus Performance External File Specification

Object: External File (Hidden Object)

Description: External file that is loaded to be associated with a Data Table object.

Properties:

Name (String): Specifies a unique location in a file system, including its extension.

149

APPENDIX B – CASE STUDY MODELS

Figure B.1: Graphical representation of the Changepoint Canopus Performance Metric model

150

Figure B.2: Graphical representation of the Changepoint Canopus Performance Scenario model

151

Figure B.3: Graphical representation of the Changepoint Login Canopus Performance Scripting

model

Figure B.4: Graphical representation of the Changepoint Submit Time Canopus Performance

Scripting model

Figure B.5: Graphical representation of the Changepoint Logout Canopus Performance Scripting

model

153

APPENDIX C – A SURVEY TO EVALUATE THE DOMAIN-SPECIFIC

LANGUAGE FOR MODELING PERFORMANCE TESTING

A Survey to evaluate the Domain-Specific Language
for Modeling Performance Testing

Questionnaire Instrument

Introduction

We would like to invite you to participate in a research study of DomainSpecific Language (DSL)
for performance testing modeling. The study intends to evaluate the quality of graphical
elements of our DSL, as well as their representativeness regarding the performance testing
modeling. The main idea is generate performance scenarios and scripts based on the artifacts
modeled with our DSL.

It is recommended that you have some expertise or knowledge in performance testing to
complete this survey. Please read this form and ask any question you may have before
agreeing to participate in this study.

This study is being conducted by: Maicon Bernardino, Doctoral student at Pontifical Catholic
University of Rio Grande do Sul (PUCRS), advised by Avelino Francisco Zorzo.

Background Information: The purpose of this survey is to evaluate the graphical elements and
their representativeness to symbolize performance elements that compose a DSL for
performance testing modeling.

Procedures: If you agree to participate in this study, we ask you to complete 1 survey based on
an extensive literature review. You will be asked also to identify the activities of performance
testing profiles, and identify the needed performance elements to symbolize the main
performance artifacts (e.g., scenarios, scripts.). Most of the questions are multiple choice, but
some of them have a field for suggestions or comments. It will take, you between 15 to 30
minutes to complete the survey.

Risks: Being a participant in this study has no foreseeable risks.

Benefits: The researcher hopes to develop a DSL for performance testing modeling that use
the evaluated graphical elements. We way also include suggested elements in out DSL. The
researcher believes that our DSL may benefit several testers around the world to be more
effective when describing performance scenarios and scripts. As a participant, you will have
access to the results of this research.

Confidentiality: The records of this study and the secured files will be kept private. In any sort
of report we might publish them not including any information which will make it possible to
identify a subject. Only the primary researcher will have access to the records.

Contact and Questions: The researcher conducting this study is Maicon Bernardino. Please
contact him with any question:

 bernardino@acm.org

If you wish to participate, please start the survey by clicking in the following URL.
 http://www.cepes.pucrs.br/survey/

Profile Questions

SQ1 What is the highest level of education you have completed? Please select one answer
below.
 Associate degree (for example: AA, AS)
 Bachelor's degree (for example: BA, AB, BS)
 Master's degree (for example: MA, MS, MEng, MEd, MSW, MBA)
 Professional degree (for example: MD, DDS, DVM, LLB, JD)
 Doctorate degree (for example: PhD, EdD)
 Postsecondary diploma
 Postsecondary certificate
 Other

SQ2 How many years of experience do you have in the performance testing area? Please
select one answer below.
 14+
 11-13
 8-10
 5-7
 2-4
 0-1 year

SQ3 What is your main job position? Please select one answer below.
 Performance Test Manager
 Performance Test Engineer
 Performance Test Analyst
 Performance Tester
 Quality Assurance / Audit Manager
 Software Engineering / Developer
 Project Manager
 Program Manager
 IT Manager
 CEO
 Researcher
 Other

SQ4 Which one of the following best describes your organization? Please select one answer
below.
 Privately held, forprofit business
 Publicly held, forprofit business
 Notforprofit service organization
 Primary or Secondary School
 Community/Technical College
 Bachelor's College
 Master's Comprehensive College
 Doctoral/Research University
 Other

SQ5 In your performance testing practice, do you use some kind of model, notation or language
to generate, represent or design your performance scenarios and scripts? If so, can you
describe them? Please write them in the space below.

SQ6 Finally, please indicate your name, your organization’s name and your email address
below if you would like to receive a summary of the results. Your data will be combined with the
data of other respondents and shared only in aggregate.
SQ6.1 Name: ______________________________________
SQ6.2 Name of organization: __________________________
SQ6.3 Email address: _______________________________
SQ6.4 Please check here if we may contact you for further information or if you would like to be
the subject of a case study.

