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ABSTRACT

If a building consisting of frames and shear walls
is replaced by two representativé cantilevers; then one
cantilever represents the frame and the other the shear
wall or assembly of shear walls. In the analysis of the
interaction of the shear wall and frames, use of this
concept of twin cantilevers is made in order to save a
considerable amount of/manual work in moment distribution.
For an approximate deflected shape of the frame,
the developed forces and moments are calculatgd at the
joint between shear wall and frame at each story. The balance
of forces and moments (loading and frame) are applied to
the shear wall to find the deflection of.the wall at each
story. This iterative procedure is carried on until the
following conditions are satisfied.
That; the horizontal deflection must be the same
in both cantilevers at corresponding levels.
That; the summation of shears developed in both
cantilevers must be equal to the total
external shear (due to loading) at every story.
Effects of base rotation of the sheaf wall are included

also in the analysis.

viii



This thesis is an attempt to both simplify and
abbreviate existing techniques for accomplishing the above

by combining methods suggested in recent literature.
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CHAPTER 1
INTRODUCTION

As multistory building construction has evolved
from bearing wall types of the late 19th century and the
rigid steel frames of the 1930°'s to the delicate curtain
wall buildings of the 1950's, the interior compositions
have changed along with the exterior ski‘ns.(.'é)° The trends
toward column-free interiors, long spans, minimum floor
to floor heights and maximum rentable area together with
the increased popularity of reinforced concrete as a
construction material have resulted in the use of the shear
wall as the principal lateral load resisting hember in many
multistory buildings. Frequently the service cofe of the
building has provided an exceilent‘iocation_forvthe shear
wall since enclosure walls are required there.anyhowo

Since a large number of tall buildings are now being
constructed, and present practice in this type of construc-
tion is to provide shear walls along with the frames to
resist lateral loads due to wind or earthquake,‘the design'
of shear walls has been the subjecf of considerable discussion
in the past few years. | |

The simplest approach to the design problem is to
consider the shear wall as an independent member and design
it as a vertical cantilever. But since the steel framing

1



2
actually does resist §ome of the lateral loading, such design
-is quite conservative with respect to shear walls; whereas
the frames are undérdesigned,

A number of excellent articles have been published
6n the subject of interaction of shear walls with frames in
multistory structures (2,3,4,5). The analyses presented in
the aforementioned papers are, of course, interesting and
- applicable to the design, but require use of a computer that
may not always be available to office practice.

As has been mentioned above, the distribution of
lateral forces between the frames and the walls should result
in more economical structures because, in practical cases,
the results of ah exact analysis will indicate a reduction
of reinforcement in the shear wall. On the other hand, the
building code requirement (6) of the one-third increase in
allowable wind or earthquake stresses will generally permit
accommodation of the additional stresses in the frame with
no need for additional reinforcement over the major part of
most tall structures. _

Recent bdilding regulations are influenced by the
‘concept that structures designed for earthquake regions:
must serve two functions; (1) for fréquent small shocks,
they mﬁst be capable of controlling damage to nonstructural
elements in a building (partitions, skin, ducts, water and
soil lines,etc., which, incidentally, may amount to more

than 70% of the cost of the building), and (2) for several



earthquakes, the structure must have adequate ductility to
accommodate large lateral deflections, with little, if any,
loss in capacity. The design procedure presented in this
thesis with consideration of code requirements relating to
lateral loading will result in the shear wall braced
structures accomplishing both functiens (1) and {2) outlined
above. The design information presented in Xhan's article
(1) is helpful to engineers to establish more precise and
economical reinforcing requirements. But the moment
distribution is very time consuming for multibayed multistory
buildings. Moreover, the design procedure requires
successive adjustments to story deflections, so that it

‘too is iterative. “

An attempt has been made to both simplify and
abbreviate existing techniques by combining methods suggested
in recent literature, with the care not %o dissatisfy the
equilibrium conditions (Chapter 3). |

Base rotation is considered in Chapter 4 in order to
determine its effect on the moments and shears in the final
solution. An infestigatien is made aiso into the rate of
closure of the iteration when Khan's charts (1) are not
used to get the deflected shape close to the final correct

deflected shape.
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Although the analytical method considered is applicable
for free-standing walls, or the enclosure around elevator
éhaft or stairs, it is not applicable to walls that are
filled-in panels bounded by steel framing. The constraints
imposed by the boundary connections by the frame would prevent,
or modify, deflection as a contilever. Similarly the
presence of such filled-in walls would modify the deflection

of the frame members.

Note: The symbols adopted for use in this thesis are defined
where they first appear and are listed alphabetically
in Appendix II.-



CHAPTER 2
THE EQUIVALENT COLUMN METHOD

A. Physical Analysis.

The interaction of a shear wall and 2 frame is a
special case of indeterminancy in which two basically
different components are tied together to produce one
structure. If the frame alone is considered to take the
full 1atéra1 load, it would develop moments in columns and
beams to resist the total shear at each story while the
effects of overturning would normally be considered secondary
and, in most cases, negligible. In resisting all laterai
loads, a frame would deflect as in Fig. 1(a). The floors

would remain essehtiallyrlevel even though the joints would
rotate. If a shear wall, on the other hand, is considered
to resist all the lateral loads, it would develop moments
at each floor equal to the overturning moment at.that level
and the deflected shape, Pig; 1(b) would be that of a canti-
lever. |

If a2 shear wall and a frame exist together in a
building, eath.one will try to obstruct the ofher from
taking its natural free deflected shape, and as a result a
distribution of forces between the two results. As shown

in Fig. 1(c), the frame will restrain or pull the shear wall

5
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back in upper stories, while in the lower regions the
opposite will occur.

The conflicting deflection characteristics of the
frame and the shear wall can be considered if the structure
is first divided into two separated systems (1) frame, and
(2) shear wall. Then for an approximate deflected shape
of the frame, the developed forces and moments are calculated
at the joint between shear wall and frame at each story. The
difference o€ forces and moments between the external
loading and frame are applled to the shear wall to find the
deflection of the wall at each story,,and'these deflections
are compared with those previously assumed. The procedure
is repeated until (1) horizontal deflection must be saﬁe
in both sygtems at corresponding ievels, and (2) the sumhation
of shears developed in both systems must be equal to the '
total external shear (due to 16ading) at e?éry story. Since
this is essentially a successive approximation procedure,
equality means an écceptably low level of inequality,

In this chapter, an attempt has been made to
mathematically represent the frame as one cantilever and'

the shear wall as a second.

B. Twin Cantilevers.

Initial Assumptions

The assumptions which are usually made in the analysis

of shear walls are as follows.



Shear walls have moment and shear resisting
connections with the adjacent ffamework,

Shear walls act mainly as vertical cantilevers
fixed at the footing level,

The entire structure is iied and braced firmly so
that the building tends to act.as a single unit.
The floor slabs are infinitely rigid in their own
pianée Since the rotation is inversely proportional
-t@'the'fiexural rigidity, the slabs are considered
not to undergo any rotation or distortion in the
horizontal plane. But in case of flat slab design,
thelslab does undergo flexure in the vértical plane.
Thus, the method is still wvalid forlflat slab -
design., “
Initially, it is assumed that the slopes in the
frame at any particular floor are the same; also
that the slopes in the walls at any floor level

are the same though different from that in the

frame.,

Method of Analysis:

The building consisting of frames and walls is

replaced by two representative cantilevers (Fig. 2). The
substitute cantilever for the frame includes the stiffnesses:
of the columns and beams. The other cantilever represents

the shear wall or assembly of the shear walls. These



two cantilevers are tied together at each floor level so

that |

1. the sum of the shears at any story developed by two
cantilevers is'equal to the total shear écting_on
the building, |

2. the slope at one end of the 1link members joining the
wall and frame represents the slope in the frame work,
whereas the slope at the other end represents the slope
of the shear wall,

3. the lateral displacement of the two cantilevers at

any floor level is the same.

