
CANS: Composable, Adaptive Network Services Infrastructure

Xiaodong Fu, Weisong Shi, Anatoly Akkerman, and Vijay Karamcheti
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

fxiaodong,weisong,akkerman,vijaykg@cs.nyu.edu

Abstract

The growth of the internet has been fueled by an increasing number of sophisticated network-
accessible services. Unfortunately, the high bandwidth and processing requirements of such services
is at odds with current trends towards increased variation in network characteristics and a large diversity
in end devices. Ubiquitous access to such services requires the injection of additional functionality into
the network to handle protocol conversion, data transcoding, and in general bridge disparate portions of
the physical network. Several researchers have proposed infrastructures for injecting such functionality;
however, many challenges remain before these infrastructures can be widely deployed.

CANS is an application-level infrastructure for injecting application-specific components into the
network that focuses on three such challenges: (a) efficient and dynamic composition of individual com-
ponents; (b) dynamic and distributed adaptation of injected components in response to system conditions;
and (c) support for legacy applications and services. The network view supported by CANS consists of
applications, stateful services, and data paths between them built up from mobile soft-state objects
called drivers. Both services and data paths can be dynamically created and reconfigured: a planning
and event propagation model assists in distributed adaptation, and a run-time type-based composition
model dictates how new services and drivers are integrated with existing components. An interception
layer that virtualizes network bindings permits legacy applications to plug into the CANS infrastructure,
and a delegation model does the same for legacy services.

This paper describes the CANS architecture and implementation, and a case study involving a shrink-
wrapped client application in a dynamically changing network environment where CANS was used to
improve overall user experience.

1 Introduction

The emergence of new networking technologies such as broadband to the home, Wireless 3G [17], and
Bluetooth [9], coupled with increasing numbers of network-capable communication and computation end-
devices holds the potential for future application services that significantly enhance user experience by
providing seamless, ubiquitous access. To take an example, consider the following scenario. Alice, a
telecommuting employee, starts her day by initiating a teleconference on her laptop connected to the internet
using a wired LAN. During the conference, a hub failure renders the wired LAN unavailable. Fortunately,
the service components are able to detect this, activate the wireless card on her laptop, and seamlessly switch
over data transmission to a local wireless network. Recognizing that the bandwidth on the wireless LAN
is insufficient to continue delivering continuous video at the original resolution and rate, the components
automatically downgrade picture quality. Shortly after this, Alice has to leave her office to meet a client.
She shuts down her laptop, and resumes the teleconference in her car using a PDA connected to a metro-
area wireless network. The service components further downgrade the media stream (say to only include
the audio part), while recording the full stream at a server that Alice can check offline.

1

Although the above is a compelling scenario, it imposes several requirements that are inadequately
handled by current-day internet infrastructure: rapid creation and deployment of new services, mobility,
application-aware computation in the network, and dynamic and distributed adaptation. Even if such ser-
vices can be created, the existing view which hides network characteristics from the application and treats
services as isolated islands is at odds with the large variation in network and end-device characteristics.
Current-day data paths between communicating parties can include links with very different bandwidth, de-
lay, and error characteristics, ranging from serial links to wireless to broadband to fiber backbones. Hiding
these differences from the application will result in unsatisfactory application performance, and the alter-
native of providing different levels of service access for different networks/end-devices cannot adequately
cope with dynamically changing environments.

One solution to these problems is to inject additional functionality into the network that can monitor
changes in resource characteristics of end-devices and network links and can dynamically adapt to them by
handling activities such as protocol conversion, data transcoding, etc. Several researchers have proposed
infrastructures for injecting such functionality, ranging from end-point solutions [11, 14] to more distributed
solutions that introduce application-aware functionality at intermediate sites either at the network level [16,
3, 19] or at the application level [1, 5, 8]. Although these systems have articulated the high-level architectural
requirements of such solutions, many challenges, particularly with respect to dynamic application services
management and composition, remain before these infrastructures see widespread deployment.

This paper presents the architecture and implementation of Composable Adaptive Network Services
(CANS), an application-level infrastructure for customizing the data path between client applications and
services, which focuses on three such challenges:

� Efficient and Dynamic Composition: The infrastructure must permit separately defined application-
aware components to be dynamically instantiated and connected to each other; these components
should interact using efficient mechanisms where possible (e.g., shared memory within a host).

� Dynamic and Distributed Adaptation: The infrastructure must permit dynamic adaptation to environ-
ment changes; such adaptations must incur low overhead and maintain overall application semantics.

� Support for Legacy Applications and Services: In addition to providing a simple interface for new
applications, legacy applications and services should be integrated into the infrastructure with minimal
effort. Requiring rewrites of each application and service is neither practical nor desirable.

CANS addresses these challenges by constructing networks that include applications, stateful services,
and data paths between them built up from mobile soft-state objects called drivers. Drivers implement
a standard interface, permitting efficient composition and semantics-preserving adaptation. Both services
and data paths can be dynamically created and reconfigured: a planning and event propagation model as-
sists in distributed adaptation, and a run-time type-based composition model dictates how new services and
drivers are integrated with existing ones. CANS provides three adaptation modes to permit cost-functionality
tradeoffs: intra-component, by reconfiguring data paths, and by creating new services and data paths. An
interception layer that transparently virtualizes network bindings, currently TCP sockets, permits legacy
applications to plug into the CANS infrastructure, and a delegation model does the same for legacy services.

