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ABSTRACT

If a building consisting of frames and shear walls 
is replaced by two representative cantilevers; then one 
cantilever represents the frame and the other the shear 
wall or assembly of shear walls„ In the analysis of the 
interaction of the shear wall and frames, use of this 
concept of twin cantilevers is made in order to save a 
considerable amount of manual work in moment distribution„

For an approximate deflected shape of the frame, 
the developed forces and moments are calculated at the 
joint between shear wall and frame at each story. The balance 
of forces and moments (loading and frame) are applied to 
the shear wall to find the deflection of the wall at each 
story. This iterative procedure is carried on until the 
following conditions are satisfied.

That; the horizontal deflection must be the same
in both cantilevers at corresponding levels. 

That; the summation of shears developed in both 
cantilevers must be equal to the total 
external shear (due to loading) at every story. 

Effects of base rotation of the shear wall are included 
also in the analysis.



ix

This thesis is an attempt to both simplify and 
abbreviate existing techniques for accomplishing the above 
by combining methods suggested in recent literature.



CHAPTER 1 
INTRODUCTION

As multistory building construction has evolved 
from bearing wall types of the late 19th century and the 
rigid steel frames of the 1930’s to the delicate curtain 
wall buildings of the 1950*5, the interior compositions 
have changed along with the exterior skins (3)„, The trends 
toward column-free interiors, long spans, minimum floor 
to floor heights and maximum rentable area together with 
the increased popularity of reinforced concrete as a 
construction material have resulted in the use of the shear 
wall as the principal lateral load resisting member in many 
multistory buildings. Frequently the service core of the 
building has provided an excellent location, for the shear 
wall since enclosure walls are required there anyhow.

Since a large number of tall buildings are now being 
constructed, and present practice in this type of construc­
tion is to provide shear walls along with the frames to 
resist lateral loads due to wind or earthquake, the design 
of shear walls has been the subject of considerable discussion 
in the past few years,

The simplest approach to the design problem is to 
consider the shear wall as an independent member and design 
it as a vertical cantilever. But since the steel framing

1



actually does resist some of the lateral loading, such design 
is quite conservative with respect to shear walls; whereas 
the frames are underdesigned.

A number of excellent articles have been published 
on the subject of interaction of shear walls with frames in 
multistory structures (2,3,4,5). The analyses presented in 
the aforementioned papers are, of course, interesting and 
applicable to the design, but require use of a computer that 
may not always be available to office practice.

As has been mentioned above, the distribution of 
lateral forces between the frames and the walls should result 
in more economical structures because, in practical cases,' 
the results of an exact analysis will indicate a reduction 
of reinforcement in the shear wall. On the other hand, the 
building code requirement (6) of the one-third increase in 
allowable wind or earthquake stresses will generally permit 
accommodation of the additional stresses in the frame with 
no need for additional reinforcement over the major part of 
most tall structures =

Recent building regulations are influenced by the 
concept that structures designed for earthquake regions 
must serve two functions; (1) for frequent small shocks, 
they must be capable of controlling damage to nonstructurai 
elements in a building (partitions, skin, ducts, water and 
soil lines*etc., which, incidentally, may amount to more 
than 701 of the cost of the building), and (2) for several



earthquakes, the structure must have adequate ductility to 
accommodate large lateral deflections, with little, if any, 
loss in capacity. The design procedure presented in this 
thesis with consideration of code requirements relating to 
lateral loading will result in the shear wall braced 
structures accomplishing both functions (1) and (2) outlined 
above. The design information presented in Khan’s article
(1) is helpful to engineers to establish more precise and 
economical reinforcing requirements. But the moment 
distribution is very time consuming for multibayed multistory 
buildings. Moreover, the design procedure requires 
successive adjustments to story deflections, so that it 
too is iterative.

An attempt has been made to both simplify and 
abbreviate existing techniques by combining methods suggested 
in recent literature, with the care not to dissatisfy the 
equilibrium conditions (Chapter 3).

Base rotation is considered in Chapter 4 in order to 
determine its effect on the moments and shears in the final 
solution. An investigation is made also into the rate of 
closure of the iteration when Khan’s charts (1) are not 
used to get the deflected shape close to the final correct 
deflected shape.



Although the analytical method considered is applicable 
for free-standing walls, or the enclosure around elevator 
shaft or stairs, it is not applicable to walls that are 
filled-in panels bounded by steel framing. The constraints 
imposed by the boundary connections by the frame would prevent, 
or modify, deflection as a contilever. Similarly the 
presence of such filled-in walls would modify the deflection 
of the frame members.

Note: The symbols adopted for use in this thesis are defined
where they first appear and are listed alphabetically 
in Appendix II.



CHAPTER 2 
THE EQUIVALENT COLUMN METHOD

A, Physical Analysis.
The interaction of a shear wall and a frame is a 

special case of indeterminancy in which two basically 
different components are tied together to produce one 
structure„ If the frame alone is considered to take the 
full lateral load, it would develop moments in columns and 
beams to resist the total shear at each story while the 
effects of overturning would normally be considered secondary 
and, in most cases, negligible„ In resisting all lateral 
loads, a frame would deflect as in Fig. 1(a). The floors 
would remain essentially level even though the joints would 
rotate. If a shear wall, on the other hand, is considered 
to resist all the lateral loads, it would develop moments 
at each floor equal to the overturning moment at that level 
and the deflected shape, Fig. 1(b) would be that of a canti­
lever. .

If a shear wall and a frame exist together in a 
building, each one will try to obstruct the other from 
taking its natural free deflected shape, and as a result a 
distribution of forces between the two results. As shown 
in Fig. 1(c), the frame will restrain or pull the shear wall
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back in upper stories, while in the lower regions the 
opposite will occur.

The conflicting deflection characteristics of the 
frame and the shear Wall can be considered if the structure 
is first divided into two separated systems (1) frame, and
(2) shear wall. Then for an approximate deflected shape 
of the frame, the developed forces and moments are calculated 
at the joint between shear wall and frame at each story. The 
difference of forces and moments between the external 
loading and frame are applied to the shear wall to find the 
deflection of the wall at each story, and these deflections 
are compared with those previously assumed. The procedure 
is repeated until (1) horizontal deflection must be same 
in both systems at corresponding levels, and (2) the summation 

of shears developed in both systems must be equal to the 
total external shear (due to loading) at every story. Since 
this is essentially a successive approximation procedure., 
equality means an acceptably low level of inequality.

In this chapter, an attempt has been made to 
mathematically represent the frame as one cantilever and 
the shear wall as a second.

B. Twin Cantilevers.
Initial Assumptions

The assumptions which are .usually made in the analysis 
of shear walls are as follows.



1* Shear walls, have moment and shear resisting 
connections with the adjacent framework.

2, Shear walls act mainly as vertical cantilevers 
fixed at the footing level.

3. The entire structure is tied and braced firmly so • 
that the building tends to act as a single unit.

4= The floor'slabs are infinitely rigid in their own
plane. Since the rotation is inversely proportional 
■to the flexural rigidity, the slabs are considered 
not to undergo any rotation or distortion in the 
horizontal plane. But in case of flat slab design, 
the slab does undergo flexure in the vertical plane. 
Thus, the method is still valid for flat slab 
design.

5. Initially, it is assumed that the slopes in the 
frame at any particular floor are the same; also 
that the slopes in the walls at any floor level 
are the same though different from that in the 
frame.

