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Abstract: We provide an exhaustive spectral analysis of the two-dimensional peri-
odic square graph lattice with a magnetic field. We show that the spectrum consists
of the Dirichlet eigenvalues of the edges and of the preimage of the spectrum of
a certain discrete operator under the discriminant (Lyapunov function) of a suitable
Kronig-Penney Hamiltonian. In particular, between any two Dirichlet eigenvalues the
spectrum is a Cantor set for an irrational flux, and is absolutely continuous and has a band
structure for a rational flux. The Dirichlet eigenvalues can be isolated or embedded, sub-
ject to the choice of parameters. Conditions for both possibilities are given. We show that
generically there are infinitely many gaps in the spectrum, and the Bethe-Sommerfeld
conjecture fails in this case.

Introduction

The Hamiltonian H of a charged particle in a two-dimensional system subjected to a
periodic electric potential and a uniform magnetic field B has a highly non-trivial spec-
tral and topological structure depending on the ratio of the area σ of the elementary cell
of the lattice in question and the squared magnetic length �2

M = �c/|eB| (here e is the
electron charge, c is the light velocity, � is the Planck constant). More precisely, denote
by θ the number of the magnetic flux quanta through the elementary cell: θ = σ/2π�2

M .
If θ is a rational number, then the spectrum of H has a band structure (i.e. the spec-
trum is the union of a locally finite family of segments) and for θ �= 0 each vector
bundle of the magnetic Bloch functions corresponding to a completely filled Landau
level is non-trivial [33] (for a non-zero integer θ the Chern number of this bundle is
exactly the value of the quantized Hall conductance in units e2/2π� [6, 35, 40]). The
most likely conjecture is that at irrational values of θ , the spectrum of H has a Cantor
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structure. This conjecture was recently proved in the case of the tight-binding model for
the magnetic Bloch electron [4,5,36]; in this case H is reduced to the Harper operator
in the discrete Hilbert space l2(Z). Due to the Langbein duality [28], the same is true for
the Hamiltonian of the nearly-free-electron approximation. As a result of these Cantor
properties, the diagram describing the dependence of the spectrum on the flux θ , the
so-called Hofstadter butterfly, has a remarkable fractal structure, see e.g. [19,21,25].

Little is known for the magnetic Schrödinger operator H in the space L2(R2),

H = 1

2m

(
p − e

c
A

)2
+ V (x, y) , (1)

where A is the vector potential of B and V is a potential which is periodic with respect to
the considered lattice. It is proven in this case, that H has a piece of the Cantor spectrum
near the bottom of the spectrum for a restricted class of potentials V [20].

In this connection, the quantum network models (also called the quantum graph mod-
els) have attracted considerable interest recently. These models combine some essential
features of both discrete and continuous models mentioned above. On the one hand, the
Hamiltonian of a magnetic network model has infinitely many magnetic bands of differ-
ent shape. On the other, the time-independent Schrödinger equation for this Hamiltonian
can be reduced to a discrete equation. S. Alexander was the first who performed this
reduction [3] in the framework of the percolation approach to the effect of disorder on
superconductivity proposed by P. G. de Gennes [11]. A very short and elegant derivation
of the Schrödinger equation for a periodic quantum graph with a uniform magnetic field
and a constant potential on each edge of the graph is given in [23]. On the mathematical
level of rigor the relation between solutions of the Schrödinger equation for H on quan-
tum graphs � and those for a Jacoby matrix J (H) on the corresponding combinatorial
graphs was established by P. Exner [14]. Nevertheless, the main theorem from [14] is
applicable only to finding eigenvalues of H distinct from the Dirichlet eigenvalues on
the edges of �. As to the points of the continuous spectrum, the main result of [14]
allows an exhaustive analysis only in the case when the direct and inverse Schnol-type
theorems are known for both H and J (H).