Our current implementation of CANS works with Windows NT/2000 clients and Java/RMI-capable in-
termediate hosts. The clients and hosts run the CANS execution environment, which leverages Java language
support to dynamically create, migrate, and adapt drivers and services. Early experience with a case study
involving a shrink-wrapped client application (Windows Media Player) in a dynamically changing network
environment indicates that our approach is promising: the flexible mechanisms in CANS permit dynamic
deployment and distributed adaptation of application-aware components to improve overall user experience.

The rest of this paper is organized as follows. Section 2 presents the CANS architecture. The individual
components and support for distributed adaptation are described in more detail in Sections 3 and 4. Section 5

2

presents our current implementation of CANS and describes our experience with using it in the context of a
case study. Section 6 discusses related efforts to place our work in context, and Section 7 concludes.

2 CANS Architecture

2.1 The Logical View

CANS views networks as consisting of applications, services, and data paths connecting the two. Tradi-
tionally, the functionality of a data path is restricted to transmitting data between the end points. The CANS
infrastructure extends this notion to enable end services, applications, or some other entity to dynamically
inject application-specific components into the network; these components customize the data path with
respect to the characteristics of the underlying physical network links and properties of the end device as
well as dynamically adapt to any changes in these characteristics (see Figure 1(a)).

Laptop, Client2
Application

Service1

Service2�
�

�
�

�

�
�

�
Desktop, Client1

Application

�
� service

 driver

PDA, Client3
Application

 DPort

 data path

Interception Layer

Legacy
Applications

Execution Environment
Internet

Execution
Environment

Node 1
Intermediate Node

Service

Internet

Driver
Manager

Event
Manager

Service
Manager

Class Manager

Plan Manager

Resource
Moniter

(a) (b)

Figure 1: (a) Basic organization of CANS, (b) Interaction between legacy applications and CANS architec-
ture.

Components are self-contained pieces of code that can perform a particular activity, e.g., protocol con-
version or data transcoding. Components operate on typed data streams and are connected with each other
based upon compatibility of output and input types (see Section 3 for details). For example, the data from an
HTTP server has type HTTP and can be consumed by any component that understands this type. Injected
components come in two flavors: stateful intermediate services (referred to as just services in the rest of
the paper) and mobile soft-state objects called drivers. Services extend the original data path to multiple
hops, and drivers generalize the traditional notion of a data path to include data transformation in addition
to transmission. The primary reason for distinguishing between drivers and services is to ensure efficiency.

Legacy applications interface with the injected components using an interception layer (see Figure 1(b))
that transparently virtualizes the network bindings of the application, in our case TCP sockets. Logically,
data to and from the application using a particular socket is sent via multiple CANS components, while
retaining the illusion from the application’s perspective of an end-to-end TCP connection. Legacy services
are just as easily integrated; a delegate object controls and represents a service in its interactions with the
CANS infrastructure.

The CANS network is created dynamically, based upon various parameters such as user, client, and

3

service information, as well as characteristics of the underlying platform. The components which constitute
a data path, the composition order between them, and their internal configuration parameters can all be
modified at run time. Modifications are triggered based on either system events (e.g., breaking of a network
link) or component-initiated events. The CANS infrastructure provides support to efficiently reconfigure
data paths, while preserving application semantics.

To show an example use of the CANS infrastructure, consider a hand-held device with a WML-capable
web browser. When a user requests a page, the CANS interception layer traps the request and upon realizing
that (1) there is a proxy service running in the local domain, (2) that the requested page contains HTML
data, and (3) there exists a driver capable of transcoding HTML to WML, dynamically creates a data path
between the application and the proxy server that includes the HTML-to-WML driver.

2.2 The Physical View

The CANS network is realized by partitioning the services and data paths onto physical hosts, connected
using existing communication mechanisms. The CANS Execution Environment (EE) serves as the basic
run-time environment on these hosts and includes the following functional modules (see Figure 1(b)): class
manager, plan manager, driver and service manager, event manager, and resource monitor.

The class manager handles downloading of component code and instantiation of the components.

The plan manager is responsible for creating the initial plan comprising drivers, services, and data paths
in response to a request trapped by the interception layer, and replanning in response to change in system
conditions.

The driver and service manager maintains information about deployed drivers and manages data path op-
erations, including inserting new drivers, creating new services, and reconfiguring existing paths as required.
Driver connections that span EEs are multiplexed onto the inter-EE connection.

The event manager is responsible for receiving both system-level and component-level events and prop-
agating these on to interested components. Section 4 describes the event model in more detail.

The resource monitor monitors system conditions, informing the event manager when registered trigger
conditions fire. For example, events can indicate changes in network interface state, CPU availability, etc.

3 CANS Components

In this section, we describe the core CANS components—drivers and services—and auxillary components
required to connect execution environments with each other and with applications and legacy services.

3.1 Drivers

Drivers serve as the basic building block for constructing adaptation-capable, customized data paths between
applications and services. Drivers are just stand alone mobile code modules that perform some operation on
the data stream. However, to permit their efficient composition and dynamic low-overhead reconfiguration
of data paths, drivers are required to adhere to a restricted interface. Drivers satisfy the following properties:

1. Drivers receive and send data using a standard data port interface, called a DPort (see Figure 2).
DPorts are distinguished based on whether they are being used for input into the driver or output
from the driver. Each DPort has associated with it data type information, which influences how
drivers are composed with each other. The primary responsibility of a driver is to process input typed
data and create output typed data on its ports.