Derivation of General Equations:

The basic slope deflection equations for a beam are

- f,4f -mF :
Myp=k p o (243t dpaU,p) =My ool (1)

| £, .f F .
MBAakBA(ZdBMAWBA)m BA oeol2)

where MABg resultant end moment at point A of member AB,

positive if clockwise and vice versa.

MFABg fixed end moment ét point A of member AB,

positive if clockwise and vice versa.
£
A

d” = ZEGN= deformation at A

Referring to Fig. 2(a), for joint n, for equilibrium to
exist.

M

M n,n”’g

n,nwi*Mnsn%iMngn’+ 0... o0.(3)
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11
Expressing the above relations in terms of the slope

deflection equations (1) and (2).

£ £ f

C f c b £, ,f

kn(Zdn%d +U )+2k ¢1(Zd dn+1 P +kﬁ'<2dn+dn’)
b o

+10 (zafedl,, )=0.

Where, kﬁﬁ stiffness of columns between floor n and n-1

6 ED
£, T n < : :
Un “H;m Dn relative displacement of the

two ends of member n
E = modulus of elasticity
hna height of nth story

kia stiffness of beam at nth floor.

But as per assumption, 5.

f £ £ f _4f £

Bpr=8pin™8y dn“ﬂdn'"adng
Where e§= joint rotation of frame work at nth floor.

So, substituting this deformation condition in previous
equation

~ d§(2k0+2kc

b c,f C £ o f
CL1*3k, +3P yexCaf exC af ey

n- 1 n+1 n+1 nn
+k€ uf =0... ... ®)

Similarly for equilibrium to exist at joint n"',

b c f £
d (ch,"+2k( 41)vn‘@’3kn)*"knnvd + k(n+1)ovwdn¢1

“*”kCnv J”kc

£
(n,(}l)!!@un%}]- oaan ouo(d’ﬁ.)
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For equilibrium to exist at joint n’',

+M

M h''n

nis(n.o.l)ﬁ‘&'an,(n,l)i'&Mno’nn =0,., 6,0(5)

There will be vertical movements at the connecting points
of the "1link" beams with the shear wall. The vertical
movement at any connecting point will be equal to the slope
at that point multiplied by half the width of the shear

. . w o,w
wall., Vertical movement at point n“=-6n”£n_, i

where GZ"= rotation of shear wall at nth floor

£K = half the width of an actual shear wall at nth

floovr.
6Ee ,gw

ne nn .__.,_B___
‘zn

So, U

Now expressing equation (5) in terms of the slope deflection

equations (1) and (2)

c £ f f c f f f
k(n+1)”(26n'+d(n+1)'¢Un+1)+kn'(2dn'+d(n-1)7+Un)

W W
s (2] a1 P (2a b e s B =0
n
Where, kgb= stiffness of link beam

dgnﬁ deformation at joint between link beam and wall

at nth floor.



13

f _,f f _Lf
But dnv“dn d(n+1)9—dn+1
f -af W W
d(n«l)" d(n-l) Ay =d,
Therefore,
f c c b 1b c
dn(2k(n¢1)’¢2kn“+3kn9+2k )*k(n+1)'dn+1
+k S, af _exS uf  _ex© Uf+k1b(143£g)dw =0 (6)
n*%n-1""(n+1) " (n+1) “n'“n n o—f)_ﬂ n
n
Adding equations (4), (4a), and (6),
f c c C c c c
dn(an+2kn“,+2kn,+2knﬂ¢2k(n+l),,g+2.k(n+1)v
.C b ib f c c
+6kn+6kn,¢2kn )+dn+1(kn+1+k(n+1)"'
(n+1)° n-1""n "n"*' "nf n EE n
- n

f..C,,C c f < c c _
‘#Un (kn+kn"V+knv)+Un+1(kn+l#k (n+1)"v+k (n,@,l) 9)_0“ ° o (7)
Now, making the following substitutions in equation (7)

KE=kC+kE,, ,+kE, =xk"
n n n n

n
C _C c c =51 C
Kn+1 kn+1¢k(n#1)”'+k(n+1)‘ an¢1

(These are the sums of all the column stiffnesses at the nth

and the n<+lth stories, respectively.)
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kPa1Per? =piP
n n n

+kb
n

(This is the sum of the stiffnesses of all the beams except

the 1ink beams at the nth floor.)

g 1b_ ., 1b
n n
"_TF=z[k1b(1+Ef§—J]
Kn n Z
n

(These are the sums of stiffnesses of all the 1link beams.)

f c c b 1b c f
dn(ZKn¢2Kn¢1+6Kn+2Kn )+Kn+1dMl /
c,.f 1b w cnf.ec of o _
+Kndn_1+Kn dn+KnUn+Kn¢1Un+1 0 ... ...(8)
P c b 1b
Say, Kn~2Kn+2Kn+1+6Kn +2Kn ceo oo.{(8a)

Substituting equation (8a) into equation (8),

f. .c f c,f 1b,w_,c..f.,C
Kndn+Kn¢1dn+1+Kndn~1+Kn dnéKnUn+Kn+1

f

Un+1=

0... .. (9

Equation (9) shows that the structure shown in Fig. 2(a) can
be represented as shown in Fig. 1(b). Thus the frame system
can be represented as one cantilever and the assembly of
shear walls as the other. These twin cantilevers are tied
together by link beams so that the entire structure is
looked at as a single unit. Kﬁ(Eqna 8a) is the stiffness

of the joint between frame column and link beam at nth story.



CHAPTER 3
INTERACTION OF SHEAR WALLS AND FRAMES

A. Concept and Method of Analysis.

As has been seen in Chapter 2, the concept of twin

cantilevers .reduces the multibay ~ multistory shear-walled

structure into the single-bay multistory shear-walled

structure. Then the analysis is performed in two stages.

In the first stage of analysis of the structure, it is

necessary to determine the deflected shape and the amount of

lateral load distributed to the walls and frame, respectively,

at each story. For this purpose, the structure is separated

into two distinct systems; system W and system F.

1.

System W: Shear wéll or assembly of shear walls.
This system can have any configuration. Walls are
extended over the entire height of the structure.
The stiffness of this shear wall system at any
story equals the sum of the stiffnesses of all
shear walls regardless of their shape and size.
Shape and size should be considered in computing an
average ﬁw’ the distance from the neutral axis of
the system W to its extreme fiber. Thus, the
coupled shear walls can be represented in high

multistory buildings as a single wall with an

15
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equivalent stiffness equal to the sum of the stiff-

nesses of both shear walls.

System F: This system includes all columns and
beams contributing to the lateral stiffness. The
link beams, members linking the frames with the
shear walls, are also included in this system. 1In
twin cantilevers, the stiffnesses of columns, beams
and 1link beams are simply the sum of the stiffnesses
6f all such members in the structure. The 1link

beam span is an average of the link beam spans of
the structure when this spans are within the same

range of magnitude.