It is worth noting that quantum networks are not only a mathematical tool to get
simplified models of various quantum systems, but in many cases experimental devices
really have a shape of planar graphs such that the width of the sides is much smaller than
the parameters of the dimension of length which characterizes the quantity in question,
e.g., much smaller than the magnetic length, the Fermi wave length, the scattering length,
etc. [1,31,32]. In these cases the quantum graph models are the most adequate ones for
simulating spectral, scattering, and transport properties of these devices.

Here we propose an alternative approach to the spectral analysis of quantum graph
Hamiltonians based on boundary triples, Dirichlet-to-Neumann maps, and the Krein
technique of self-adjoint extensions. Such a machinery works effectively in many other
problems connected with explicitly solvable models [2, 34]. In the case of square net-
work lattices with a periodic magnetic field (including a uniform one), an arbitrary
L2-potential on edges and δ-like boundary conditions at the vertices (including the Kir-
chhoff boundary conditions), we perform an exhaustive spectral analysis of the network
Hamiltonian H . It is proved that the spectrum always contains Dirichlet eigenvalues
of the edges as infinitely degenerate eigenvalues of H . The rest part of the spectrum is
absolutely continuous and has a band structure, if θ is a rational number, and is the union
of countably many Cantor sets placed between Dirichlet eigenvalues, otherwise. More-
over, this part is the preimage of the spectrum of the corresponding lattice Hamiltonian
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J (H) with respect to a many-sheeted analytic function which is just the discriminant
of a generalized Kronig–Penney operator (i.e. the Sturm–Liouville operator with a Kro-
nig–Penney potential). The eigenvalues are isolated if the magnetic flux is non-integer,
while for integer magnetic fluxes it depends on the electric potential and on the coupling
at the nodes.

1. Magnetic Schrödinger Operator on the Periodic Metric Graph

Consider a planar square graph lattice whose nodes are the points Km,n := (ml, nl),
(m, n) ∈ Z

2, where l > 0 is the length of each edge. Two nodes Km,n and K p,q are
connected by an edge iff |m − p| + |n − q| = 1. We denote the edge between Km,n
and Km+1,n by Em,n,r (right), and between Km,n and Km,n+1 by Em,n,u (up). Each edge
Em,n,r/u will be considered as the segment [0, l] so that 0 is identified in both cases with
Km,n , and l is identified with Km+1,n for Em,n,r and Km,n+1 for Em,n,u , respectively.
The state space of the lattice is

H =
⊕

(m,n)∈Z

(Hm,n,r ⊕ Hm,n,u
)
, Hm,n,r/u = L2[0, l].

The elements of H will be denoted as f = ( fm,n,r , fm,n,u), fm,n,r/u ∈ Hm,n,r/u . On
each edge consider the same electric potential V ∈ L2[0, l].

We assume that the lattice is subjected to an external magnetic field orthogonal to
the plane, B(x) = (

0, 0, b(x)
)
, b ∈ C(R2), such that the quantity

ξ = 1

2πl2

∫

Fm,n

b(x)dx,

where Fm,n is the square spanned by Em,n,r and Em,n,u , is independent of m, n ∈ Z. This
includes the periodic magnetic field, i.e. the case b(x1+l, x2) = b(x1, x2+l) = b(x1, x2).

The corresponding magnetic vector potential in the symmetric gauge can be written
as A(x1, x2, x3) = (−πξ x2, πξ x1, 0) +

(
A1(x1, x2), A2(x1, x2), 0

)
with

∫

Fm,n

[∂A2

∂x1
(x1, x2)−∂A1

∂x2
(x1, x2)

]
dx1dx2 ≡

∫ (m+1)l

ml

[
A1(t, nl)−A1

(
t, (n+1)l

)]
dt

+
∫ (n+1)l

nl

[
A2

(
(m + 1)l, t

) − A2(ml, t)
]
dt = 0 for all m, n ∈ Z. (2)

The presence of the magnetic field leads to non-trivial magnetic potentials on the edges,
which are the projections of A(x) on the corresponding directions. The magnetic poten-
tials Am,n,r/u on Em,n,r/u are:

Am,n,r (t) = 〈
A
(
(ml, nl, 0) + (1, 0, 0)t

)
, (1, 0, 0)

〉 ≡ −πξnl + A1(ml + t, nl),

Am,n,u(t) = 〈
A
(
(ml, nl, 0) + (0, 1, 0)t

)
, (0, 1, 0)

〉 ≡ πξml + A2(ml, nl + t).