2. Drivers are passive objects, moving data from input ports to output ports in a purely demand-driven
fashion. Thus, driver operations are triggered either when one of its output ports is checked for data,
or one of its input ports receives data.

4

3. Drivers consume and produce data in the granularity of an integral number of application-specific
units, called semantic segments. Informally, this ensures that an input segment is either completely
or not at all reflected in output segments produced by the driver. For example, a driver converting
HTML data into WML must wait for a complete HTML unit to be received before it sends out the
corresponding WML unit. Semantic segments are the units of transmission (and any required retrans-
mission), and permit the execution environment to infer which output segments can be affected by the
contents of a particular input segment.

4. Drivers contain only soft state, which can be easily reconstructed simply by restarting the driver.
Stated differently, given a semantically equivalent sequence of input segments, a soft-state driver
always produces a semantically equivalent sequence of output segments. For example, a Zip driver
that produces compressed data will produce semantically equivalent output (i.e., uncompressed to the
same string) if presented with the same input strings.

The first two properties enable dynamic composition (see below) and efficient transfer of data segments
between multiple drivers that are mapped to the same physical host. Specifically, the run-time system can
employ a single thread to execute, in turn, multiple driver operations on a single data segment. This achieves
nearly the same efficiency (modulo indirect function call overheads) as if driver operations were statically
combined into a single procedure call.

The semantic segments and soft-state properties enable low-overhead adaptation, either within a single
driver or across data path segments while preserving application semantics; Section 4 discusses the path
reconfiguration algorithm in more detail.

Driver

Input 1

Input 2

Output

DPort

(a) (b)

class Driver {
 String driverID;

 TList outTypes(TList inTypes);
 DPortList getPorts();
 DPort getPort(String PortId);

 void push(DUInPort input);
 void pull(DUOutPort out);

}

class DPort {
 DPort(Driver own, String ID);
 PortType getType();
 void setType(PortType type);
 void connect(DPort nlink)
 throws IncompatibleException;
 void disconnect();

 byte[] pull(boolean block);
 void push(byte[] data);
 Dirver owner;
}

(c)

Figure 2: Definition of driver(a) Driver, (b) Driver interface, and (c) DPort interface.

Type-based Composition

The composability of CANS components (both drivers and services) is decided by compatibility of the data
types associated with the input and output ports being connected. Essentially, an output DPort of driver
D1 is disallowed from connecting with the input DPort of driver D2 unless the data type associated with
that output port is compatible with the required data type of the input DPort. CANS data types can be
hierarchical, similar to the notion of type hierarchies in object-oriented languages. More specific types can
be substituted wherever a generic type is required. For example, if data type C1 is a subclass of data type
C2, it means C1 can be used wherever data type C2 is needed.

However, instead of defining constant data types for their output ports, CANS components maintain
run-time type information about the data produced on their outputs. Each component defines a function
mapping its input data types into output data types:

f(Tin1 ; Tin2 ; :::; Tinm)! (Tout1 ; Tout2 ; :::; Toutn)

5

where Tini is the required data type set for the ith input port, and Toutj is the resulting data type produced
on the jth output port.

Typempeg

Driver1 Zip Unzip Driver4

Typempeg

Typestream

Typezip

Typezip

Typestream

Typempeg

Driver1 Zip Unzip Driver4

Typempeg

Typestream Typezip Typempeg

(a)

(b)

Output Type

Required TypeTypezip

Typempeg

Error!
Do not match!

Figure 3: A simple example of type compatibility: (a) flat scheme, (b) stack scheme.

Maintenance of run-time type information is required to avoid type information loss during composition,
which can prevent composition of valid components. Figure 3(a) shows an example of such behavior. The
input type required by the Zip driver is Typestream, and it produces Typezip. The input type required by the
Unzip driver is Typezip, and its output type is Typestream. Suppose the output of Driver1 is Typempeg (a
subtype of Typestream) while the input type required by Driver4 is Typempeg. Although such a composition
seems perfectly legal, the output of the Unzip driver is calculated to be of type Typestream, which is not
compatible with the input requirements of Driver4. The culprit here is that information about the data being
of type Typempeg is not available at the output port of the Zip driver.1 To solve this problem, we maintain
port data types in a stacked form, using a structure called PortType. The top of the PortType stack
is the current data type associated with that port (PortType(p).top for DPort p). The operations on
PortType includes push, pop, peek, and clone, which have the standard meanings. The type compatibility
between an input and an output port is now determined by checking the top of the PortType stack against
the required type. Type information flows downstream automatically at run time when two DPorts get
connected. As demonstrated in Figure 3(b), with this information, the earlier composition is now admissible.

3.2 Services

The second core CANS component are services. Services are standalone, relatively heavyweight execution
entities that supply applications with data streams of a particular type. They have all of the requirements of
services running in conventional network infrastructures: high availability, robustness, etc. Unlike drivers,
CANS imposes relatively few interface requirements on services. A service is required to register itself with
the CANS infrastructure identifying the data types it supports, and optionally providing a delegate object
that can control the service and act on its behalf in interactions with the rest of the CANS infrastructure. The
delegate object implements a standard (small) interface consisting of activating and suspending the service,
and receiving CANS events. Services can export data using either the DPort interface described earlier, or
using any standard internet protocol such as TCP, HTTP, etc.

The CANS infrastructure provides applications with a general platform to create, compose, and control
services across the network. Service composition follows the same algorithm as driver composition, using
the identified types supplied at registration time.