Then the analysis of a single-bay shear-walled multistory

frame system is performed by an iterative solution presented

subsequehtly&

B. Iterative Procedure to be Used.

1,

Equilibyrium conditions:

The horizontal deflection must be the same in both
cantilevers at corresponding levels.

The summation of shears developed in both cantilevers
must be equal to the total external shear (due to
loading) at every story.

‘Link members connecting two cantilevers must undergo
the same rotations and vertical translations as those

of system W and system F at their point of connection.
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"Force-Fitting" System F Fixed End Moment From
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Figure 4. Fixed End Moments From Deflected Shape
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The foregoing three requirements of compatibility and equil-

ibrium can be achieved by the following six steps of analysis.

Step 1:

Free Deflection of Shear Wall (conjugate beam method)

Total computed external loads (wind or seismic) on

the idealized structure (Fig. 3a) are directly applied to

~shear wall at each floor level. The slopes and deflections

of the shear wall at each floor level are determined by the

conjugate beam method shown hereinafter.

Conjugate Beam Method.

In the conjugate beam method (8), the relationship

between the real beam and the conjugate beam are as follows:

(a).

(b)

(c)

(d)

The span of the conjdgate beam is equal to the
span of the real beam,

The load of the conjugate beam is the M/EI diagram
of the real beam.

The shear at any section of the conjugate beam

is equal to the slope of the corresponding

section 6f the real beam,

The moment at any section of the conjugate beamv
is equal to the deflection at the corresponding

section of the real beam.
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where I =moment of intertia of
W _
shear wall.
E =Modulus of elasticity
of concrete (shear wall)

Figure 5. Shear Wall Flexural Equivalency.

The real beam is fixed at A (Fig. 5a)

. .At end A; Rotation =0
Deflection =0
eu,In conjugate beam; at end A shear =0
and moment=0
So end A is free in the conjugate beam as shown in Fig. 5.
Similarly, in the real beam, the slope and deflection are
not zero at free end B, hence the end B is fixed in the
conjugate beam as shown in Fig. 5b.

For example: The slope at pt. C in the real beam;

6C=shear at pt. C in the conjugate beam

M M,h
12 2

2 ET,, 1 2ET1,

and the deflection at pt. C in the real beam;

Acémoment at pt. C in the conjugate beam
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Thus, the free horizontal deflection and rotation can be
calculated by the conjugate beam method at any point on the
.shear wall. The free horizontal deflection, rotation and
vertical deflection at any point, i, are denoted as Besis
6ei and1¥vi respectively. The deflections one floor above

and below are Af(i+1) and Af(i-l) respectively.

Step 2: Initial Deflection and Rotation.

For quick convergence, initial deflection and
rotations are assumed or approximated from Figs. 32 through
38 given in Khan's article (1). In the absence of a good
estimate, however, the deflected shape is assumed as the
free deflected shape of the shear wall, which would mean
that, in the first cycle, initial deflection and rotation
ét the ith floor would be

A1) i
and
®1i(1)" i
System F is forced to undergo the assumed deflections at
each floor (Fig. 4a). This also requires that the connecting

members at each floor must have the same rotations and
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vertical translation as system W at their points of connec-

tion with system W.

Step 3: Induced Fixed End Moments.

The moments induced by '"force-fitting" can be
determined directly by using moment distribution. The
forced-fitted frame shown in Fig. 4a has known story deflec-
tion and rotations at the connecting peints; hence, for
uniform columns and beam sections, the fixed end moment at
the beginning of moment distribution (Fig. 4b) would be

for columns at ith story
6EI
e )(A (1)
At the ith floor for "1link" beams at their shear wall end,

4Elb EI

6
b1
FMbiw ( )e )b vi
b
but Avi=£wei
. ZEIbl

Py )[z*S(E—>]e

and at the ith floor for "link" beams at their frame end

ZEIbl GEIbl

FMblf (—) 8y +("—7””)Av1
b

But again Avia£wei
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. 2EX

_ bi
° o FMbif_( Lb

LS
1136 To;.

Distribution Factors:

As has been seen in Chapter 2, the joint stiffness,

in the twin cantilever, at any nth joint is as follows:

_apC c b 1ib
Kn~2Kn+2Kn+1+6Kn¢2Kn .

Therefore,

Distribution Factors:

zxg 2K§
Lower column= =
n 2kS42kS _+ekPe2x 1P
n n+l n n
c C
2Kn+1_ 2Kn+1
Upper columns= % c = + Tb
n ZKn+2Kn+1+6Kn+2Kn
2K1b 2K1b
Link beam =0 = n

C C b 1b°
2Kn+2Kn+ +6Kn+2K

n 1 n

Knowing the fixed end moments and the disfribution factors,
the moment distribution can be run to get final moments in

the members. When a known, fixed sidesway is imposed on a
structure, as in this'case, the cumbersome sidesway corrections
to the moment distributioﬁ are not required, and the solution

will converge rapidly.

Step 4: Story Shears in Frame.

After force-fitting system F to system W, the total

shears in each story of system F as well as moments and
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reactions applied on system W by the connecting links are
computed (Fig. 6a). The shears generated by force-fitting
can be used directly in the next step. The resulting
horizontal forces P' are shown in Fig. 6 only for illustra-
tion purposes. These interaction forces may be either

positive or negative at different floors.

Step 5: Concentrated Moments and Net Deflections,

All shear forcés and moments generated by force-
fitting system F are applied to the isolated free system W
(Fig. 6b). At any story i, My and Ryi should be replaced
by moment (Fig. 6c)

L]

The moments and forces shown in Fig, 6b will cause negative
deflections and rotations of system W, L and 8.1 respectively.
The balance of forces and moments (loading and frame) are
applied to the shear wall in order to find the net deflections

and rotations, A and 00i respectively. at each story.

ei
So at the end of first cycle, the deflections and rotations

equations can be written as follows:

Bei()™ e tai (D)

Yei(1)"%ri %ai (1)
or in general at the end of the nth cycle

beim)™tiin) Paim)
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(c) Total Concentrated Bending
Moments,

Figure 6. Interacting Forces and Moments of Combined Systcm.
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and

®eim) %iim) Pai(n)-

This is the end of one cycle of iteration. For the stable
condition to occur, the initial deflections at any floor
"i'" at the beginning of nth cycle, 8;;(n) must be the same

as the end (net) deflections A at the completion of the

ei(n)
nth cycle. However in many cases in the first cycle, Ao
is negative indicating that the iteration is divergent. The
generalization of this method of solution therefore depends
on the use of a proper ''forced - convergence - Correction”
to be applied to the initial deformations of the nth cycle

A ande.i(n), to obtain the initial trial deformations

ii(n) i
of the (n+1)th cycle, Aii(n+1).andeii(n+1)°

In Fig. 6b it will be noted that the axial effects of
the 1link beam reactions (Rvi) on the shear wallAare neglected.
This is compatible Qith the neglect of axial forces in most
frame analysis methods. The two major contributors to

shear wall behavior (concentrated moment Mi,Aand.horizontal

loading, Pi) are considered.

Step 6: The Forced Convergence Corrections.