On each of the edges Em,n,r/u we consider the operator

Lm,n,r/u =
(

− i
d

dt
− Am,n,r/u

)2
+ V,
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with the domain H2[0, l]. The direct sum of these operators over all edges is not
self-adjoint, and in order to obtain a self-adjoint operator on the whole lattice it is
necessary to introduce boundary conditions at each node. The most general boundary
conditions involve a number of parameters and can be found, for example, in [24]. We
restrict ourselves by considering the so-called magnetic δ-like interaction at Km,n ,

fm,n,r (0) = 1

β
fm,n,u(0) = fm−1,n,r (l) = 1

β
fm,n−1,u(l) =: fm,n,

( d

dt
− i Am,n,r

)
fm,n,r (0) + β

( d

dt
− i Am,n,u

)
fm,n,u(0)

−( d

dt
− i Am−1,n,r

)
fm−1,n,r (l)− β

( d

dt
− i Am,n−1,u

)
fm,n−1,u(l) = α fm,n,

m, n ∈ Z,

(3)

where α ∈ R, β ∈ R \ {0}. These quantities have the following physical meaning. The
parameter α �= 0 is the coupling constant of a δ-like potential at each node. Introducing
the parameter β can be treated as considering a more general form of the Hamiltonian
H :

H =
∑

jk

1

2m jk

(
p j − e

c
A j

) (
pk − e

c
Ak

)
+ V (x, y) ,

where m jk is the effective mass tensor and β is the corresponding anisotropy coefficient
(the ratio of the eigenvalues of the symmetric matrix (m jk)). In particular, if β = 1, one
obtains H in the form (1); if in addition α = 0, we get the magnetic Kirchhoff coupling.
This class of boundary conditions covers main couplings used in the physics literature.
The self-adjoint operator obtained in this way we denote by L .

2. Gauge Transformations

To study the spectral properties of L it is useful to use the gauge transformation
( fm,n,r , fm,n,u) = (Um,n,rϕm,n,r ,Um,n,uϕm,n,u) given by

fm,n,r/u(t) = exp
(

i
∫ t

0
Am,n,r/u(s) ds

)
ϕm,n,r/u(t) =: Um,n,r/uϕm,n,r/u(t).

There holds U−1
m,n,r/u Lm,n,r/uUm,n,r/u = − d2

dt2 + V , and the boundary conditions (3)

for ϕ = (ϕm,n,r , ϕm,n,u) ∈ U−1(dom L) take the form

ϕ̃′
m,n = αϕ̃m,n, (4a)

where

ϕ̃m,n := ϕm,n,r (0) = 1

β
ϕm,n,u(0)

= exp
(

− iπnθ + i
∫ ml

(m−1)l
A1(t, nl)dt

)
ϕm−1,n,r (l)

= 1

β
exp

(
iπmθ + i

∫ nl

(n−1)l
A2(ml, t)dt

)
ϕm,n−1,u(l) (4b)
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and

ϕ̃′
m,n :=ϕ′

m,n,r (0) + βϕ′
m,n,u(0)

− exp
(

− iπnθ + i
∫ ml

(m−1)l
A1(t, nl)dt

)
ϕ′

m−1,n,r (l)

− β exp
(

iπmθ + i
∫ nl

(n−1)l
A2(ml, t)dt

)
ϕ′

m,n−1,u(l), (4c)

and θ := ξ l2 is the number of flux quanta through the elementary cells Fm,n . Therefore,
the operator L̃ = U−1LU acts on each edge as ϕm,n,r/u �→ −ϕ′′

m,n,r/u + Vϕm,n,r/u on
functions ϕ satisfying (4), and its spectrum coincides with the spectrum of L .