The primary distinction between drivers and services is the fact that the former represents rigidly con-
1This information can be inferred by examining the entire data path, but this precludes local decision making.

6

strained, mobile, soft-state adaptation functionality, while the latter can encapsulate more heavyweight func-
tions, process concurrent requests, and maintain persistent state. The different interface requirements of
drivers and services stem from the observation that most current services distributed in the internet are
legacy services: their source code is general unavailable, and rewriting or modifying them is impractical.
The price paid for not adhering to a standard interface is that service migration is not explicitly supported
by the CANS infrastructure; CANS can create new instances of the service on nodes capable of hosting the
service, but it is upto the running service as to how it manages state transfer. This design choice reflects the
view that services are migrated infrequently and doing so requires service-specific protocols that are difficult
to abstract cleanly.

3.3 Communication Adaptors

Communication adaptors are auxillary CANS components, which transmit data physically across the net-
work. These components supply data to CANS drivers and consume data produced by them. To do this, they
expose the same DPort interface, appearing to other drivers just as a regular driver. However, the role they
play is to implement three kinds of logical connections: (1) between applications and drivers; (2) between
two drivers mapped to different execution environments; and (3) between a driver and a service that exports
data using an interface other than DPort.

To provide this functionality, communication adaptors establish physical communication links between
application wrappers (see below) and execution environments, between two execution environments, and
between an execution environment and a service. Multiple logical connections can be multiplexed on this
single physical link; the latter can take advantage of existing mechanisms (e.g., different network interface
adapters, and different transport protocols) best matched to the characteristics of the underlying network.
Thus, a logical connection between two drivers that are mapped to different execution environments is real-
ized using a pair of communication adaptors, one on each of the involved hosts. The drivers are connected to
the adaptors on the local host, and the adaptors establish a physical communication link between themselves.

Communication adaptors can encapsulate behaviors that permit them to adapt to and recover from mi-
nor variations in network characteristics. For instance, communication adaptors can be written to use one of
several network alternatives, automatically transitioning between them to improve performance. For exam-
ple, an adaptor on a laptop with both wireless and wired network connections can automatically start using
the wireless connection when it detects disconnect of the wired interface. The continuity semantics on such
reconnection are dictated by the requirements of the data types associated with the adaptor’s ports.

3.4 Support for Legacy Applications

The CANS infrastructure supports both CANS-aware and CANS-oblivious applications. The former just
hook into the driver and service interfaces described earlier. The latter require more support but are easily
integrable because of our focus on stream-based transformations on the data path. Our solution relies on
an interception layer that is transparently inserted into the application and virtualizes its existing network
bindings. Currently, we focus on TCP sockets, but the support could just as easily be extended to other
protocols. CANS components obtain data from and send data to these virtualized sockets, with the appli-
cation retaining the illusion that it is interacting with the network. The interception layer is injected using
a technique known as API interception [10], which relies on a run-time rewrite of portions of the memory
image of the application (either the import table for functions in dynamically-linked libraries (DLLs) or the
headers of arbitrary functions).

7

4 Distributed Adaptation in CANS

The CANS infrastructure supports three modes of adaptation in response to dynamic changes in system
components: (1) intra-component adaptation, where each service or driver detects and adapts to minor re-
source variations on its own; (2) data path reconfiguration, where the data path undergoes localized changes
involving the insertion, deletion, and reordering of drivers; and (3) replanning, where existing data paths
are torn down and new ones constructed to respond to large-scale variations in system conditions. These
three modes represent different points on the cost-functionality spectrum, enabling the system to respond to
system events with the least overhead possible. To the best of our knowledge, CANS is unique in providing
system support for data path reconfiguration.

4.1 Intra-Component Adaptation using Distributed Events

Each driver and service can incorporate its own adaptation behavior, which may or may not be coordinated
with adaptation in other CANS components. For example, a frame-dropping component can alter its policies
upon detecting different levels of back-pressure on its output buffers. Note that adaptation in a single com-
ponent is isolated from that in another as long as the effect of adaptation is restricted to be within a single
semantic segment (see Section 3.1). To simplify the expression of such adaptation behaviors, the CANS in-
frastructure provides distributed event propagation support, permitting components to raise arbitrary events
as well as listen for specific ones. This support can also be used to trigger coordinated adaptation, where
one component raises an event that is listened to by another.

The kernel of the CANS event model is the Event Manager, one per execution environment. The Event
Manager is responsible for catching events, firing events, and transmitting events across networks. Any
component in the system (including delegate objects for legacy services) can register itself as a listener of
specific events from specific event sources, and it can also raise an event on the Event Manager, which in
turn fires it to corresponding listeners. Event raising and firing is implemented using simple method calls
and callback functions associated with the relevant component.

There are two major types of CANS events: events from the local resource monitor, indicating change in
resource status, and events from components on the data path. The first kind of events are sent only to local
components that register themselves as interested listeners. The second kind, issued by components along a
data path, are first sent to the plan event delegate (see Section 4.3), which is responsible for propagating the
event along the data path as well as handling plan-specific events, such as events that can trigger replanning.

4.2 Data Path Reconfiguration using Semantic Segments

Data path reconfiguration involves insertion, deletion, or reordering of drivers along an active data path.
While this provides great flexibility in responding to a range of resource variations, the fundamental problem
encountered is that any such reconfiguration must preserve application semantics. In this paper, we focus
on maintaining semantic continuity and exactly-once semantics. Specifically, any scheme must take into
account the fact that the data path segment that is being affected by the reconfiguration can have some
stream data that is partially processed; either in the internal state of drivers, or in transit between execution
environments. Note that although the soft-state requirement discussed in Section 3.1 permits us to restart a
driver, it does not provide any guarantees on data loss or in-order reception.