The convergence corrections are derived from the
“hypothesis that in each cycle the movement of system W
at each floor with respect to its free deflected shape is

lineally proportional to the movement of system F with
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respect to the vertical line. Therefore, it can be shown
that if at the nth cycle the initial trial values at the

ith floor were Aii(n) and Bii{n) and the end values were

A and aei(n)’ the initial trial values at the (n+1)th

ei(n)
cycle should be as follows:

Aei(n)—Aii(n)

qiime) i)’
Ana.-A .
1+ fi “ei(n)

A

ii(n)

and

+9ei(n)'eii(n)

O¢i ®ei(n)
®ii(n)

®iin+1)"%i(n)
1+

The values A and ® obtained by above two equations are used

as initial values for the next cycle, and the pfocedurelis
repeated béginning with the second step outlined previously.
This iterative procedure is carried on until the‘net
deflection Aei(n) is equal to the initial deflection Aii(n)“
At the end of each cycle, bai and Aii should be checked

until the convergence is within a specific acceptable tolerance,

for example 5% to 10%, based on the designer's judgment.

Design Example:

Data: The dimensions and lateral forces are shown in the

Fig. 7; whereas the elastic properties are listed as follows:

Column Stiffness kC=8§00 in>

b 3

Beam Stiffness k¥=200 in



28

k102200 in3

| I =200 ft?

Area A =30 ftz

E =3420K/in®

As has been seen in Chapter 2, the structure shown
in Fig. 7 can be represented as the single bay shear-walled

frame structure (Fig. 8).

Story
10th 7'y m i
9th oA
8th 26
7th 24
6th 24

Sth 24

4th 2. & o

i —

]

3rd %ﬂﬂr =

[ B

® |

2nd 24 ol

~|
1st 24

L |

Ground ll&k,, opagbyny vl R .j;
25 | 25" ¥ oo
[ ~t s

Figure 7. Shear Walled Frame Elevation for Illustrated
Example,



Whe re K€=rk© =800+800

21600 in>

k1b. ) 1b 3

=200 in

=200 in>
Joint stiffness at any joint 'n"

s2kC c b,,b
K, ZKn+2Km1+6Kn+2Kn

i 7P ITTIIIT

Figure 8. Substitute Cantilevers for Illustrated Example.

.". For top joint K, =2(1600)+2(0)+6(200)+2(200)

=3200+0+1200+400

=4800 in°



For any intermediate joint

K, =2(1600)+2(1600)+6 (200)+2 (200)

=3200+3200+1200+400
=8000 in°
Distribution Factors
1b
Top joint: 1link beam = 2K~ .2x200 =0,08
K 4800
10
2kE -
Column = LA 2:1600
K10 800
=0.33
2k 1P
Intermediate joint: 1ink beam = "
n
_2%200
~ 8000
=0.05
2K~
Upper or lower col. o
Kn
_2(1600)
8000
=094

Free Deformations of Shear Wall.

Neglecting the frame, at the first stage, the
external lateral loads are applied to the shear wall and

thus free deflections and rotations are calculated in

30
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Appendix I(A) at each floor level. These deflections and

rotations are tabulated in Table 1. The fhird column of
Table 1 shows the factors from Khan's (1) chart in order
to approximate the deflected éhape close to the final
deflected shape of the structure. The deflected shape of
the force-fitting system is shown in Fig. 4a.

Table 1. Horizontal Deflection and Rotation for First
Iterative Trial.

Free " Free Reduction
Story Def?ection Rogétions ' Fa;tor Aii(l} eii(i)
if - if

1 0.13 .00158 .006 0.04 .000034
2 0.46 00285 022 0.14  .000125
3 0.96 00364 .045 0.287 .000255
4 1.57 .00440 077 0.49  .000436
5 2.28 00493 .110 0.70  .00063
6 3.05 . ,00527 .150 0.955 .00087
7 3.86 L0055 193 1.23  .00109
8 4.69 -~ .0056 .234 1.49  .00132
9 5.53 00565 280  1.782 .00158

10 6.37 .00566 . 325 2.07 00184

The force-fitting system is shown in Fig. 4a.
The induced moment in 1link beam at shear wall end

EM, . =(2EK, ;)

L
s
biw (2+3I;)ei

_2x3420%200 ;, 54-5

T 5T ye.

1

=114x103(2,54)6i‘

=289,.56x1039i



At 10th story

3

FM w=289°56x10 x,00184

b10
=533 K Ft.

Similarly

FM w=457 K Ft.

bq

FMb8w=384

FM =315

b 7w

FM

b6w=252

F =182

Mwa

FM w=126

b4

FMb3w=73“8

FMb2w=36°2

FMblw= 9.83

Now induced fixed end moment in 1ink beam on frame end.

L
S

_2x3420x200 01, 8.5y
12 25 ©

=114XI054x10361
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At the 10th story

- 3
FMblof”114x1a54X10 x°0018d
=323 KFt.

Similarly
FMpg =277 K.Ft.
My g =232

FMb7f=191

M

"FM, . .=110 KFt.

bS£f

F 76.3

Mp4£=

=
FMbe 44.7
FMb2f=22°0

FMb1f=5°95

Induced F-E-M in Columns

At any story i,

6EIC
FM .=
c; hz

(85-8;5 1)




=6x3420x1600
12%x12x12

(65-85.1)

=10%109 A
=19%107 (A, -85 ;)

At 10th Story

Cvauan3 )
FMCIO—IQX1O (2.07-1.782)

=5470 K.Ft.

Similarly:
FMC9=SS&O K’

= y
FMC 4940 K

8

FM _,=5220 K°
c7

- v
FMC 4840 K

6

= v
FMC 3990 K

5

= '
FMC 3860 K

4

= v
FMC3 2790 K
= ?
FMCZ 1900 K

= v
FMC 760 K

1
After running the moment distribution (see Appendix I(B),
the final forces and moments are shown in Fig. 9. " The
story shears in the frame and the shear wall, concentrated
bending moment and then final bending moments are tabulated

in the Table 2.

34
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ST, 1 6.32 "
777
Figure 9.

Distribution.
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Table 2. Final Bending Moment on the Wall at the End of

Ist Trial.
External Frame Story Shear Conc. Final
Story Shears Story Shears in Wall Bending Bending
Kips Kips Kips g?ments y?ments
10th | : 12 217 -205 939 939
9th 34 153 -119 932 4331
8th 60 113 - 53 769 6528
7th 84 143 - 59 677 7841
.6th 108 126 - 18 564 9113
S5th 132 81 51 470 9893
4th 156 122 34 377 9658
3rd 180 58 122 199 9449
2nd 204 52 -~ 152 156.6 8141
ist 228 27.1 20009 81.10 6398.7
Ground 240 0o 212.9 0 3988

The final moments will give the net deformations of
the shear wall at the end of the first trial, Aei(l) and
9ei(1)°The calculations for these net deformations are
done by conjugate beam method and tabulated in Table 6 in

Appendix I(C).
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Deformations for Second Cycle.

The initial trial values for the next cycle is
obtained as follows:
bei(n) TPii(n)

bgiTBei(n)
A

BiitmeD) P1im)?
i<

ii(n)

ef ) bei(1)%ii(1)
< @™ The by ()

8ii (1)

For example at 10th story

-7,14-2,07
166.37-(-7.14)
2.07

=2.07+

8i10(2)

=2.07-1.22

=0,.85 in.

Similarly for all the stories the deflections and rotations
are calculated, and the results are shown in Table 6 (Appendix
1(C).

This iterative procedure is carried on until the
initial deflections Aii(n
[The results of intermediate iterations are tabulated

) are equal to the final deflections
bei(n)-
in Appendix C, Table 7 through Table 11.]