To simplify subsequent calculations we apply another gauge transformation,

ϕm,n,r/u = exp
(

i
∫ ml

0
A1(t, nl)dt + i

∫ nl

0
A2(0, t)dt

)
φm,n,r/u .

Substituting this expression into (4) and using (2) we arrive at an operator acting on
each edge as φm,n,r/u �→ −φ′′

m,n,r/u + Vφm,n,r/u on functions φ = (φm,n,r , φm,n,u),

φm,n,r/u ∈ H2[0, l], satisfying

φm,n,r (0) = 1

β
φm,n,u(0) = e−iπnθφm−1,n,r (l) = 1

β
eiπmθφm,n−1,u(l) =: φm,n, (5a)

φ′
m,n = αφm,n, m, n,∈ Z, (5b)

where

φ′
m,n := φ′

m,n,r (0) + βφ′
m,n,u(0)− e−iπnθφ′

m−1,n,r (l)− βeiπmθφ′
m,n−1,u(l).

(5c)

This operator, which we denote by �, is unitarily equivalent to the initial magnetic
Hamiltonian L . In what follows we work mostly with this new operator.

At this point we emphasize some important circumstances. First, we see that the
initial magnetic field must not be necessary periodic to produce a periodic operator on
the lattice. Second, for the usual magnetic Schrödinger operators in L2(R2) the spectral
analysis for non-zero but periodic magnetic vector potentials (i.e. with the zero flux per
cell) essentially differs from that for the Schrödinger operators without magnetic field;
even the proof of the absolute continuity of the spectrum is non-trivial [7, 39]. In our
case, the operator on the graph with a periodic magnetic vector potential appears to be
unitarily equivalent to the operator without magnetic field. Third, for the usual magnetic
Schrödinger operators the bottom of the spectrum grows infinitely as the flux becomes
infinitely large. In our situation, the spectrum is 1-periodic with respect to the magnetic
flux θ , as changing θ by θ + 1 in (5) obviously can be compensated by a unitary trans-
formation. Such periodicity leads to the so-called Aharonov–Bohm oscillations in the
corresponding physical quantities.

Remark 1. It is worth noting that � is invariant with respect to the so-called magnetic
translation group GM [41]. In our case this group is generated by the magnetic shift
operators τr and τu ,

τrφm,n,r/u(t) = eiπnθφm−1,n,r/u(t), τuφm,n,r/u(t) = e−iπmθφm,n−1,r/u(t).
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The properties of this group depend drastically on the arithmetic properties of θ [9]. In
particular, if θ is irrational, then GM has only infinite-dimensional irreducible represen-
tations which are trivial on the center of GM . Therefore, for any irrational θ each point
of spec� is infinitely degenerate.

Proposition 2. The operator � is semibounded below.

Proof. Let φ ∈ dom�. Using the integration by parts and changing suitably the sum-
mation order one obtains

〈φ,�φ〉 =
∑
m,n

(〈φm,n,r ,−φ′′
m,n,r + Vφm,n,r 〉 + 〈φm,n,u,−φ′′

m,n,u + Vφm,n,u〉)

=
∑
m,n

(
φm,n,r (0)φ

′
m,n,r (0)−φm,n,r (l)φ

′
m,n,r (l)+φm,n,u(0)φ

′
m,n,u(0)−φm,n,u(l)φ

′
m,n,u(l)

+
∫ l

0

(|φ′
m,n,r |2 + V |φm,n,r |2

)
dx +

∫ l

0

(|φ′
m,n,u |2 + V |φm,n,u |2)dx

)