Method of Analysis:
The building consisting of frames and walls is 

replaced by two representative cantilevers (Fig. 2). The 
Substitute cantilever for the frame includes the stiffnesses - 
of the columns and beams. The other cantilever represents 
the shear wall or assembly of the shear walls. These



two cantilevers are tied together at each floor level so 
that
1 the sum of the shears at any story developed by two 

cantilevers is equal to the total shear acting on 
the building,

2. the slope at one end of the link members joining the
wall and frame represents the slope in the frame work,
whereas the slope at the other end represents the slope 
of the shear wall,

3. the lateral displacement of the two cantilevers at 
any floor level is the same.

Derivation of General Equations:
The basic slope deflection equations for a beam are

MABskBA^2dA+dB+UAB^ “m FAB° 0 ° ° ° ° (1)

MBAok B A ̂ 2 dB+ dA+ UB A-* ^ B  A °»°(2)

where resultant end moment at point A of member AB,
positive if clockwise and vice versa.

pM fixed end moment at point A of member AB,
positive if clockwise and vice versa.

d^ ® 2E6.* deformation at A
A

Referring to Fig. 2(a), for joint n, for equilibrium to 

exist. . :
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Expressing the above relations in terms of the slope 
deflection equations (1) and (2).

*kn(2d^ dn"'>°-

Where, stiffness of columns between floor n and n-1

f 6EDnUn« ^—  Dnas relative displacement of the
two ends of member n

E ° modulus of elasticity
hn® height of nth story

kE” stiffness of beam at nth floor, n

But as per assumption, 5,
f f f f f f 
en'"en'"“6n " dn'“dn"'"dn'

Where joint rotation of frame work at nth floor.
So,substituting this deformation condition in previous
equation

< ( 2kn»2kn»lt3kn*3n ' ^ kn < - V kn*ldL v kn <  

*kn*lUn-H*0-' ’ ••
Similarly for equilibrium to exist at joint n
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For equilibrium to exist at joint n 19

Hi1,(n+1)1*Mn •,(n-1),+Mn',n"+Mn",n“° ”s 0 — •(5)

There will be vertical movements at the connecting points 
of the "link" beams with the shear wall. The vertical 
movement at any connecting point will be equal to the slope 
at that point multiplied by half the width of the shear 

wall. Vertical movement at point n"""0n"^n ’ 1

where e^n° rotation of shear wall at nth floor

&Y 58 half the width of an actual shear wall at nthTi
floor.

s°< un',n"‘^ S ^
^n

Now expressing equation (5) in terms of the slope deflection 
equations (1) and (2)

k Cn*l) ' '*Un.l)"kn'(2dn'ld(n-D
.WjX

n

Where. stiffness of link beamn

d^„s deformation at joint between link beam and wall 
at nth floor.



Therefore,

dn^2k(n*l) ,'!'2kn ,'!‘3kn 9's'2klb^+k(n+l) ,dn+l

*kn'<-l,k(n»l) 'U( „ » l ) < ' UX b (1<- i K  -°
n

Adding equations (4)» (4a)» and (6),

dn (2kn'>'2kn"''>2kn ,'>2kn*l'>2k (n-H),,,<'2k Cn+l) ' 

<6kn»6kn-42knb^ dn»l(kn.l*k(n»l)"'

»k (n+l)')+dn-l(kn+kn"'+kn')+knb ( dn
n

^Un (kn^kn"' *kne ̂ *dn+1 (kn+ l*k (n+l)"' *k (n+l) ' ̂ =0 ’ ’ “ 

Now, making the following substitutions in equation (7)

Kn-kn"kn"'»kn'=Ek^

kn+l*kn+l*k (n+l)"'*k (n+l)'*^kn+l
(These are the sums of all the column stiffnesses at the nth 
and the n^lth stories, respectively«)
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Kn'lcn ^ n ' ' !;kn

(This is the sum of the stiffnesses of all the beams except 
the link beams at the nth floor.)

Klb=rklb n n
3£w

n

(These are the sums of stiffnesses of all the link beams.)

dn(2K^ 2Kntl*6Kn*2Knb>*Kn » l 4 l  ,

»Kndn . l ^ < ,KX < » l UnM-°

Say, Kn- 2 K ^ 2 K ^ 1<-6Kb *2K^b ... ...(8a)

Substituting equation (8a) into equation (8),

KndntKn»ldn»l"Kndn-llkIFdn4KnUn"Kn»lUn»l=0‘'' ••• ™

Equation (9) shows that the structure shown in Fig. 2(a) can 
be represented as shown in Fig. 1(b). Thus the frame system 
can be represented as one cantilever and the assembly of 
shear walls as the other. These twin cantilevers are tied 
together by link beams so that the entire structure is 
looked at as a single unit. Kn (Eqn. 8a) is the stiffness 
of the joint between frame column and link beam at nth story,



CHAPTER 3
INTERACTION OF SHEAR WALLS AND FRAMES

A. Concept and Method of Analysis„
As has been seen in Chapter 2, the concept of twin 

cantilevers reduces the multibay$ multistory shear^walled 
structure into the single-bay multistory shear-walled 
structure. Then the analysis is performed in two stages.
In the first stage of analysis of the structure, it is 
necessary to determine the deflected shape and the amount of 
lateral load distributed to the walls and frame, respectively,
at each story. For this purpose, the structure is separated
into two distinct systems; system W and system F.

1. System W : Shear wall or assembly of shear walls.
This system can have any configuration. Walls are 
extended over the entire height of the structure.
The stiffness of this shear wall system at any
story equals the sum of the stiffnesses of all
shear walls regardless of their shape and size.
Shape and size should be considered in computing an 
average the distance from the neutral axis of
the system W to its extreme fiber. Thus, the
coupled shear walls can be represented in high 
multistory buildings as a single wall with an
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equivalent stiffness equal to the sum of the stiff­
nesses of both shear walls.

2. System F: This system includes all columns and
beams contributing to the lateral stiffness. The 
link beams, members linking the frames with the 
shear walls, are also included in this system. In 
twin cantilevers, the stiffnesses of columns, beams 
and link beams are simply the sum of the stiffnesses 
of all such members in the structure. The link 
beam span is an average of the link beam spans of 
the structure when this spans are within the same 
range of magnitude.

Then the analysis of a single-bay shear-walled multistory 
frame system is performed by an iterative solution presented 
subsequently.

B. Iterative Procedure to be Used.
Equilibrium conditions:

1. The horizontal deflection must be the same in both 
cantilevers at corresponding levels.

2. The summation of shears developed in both cantilevers 
must be equal to the total external shear (due to 
loading) at every story.

3. Link members connecting two cantilevers must undergo 
the same rotations and vertical translations as those 
of system W and system F at their point of connection.
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Figure 4. Fixed End Moments From Deflected Shape 
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The foregoing three requirements of compatibility and equil­
ibrium can be achieved by the following six steps of analysis.

Step 1: Free Deflection of Shear Wall (conjugate beam method)
Total computed external loads (wind or seismic) on 

the idealized structure (Fig. 3a) are directly applied to 
shear wall at each floor level. The slopes and deflections 
of the shear wall at each floor level are determined by the 
conjugate beam method shown hereinafter.

Conjugate Beam Method.
In the conjugate beam method (8), the relationship 

between the real beam and the conjugate beam are as follows;
(a). The span of the conjugate beam is equal to the 

span of the real beam.
(b) The load of the conjugate beam is the M/EI diagram 

of the real beam.
(c) The shear at any section of the conjugate beam 

is equal to the slope of the corresponding 
section of the real beam.