Figure 4 shows an example highlighting this problem. Driver d0 is the source of MPEG data, driver
d1 is an MPEG frame duplicator which produces 3 frames for each incoming frame, driver d2 is an MPEG
frame composer which generates one MPEG frame upon receiving four incoming frames from d1, and d3 is
the renderer of the MPEG data. d1 and d2 are drivers that need to be removed. When driver d0 has output
2 frames, d3 receives one frame, but with the system in this state, d1 and d2 cannot be removed from the
data path. The reason is that doing so affects semantic continuity, since it is incorrect to retransmit either of

8

D1(1:3) D2(4:1) D3

Mpeg
Source

Frame
Duplicator

Frame
Composer

Mpeg
Render

D0

Reconfiguration Event

Figure 4: An example of data path reconfiguration using semantics segments.

the second segment from d0 (whose affects have been partially observed at d3), or the third segment (which
would result in a loss of continuity at d3).

CANS provides an efficient solution to the data path reconfiguration problem, which does preserve
semantic continuity. Our solution leverages restrictions placed on driver functionality, specifically the soft-
state and semantic segments assumptions described in Section 3.1. Our scheme relies on a notion we call
delayed operation, which defers the reconfiguration to a point where the system can guarantee continuity
and exactly once semantics.

In our description here, we restrict our attention to reconfiguring a portion of the data path that has only
one input and one output. Internally, it is possible for the portion to have an arbitrary graph of drivers. The
basic idea is that reconfiguration is delayed until the driver immediately downstream of the portion being
reconfigured (d3 in our example) completely receives the effects of every segment sent out by the driver
immediately upstream of the portion (d0 in our case) prior to the request for reconfiguration. Note that
in order to achieve this, we need to continue transmitting from the upstream driver, in effect flushing out
the contents of the intermediate drivers. Once the downstream driver indicates, using the distributed event
system, that it has received the last of the affected segments, the system can remove the portion of the data
path, replacing it with a compatible set of new drivers. To restart the system, the upstream driver retransmits
starting from the first segment that was not completely received. The fact that the system needs to wait for
only a finite number of segments to flow downstream follows from the semantic segments restriction we
have placed on our drivers. This number, can in fact, be computed based entirely on the properties of drivers
making up the portion that is being reconfigured simply by tracking which input segments produce which
output segments.

For our example, the CANS reconfiguration algorithm works as follows (reconfiguration is requested
after segment 2 has been sent out by d0):

1. CANS marks d0 as the upstream point and d3 as the downstream point, which causes d0 to buffer
every segment it sends out after this time. Except for buffering, d0 keeps sending out data as usual.

2. When downstream point d3 realizes that it has received a complete segment from the upstream point,
it freezes its input port and raises an event to the plan manager. In this case, this happens when
segment number 3 is received, which corresponds to segment number 4 input by d0 (this follows from
the fact that the aggregate effect of d1 and d2 is to produce 3=4 the number of segments they see on
their input).

3. The plan manager can now freeze d0, remove d1 and d2, and replace them with a compatible driver
graph.

4. To restart, d0 retransmits starting from segment 5. In this case d3 does not need to discard anything.

4.3 Planning and Global Reconfiguration

A plan refers to the deployment of drivers, services, and data paths in response to a request from a client
application to connect to an end service. As described earlier, planning is triggered when the interception
layer detects a connect attempt on a TCP socket of interest. The key component responsible for planning

9

in the CANS infrastructure is the plan manager. The plan manager takes responsibility both for creating
the original plan, as well as changing it as required based on evolving system conditions. Replanning is
triggered by events from the resource monitor that are propagated to the plan event delegate by the event
manager.

All of the components on a plan must satisfy the type compatibility requirement and the components at
the end points must compatibly interface with the application and end service. To generate a strictly optimal
plan is a challenging problem because the candidate space could grow exponentially with the number of
compatible components. Our current solution for this is to use type compatibility and an application-specific
adaptation policy to guide selection among candidate plans, using simple heuristics to find a reasonable one.
The heuristic that we use currently consists of two steps. The first step selects a route, spanning multiple
network domains, where the hosts are chosen based upon service availability requirements. Route selection
attempts to maximize the minimum bandwidth available along the route. The second step partitions a
driver sequence among these hosts to construct data paths between services. The selection of which drivers
form the data path and where they reside is handled by an integrated heuristic that takes into consideration
the bandwidth effect factor of each driver and seeks a data path with the least bandwidth bottleneck. To
reduce the search space, we start with a feasible data path and then try to reduce the bottleneck factors by
inserting/removing components.

The application-specific policy plays an important role in plan selection. For example, if the application
specifies that audio data is acceptable if the video frame rate is lower than 10 frames/sec, the plan manager
can add an audio/video splitter at some point upon detecting that the bottleneck bandwidth falls below this
threshold.

5 Experience with Using CANS

We have been experimenting with a prototype implementation of CANS architecture. The current focus has
been more on evaluating the suitability of our approach for injecting application-specific functionality into
legacy client-server network data paths, as opposed to developing the highest performing implementation.