DSL Questions
Our DSL is composed of three parts: monitoring, scenario, and scripting.

Scale: DC Disagree Completely; DS Disagree Somewhat; NN Neither Agree Nor Disagree; AS
Agree Somewhat; AC Agree Completely

Monitoring

The performance monitoring part is responsible for determining all servers used in the
performance testing environment. For each server (i.e. application, databases, or even the load
generator), information on the actual testing environment has to be included, e.g. IP address or
hostname. It is worth mentioning that even the load generator has to be described in our DSL,
since we can also monitor the performance of the load generator. Sometimes, the load
generator has to be split in to several servers if we really want to stress the application or
database server. For each host, it is possible to indicate the performance counters that will be
monitored. This monitoring part requires that at least two servers have to be described: one that
hosts the application (SUT) and another to generate the workload and monitor the performance
counters of the SUT.

SQ7 Please indicate how much you agree or disagree with each of the following monitoring
elements that compose our monitoring diagram for performance testing. Please check one
option for each item listed below.

Element Image Description DC DS NN AS AC

SUT System Under Test

Load

Generator

Responsible to generate workload for SUT.

Monitor Responsible by monitoring of performance

metrics.

Memory Memory performance metric.

Processor Processor performance metric.

Process Process performance metric, such as Apache,

Java, etc.

Disk Disk performance metric.

Network

Interface

Network interface performance metric.

Throughput Rate at which requests are met.

Element

�

�

�

�

�

�

�

�

�

SQ8 Would you like to add some unspecified element or remove some presented element? If
so, which ones and why? Please write your answer in the space below.

Scenario
The performance scenario part allows to set user and workload profiles. Each user profile is
associated to test scripts. If a user profile is associated with more than one test script, a
probability is attributed between the user profile and each test script, i.e. it describes the
probability that that test script is executed. In addition to setting user profiles, in this part it also
important to set one or more workload profiles.

SQ9 Please indicate how much you agree or disagree with each of the following scenario
elements that compose our scenario diagram for performance testing. Please check one
option for each item listed below.

Transaction Monitor the specified transactions into

performance scripts.

Response

Time

Monitor the response time, i.e., the elapsed time

between the client request and the server answer,

including the network latency.

Response

Size

Number of bytes returned in a response of the

SUT.

Flow Determine the flow among elements into a

performance monitoring diagram.

Image Description DC DS NN AS ACElement

�

�

�

�

Element Image Description DC DS NN AS AC

User Profile User profile

Script It determines a model iteration user profile with

the activities performed by each virtual user. This

element refers to a performance script diagram.

Association Responsible to associate the user profile and

script elements.

Workload Characterize the different workload of user

profiles.

Ramp Up

Time

Time it takes for each set of ramp up users to

access the SUT.

Ramp Up

User

Number of VUs who will access the SUT during

each ramp up time interval.

Ramp

Down Time

Defines the time it takes for a given ramp down

user stop the testing.

Ramp

Down User

Defines the number of VUs who will left the SUT

on each ramp down time.

Virtual User Number of VUs who will make requests to the

SUT.

Test

Duration

Refers to the total time of performance test

execution for a given workload.

�

�

�

�

�

�

�

�

�

�

SQ10 Would you like to add some unspecified element or remove some presented element? If
so, which ones and why? Please write your answer in the space below.

Scripting

The performance script part represents each of the test scripts from the user profiles in the
scenarios part. This part is responsible for determining the behavior of the interaction between
VUs and SUT. Each test script includes activities such as transaction control or think time
between activities. The same way as there is a probability for executing a test script, which is
defined in the scenarios part, each test script can also contain branches that will have a user
distribution associated to each path to be executed, i.e. the number of users that will follow each
path. During the description of each test script it is also possible to define a decision table
associated to each activity. This decision table represents the decisions that is taken by a user
based on the response that an application provides. Actually, the decision table will be used to
guarantee that the user distribution rate is achieved.

SQ11 Please indicate how much you agree or disagree with each of the following script
elements that compose our script diagram for performance testing. Please check one option.

Element Image Description DC DS NN AS AC

Initial Determines the start execution of a script.

Every script must have an Initial element.

Element

�

Final Determines the end execution of a script.

Every script must have a Final element.

Activity Characterizes the interactions from the point

of view of the behavior of the Virtual User with

the SUT. Every script must have at least one

Activity element.

Transaction

Activity

Specifies Activity elements that will be

monitored. Visually, the activity is displayed

with a dashed border. Every Transaction

Activity controls an atomic activity, i.e. a

single activity.

Data Table Determines the data that is consumed by

Activity elements. Specified by filename that

should contain a table with the test data, e.g.

a file with .CSV extension.