(d) The moment at any section of the conjugate beam 
is equal to the deflection at the corresponding 
section of the real beam.



A A
(a) Real Beam (b) Conjugate Beam

where Iw=moment of intertia of 
shear wall.

E “Modulus of elasticity 
of concrete (shear wall)

Figure 5. Shear Wall Flexural Equivalency.

The real beam is fixed at A (Fig. 5a)

Deflection =0 
. .In conjugate beam; at end A shear =0

and moment“0
So end A is free in the conjugate beam as shown in Fig. 5. 
Similarly, in the real beam, the slope and deflection are 
not zero at free end B, hence the end B is fixed in the 
conjugate beam as shown in Fig. 5b.
For example: The slope at pt. C in the real beam;

. .At end A; Rotation 6=0

8^=shear at pt. C in the conjugate beam

and the deflection at pt. C in the real beam;
A ̂ moment at pt. C in the conjugate beam



Thus, the free horizontal deflection and rotation can be 
calculated by the conjugate beam method at any point on the 
shear wall. The free horizontal deflection, rotation and 
vertical deflection at any point, i, are denoted as A ^ , 
efi and respectively. The deflections one floor above
and below are + and respectively.

Step 2: Initial Deflection and Rotation.
For quick convergence, initial deflection and 

rotations are assumed or approximated from Figs. 32 through 
38 given in Khan's article (1). In the absence of a good 
estimate, however, the deflected shape is assumed as the 
free deflected shape of the shear wall, which would mean 
that, in the first cycle, initial deflection and rotation 
at the ith floor would be

and
Aii(l)”Afi

6ii(l)”8fi

System F is forced to undergo the assumed deflections at 
each floor (Fig. 4a). This also requires that the connecting 
members at each floor must have the same rotations and
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vertical translation as system W at their points of connec­
tion with system W.

Step 3; Induced Fixed End Moments.
The moments induced by "force-fitting" can be 

determined directly by using moment distribution„ The 
foreed-fitted frame shown in Fig„ 4a has known story deflec­
tion and rotations at the connecting points; hence, for 
uniform columns and beam sections» the fixed end moment at 
the beginning of moment distribution (Fig. 4b) would be 
for columns at ith story

6EI .
FMci=(—

i

At the ith floor for "link" beams at their shear wall end,

4EI. . 6EI, .
FMbiw” (1 --  ̂V  (— y - )  A vi

b Lb

but Avi=Zw8i

2EI, • I
• - FMbiw35C - ™ ) [ 2 ^ 3 ( Î )]9i

Lb b

and at the ith floor for "link" beams at their frame end
2EIb . 6EL.

FMbif“ C~f—   ̂0i+ C~7T“ ) Avi *
Lb ' bb

But again



Distribution Factors:
As has been seen in Chapter 2, the joint stiffness, 

in the twin cantilever, at any nth joint is as follows:

S r 2Kn*2KS*l+6Kn*2Knb -

Therefore,
Distribution Factors:

2KC 2K<-
Lower column^ n

Kn 2KC-o-2Kc. 1*6Kb-$-2K̂ b n n+1 n n

2Kn+l 2Kn^lUpper c o l u m n  -=—  ------   5-rx
" 2Kn*2K^ V 6Kn"2Kn

2Klb 2Klb
Link beam - =—  -- r-2----5----rg •

n 2K5+2Kn,l+6Kn+2Kn

Knowing the fixed end moments and the distribution factors, 
the moment distribution can be run to get final moments in 
the members. When a known, fixed si desway is imposed on a 
structure, as in this case, the cumbersome sideway corrections 
to the moment distribution are not required, and the solution 
will converge rapidly.

Step 4: Story Shears in Frame.
After force-fitting system F to system W, the total 

shears in each story of system F as well as moments and
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reactions applied on system W by the connecting links are 
computed (Fig. 6a). The shears generated by force-fitting 
can be used directly in the next step. The resulting 
horizontal forces P ' are shown in Fig. 6 only for illustra­
tion purposes. These interaction forces may be either 
positive or negative at different floors.

Step 5: Concentrated Moments and Net Deflections.
All shear forces and moments generated by force- 

fitting system F are applied to the isolated free system W 
(Fig. 6b). At any story i, 1VL and should be replaced 
by moment (Fig. 6 c)

M ' - W i V

The moments and forces shown in Fig. 6b will cause negative
deflections and rotations of system % A . and 8 . respectively.' ai ax
The balance of forces and moments (loading and frame) are 
applied to the shear wall in order to find the net deflections 

and rotations, and @e£ respectively, at each story.
So at the end of first cycle, the deflections and rotations 
equations can be written as follows:

Aei(l)=Afi~Aai(l)

9ei(l)=6fi"6ai(l)

or in general at the end of the nth cycle

Aei (n)~Aii (n) "Aai (n)
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V4

V3

V2

VI- V

4-V4 -V5

3 3 "2

(a) Forces’ and Moments in System F 
after Moment Distribution.

%
p-i

cr
I
IcrM

CTM
crM

/777T//7/7777

(b) Forces and Moments
From System F Applied 
to System W.

N.A.

— yf—

Vi

M'=Mi+Rvi(^w)

(c) Total Concentrated Bending 
Moments.

Figure 6 . Interacting Forces and Moments of Combined System.
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and

9ei(n) 6ii(n) 9ai(n)°

This is the end of one cycle of iteration. For the stable 
condition to occur, the initial deflections at any floor 
"i" at the beginning of nth cycle, A^(n) must be the same 
as the end (net) deflections Agi^) the completion of the 
nth cycle. However in many cases in the first cycle, A ^  
is negative indicating that the iteration is divergent. The 
generalization of this method of solution therefore depends 
on the use of a proper "forced - convergence - correction" 
to be applied to the initial deformations of the nth cycle 

Aii(n) an^ 0ii(n)> t0 obtain the initial trial deformations 

of the (n-s-l)th cycle, Aii(-n^1) and 6ii(n-i-l) •

In Fig. 6b it will be noted that the axial effects of 
the link beam reactions (R^) on the shear wall are neglected. 
This is compatible with the neglect of axial forces in most 
frame analysis methods. The two major contributors to 
shear wall behavior (concentrated moment , and horizontal 
loading, P^) are considered.

Step 6 ; The Forced Convergence Corrections.
The convergence corrections are derived from the 

hypothesis that in each cycle the movement of system W 

at each floor with respect to its free deflected shape is 

lineally proportional to the movement of system F with
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respect to the vertical line. Therefore, it can be shown 
that if at the nth cycle the initial trial values at the 
ith floor were and 6^  and the end values were

Aei(n) and 8ei(n)' the initial trial values at the (n^l)th 
cycle should be as follows:

Aii(n)

and
0 = 6 JL9ei(n) ~9ii (n)
ii(n-M) iiCn)^ e f i - e e i ( n )

eii(n)

The values A and 0 obtained by above two equations are used 
as initial values for the next cycle, and the procedure ,is 
repeated beginning with the second step outlined previously.
This iterative procedure is carried on until the net
deflection is equal to the initial deflection A ^  .
At the end of each cycle, A ^  and A ^  should be checked
until the convergence is within a specific acceptable tolerance,

for example 5% to 10%, based on the designer's judgment.

Design Example:
Data: The dimensions and lateral forces are shown in the
Fig. 7; whereas the elastic properties are listed as follows: 

Column Stiffness kG=800 in^
Beam Stiffness k^=200 in^
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Shear Wall
k lh-200 in3 
I -200 ft4 

Area A =30 ft3 

E =3420K/in

As has been seen in Chapter 2, the structure shown 
in Fig. 7 can be represented as the single bay shear-walled 
frame structure (Fig. 8).