The current implementation of the CANS infrastructure works with Windows NT/2000 clients and
Java/RMI-capable intermediate hosts. Both the execution environment (EE), which runs as a user-level
process within a JVM, and driver components are written in Java. Java was chosen because of its support for
code mobility, safety, and strong typing. The interception layer for integrating legacy applications is written
as a native DLL, which is injected into the application at start time, and reroutes application socket calls
by rewriting the memory code image of the application. We make use of the Detours toolkit under Win-
dows NT/2000 [10] that provides DLL injection and function rerouting facilities. The interaction between
wrapper and EE is based on the standard JNI interface.

To set up a customized data path for an application, the interception layer first obtains the address of an
agent node, permitting it to interact with the EE running there. The plan manager on that node builds the
plan, instantiates it, partitions it, and then downloads plan fragments to individual environments. Interac-
tions between different EEs, and between the application and its agent node make use of Java/RMI. Data
transmissions between components, which are more performance critical, makes use of the communication
adaptors described earlier.

In the rest of this section, we first describe some microbenchmarks that capture the overheads of using
the CANS infrastructure, and then a larger case study that evaluates its flexibility.

10

5.1 Microbenchmarks

All measurements below were taken on a set of Intel Pentium II 450Mhz nodes, with 128 MB main memory,
running Windows NT 4.0, and connected using 100 Mbps switched Ethernet.

0

1

2

3

4

5

6

7

8

1024 2048 4096 8192 16384

Msg size(byte)

R
T

T
(m

se
c) C prog

Java prog

In process Driver

One EE

0

10

20

30

40

50

60

70

80

90

100

1024 2048 4096 8192 16384

Msg Size(byte)

B
an

d
w

id
th

(M
b

p
s)

C Prog

Java prog

In Process Driver

One EE

(a) Round Trip Time (b) Bandwidth

Figure 5: Overhead of the CANS infrastructure, measured in terms of latency and bandwidth impact on
communication between an application and an end service.

Figure 5 shows the overheads introduced by the CANS infrastructure, measured in terms of their impact
on the communication between an application and an end service. Each graph shows the round-trip time
and bandwidth achievable for different message sizes for four configurations: C prog and Java prog refer
to our baselines, corresponding to application and server programs that communicate directly using native
sockets in C or Java respectively. In process Driver and One EE refer to basic CANS configurations; the
former shows the case when null drivers and a communication adaptor are embedded into the interception
layer running within the application process and indicates the basic overheads of driver composition, and
the latter considers the case where the data path includes null drivers sitting on an intermediate host between
the application and service.

Figure 5 shows that the In process Driver configuration introduces minimal additional overheads when
compared with the Java prog configuration (less than 10% arising from extra synchronization and data
copying), attesting to the efficiency of our driver design and composition mechanism. On the other hand, the
One EE configuration does show marked degradation in performance, primarily because of additional con-
text switch costs and the fact that the transmitted data has to traverse across application-level and network-
level four times instead of two times. However, given that intermediate EEs are intended to be used across
different network domains where other factors dominate latency and bandwidth, this overhead is unlikely to
have much overall impact.

5.2 Case Study

To evaluate whether the CANS architecture provides enough flexibility to support large-scale applications,
we used the prototype in a case study involving a shrink-wrapped application: Microsoft MediaPlayer. The
goal of the study was to see if CANS can be used to make the application adapt to a dynamically changing
network environment, without embedding such functionality into the application itself. For our case study,
we implemented a service (using Windows Media SDK) which obtains ASF data from the original server
and can optionally splits it (under external control) into audio and video components available using HTTP
on different ports.

In addition to this service, other CANS components included Null (forwarding), Zip and Unzip drivers,
and communication adaptors that could (1) provide data on the application’s virtualized sockets; (2) transmit
data between EEs; and (3) interact with a service using the TCP protocol. The first and second adaptors

11

were capable of supporting using multiple network interfaces, automatically transitioning between active
interfaces in a fixed priority.

Server
EE

NetworkNetwork

Wireless
Network

Wireless
Network

Splitter

 MediaPlayer

Figure 6: Case study: MediaPlayer with CANS infrastructure.

As showed in Figure 6, the experimental environment consisted of a laptop which has both wireless
and wired network interfaces, a desktop which can run the splitter service, and an intermediate computer
capable of hosting an execution environment, which also acts as the agent node for applications running on
the laptop. The experiment progresses in four stages described below:

To start the experiment, we started a wrapper process that injected the sockets interception layer into the
MediaPlayer application. When the application issues a connect call to an external streaming service, the
interception layer intercepts the call and forwards the request to the agent node running on the intermediate
host. The plan manager there computes the (hardcoded) initial plan, instantiates the necessary components,
and makes the connections. The deployed plan consists of the splitter service, forwarding drivers running
on the intermediate EE, and communication adaptors hooking up the application with the EE, and the EE
with the service. Needless to say, MediaPlayer receives a continuous data stream via the CANS components
and is able to render it without any problems.

The second stage of the experiment starts when we disconnect the wired connection between the appli-
cation node and the rest of the system. The communication adaptor running there detects this and reconnects
using the wireless interface, while preserving data continuity on its output ports hooked into the application’s
virtualized sockets. This demonstrates the first of CANS’ adaptation modes: intra-component adaptation.