The final results are tabulated and compared with

those obtained by Khan's Method in Table 3.



Table 3. Final Results

Shear Wall only; Cantilever Proposed Method Khan's Method
Analysis ‘ , -
Floor Shear Bending Deflec- Shear Bending Concen- Deflec- Shear Bend Concen- Deflec-
Kips Moments tion Kips Moment trated tions Kips - Mom trated tions
Kt : in. K? Bend Mom. in. : - K B.M. “in.
K K
10 . 12 0 6.37 -27.1 173 173 0.89 -27.1 169.8 169.8 0.92
9 34 -144 5.53 ° - 9.0 704.2 . 206.5 0.83 -7 699.0 204.0  0.86
8 60 -552 4,69 39.2 1055.2 . 242.5 0.76 40.2 1012.0 229.0 0.79
7 84 -1272 3.86 13.0 877.3 292.5 0.69 13 815.6 286.0 0.71
& 108 ~-2280 3.05 68.6 1063.8 342.5 0.59 69.7 996.3 336.7 0.61
5 132 -3576 2,28 56.5 624.6 384 0.49 57.7 535.3 375.3 0.50
4 156 -5160 1.57 97.5  359.1 412.5 0.37 98 248.8 406.0 "0.38
3 180 -7032 0.96 104.0 -406.4 404.5 0.25 105 -529.2 398.0 - 0.25
2 204 9192 - 0.46 ©153.5 -1291.9 362.5 0.13 154 -1432.7 356.5 0.13
i 228 -11640 0,13 192.6 -2898 235.2 - 0.04 192.6-3056.2 224.5  0.04
Ground 240 -14376 0 204.6 -5209.2 .0 0 204.6-5368.2 0 0



CHAPTER 4

BASE ROTATION

A. Base Rotation (General),.

The engineer is sometimes conffonted with the
question of whether the shear wall bases shéuld be fixed
or free to rotate. At the other times he is compelled'to
design the footings for a central load and a moment, and
for a limited amount of rotation. Therefore an understanding
of the rotation characteristic of the shear wall base and
footing is essential, |

When the lower end of a shéar wall is subjected to
a bending moment, the joint between the shear wall and the
footing must be strong enough to transfer the stresses. But
this can be overcome by embedding dowels in the footing,
and then the shear wall can be considered fully fixed to the
footing. Once the sheér wall is fixed to the footing, the
base rotation of fhe'shear wall is caused only by the elastic
deformation due to the greater soil compression at the toe
of the base, which is generally small and insignificant,

Regardless of degree of fixity between the shear wall
base and the fobting, the moment from the shear wall will
cause unsymmetrical soil pressure. The soil pressure is
assumed to have straight line or planar distribution.

Unfortunately the pressure distribution is not likely to be

39
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planar and cannot be determined quantitatively (10). There;

fore, the rotation of a footing acted on by a moment or an

eccentric loading can only be estimated on the basis of some

simple calculations guided by good engineering judgment.

For example, small and shallow footings on sand are prone

to rotation because the sand readily runs out from under

the toe of the footing. If the footing is located at greater

depth, thé sand is subjected to a confining ?réssure due

to the weight of the overlying sbil, The relative effect

of the edge condition diminishes as the size of footing

increases. It becomes apparent that small and shalliow

footings on granular soils should not be relied upon for

providing fixity to the shear wall base. |
‘Contrary to the sand, clay and clayey soils resemble

elastic material and are capable of resisting a concentrated

stress at the edge. Furthermore since a large portion of

the settlement of footings on clay is dueAto consolidation

resulting from bending moment acting for a long period of

time, so the bending moment due to the wind or seismic load

acting in short duration would not cause significant rotation.

e

Overturning Moment.

The axial load from earthquake force on vertical
elements and footings in eVery building or structure may be
modified and the overturning moment M, at the base of the
building or structure shall be determiﬁed in accordance with

the following formula.
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M =JZF;h. ... ...Uniform Building Code Sec. 2314,
p. 115 '
=JxCantilever Moment

whe re Je
’ 3/T2

.0O5H

Vb

and T=

Fi=Lateral force applied to a level designated as "i"

higﬂeight in feet above the base to the level designated

as "i'",

D= Dimension of the building in feet in. a direction parallel
to the applied forces. |

H= The height of the main portion of the building in feet

above the base,

The required value of "J'" shall not be less than 0.33 nor
more than 1.00. "J" should be 1.00 for elevated tank supported

with four or more cross braced legs.

Base Rotatibn Formula.

The joint between shear wall and footing is assumed
to be strong enough so that the stresses due to bending
moment at the lower end of the shear wall would be transferred
to the soil.
Mbc
Max stress in soil = —
e
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where ¢= half length of the footing

I.= mom. of inertia of footing.

Now,

max. vertical defermation in soil = ——

where k= subgrade soil modulus in 1bs. per sq. in. per
inch of deformation.

=Settlement
c

Base rotation: eB

o[

k ‘ |
The translation of the shear wall at the éround
floor level is prevented in every step of ihe computations.
Thus, only the appropriate rotation at the base of tbe
shear wall will be permitted, The design loads can be
applied directly to the shear wall, and the iterative analysis

should give the desired results.

Design Example.

So far it has been assumed that full fixity exists
at the base of the shear wall as in the numerical example
presented in the previous chapter. However, the theory can be

expanded to include the case where the base can rotate due
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to elastic support. This may occur if the supporting soil
is elastic or if the wall is resting on columns which may-
have uneven settlements, In either case, a horizontal move-
ment at the base is considered prevented.

The base rotation can easily be included in the
aforementioned iterative solution by increasing the rotation
at all stories by the amount of base rotatibn and increasing
horizontal deflection atrall stories by the product of base
rotation and the distance from the base to each story.

In the previous example,

Cantilever mom.=-14376 K.Ft.
overturning wmomn. aJZthZ

=Jxcantilever moment.

But J= 22
312
and Te-O5H
D ;

_.05(120) _ 6

(59) 7.67

z0‘178

. 0.5 0.5
o @ Jﬁ g
3V(0.78)2 0,85

=0.59

Jooverturning moment= 0,59(-14376)

aZMbﬁ=8480 K.Ft.
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Mb
Now, base rotation 6, =—>F

B
IfKo

Take k average ﬂZOO,lbs/inz/in (k varies between 50 and 500)

use footing size 6"x25°

fozfe~1x6xzs3=7812°5 ped

12

8480x10°

7812.5(200x1728)

@Bﬁ
=,0031 radian

Horizontal deflection

at any floor due to base =Base Rotationx Distance in

rotation inches from
base to that
floor.

.Hor. Defi1Z-at 10th floor

=0,0031x(120%12)

due to base rotation =4.5 in.

In the same way, the horizontal deflections due to
base rotation are found out for all stori§s and are tabulated
in Table 4. |

Once the total deflections and rotations are known,
thé rest of the iterative procedure is foliowe&(exactly the
same way as presented in Chapter 3. The final resuits are
tabulated in Table 5 along with the previous results obtained

without inclusion of base rotation for the comparison purpose.
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The overall results are very close in both cases, with and

without inclusion of base rotation.

B. Omission of Xhan's Charts.

In this chapter, the numerical example includes the
effect of base rotation of the shear wall, as well as the
effect on rate of convergence if Khan's éhafts (1) are not.
used to obtain approximate deflections for each trial.