Story
10th

9th
8th

7th 

6 th

5 th 

4th 

3rd

2nd

1st

Ground

12K

22K

26K

24

24

24

24

24

24

24

7 7

H-
25 25 9'

sr-4
iiH<SU
o ,

H
Figuie 7. Shear Walled Frame Elevation for Illustrated 

Example.



29
Where Kc=j:kc -800 + 800

=1600 in3 
Klb = 2:klb = 200 in3 

=200 in3
Joint stiffness at any joint "n" 

Kn"2Kn+2K^ i +6Kn + 2K̂
12

22

26
24

K

K
K

2 4

24K

2 4

24

24

K

K

24

12

K

K

K'

Klb

Figure 8 . Substitute Cantilevers for Illustrated Example

. . For top joint K10 = 2 (1600)+2 (0)+6 (200)+ 2 (200)
=3200+0+1200+400 
-4800 in3



For any intermediate joint
Kn®2(1600)+2(1600)+6(200)+2(200) 

*3200+3200+1200+400 
*8000 in^

Distribution Factors
? ? % ? nnTop joint: link beam =   * *0,08Y 4 OV UK10

Column = - i ” 1600
K10 4800

= 0.33

2KnbIntermediate joint: link beam =----Kn

.2x200
8000

= 0.05

2Kn
%n
.2(1600)
8000

= 0.4

Upper or lower col,

Free Deformations of Shear Wall.
Neglecting the frame, at the first stage, the 

external lateral loads are applied to the shear wall and 
thus free deflections and rotations are calculated in
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Appendix 1(A) at each floor level0 These deflections and 
rotations are tabulated in Table 1. The third column of 
Table 1 shows the factors from Khan’s (1) chart in order 
to approximate the deflected shape close to the final
deflected shape of the structure. The deflected shape of
the force-fitting system is shown in Fig. 4a,

Table 1. Horizontal Deflection 
Iterative Trial.

and Rotation for First

Story
Free
Deflection

Aif

Free
Rotations

6if

Reduction
factor

F Aii(l) 9i i (1)

1 0.13 .00158 .006 0.04 .000034

2 0.46 .00 2 85 .022 0.14 .000125

3 0.96 .00364 .045 0.287 .000255

4 1.57 .00440 .077 0.49 .000436

5 2.28 .00493 .110 0.70 .00063

6 3.05 .00527 . 150 0.955 .00087

7 3.86 .0055 .193 1.23 .00109

8 4.69 .0056 .2 34 1.49 .00132

9 5.53 .00565 .280 1.782 .00158

10 6.37 .00566 . 325 2.07 .00184

The force-fitting system is shown in Fig. 4a 6

The induced moment in

FMbiw-CZEKbi)(2*3^ ) e i
b

link beam at shear wall end

2x3420x200 ,lA_4-SVa
' - n -  23~~ i

=114x10 (2.54)Bi

=289„56x10 9i
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At 10th story

. . FMbl0w=2 89.56xl03x.00184 
=533 K Ft.

Similarly

FMbq*r457 K Ft-
FMb8w=384

FMb 7w=315 

FMb6w=252 

FMbSw=182 .

FMb4w=126

FMb3w= 7 3 "8

FMb2w= 3 6 -2

FMblw" 9 °83

Now induced fixed end moment in link beam on frame end,

Ls
FMbif-2EKbi(1+3r > eib

,2x5420x200^1+ 34 .5)Q
12 25 1

=114x1.54xlO30i
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At the 10th story

FMbl0 f“ 1 1 4 x l o 5 4 x l 0 3 * ’00184
=323 KFt

Similarly

FMb9f“ 2 7 7 K «Ft

™ b 8 f =232

FMb7f«191

™b6f=155

FMbsf»110 KFt

FMb4f=76.3

FMb3f='44 -7

FMb2f=22.0

FMblf=5.95

Induced P»E«M in Columns
At any story i,

6EI

i

6EK
=~h (‘i"4 ! - ! 1i



6x3420x1600,, . .=----------- (A.-A, i)
12x12x12 1 1 i

= 19xl03(Ai-Ai_1)

At 1 0th Story

FMclO=19x 1 0 3 (2 „
=5470 K.Ft

Similarly ;

FMc9=5540 K ’

FMcg=4940 K '

FM .=5220 C 7 K'

FMc6=4840 K !

FMc5=3990 K'

FMc4=3860 K*

FMc3=2790 K'

FMc2=1900 K*

FMc1=760 K ’

After running the moment distribution (see Appendix 1(B) „ 
the final forces and moments are shown in Fig„ 9„ The 
story shears in the frame and the shear wall, concentrated 
bending moment and then final bending moments are tabulated 
in the Table 2,
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=, -217

. 153

113K

143

126

81

122

58

52

54.36

695K'
i V -  217%%r
t / 8564

K 1* 54.8 ' 561
h  40

41.28d
4 6 ' 2 4

1B 4°717
34.96 v_ 335

45r30.04 rx 265
 -lt> - 41
24. 88 f 124.9 ■p64
16.44 , 104.2

^  6 #11.65 52.63

27.1 6.32
if: 24,9

939K'

I

V;

V:

v

I

932

769

677

564

470

377

199

156.6

81.10

nrrrrrTT

Figure 9. Forces and Moments After Moment 
Distribution.
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Table 2. Final Bending Moment on the Wall at the End of 
1st Trial.

Story

10th 
9th 
8th 
7th 
6th 
5 th 
4th 
3rd 
2nd 
1st 

Ground

External
Shears
Kips

12
34
60

84
108
132
156
180
204
228
240

Frame Story Shear Cone. Final
Story Shears in Wall Bending Bending 

Kips Kips Moments Moments
K* K'

217
153
113
143
126
81

122
58
52
27.1
0

■205 
■119 
• 53
■ 59
■ 18 
51 

34
122 

152 
200 .9 
212.9

939
932
769
677
564
470

377
199
156.6
81.10
0

939 
4331 
6528 
7841 
9113 
9 893 
9658 
9449 
8141 
6398.7 
3988

The final moments will give the net deformations of 
the shear wall at the end of the first trial, ^  and
9ei(i). The calculations for these net deformations are 
done by conjugate beam method and tabulated in Table 6 in 

Appendix 1(C) .
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Deformations for Second Cycle,
The initial trial values for the next cycle is 

obtained as follows:

1.., * 'iciCr.)~Aii(n)

4ii(n)

Aii(l)

For example at 10th story 

4 iioc2)"^*°7+
2.07

=2.07-1.22 
=0.85 in.

Similarly for all the stories the deflections and rotations 
are calculated, and the results are shown in Table 6 (Appendix 

1(C) .
This iterative procedure is carried on until the 

initial deflections are equal to the final deflections
Aei(n)* [The results of intermediate iterations are tabulated 
in Appendix C, Table 7 through Table 11.]

The final results are tabulated and compared with 
those obtained by Khan's Method in Table 3.
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Table 3. Final Results 

Shear Wall only; Cantilever Proposed Method Khan's Method
Analysis

Floor Shear
Kips

Bending
Moments
K'

Deflec­
tion 
in.

Shear
Kips

Bending
Moment
K'

Concen­
trated 
Bend Mom 
K'

Deflec­
tions 
. in.

Shear
Kips

Bend 
' Mom 
K'

Concen­
trated
B.M.
K'

Defle
tions

■ in.