Association Binds the elements consumed by other

elements. For instance, the Activity element

may consume test data represented by Data

Table element.

Transition Associates the elements of Activities,

determining the flow of iterations performed

by a Virtual User element.

ThinkTime Denotes the idle time between each iteration

of the Virtual User with the SUT, such as the

time

of filling out a registration form until data

submission. Must be defined outside of

Transaction elements and can be annotated

between each pair of Activity elements.

Save

Parameters

Parameters stored after a response from the

SUT so that your information can be used

later in another Activity or Decision Table

elements.

Image Description DC DS NN AS ACElement

�

�

�

�

�

�

�

�

SQ12 Would you like to add some unspecified element or remove some existing element? If so,
which ones and why? Please write your answer in the space below.

Parameters Linked to the test data Data Table element,

the Parameters are specified in each of the

Activity elements that consume the test data

during the execution of the performance test

scripts. Graphically, an activity has

parameters associated with it when it

presents in the top left corner of the activity a

tag symbol.

Decision

Table

Symbolized in the bottom right corner of the

Activity element by a diamond. It’s

responsible for determining the variability of

flow iteration by Virtual User elements in a

Performance Script diagram.

Group Allows you to group a series of Activity

elements. For instance, you can measure a

sequence of activities that match a complete

job from the standpoint of business, i.e. one

Transaction consisting of a set of

subtransactions.

Concurrent Makes it possible to run multiple instances of

an activity in parallel/concurrent.

Loop Lets you run multiple instances of an Activity

sequentially.

Image Description DC DS NN AS ACElement

�

�

�

�

�

163

APPENDIX D – EXPERIMENT INTRUMENTS

Figure D.1: UML use case diagram of the Moodle

Figure D.2: UML activity diagram of the Sign In activity

Figure D.3: UML activity diagram of the View Activity activity

164

Figure D.4: UML activity diagram of the Add Activity activity

Figure D.5: Canopus Performance Scenario of the Moodle

Figure D.6: Canopus Performance Scripting of the Sign In activity

165

Figure D.7: Canopus Performance Scripting of the View Activity activity

Figure D.8: Canopus Performance Scripting of the Add Activity activity

167

APPENDIX E – QUESTIONNAIRE PRE-EXPERIMENT

Questionnaire Pre-Experiment

Introduction

We would to participate in research study of DomainSpecific Language (DSL) for performance
testing modeling. The study will provide an empirical evaluation of our DSL.

Please read this form and ask any question you may have before agreeing to participate in this
study.

This study is being conducted by: Maicon Bernardino, Doctoral student at Pontifical Catholic
University of Rio Grande do Sul (PUCRS), advised by Avelino Francisco Zorzo with
collaboration of Elder Macedo Rodrigues, doctorate in Computer Science at PUCRS.

Background Information: The purpose of this survey is to evaluate the respondent’s profile to
map and randomize the experiment subjects between the experiment treatments.

Procedures: If you agree to participate in this study, we ask you to answer questions about
your knowledge and skills on technical issues. The questions are multiple choice. It will take
5-10 minutes to complete the survey.

Risks: Being a participant in this study has no foreseeable risks.

Benefits: The researcher hopes to evaluate a DSL for performance testing modeling comparing
to UML-based approach. It may help performance practitioners such as more efficient models of
performance scenarios, and scripts. As a subject, you will have access to the results of this
research.

Confidentiality: The records of this study and the secured files will be kept private. In any sort
of report we might publish them not including any information which will make it possible to
identify a subject. Only the primary researcher will have access to the records.

Contact and Questions: The researcher conducting this study is Maicon Bernardino. Please
contact him with any question:

 bernardino@acm.org

If you wish to participate, please start the survey by clicking in the next step.

Respondent’s Profile

SQ1 Enter your name. *
 Please write you answer here:

SQ2 Enter the type of higher institution where you study. *
 Please choose only one of the following:

Private

Public

SQ3 Enter you course. *
 Please choose only one of the following:

Computer Science

Computer Engineering

Information Systems

Software Engineering

System Analysis and Development

Other

SQ4 How many years of experience do you have on software engineering? *
 Please choose only one of the following:

14+

11 - 13

8 - 10

5 - 7

2 - 4

0 - 1 year

Technical Profile

SQ5 How do you rate your technical knowledge in software modeling with UML? *
 Please choose only one of the following:

Low, no prior knowledge

Regular, read a book or followed a course

Average, some industrial experience (less than 6 months)

High, industrial experience

SQ6 How do you rate your technical knowledge in Domain-Specific Language (DSL)? *
 Please choose only one of the following:

Low, no prior knowledge

Regular, read a book or followed a course

Average, some industrial experience (less than 6 months)

High, industrial experience

SQ7 How do you rate your technical knowledge in performance testing? *
 Please choose only one of the following:

Low, no prior knowledge

Regular, read a book or followed a course

Average, some industrial experience (less than 6 months)

High, industrial experience

SQ8 How do you rate your technical knowledge in modeling performance testing with notations
or modeling languages? *
 Please choose only one of the following:

Low, no prior knowledge

Regular, read a book or followed a course

Average, some industrial experience (less than 6 months)

High, industrial experience

SQ9 How do you rate your technical knowledge in modeling performance testing with UML? *
 Please choose only one of the following:

Low, no prior knowledge

Regular, read a book or followed a course

Average, some industrial experience (less than 6 months)

High, industrial experience

Authorization

SQ10 I agree to participate in this experiment on the conditions that were proposed. I guarantee
that I will perform this experiment the best way I can, ensuring that all information included here
is real. *
 Please choose only one of the following:

Agree

Disagree

Than you for completing our survey

Thanks for completing our brief survey and submitting you valuable information. Your answers
will help to improve our domain-specific language and better tailor the performance testing
modeling for the performance testing community.

171

APPENDIX F – QUESTIONNAIRE POST-EXPERIMENT

Questionnaire Post-Experiment

Introduction

We would to participate in research study of DomainSpecific Language (DSL) for performance
testing modeling. The study will provide an empirical evaluation of our DSL.

Please read this form and ask any question you may have before agreeing to participate in this
study.

This study is being conducted by: Maicon Bernardino, Doctoral student at Pontifical Catholic
University of Rio Grande do Sul (PUCRS), advised by Avelino Francisco Zorzo with
collaboration of Elder Macedo Rodrigues, doctorate in Computer Science at PUCRS.

Background Information: The purpose of this survey is to evaluate the respondent’s profile to
map and randomize the experiment subjects between the experiment treatments.

Procedures: If you agree to participate in this study, we ask you to answer questions about
your knowledge and skills on technical issues. The questions are multiple choice. It will take
5-10 minutes to complete the survey.

Risks: Being a participant in this study has no foreseeable risks.

Benefits: The researcher hopes to evaluate a DSL for performance testing modeling comparing
to UML-based approach. It may help performance practitioners such as more efficient models of
performance scenarios, and scripts. As a subject, you will have access to the results of this
research.

Confidentiality: The records of this study and the secured files will be kept private. In any sort
of report we might publish them not including any information which will make it possible to
identify a subject. Only the primary researcher will have access to the records.

Contact and Questions: The researcher conducting this study is Maicon Bernardino. Please
contact him with any question:

 bernardino@acm.org

If you wish to participate, please start the survey by clicking in the next step.

Experiment Questions

SQ1 When modeling with UML, the language provided all the elements required to model
performance test scripts and scenarios. *
 Please choose only one of the following:

Strongly disagree

Disagree

Neither agree nor disagree

Agree

Strongly agree

SQ2 The performance test models designed using the DSL approach express more adequately
the functional and non-functional requirements than those models designed using the UML
approach. *
 Please choose only one of the following:

Strongly disagree

Disagree

Neither agree nor disagree

Agree

Strongly agree

SQ3 It easier to design the performance test models applying the DSL approach than applying
the UML approach. *
 Please choose only one of the following:

Strongly disagree

Disagree

Neither agree nor disagree

Agree

Strongly agree

SQ4 It more intuitive in the performance testing domain, to apply the DSL approach than to
apply the UML approach. *
 Please choose only one of the following:

Strongly disagree

Disagree

Neither agree nor disagree

Agree

Strongly agree

Essay Questions

SQ5 Describe below what were the positive points identified during the design the performance
testing models when applying the UML approach. *

 Please write you answer here:

SQ6 Describe below what were the negative points identified during the design the
performance testing models when applying the UML approach. *

 Please write you answer here:

SQ7 Describe below what were the positive points identified during the design the performance
testing models when applying the DSL approach. *

 Please write you answer here:

SQ8 Describe below what were the negative points identified during the design the
performance testing models when applying the DSL approach. *

 Please write you answer here:

SQ9 Would you recommended the DSL approach for modeling performance testing to your
peers or persuade your management to invest? If not why? If yes, what arguments would you
use? *

 Please choose only one of the following:

Agree

Disagree

 Make a comment on your choice here:

Identification

SQ10 Enter your name. *
 Please write you answer here:

Than you for completing our survey

Thanks for completing our brief survey and submitting you valuable information. Your answers
will help to improve our domain-specific language and better tailor the performance testing
modeling for the performance testing community.