Starting with total free deflected shape, seven
iterative trials havé been made. The initial and net deflec-
tion versus numbers of trials graphs are'plotted for each
story, and these seemingly'converging_graﬁhs are extrapolated
to a point of intersection. These intersecting values of
deflections are very close tovthe correct.values, In- the
same way, the approximate values of rotations are also obtained.
For the ninth, fifth and second stories these deflection
and rotation graphs (Fig. 10 to Fig. 15) are presented for
illustration purposes. Beginning with these close values of
deflections and rotations, two more trials were needed and.
the subsequent third tfi&l is the final solution. The
examplelin the previous chapter with the exclusion of the'v
base rotation also needed seven trials to come to the final
solution eveﬁ whén using Khan's charts'vaiues,

This demonstrates that thé'techniﬁue of using the
deflected shape obtained from the developed graphs from the
results of the example itself converges as fast as the use.

of Khan's charts.
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Some g and A, curves cross rather than truly
converging, as shown in Fig. 10 to 15; but this is to be
expected since the deflection at each story is affected by
the deflections of all other stories. The initial deflec-

tion values, as found from the relationship;

Jlei(m) Pii(n)

oA .
fi "ei(n)
A

25i(n+1)"%ii (n)

1+
ii(n)

do not reflect any effects from the other stories of the
structure. By using the curve intersection points, known
or extrapolated, as final deflection values, results very
close to the correct values are obtained with a minimum of

successive approximations.



Table 4. Total Free Horizontal Deflections and Rotations at Each Story.

Hori. Deflections & Rotations @
Free Due to base Total Free Free Base Rotation Total Free
() Bg (2 TorEHOM (5 (m)=(2)+(3)  *fi (5) B (6)  (71)=(5)+(6)
10 6.37 4,50 10.87 .00566 .0031 .00876
9 5.53 | 4.05 9.58 .00565 .0031 .00875
8 4.69 3.60 8.29 .00560 .0031 .0087
7 3.86 3.15 7.01 .00550 0031 .0086
6 3.05 2.70 5.75 .00527 .0031 .00837
5 2.28 2.25 4,53 .00493 0031 .00803
4 1.57 1.80 3.37 .00440 .0031 L0075
3 0.96 1.35 2.31 .00364 .0031 00674
2 0.46 0.90 1.36 .00284 .0031 00594
1 0.13 0.45 0.58 .00158 .0031 .00468
Groudd 0 0

0 0031 .0031

Ly



Table 5. Final Results With and Without Base Rotation.

With Base Rotation ‘ Withbut Base Rotation
Story Shear Concen. Bend'g Def1™" Sheay Concen. Bend'g Deflections
K. B°MKDFtO Mom. K inch. K. B.MQK, Mom, K inch.
10 -39.7 193.2 193.2 0.88 -27.1 173 173 0.89
9 - 0.3 231.2 900.8 0.81 - 9.0 206.5 704.2 | 0.83
8 18.5 253.5 1157.9 0.74 39,2 242.5 1055.2 0.76
7 57.2  283.5  1219.4 0.67 13.0  292.5 877.3 0.69
6 47.4 324.0 857.0 0.60 68.6 342.5 1063.8 0.59
5 61.3 382.2 670.4 0.50 | 56.5 384.0 024.6 '0,49
4 95.9 409.0 343.8 0.38 97.5 412.5 359.1 0.37
3 110.7 380.5 -426.5 0.26 104.0 404.5 -406.4 0.25
2 143.3 399.0 -1357.9 0.13 153.5 362.5 -1291.9 0.13
1 199.4 279.0 -2798.5 0.04 192.6 235.2 -2898.0 0.04
Ground 211.4 0 -5191.3 0 204.6 0 -5209.2 0

87



Deflection in Inches

A
Bas tny s Net deflection at 2nd floor
~ ) 2t end of nth cycle of
iteration.
AiZ(n)= Deflection at 2nd floor at
beginning of nth cycle of
- iteration.
A2 (A) T ——
/
AeZ(n)
! | L 1 ! 1 ] 1 TR
1 2 3 4 5 7 8 9 10
Number of Trials
Figure 10. Rate of Convergence of Deflections at Second Floor.
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Deflection in inches

Deflection in inches

50

0 Lis(n)

A =Net Deflection at
es(n).Sth floor at end
g : of nth cycle of -
e5(n) . iteration.
- ' Asc =Deflection at 5th
i : i5(n) floor at beginning
of nth cycle of
iteration.

.2 I R . —_— 1 g L.
2 3 4 5 6 7 -8

v

Figure 11. Rate of Convergence of Deflectlons
at 5th Floor.

£

, "”vv ‘_ 2i9(n) A., |
B %\\\s\\\&jgkh; o ’4»rf””/J'

AeQ(ﬁ) =Net Deflection at 9th
floor at end nth cyc]e
of iteration.

‘Ai9(n) =Deflection at 5th floor
at beginning of nth

- .cycle of iteration.

“e9(n) _

2 v‘ y L l T lA ‘ : 1 ‘ 1 A i ?’;@i
2. 3 4 s 6 7.8
' Number of Trials .

Figufe'iza _Rété of Convergence of Deflections
-~ at 9th Floor. .



Rotation in Radians

Rotation in Radians

Figure 14,

-~

Numbers of Trials'

Rate of Converwenﬁe of Rotatlons at
Sth Flcoro o

A ' o . ' 51
o ' —i2(n ‘ ”
L0008 |- - ““‘-\£\1;““~h~
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Height

- Deflections in inches

r’Figﬁre 16. Deflection vs. Height (with base
rotation). _
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Derivation of Algebraic Equation.

The deflections versus story height graph (Fig.

is plotted and the algebraic equation for the graph is

derived as follows:

The general equation for curve is

y=Axn+Bx+C
But x=0
C=0
y=0
o y-Axn+Bx conditions from graph

x=0.6 y=0.,6

x=0 .36 y=0.33

x=0.216  y=0.16

.0.6 =A(0.6)"+0.6B
0.33=A(0.36)"+0.36B
0.33=A(0.6)°"+0,36B
0.36=6A(0.6)"+0.36(B)

R T o e S

0l
0.6(0.6)"-(0.6)2N

... Ag

s
.6(.6)N-(.6)°N

0.6=A(0.6)"+0.6B

and 0.16=A(.216)"+216B
0.16=A(0.6)3N+ 2168
.216=.36A(.6)N+.216B

e M e A Y

.056

" A=
.36(.6)-(.6)3n

.056

.36(.6)N-(.6)3N
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3
.36(.6)"-(.6)°" ESwoEe

.6(.6)N-(.6)2n 03

1.865

R et = e ) 2 =T 2 60 1 308 36T

2n

2.0.36-0.6“"=1.12-1.865(0.6)"

£ 0.6%M-1.865(.6)"-.76=0

n_ +1.865+ 3.48-3.04
2

0.6

1.865+.632
2

=1.248 or 0.616

J.n log.6= log 1.248 or log 0.616

0.096 T1.79
n= (o e 2

T1.778 1.778

+0,096 -0.21

- orT
- 222 -0.222
&20/04%7" o 10,95

Now A .03
0.6(0.6)R-(0,6)2"

substituting values of "n'" in above equation

n=-0,432 A=-0,037

and
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n=0,95 A=-3,00

-A(0.6)"+0.6

B=
0.6

n=-0.432 and A=-,037 B=1.076

n=0.95 and A=-3.0 B=4.08

ya g7y " 452, { Son6xnl, 0 76%- 1037
0.432
X

or
y=-3x0'4S+4.08x=4.08x-3x0'95.