10 . 12 0 6.37 -27.1 173 173 0.89 -27.1 169.8 169.8 0.92
9 34 -144 5.53 - 9.0 704.2 206.5 0.83 - 7 699.0 204.0 0.86

8 60 -552 4.69 39.2 1055.2 . 242.5 0.76 40.2 1012.0 229.0 0.79
7 84 -1272 3.86 13.0 877.3 292.5 0.69 13 815.6 286.0 0.71
6 108 -2 280 3.05 68.6 1063.8 342 .5 0.59 69.7 996.3 336.7 0.61
5 132 -3576 2.28 56.5 624.6 384 0.49 5 7.7 535.3 375.3 0.50

4 156 -5160 1.57 97.5 359.1 412.5 0.37 98 248.8 406.0 0.38
.3 180 -7032 0.96 104.0 -406.4 404.5 0.25 105 -529.2 398.0 0.25
2 204 -9192 0.46 '153.5 -1291.9 362.5 0.13 154 -1432.7 356.5 0.13

■ 1 228 -11640 0.13 192.6 -2898 235.2 . 0.04 192.6- 3056.2 224.5 0.04

Ground 240 -14376 0 204.6 -5209.2 .0 0 204.6- 5 368.2 0 0



CHAPTER 4 
BASE ROTATION

A . Base Rotation (General).
The engineer is sometimes confronted with the 

question of whether the shear wall bases should be fixed 
or free to rotate. At the other times he is compelled to 
design the footings for a central load and a moment, and 
for a limited amount of rotation„ Therefore an understanding 
of the rotation characteristic of the shear wall base and 
footing is essential„

When the lower end of a shear wall is subjected to 
a bending moment, the joint between the shear wall and the 
footing must be strong enough to transfer the stresses„ But 
this can be overcome by embedding dowels in the footing, 
and then the shear wall can be considered fully fixed to the 
footing. Once the shear wall is fixed to the footing, the 
base rotation of the shear wall is caused only by the elastic 
deformation due to the greater soil compression at the toe 
of the base, which is generally small and insignificant.

Regardless of degree of fixity between the shear wall 
base and the footing, the moment from the shear wall will 
cause unsymmetrical soil pressure. The soil pressure is 
assumed to have straight line or planar distribution. 
Unfortunately the pressure distribution is not likely to be

39
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planar and cannot be determined quantitatively (10). There­
fore, the rotation of a footing acted ©n by a moment or an 
eccentric loading can only be estimated on the basis of some 
simple calculations guided by good engineering judgment.
For example, small and shallow footings on sand are prone 
to rotation because the sand readily runs out from under 
the toe of the footing. If the footing is located at greater 
depth, the sand is subjected to a confining pressure due 
to the weight of the overlying soil. The relative effect 
of the edge condition diminishes as the size of footing 
increases. It becomes apparent that small and shallow 
footings on granular soils should not be relied upon for 
providing fixity to the shear wall base.

Contrary to the sand, clay and clayey soils resemble 
elastic material and are capable of resisting a concentrated 
stress at the edge. Furthermore since a large portion of 
the settlement of footings on clay is due to consolidation 
resulting from bending moment acting for a long period of 
time, so the bending moment due to the wind or seismic load 
acting in short duration would not cause significant rotation.

Overturning Moment.
The axial load from earthquake force on vertical 

elements and footings in every building or structure may be 
modified and the overturning moment at the base of the 
building or structure shall be determined in accordance with 

the following formula.
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M^”JEF̂ hj, ,„o . . .Uniform Building Code Sec. 2314,
p. 115

=JxCantilever Moment

, , 0.5where, 3 M

and T* *05H
v r

Fi=Lateral force applied to a level designated as "i" 
h^=Height in feet above the base to the level designated 

as "i".
D“ Dimension of the building in feet in a direction parallel 

to the applied forces.
H= The height of the main portion of the building in feet 

above the base.

The required value of "J" shall not be less than 0.33 nor 
more than 1.00. "J" should be 1.00 for elevated tank supported 
with four or more cross braced legs.

Base Rotation Formula.
The joint between shear wall and footing is assumed 

to be strong enough so that the stresses due to bending 
moment at the lower end of the shear wall would be transferred 
to the soil.

Mbc
Max stress in soil = — —



 ̂2

where c* half length of the footing 
mom, of inertia of footing.

Now,
MvC

max, vertical deformation in soil ■ ——r-I

where k- subgrade soil modulus in lbs, per sq, in, per 
inch of deformation.

Base rotation: eR-settlellient& c

Mbc
- ?

c

ifk' !

The translation of the shear wall at the ground 
floor level is prevented in every step of the computations. 
Thus, only the appropriate rotation at the base of the 
shear wall will be permitted. The design loads can be 
applied directly to the shear wall, and the iterative analysis 
should give the desired results.

Design Example.
So far it has been assumed that full fixity exists 

at the base of the shear wall as in the numerical example 
presented in the previous chapter. However, the theory can be 
expanded to include the case where the base can rotate due



to elastic support. This may occur if the supporting soil 
is elastic or if the wall is resting on columns which may 
have uneven settlements„ In either case, a horizontal move­
ment at the base is considered prevented.

The base rotation can easily be included in the . 
aforementioned iterative solution by increasing the rotation 
at all stories by the amount of base rotation and increasing 
horizontal deflection at all stories by the product of base 
rotation and the distance from the base to each story.

In the previous example,
Cantilever mom.=-14376 K.Ft. 

overturning mom. =J£F^h^
=Jxcantilever moment.

But J= 9-^L 
3\/T2

and T-’— i
V F  i

_.05(120) _ 6 
V(59) 7.67

= 0.78

j„ 0.5 _ 0.5
3 \/(0 . 78) 2 0 . 85

= 0.59

overturning moment® 0.59(-14376)
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Now, base rotation 9^-

^K.

Take k average =200 lbs/in /in (k varies between 50 and 500) 
use footing size 6 'x25’

=\I-=~x6*253=7812.5 Ft4 f 12

9 . 8480xl03 
B 7812.5(200x1728)

=.0031 radian 
Horizontal deflection
at any floor due to base =Base Rotation^ Distance in
rotation inches from

base to that 
floor.

..Hor. Defl-’at 10th floor ^0.0031*(120x12)
due to base rotation r4 o ̂ x n o

In the same way, the horizontal deflections due to 
base rotation are found out for all stories and are tabulated 
in Table 4.

Once the total deflections and rotations are known, 
the rest of the iterative procedure is followed exactly the 
same way as presented in Chapter 3. The final results are 
tabulated in Table 5 along with the previous results obtained 
without inclusion of base rotation for the comparison purpose.
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The overall results are very close in both cases, with and 
without inclusion of base rotation.

Bo Omission of Khan's Charts»
In this chapter, the numerical example includes the 

effect of base rotation of the shear wall, as well as the 
effect on rate of convergence if Khan's charts (1) are not 
used to obtain approximate deflections for each trial.

Starting with total free deflected shape, seven 
iterative trials have been made. The initial and net deflec­
tion versus numbers of trials graphs are plotted for each 
story, and these seemingly converging graphs are extrapolated 
to a point of intersection» These intersecting values of 
deflections are very close to the correct values. In the 
same way, the approximate values of rotations are also obtained. 
For the ninth, fifth and second stories these deflection 
and rotation graphs (Fig. 10 to Fig. 15) are presented for 
illustration purposes. Beginning with these close values of 
deflections and rotations, two more trials were needed and 
the subsequent third tfial is the final solution. The 
example in the previous chapter with the exclusion of the 
base rotation also needed seven trials to come to the final 
solution even when using Khan's charts values.