The third stage of the experiment involved moving the laptop away from its access point, resulting in
a bandwidth drop. The resource monitor running in the application EE detects this (by comparing stream
bandwidth against a preset threshold) and triggers an event that is caught by the plan manager. The plan
manager responds to this (again using a hardcoded plan) by reconfiguring the data path between the appli-
cation node and the intermediate EE node to include a Zip and an Unzip driver.2 Note that this adaptation
involves the data path reconfiguration algorithm described earlier to flush any in-transit segments between
the null drivers on the intermediate EE and the communication adaptor on the application node.

The fourth stage of the experiment involved moving the laptop further away from the access point,
triggering another event from the resource monitor and additional replanning. The plan corresponding to
this event requires the service to create a new port supplying only audio output, and deploying a new plan
to supply the application with this differently formatted input. To implement this, the infrastructure needs
to propagate an event to the splitter service, and force the application to reconfigure itself to accept audio
where it was previously receiving video. The first was naturally handled using a service delegate object

2Adding Zip/Unzip to the already compressed media stream has little effect; here we use these drivers as placeholders for more
application-specific transformers (e.g., those that work by dropping frames).

12

described earlier; however, the second required us to go outside the CANS infrastructure. We set up an ASX
file that forced MediaPlayer to reconnect when the first connection was shutdown. This reconnect request
was trapped and used to initiate the new plan. While this experiment demonstrated the effectiveness of
the CANS infrastructure in supporting global adaptation involving changes to multiple components, it also
pointed out the need for a better abstraction of the protocol between applications and the infrastructure.

Overall, the case study successfully demonstrated all of the important features supported by the CANS
infrastructure. First, starting only from a specification of the data type required by MediaPlayer, CANS
was able to compose services and drivers (type compatibility was checked at run time) and deploy the
connection plan. Second, distributed event propagation and all three of the adaptation modes of CANS were
highlighted showing that CANS provides enough flexibility to implement them. We did run into a problem
because of our choice of MediaPlayer as the client application: MediaPlayer would detect when it was not
receiving data at a fast enough rate on a connection (which would happen whenever CANS was adapting
the data path), close this connection, and try and reconnect. The ideal solution for this would be to have a
MediaPlayer-specific driver that would supply the application with null legal frames; however, this requires
knowledge of the media format which is proprietary. Our solution here (admittedly crude) was to freeze the
application when we were adapting the data path. This problem only reinforces the need for an infrastructure
that is application-aware (such as CANS) instead of trying to adapt completely transparently.

6 Related Work

CANS shares its goals with many recent efforts that have looked into injecting adaptation functionality into
the network. Instead of describing each separately, we group related efforts to put our work in perspective.

Adaptation functionality can be introduced only at the end-points or could be distributed on interme-
diate nodes. Odyssey [14], Rover [11] and InfoPyramid [13] are examples of systems that support end
point adaptation. Each system provides only minimal support for composing adaptation activities across
multiple nodes, and consequently may not be flexible enough to cope with changes in intermediate links.
Efforts targeting adaptation at intermediate nodes in the network can themselves be viewed in terms of two
issues: whether adaptation functionality is application-transparent or application-aware, and whether the
functionality is introduced at the network level or the application level.

Systems such as transformer tunnels [15], protocol boosters [12] are examples of application-transparent
adaptation efforts that work at the network level. Such systems can cope with localized changes in network
conditions but cannot adapt to behaviors that differ widely from the norm. Moreover, their transparency
hinders composability of multiple adaptations. More general are programmable network infrastructures,
such as COMET [3], which supports flow-based adaptation, and Active Networks [16, 18], which permit
special code to be executed for each packet at each visited network element. While these approaches provide
an extremely general adaptation mechanism, significant change to existing infrastructure is required for their
deployment.

Similar functionality can also be supported at the application level. The cluster-based proxies in BAR-
WAN/Daedalus [5], TACC [6], and MultiSpace [7] are examples of systems where application-transparent
adaptation happens in intermediate nodes (typically a small number) in the network. Active Services [1] ex-
tends these systems to a distributed setting by permitting a client application to explicitly start one or more
services on its behalf that can transform the data it receives from an end service. A different perspective
is offered by systems such as Conductor [19], which automatically deploy multiple application-transparent
adaptors along the data path between applications and end services. Although such systems retain backward
compatibility with existing applications, the lack of application input limits their flexibility. Furthermore,
such systems rely upon self-describing properties of data streams, a condition that may or may not hold
true because of non-technical reasons such as those we encountered in our case study. More general are

13

systems such as Ninja [8], PIMA [2], and Portolano [4], which permit construction of programmable ubiq-
uitous access systems from networked services and transformational components. CANS also provides
application-level support for injecting application-aware functionality into the network, but differs from the
above systems in its focus on infrastructural support required for dynamic adaptation.

CANS has been most heavily influenced by the Conductor design and shares several features with the
Ninja infrastructure. Conductor [19] provides an application-transparent adaptation framework that permits
the introduction of arbitrary adaptors in the data path between applications and end services. Applications
are integrated into the framework by modifying the kernel to trap calls that create and use TCP sockets.
CANS borrows the idea of transparent stream-based adaptation from Conductor but differs in applying it to
application-aware adaptation in a larger context that involves multiple services contributing to the data path;
consequently, we require infrastructural support for downloading component code, instantiating the compo-
nents, and ensuring compatibility. Also different is the degree of support provided by the infrastructure for
reconfiguring existing paths, specifically the notion of semantics-preserving adaptation that spans multiple
drivers, and general support for dynamic run-time composition of components.