From Khan's charts (1) (Fig. 32 through Fig. 38),

it is clear that the variation of column-beam stiffness
S

ratio, -£ does not radically affect the graph. But wall-
S
B Ss
column stiffness ratio, S has seemingly important influence.
c
S

So for constant value of — (i.e. 96), our derived algebraic
C

equations give the deflected shape close to the final
S

deflected shape regardless of the value of gi ratio.
B



CHAPTER 5

CONCLUSIONS

A practical method of analysis for the multistory
framed structure with moment- resisting joints that is also
braced with shear walls has been proposed in this thesis.

The method does not require simplifying assumptions that
are not ultimately checked and yet gives the designer some
freedoms as follows:

1. Variable story heights are permitted.

2. Constant shear walls are not needed and the

openings in shear walls are allowable.

3. Variable sections of columns and girders are allowed.
The common design assumptions that all horizontal loads are
carried by the shear walls are not correct over the entire
height of the structure. Furthermore the distribution of
the lateral shear between the frame and the shear wall depends
not only on their relative stiffnesses but on the number of
stories as well.

The iterative procedure adapted in this thesis is
laborious and requires time and patience. In spite of that,
the procedure is simple and a problem can be solved on a

sliderule or a small desk calculator in the design offices.
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The concept of the substitute cantilever for the
frame reduces the multibayed structure into the single bay
structure. A numerical example is presented to illustrate
the design procedure and simplicity of the calculations.

For the final trial of the example, the moment distributions
involved in both the proposed and basic methods are presented
in Appendix I(B) in order to show that a considerable amount
of work is saved by the proposed moment distribution.

The use of Khan's Charts (1) to get the approximated
final deflected shape of the frame is recommended in order
to obtain faster convergence of the iteration.

The method presented is easily applicable to the
design of the shear wall buildings of any height for maximum
economy with adequate control over the required strength
and ductility of all structural elements.

Base rotation is considered in Chapter 4 and results
both, with and without base rotations, are tabulated in
Table 5 for comparison purposes. The overall difference for
horizontal shear and bending moment is within four percent
for this example building in both cases with and without
base rotation. The maximum difference in the deflection
is also four percent. Thus, it seems that the base rotation
has insignificant influence in the iterative analysis for

at least some building proportions.



The same numerical example is solved again in
Chapter 4 with inclusion of the base rotation and without
use of Khan's charts to obtain an approximate close deflected
shape to start with. It is seen that the example without
use of charts requires three more trials than that with use
of charts. Therefore, if the charts are not available,
the graphs can be plotted for first six or seven iterative
trials starting from free deflected shape with or without
base rotation. Then the intersection values which are
correct or quite close to correct values can be read
directly if the graphs intersect otherwise extend to let
them intersect.

The algebraic equation that is derived from
deflection versus height graph is restricted to concentrated

loading and to wall-column stiffness ratio of about 100.



APPENDIX I(A)

Free Deflections and Rotations; Shear Wall.

Story External Load Story Shear Bend. Mom.
K K K'
10 12 12 0
9 22 34 -144
8 26 60 -552
7 24 84 -1272
6 24 108 -2280
S5 24 1,52 -3576
4 24 156 -5160
3 24 180 -7032
2 24 204 =0d4'0,2
1 24 228 -11640
Ground 12 240 -14376
24 24 24 24 24 24 24 26 22 12
l l l l l L l l Real Beam
1 3 4 S 6 7 8 9 10
e
T 42
~ ~
o~ <
v -
v —

Conjugate

A Be am

A |A A

2 3 4 5

120z de
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14376+11640
2 Elw

Area Al-

f.EIwA1=156,096 KR FL

Similarly,

ETIA, = 124992

EI A= 97,344

Bl o, =57 35, I88'2
W

EI A.= 52,416
w

EIwA = 35,136

El A7= 21,3090

EI A_= 10,944
w

4,176

864

11640+14376 3

_40392
26016

x4

=6.2 Ft.

Similarly,
=6.23 Ft.
=6,27 Ft.
=6.31
=6.37

2

X -11640+2(14376) 12

x12
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x, =6.,32
=06.57
=6.78
=7.15
=8.00

Rotations.

0p *Ays 156,096
1 EI
w

156,096
(3420x144)200

_ 156,096
9,85x107

= 0,00158 Radians

_156,096+124,992
9.85x10"

=0,00285 Rad.

GfS'A1+A2+A3

=0,0036
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Similarly,

=0,0044 Rad.

=0,00493

=0 80052 7

=0.0055

=0.0056

8, =0.00565

=0.00566

£10

Deflections,.

bey=A1xy

_156,096x6.2
(3420x144) 200

x12

_156,096x6.2
8.208x106

=0,128

=0,13 in.,

Ag -A1(12+x)+A2xz

2
_156,096(18.2)+124,992(6.23)
8.208x100

=0,.46 in.



Af3=A1(24*x1)+A2(12+x2)¢A3x3

=0,96 in.

Similarly,

=1.57

=3.05
=3.86
=4.69

e

=658



APPENDIX I(B)

Moment Distributions.

1. Proposed method - First Trial
2. Proposed Method - Final Trial

3. Basic Method - Final Trial
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APPENDIX I(C)

Tabulated results of the deformations of the wall from

1 through 6 trials.



Table 6.

Deflection and

Rotation for First Cycle.

Deflection Rotations
Story Free Initial Net Initial for Free Initial Net Initial for
Afi A?i(l) Agi(l) Q?Tt cycle Bes eii(l) eei(l) n:ff cycle
in. in. in. 1;£%) Rad. Rad Rad ii(2) Rad.
10 6.37 2R -7.14 0.85 .00566 .00184 -.009 0.00064
9 55,58 1.782 -5.61 0.76 .00565 .00158 -.00866 0.00055
8 4.69 1.49 e T 5 0.61 .0056 .001325 -.00802 0.000495
Vi 3.86 j I =534 0.564 .0055 .00109 -.00714 0.00043
6 3.05 0.955 -2.36 0.46 .00527 .00087 -.0061 0.00037
S 2 .28 0.70 5 A 0.35 .00493 .00063 -.00495 0.0003
4 15K 0.49 -0.94 0.256 .0044 .000436 -.00375 0.000224
3 0.96 0.287 -0.49 0.16 .00364 .000255 -.00259 0.000135
2 0.46 0.14 -0 .495 0.081 .00285 .000125 -.00152 0.000078
1 0.13 0.04 -0.0425 0.0245 .00158 .000034 -.00063 0.000028
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Table 7.

Deflection

and Rotation for Second Cycle.

Deflections Rotations
Story Free Initial Net Initial for Free Initial Net Initial for
Afi A@i(Z) Agi(Z) nif? cycle bes eii(Z) eei(Z) nng cycle
in. in. b1 j ii(3) Rad. Rad. Rad. ii(3)

in, Rad.