This demonstrates that the technique of using the 

deflected shape obtained from the developed graphs from the 
results of the example itself converges as fast as the use. 
of Khan's charts.
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Some A^ and Ag curves cross rather than truly 

converging, as shown in Fig. 10 to 15; but this is to be 
expected since the deflection at each story is affected by 
the deflections of all other stories. The initial deflec­
tion values, as found from the relationship;

A = A AAei(n)~Aii(n)
■ii(n*l) ii(n) ^  Afi-Aei(n)

Aii(n)

do not reflect any effects from the other stories of the 
structure. By using the curve intersection points, known 
or extrapolated, as final deflection values, results very 
close to the correct values are obtained with a minimum of 
successive approximations.



Table 4. Total Free Horizontal Deflections and Rotations at Each Story,

CD

Hori.
Free
Afi (2).

Deflections h
Due to base 
rotation ^

Total Free 
(4)=(2) + (3)

Free
8fi (5)

Rotations 8

Base Rotation 
9B (6) -

Total Fr< 
(7) = (5) +

10 6,37 4.50 5s-OOo .00566 .0031 ,00876

9 5,53 4.05 9.58 .00565 ,0031 .00875
8 4.69 3.60 8.29 .00560 .0031 .0087
7 3.86 3.15 7.01 .00550 .0031 .0086
6 3.05 2.70 5.75 .00527 .0031 .00837
5 2.28 2.25 4.53 .00493 .0031 .00803
4 1.57 1.80 3.37 .00440 .0031 .0075
3 0.96 1.35 2.31 .00364 .0031 .00674
2 0.46 0.90 1.36 .00284 .0031 .00594

1 0.13 0.45 O OO .00158 .0031 .00468

Ground 0 0 0 0 .0031 .0031



Table 5. Final Results With and Without Base Rotation.

With Base Rotation Without Base Rotation

Story Shear
K,

Concen. 
B’MK.Ft

Bend’g 
Mom. ^ ,

De£ln ° 
inch.

Shear
K.

Concen. 
B . M „ j£,

Bend’g 
Mom. ^ ,

Deflect
inch

10 -39.7 193.2 193.2 0.88 -27.1 173 173 0.89
9 - 0.3 231.2 900.8 0.81 - 9.0 206.5 704.2 0.83
8 18.5 253.5 1157.9 0.74 39.2 242.5 1055.2 0.76

7 57.2 283.5 1219.4 0.67 13.0 292.5 877.3 0.69
6 47.4 324.0 857.0 0.60 68.6 342.5 1063.8 0.59
S 61.3 382.2 670.4 0.50 56.5 384.0 624.6 0.49
4 95.9 409.0 343.8 0.38 97.5 412.5 359.1 0.37
3 110.7 380.5 -426.5 0.26 104.0 404.5 -406.4 0.25
2 143.3 399.0 -1357.9 0.13 153.5 362 .5 -1291.9 0.13
1 199.4 279.0 -2798.5 0.04 192.6 235.2 -2898.0 0 .04

Ground 211.4 0 -5191.3 0 204.6 0 -5209.2 0



De
fl
ec
ti
on
 

in 
In
ch
es

A

0.8

0.6

0.4

0.2

*e2 (n)
I________1 I

A ?r >= Net deflection at 2nd floor 
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1  ̂  ̂ beginning of nth cycle of 
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3 4 5
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Figure 10. Rate of Convergence of Deflections at Second Floor.
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Figure 11. Rate of Convergence of Deflections 
at 5th Floor.

1,0

Ai9(n)

e9 (n)

A q/- ^“Net Deflection at 9th .
 ̂} floor at end nth cycle 

of iteration.
A.Q , ^Deflection at 5th floor 
1 \ ' at beginning of nth 

cycle of iteration.

4 5 6
Number of Trials

Figure 12. Rate of Convergence of Deflections 
at 9th Floor. . .
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e2 (n)
8f,?fnY~Rotation in shear wall 

- at 2nd floor at the end 
of nth cycle.

' 0* o/tl'i“■Rotation in shear wall 
_ ̂ J at 2nd floor at the

beginning of nth cycle.

Number of Trials

Figure 13. Rate of Convergence of Rotations at 
2nd Floor.

,0010

,0008
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.0004

0002

e5 (n)

2 .

6 rrr^^RDtatiori in shear wall 
 ̂ ■ at 5th floor at the end 

of nth cycle.
GiSfnl'Rotation in shear wall 

: J at 5th floor at beginning 
of nth cycle.

4 5 6
Numbers of Trials

Figure 14. Rate of Convergence of Rotations at 
. 5th Floor.
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1*  ̂' at 9th floor at the

beginning of nth cycle.

ei9 (n)-.0004

-.0006

Figure 15. Rate of Convergence of Rotations at 9th 
Floor.
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Wall-column stiffness ratio, — -̂=96
Sc

Column-Be am stiffness ratio, — ^=4
SB

i

Deflections in inches

Figure 16. Deflection vs. Height (with base 
rotation).
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Derivation of Algebraic Equation.
The deflect ions versus story height graph (Fig. 16) 

is plotted and the algebraic equation for the graph is 
derived as follows:
The general equation for curve is 

y«Axn+Bx+C
But x=0

C= 0
y=0

yssAxn+Bx conditions from graph
xB0 .6 y*0 .6

x=0.36 y=0.33
x=0.216 y=0.16

.•.0.6 -A(0.6)n + 0.6B 
0.33=A(0.36)n+0.36B 
0.33-A(0.6)2n+0.36B
0.36=6A(0.6)n+0.36(B)

2n , ,,n 0.6-A(0.6)n*0.6B
and 0.16=A(.216)n*216B

-.03 =A(0.6)-6A(0.6)

. . .03 0.16-A(0.6)3n+.216B
0.6(0.6)n-(0.6)2n .216=.36A(.6)n+.216B

-.056=A[.63n-.36(.6)n ]

.'.A- •°56
. 36(.6)n -(.6)3n

 .£3________  , .056
,6 (.6 )n -(.6 )2n .36(.6)n-(.6)3n
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36(.6)n-C.6)3n
6(.6)n -(.6)2n .056

.03 1.865

.•.0.36(.6)n-(.6)3n=1.12(.6)n-1 . 86 5(.6) 2n 

.'.0.36-0.62n=l.12-1.865(0.6)n 

.•.0.62n-l. 865(.6)n- .76-0

n ,n +1.865+ 3.48-3.04U . o c  ______ —__________

1.865*.632

=1.248 or 0.616 

.*.n log.6= log 1 . 248 or log 0.616

n - M £6 or L 1 9  
T. 778 T.778

_+0.096 __ -0.21
"  ' L L L  - 0.222

*-0.432 or 0.95

Now .03
0 .6 (0 .6 )n -(0 .6 )2n

substituting values of "n" in above equation 
ne-0.432 A«-0.0 37

and



5b
n = 0 .95 A®-3.00

fl-~A(0.6)n+0 .6 
0.6

n = -0.432 and A=-.037 B=1.076
n = 0.95 and A=- 3.0 B=4.08

y=-. 0 3 7 x " +  0 76x-^-^-
x0 "432

or
y=-3x0'^^>4.08x=4.08x-3x°'9^

From Khan’s charts (1) (Fig. 32 through Fig. 38), 
it is clear that the variation of column-beam stiffnesssc
ratio, —  does not radically affect the graph. But wall-

s«
column stiffness ratio, —  has seemingly important influence

c
Ss

So for constant value of —  (i.e. 96), our derived algebraic
Sc

equations give the deflected shape close to the final
Ss

deflected shape regardless of the value of —  ratio.
SB



CHAPTER 5 
CONCLUSIONS

A practical method of analysis for the multistory 
framed structure with moment- resisting joints that is also 
braced with shear walls has been proposed in this thesis.
The method does not require simplifying assumptions that 
are not ultimately checked and yet gives the designer some 
freedoms as follows:

1. Variable story heights are permitted.
2. Constant shear walls are not needed and the 

openings in shear walls are allowable.
3. Variable sections of columns and girders are allowed. 