Ninja [8] is a general architecture for building robust internet-scale systems and services consisting of
three components: services, units, and paths. We restrict our attention to how paths are constructed in Ninja
since that is closest to our objective. Several CANS concepts find close matches in the Ninja design: our
service-driver distinction is closely related to Ninja’s service-operator distinction and both systems share
ideas such as type-based composition and dynamic service adaptation. Despite these high-level similarities,
the systems differ significantly in the details. Unlike Ninja, the CANS infrastructure provides support for (1)
efficient composition of multiple drivers within the same physical host, (2) event propagation and distributed
adaptation across multiple intermediate hosts, and (3) support for semantics-preserving adaptations that span
multiple drivers; Ninja requires applications to provide their own mechanisms to ensure semantics such as
guaranteed or in-order data delivery. On the flip side, it must be noted that unlike Ninja, CANS currently
provides little explicit support for scalability and fault recovery.

7 Conclusions

This paper has presented an application-level infrastructure, CANS, for injecting application-specific func-
tionality into the data path connecting applications and end services. Such functionality can monitor and
adapt to resource changes, providing the basic support needed for building novel application-level services
that can seamlessly integrate diverse end devices and cope with variations in network characteristics. The
main contributions of CANS include: (a) efficient and dynamic composition of injected components by
requiring them to adhere to a restricted interface, (b) dynamic and distributed adaptation that takes advan-
tage of distributed event propagation and novel path reconfiguration algorithms, and (c) support for legacy
applications and services. Early experience indicates that our approach is promising, and that the flexible
mechanisms in CANS permit dynamic deployment and distributed adaptation of application-aware compo-
nents to improve user experience.

CANS is one component of a larger project at New York University, Computing Communities, which is
looking at developing transparent distribution middleware for legacy applications. Our future work involves
integrating CANS with efforts that are looking at resource management, security, and reliability issues, im-
proving the performance of the infrastructure, particularly with respect to synchronization and data copying
overheads, and designing more sophisticated planning algorithms.

14

References
[1] E. Amir, S. McCanne, and R. Katz. An active service framework and its application to real-time multimedia

transcoding. In Proceedings of the SIGCOMM’98, August 1998.

[2] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and D. Zukowski. Challenges:an application model for
pervasive computing. In Proceedings of the Sixth ACM/IEEE International Conference on Mobile Networking
and Computing, pages 266–274, August 2000.

[3] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. Vicente, and D. Villela. A survey of programmable
networks. ACM SIGCOMM Computer Communication Review, April 1999.

[4] M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next century challenges:data-centric networking for
invisible computing. the portolano project at the university of washington. In Proceedings of the Fifth ACM/IEEE
International Conference on Mobile Networking and Computing, pages 256–262, August 1999.

[5] A. Fox, S. Gribble, Y. Chawathe, and E. A. Brewer. Adapting to network and client variation using infrastructural
proxies:lessons and prespectives. IEEE Personal Communication, August 1998.

[6] A. Fox, S. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-based scalable network services. In
Proceedings of the 16th ACM Symposium on Operating Systems Principles, October 1997.

[7] S. D. Gribble, M. Welsh, E.A.Brewer, and D. Culler. The multispace:an evolutionary platform for infrastructual
services. In Proceedings of the 1999 Usenix Annual Technical Conference, June 1999.

[8] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer, D. Culler, N. Borisov, S. Czerwinski, R. Gummadi,
J. Hill, A. Joseph, R.H. Katz, Z.M. Mao, S. Ross, and B. Zhao. The ninja architecture for robust internet-scale
systems and services. Special Issue of IEEE Computer Networks on Pervasive Computing, 2000.

[9] J. Haartsen. Bluetooth– the universal radio interface for ad hoc, wireless connectivitity. Ericsson Review, (3),
1998.

[10] G. Hunt. Detours: Binary interception of win32 funcdtions. In Proceedings of the 3rd USENIX Windows NT
Symposium, Settle, WA, July 1999.

[11] A. D. Joseph, J. A. Tauber, and M. F. Kasshoek. Mobile computing with the rover toolkit. IEEE Transaction on
Computers:Special Issue on Mobile Computing, 46(3), March 1997.

[12] A. Mallet, J. Chung, and J. Smith. Operating system support for protocol boosters. In Proceedings of HIPPARCH
Workshop, June 1997.

[13] R. Mohan, J. R. Simth, and C.S. Li. Adapting multimedia internet content for universal access. IEEE Transac-
tions on Multimedia, 1(1):104–114, March 1999.

[14] Brian D. Noble. Mobile Data Access. PhD thesis, School of Computer Science, Carnegie Mellon University,
1998.

[15] P. Sudame and B. Badrinath. Transformer tunnels: A framework for providing route-specific adaptations. In
Proceedings of the USENIX Technical Conference, June 1998.

[16] D. Tennenhouse and D. Wetherall. Towards an active network architecture. Computer Communications Review,
April 1996.

[17] U. Varshney and R. Vetter. Emerging mobile and wireless networks. Communications of the ACM, pages 73–81,
June 2000.

[18] D. J. Wethrall, J. V. Guttag, and D. L. Tennenhouse. ANTS: A toolkit for building and dynamically deploying
network protocols. In Proceedings of 2nd IEEE OPENARCH,1998, 1998.

[19] M. Yavis, A. Wang, A. Rudenko, P. Reiher, and G. J. Popek. Conductor:distributed adaptation for complex
networks. In Proceedings of the seventh workshop on Hot Topics in Operating Systems, March 1999.

15