10 6.37 0.85 1.31 0.92 .00566 .00064 .000414 .000615

9 5.53 0.76 1.26 0.835 .00565 .00055 .000475 .000543
8 4.69 0.61 1.. 125 0.6937 .0056 .000495 .000675 .0005114
7 3.86 0.564 1.06 0.647 .0055 .00043 .000905 ,0004706
6 3.05 0.46 0.92 0.542 .00527 .00037 .00108 .0004277

5 2.28 0.35 0.75 0.4245 .00493 .0003 .00126 .000373

4 1 45 0.256 ~0.56 0.3175 .0044 .000224 .00135 .000301
3 0.96 0.16 0.367 0.204 .00364 .000135 .00131 .0001995

2 0.46 0.081 0.19 0.106 .00284 .000078 .00112 .000123

1 P 0.0245 0.054 0.0317 .00158 .000028 .0007 .000362
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Table 8. Deflection and Rotation for Third Cycle.

Deflections Rotations
Story Free Initial Net Initial for Free Initial Net Initial for
Afi A@i(S) Agi(S) nifF cycle Bes eii(S) sei(Z) n:f? cycle
in. in. e, ii(4) Rad. Rad. Rad. 1i(4)
in. Rad.

10 6.37 0.9% @00 0.9302 .00566 .00064 .0001192 .000656

9 bL.53 0.835 9% 0.856 .00565 .000S5S .000185 .000511
8 4.69 0.6937 0.92 729 .0056 .000495 .00039 .0005006

7 3.86 0.647 0.86 0.685 .0055 .00043 .000621 .000484
6 3..0S 0.542 0.753 0.581 .00527 .00037 .00081 .0004613
5 2.28 0.4245 0.625 0.4655 .00493 .0003 .00099 .0004267
4 1554 0.3175 0.471 0.3517 .0044 .000224 .00109 .0003665
3 0.96 0.204 0.314 0.2306 .00364 .000135 s DL 0.0002653-
2 0.46 0.106 OR G205, ST 225 .00284 .000078 .000955 0.0001737
1 0.13 0.0317 0.0317 0.0361 .00158 .000028 .00061 0.0000568
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Table 9. Deflection:s and Rotations

for Fourth Cycle.

Deflections Rotations
Story Free Initial Net Initial for Free Initial Net Initial for
Afi 6@1(4) ?ei(4) niff cycle Bei eii(4) eei(4) ngf? cycle
H'nk. in. in. ii(5) Rad. Rad. Rad,. ii(5)
in, Rad.
10 6.37 0.9302 0.905 0.92 .00566 .000565 .00058 .0003181
9 5.85:3 0.856 0.884 0.87 .00565 .000511 .000845 ,000504
8 4.69 0.729 0.846 0.79 .0056 .0005006 .000977 .0006211
7 3.86 0.685 0.775 0.73 .0055 .000484 .00098 .000673
6 35,015 0.581 0.678 0.63 .00527 .0004613 .000887 .000657
5 2.28 0.4655 0.57 0.52 .00493 .0004267 .00073 .000596
4 1.57 0.3517 0.428 0.39 .0044 .0003665 .000576 .000480
3 0.96 0.2306 0.297 0.26 .00364 .0002653 .000375 .000438
s 0.46 0.1223 0.154 0.14 .00284 .0001737 .000197 .000354
1 0.13 0.0361 0.045 0.04 .00158 .0000568 .000139 ,000352
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Table 10. Deflection and Rotation for Fifth Cycle.
Deflections Rotations
Story Free Initial Net Initial for Free Initial Net Initial for
Afi A@i(S) ?ei(S) ne:?-cycle PN .aii(S) eei(S) ngf? cycle
in. in. in. 5% (6 ) Rad. Rad. Rad. ii1(6)
in. Rad,
10 GRS 7 0.92 i1 Rl ) .939 0.00566 .0003181 .00059 .000367
9 5.53 0.87 0.956 .884 0.00565 .000509 .000636 .000364
8 4.69 0179 0.874 .804 0.0056 .0006211 .000755 .000464
7 3.86 0.73 0.78 .74 0.0055 .000673 .000886 .000518
6 3.05 0.63 0.665 .637 0.00527 .,000657 .00083 .000617
5 2,28 0.52 0.538 .524 0.00493 .000596 .000912 .000693
4 1.57 U159 0.403 J393 0.0044 .000480 .000952 .000718
3 0.96 0.26 0.267 .262 0.00364 .000438 .000938 .000680
2 0.46 0.14 0.14 .14 0.00284 .000354 .00081 .000629
1 0.13 0.04 0.04 .04 . 0058 ;L 03552 .000524 .000366

Vi



Table 11. Deflection and Rotation For Sixth Cycle.

Free Initial Net Initial for Free Initial Net Initial for
Story Afi A@i(ﬁ) éei(6) nez?.cycle 8¢ eii(b) eei(ﬁ) negF.cycle
in. in. in. 1i(7) Rad. Rad. Rad. 1i(7)
in. Rad.

10 6.37 0.939 0.87 0.89 00566 .000367 .000484 .,000425
9 5253 0.884 et 0.83 .00565 .000364 .000732 .000680
8 4.69 0.804 0,78 0.76 .0056 .000464 .00083 .000755
7 3.86 0.74 0.65 0.69 .0055 .000518 .00083 .000774
6 3.05 0.637 0.55 0.5% .00527 .000617 .000765 .000729
5 2.28 .52 0.47 0.49 .00493 .000693 .00067 .000643
4 ]2 159 0.393 0.35 0.37 0044 .000718 .000582 .000550
3 0.96 0.26 0.25 0.25 .00364 .000680 .000473 .000468
2 0.46 0.14 0.13 0.13 .00284 .000629 .000373 .000368
1 0.13 0.04 0.04 0.04 .00158 .000366 .000367 .000347
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n
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k =

APPENDIX II

NOTATIONS

The dimension of the building in feet in a direction
parallel to the applied forces.
Relative displacement of the two ends of member n.

ZEefB Deformation at joint n,
n

Modulus of elasticity

Fixed end moment of column at ith story.

Fixed end moment of linkbeam at ith story at its wall
end.

Fixed end moment of linkbeam at ith story at its
frame end.

Lateral forces applied to a level designated as '"i".
Height of nth story.

Height in feet above the base to the level designated
as "1'.

Moment of inertia of wall footing.

Moment of inertia of shear wall.

Numerical coefficient for base moment as specified in
Chapter 4.

Subgrade soil modulus in pounds per square inch per

inch of deformation.
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i

ii(n)

77
Xk§= The sum of all column stiffnesses at nth story.
Ek;b=The sum of all linkbeam stiffnesses at nth story.

Stiffness of column between floor n and n-1,.
Stiffness of beam at nth floor.

Stiffness of linkbeam at nth floor.

ffalf the width of shear wall at nth floor.
Resultant end moment at point A of member AB
Fixed end moment at point A of member AB
Overturning moment at the base of the shear wall.
Concentrated moment on shear wall at floor i.

Applied moment on shear wall by linkbeam at floor i.

External load at floor 1i.

Vertical reaction of the link beam at the shear wall
at floor i.

Fundamental period of vibration of the structure in
seconds.

Joint rotation of framework at nth floor.
Rotation of shear wall at nth floor.
Free rotation of wall at floor i.

=Rotation in shear wall at ith floor at the beginning

of nth cycle.
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9 =Rpotation in shear wall at ith floor at the end of

ei(n)
Rthicyele .
8 es =Free deflection of wall at floor i.
Aii(n)=Def1ection at ith floor at beginning of nth cycle
of iteration,
Aei(n)BNet deflection at ith floor at end of nth cycle of

iteration.
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