The common design assumptions that all horizontal loads are 
carried by the shear walls are not correct over the entire 
height of the structure. Furthermore the distribution of
the lateral shear between the frame and the shear wall depends 
not only on their relative stiffnesses but on the number of 
stories as well.

The iterative procedure adapted in this thesis is 
laborious and requires time and patience. In spite of that, 
the procedure is simple and a problem can be solved on a 
sliderule or a small desk calculator in the design offices.
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The concept of the substitute cantilever for the 

frame reduces the multibayed structure into the single bay 
structure. A numerical example is presented to illustrate 
the design procedure and simplicity of the calculations.
For the final trial of the example, the moment distributions 
involved in both the proposed and basic methods are presented 
in Appendix 1(B) in order to show that a considerable amount 
of work is saved by the proposed moment distribution.

The use of Khan's Charts (1) to get the approximated 
final deflected shape of the frame is recommended in order 
to obtain faster convergence of the iteration.

The method presented is easily applicable to the 
design of the shear wall buildings of any height for maximum 
economy with adequate control over the required strength 
and ductility of all structural elements.

Base rotation is considered in Chapter 4 and results 
both, with and without base rotations, are tabulated in 
Table 5 for comparison purposes. The overall difference for 
horizontal shear and bending moment is within four percent 
for this example building in both cases with and without 
base rotation. The maximum difference in the deflection 
is also four percent. Thus, it seems that the base rotation 
has insignificant influence in the iterative analysis for 
at least some building proportions.
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The same numerical example is solved again in 

Chapter 4 with inclusion of the base rotation and without 
use of Khan’s charts to obtain an approximate close deflected 
shape to start with. It is seen that the example without 
use of charts requires three more trials than that with use 
of charts. Therefore, if the charts are not available, 
the graphs can be plotted for first six or seven iterative 
trials starting from free deflected shape with or without 
base rotation. Then the intersection values which are 
correct or quite close to correct values can be read 
directly if the graphs intersect otherwise extend to let 
them intersect.

The algebraic equation that is derived from 
deflection versus height graph is restricted to concentrated 
loading and to wall-column stiffness ratio of about 1 0 0 .



APPENDIX 1(A)

Free Deflections and Rotations; Shear Wall.

Story External Load Story Shear Bend. Mom.
K K K

10 12 12 0

9 22 34 -144
8 26 60 -552
7 24 84 -1272
6 24 108 -2280

5 24 132 -3576
4 24 156 -5160
3 24 180 -7032
2 24 204 -9192

1 24 228 -11640

Ground 12 240 -14376

Real Beam

Conj ugate 
Beam

12010'=120'

60

24 24 24 24 24 24 24 26 22 12i i i i i i i i i i
3 4 5 6 8 9

►—< ►—iU3 w\(N1inin rH

10
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Area A , -  11376.11640

2 EIw

/.EI^-156,096 K.Ft

S i m i l a r l y ,

EIA2 = 124992
El 2 > w n 97, 344
El

v A 4 = 73, 152
El > in it 52, 416
Elw A 6 ” 35, 136

Elw A7 = 2 1 ,312
Elw A 8' 1 0,944
Elw A9* 4, 176
ElwA 10= 864

x ,11640+2(14376) x12 
1 11640+14376 3

= H ! 2i ,4 
26016

=6.2 Ft.

S i m i l a r l y ,

X 2 = 6.23 Ft

X3 = 6.27 Ft

X4 = 6.31

x5 = 6.37

*12
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X6 = 6 ,,32

x7 = 6 «.57

x 8 = 6 ., 78

x9 = 7., 15

x 10 = 8 .,00

156 ,096

= 156,096______
(3420x144)200

= 156,096 
9.85x10?

* 0.00158 Radians

6f2‘Al* A 2

156,096+124,992 = =----
9.85x10 

=0.00285 Rad.

=0.0036

Rotations.
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Similarly,

0 ̂  “0.00 44 Rad.

0 , -0.00493
5

0, =0.00527
6

0 r “0.0055 
7

0 r “0.0056 
1 8

0r =0.00565 
9

6r “0.00566

Deflections.
Afl=Aixi

,156,096x6.2 xl2 
(3420x144) 200

,156,096x6.2
8.208x106

=0.128 
-0.13 in.

Af C12**)*A2x2
,156,096(18.2)♦124,992(6.23)

8. 208x106
=0.46 in.



6 4

Af «A1(24+x^)C12>x2)

=0.96 in.

Similarly,

A r  =1.57 
4

A r  =2.28
5

A , =3.05
6

A r  =3.86
7

A *  =4.69
8

A r  =5.53 
9

A r  =6.37 
t 10



APPENDIX 1(B)

Moment Distributions.

1. Proposed method - First Trial
2. Proposed Method - Final Trial
3. Basic Method - Final Trial
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APPENDIX 1(C)

Tabulated results of the deformations of the wall from 
1 through 6 trials.



Table 6. Deflection and

Deflection

Story Free Initial Net Initial for
Afi 4 ii(l) Aei(l) "ext ere!4
. in. in. ii(2)
ln- in.

10 6.37 2.07 -7.14 0.85

9 5.53 1.782 -5.61 0.76

8 4.69 1.49 -5.21 0.61

7 3.86 1.23 -3.32 0.564

6 3.05 0.955 -2.36 0.46

5 2.28 0.70 -1.57 0.35
4 1.57 0.49 -0.94 0.256

3 0.96 0.287 -0.49 0.16

2 0.46 0.14 -0.195 0.081

1 0.13 0 .04 -0.0425 0.0245

Rotation for First Cycle.

Rotations
Free Initial Net Initial for

:le

Rad.
6fi 6ii(l) eei(l) cycle

Rad. Rad Rad ii(2)

00566 .00184 - .009 0.00064

00565 .00158 - .00866 0.00055
0056 .001325 - .00802 0.000495
0055 .00109 -.00714 0.00043
00527 .00087 -.0061 0.00037

00493 .00063 - .00495 0.0003
0044 .000436 -.00375 0.000224

00364 .000255 -.00259 0.000135
00285 .000125 - .00152 0.000078
00158 .000034 -.00063 0.000028
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9

8

7
6
5

4
3
2
1

Table 7. Deflection and Rotation for Second Cycle.

Deflections Rotations
Free
Afi 
in.

Initial
Aii(2) 
in.

Net
Aei(2) 
in.

Initial for 
next cycle
6 ii(3) 

in.

Free
efi
Rad.

Initial
8ii(2) 
Rad.

Net
*ei(2) 
Rad.

6.37 0.85 1.31 0.92 .00566 .00064 .000414

5.53 0.76 1.26 0.835 .00565 .00055 .000475

4.69 0.61 1.175 0.6937 .0056 .000495 .000675

3.86 0.564 1.06 0.647 .0055 .00043 .000905
3.05 0.46 0.92 0.542 .00527 .00037 .00108

2.28 0.35 0.75 0.4245 .00493 .0003 .00126

1.57 0.256 0.56 0.3175 .0044 .000224 .00135

0.96 0.16 0.367 0.204 .00364 .000135 .00131

0.46 0.081 0.19 0.106 .00284 .000078 .00112

0.13 0.0245 0.054 0.0317 .00158 .000028 .0007



Table 8. Deflection and

Deflections
Initial for 
next cycle
Aii(4) 
in.

10 6.37 0.92 0.99 0.9302

9 5.53 0.835 0.97 0.856

8 4.69 0.6937 0.92 0.729

7 3.86 0.647 0 . 86 0 .685

6 3.05 0.542 0.753 0.581
5 2.28 0.4245 0.625 0.4655
4 1.57 0.3175 0.471 0.3517
3 0.96 0.204 0.314 0.2306

2 0.46 0.106 0.1625 0.1223

1 0.13 0.0317 0.0317 0.0361

Story Free Initial Net
Afi 4ii (3) 4ei (3)
in. in. in.

Rotation for Third Cycle.

Rotations

Initial for 
next cycle
6 ii(4)
Rad.

00566 .00064 .0001192 .000656

00565 .00055 .000185 .000511
0056 .000495 .00039 .0005006
0055 .00043 .000621 .000484

00527 .00037 .00081 .0004613
00493 .0003 .00099 .0004267
0044 .000224 .00109 .0003665
00364 .000135 .0011 0.0002653

00284 .000078 .000955 0.0001737

00158 .000028 .00061 0.0000568

Free
6fi 
Rad.

Initial
6ii(3)
Rad.

6
Net
ei(2)
Rad.



Table 9. Deflections and

Deflections
Story Free Initial Net Initial for

sfi 6 ii(4) &ei(4) n=xt ^cle
in. in. in. ii(5)

in.

10 6.37 0.9302 0.905 0.92
9 5.53 0.856 0.884 0.87
8 4.69 0.729 0.846 0.79
7 3.86 0.685 0.775 0.73
6 3.05 0.581 0.678 0.63
5 2.28 0.4655 0.57 0.52
4 1.57 0.3517 0.428 0.39
3 0.96 0.2306 0.297 0.26

2 0.46 0.1223 0.154 0.14

1 0.13 0.0361 0.045 0.04

Rotations for Fourth Cycle.

Rotations
Free Initial Net Initial for
6fi eii(4) eei(4) n=xt c>rcle
Rad. Rad. Rad. ii(S)

Rad.

00566 .000565 .00058 .0003181
00565 .000511 .000845 .000504
0056 .0005006 .000977 .0006211
0055 .000484 .00098 .000673
00527 .0004613 .000887 .000657
00493 .0004267 .00073 .000596
0044 .0003665 .000576 .000480

00364 .0002653 .000375 .000438
00284 .0001737 .000197 .000354
00158 .0000568 .000139 .000352



Table 10. Deflection and Rotation for Fifth Cycle.

Deflections Rotations
Story Free Initial Net Initial for Free Initial Net Initial for

afi \i(S) 6ei(S) nef  c>rcle efi eii(5) 6ei(S) n=xt cycle
in. in. in. ii(6 ) Rad. Rad. Rad. ii(6 )

in. Rad.

10 6.37 0.92 1.03 0.939 0.00566 .0003181 .00059 .000367
9 5.53 0.87 0.956 0.884 0.00565 .000509 .000636 .000364
8 4.69 0179 0.874 0.804 0.0056 .0006211 .000755 .000464

7 3.86 0.73 0.78 0.74 0.0055 .000673 .000886 .000518
6 3.05 0.63 0.665 0.637 0.00527 .000657 .00083 .000617
5 2.28 0.52 0.538 0.524 0.00493 .000596 .000912 .000693
4 1.57 0.39 0.403 0.393 0.0044 .000480 .000952 .000718
3 0.96 0.26 0.267 0.262 0.00364 .000438 .000938 .000680
2 0.46 0.14 0.14 0.14 0.00284 .000354 .00081 .000629
1 0.13 0.04 0.04 0.04 0.00158 .000352 .000524 .000366



Table 11. Deflection and Rotation For Sixth Cycle.

Free Initial Net Initial for Free Initial Net Initial for
Story Afi iii(6) Aei(6) next cycle 8fi e.i(6) 8ei(6) next cycle

in. in. in. Aii(7) Rad. Rad. Rad. 9ii(7)
in. Rad.

10 6.37 0.939 0.87 0.89 .00566 .000367 .000484 .000425
9 5.53 0.884 0.79 0.83 .00565 .000364 .000732 .000680

8 4.69 0.804 0.75 0.76 .0056 .000464 .00083 .000755
7 3.86 0.74 0.65 0.69 .0055 .000518 .00083 .000774
6 3.05 0.637 0.55 0.59 .00527 .000617 .000765 .000729
5 2.28 0.52 0.47 0.49 .00493 .000693 .00067 .000643
4 1.57 0.393 0.35 0.37 <0044 .000718 .000582 .000550
3 0.96 0.26 0.25 0.25 .00364 .000680 .000473 .000468
2 0.46 0.14 0.13 0.13 .00284 .000629 .000373 .000368

1 0.13 0.04 0.04 0.04 .00158 .000366 .000367 .000347

cn



APPENDIX II 
NOTATIONS

D = The dimension of the building in feet in a direction
parallel to the applied forces.

D = Relative displacement of the two ends of member n.n *
d*7 = 2Eef= Deformation at joint n .n n

E = Modulus of elasticity
FMci = Fixed end moment of column at ith story.
FMbiwa Fixed end moment of linkbeam at ith story at its wall

end.
FMbif® Fixed end moment of linkbeam at ith story at its 

frame end.
F̂  « Lateral forces applied to a level designated as "i".

hn = Height of nth story.

= Height in feet above the base to the level designated
as "i".

ÎP = Moment of inertia of wall footing.
I » Moment of inertia of shear wall,w
J = Numerical coefficient for base moment as specified in

Chapter 4.
k = Subgrade soil modulus in pounds per square inch per

inch of deformation.
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= zk^= The sum of all column stiffnesses at nth story.

K"̂ ' = I k ^  = The sum of all linkbeam stiffnesses at nth storv. n n y

kc * Stiffness of column between floor n and n-1. n
k^ = Stiffness of beam at nth floor, n
k ^  = Stiffness of linkbeam at nth floor, n

Zw = Half the width of shear wall at nth floor, n
Mas “ Resultant end moment at point A of member AB 

= Fixed end moment at point A of member AB 

= Overturning moment at the base of the shear wall.
i

NT » Concentrated moment on shear wall at floor i.

- Applied moment on shear wall by linkbeam at floor i.
= External load at floor i.

Rvi = Vertical reaction of the link beam at the shear wall 
at floor i.

T = Fundamental period of vibration of the structure in 
seconds.

8^ = Joint rotation of framework at nth floor.

8W = Rotation of shear wall at nth floor.
n

6 f̂  53 Free rotation of wall at floor i.
8ii(n)^Rotation in shear wall at ith floor at the beginning 

of nth cycle.
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6ei(n)*Rotati°n shear wall at ith floor at the end of 
nth cycle.

A = F r e e  deflection of wall at floor i.

A i i ^ )=Deflection at ith floor at beginning of nth cycle 
of iteration.

A . , x=Net deflection at ith floor at end of nth cycle of ei (nJ
iteration.
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