=
∑
m,n

{ ∫ l

0

(|φ′
m,n,r |2 + V |φm,n,r |2

)
dx +

∫ l

0

(|φ′
m,n,u |2 + V |φm,n,u |2)dx

+ φm,n
(
φ′

m,n,r (0) + βφ′
m,n,u(0)− e−iπnθφ′

m−1,n,r (l)− βeiπmθφ′
m,n−1,u(l)

)}

=
∑
m,n

{ ∫ l

0

(|φ′
m,n,r |2+V |φm,n,r |2

)
dx+

∫ l

0

(|φ′
m,n,u |2+V |φm,n,u |2)dx+φm,n φ

′
m,n

}

=
∑
m,n

{ ∫ l

0

(|φ′
m,n,r |2+V |φm,n,r |2

)
dx+

∫ l

0

(|φ′
m,n,u |2+V |φm,n,u |2)dx+α|φm,n|2

}
.

Now choose c ∈ (0, 1) and C ∈ R with

|α||h(0)|2 ≤
∫ l

0

(
c|h′|2 + (V + C)|h|2)dx for all h ∈ H1[0, l]

(the existence of such constants follows from the Sobolev inequality), then

|α||φm,n|2 ≡ |α||φm,n,r (0)|2 ≤
∫ l

0

(
c|φ′

m,n,r |2 + (V + C)|φm,n,r |2
)
dx,

and

〈φ, (� + C)φ〉 ≥
∑
m,n

∫ l

0

{
(1 − c)|φ′

m,n,r |2 + |φ′
m,n,u |2 + (V + C)|φm,n,u |2

}
dx ≥ 0.

�
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3. Boundary Triples

Here we describe briefly the technique of abstract self-adjoint boundary value problems
with the help of boundary triples. For more detailed discussion we refer to [12].

Let S be a closed linear operator in a Hilbert space H with the domain dom S. Assume
that there exists an auxiliary Hilbert space G and two linear maps �,�′ : dom S → G
such that

• for any f, g ∈ dom S there holds 〈 f, Sg〉 − 〈S f, g〉 = 〈� f, �′g〉 − 〈�′ f, �g〉,
• the map (�, �′) : dom S → G ⊕ G is surjective,
• the set ker � ∩ ker �′ is dense in H.

The triple (G, �, �′) with the above properties is called a boundary triple for S.

Example 3. Let us describe one important example of boundary triple. Let V ∈ L2[0, l]
be a real-valued function. In H = L2[0, l] consider the operator

S = − d2

dt2 + V, dom S = H2[0, l], (6)

then one can set

G = C
2, � f =

(
f (0)
f (l)

)
, �′ f =

(
f ′(0)

− f ′(l)

)
. (7)

If an operator S has a boundary triple, then it has self-adjoint restrictions provided S∗
is a symmetric operator (see Theorem 3.1.6 in [18]). For example, if T is a self-adjoint
operator in G, then the restriction of S to elements f satisfying abstract boundary con-
ditions �′ f = T� f is a self-adjoint operator in H, which we denote by HT . Another
example is the operator H corresponding to the boundary conditions � f = 0. One
can relate the resolvents of H and HT as well as their spectral properties by the Krein
resolvent formula, which is our most important tool in this paper.

Let z /∈ spec H . For g ∈ G denote by γ (z)g the unique solution to the abstract bound-
ary value problem (S − z) f = 0 with � f = g (the solution exists due to the above
conditions for � and �′). Clearly, γ (z) is a linear map from G to H. Denote also by Q(z)
the operator on G given by Q(z)g = �′γ (z)g; this map is called the Krein function.
The operator-valued functions γ and Q are analytic outside spec H . Moreover, Q(z) is
self-adjoint for real z.

Proposition 4. (A) (Proposition 2 in [12]) For z /∈ spec H ∪ spec HT the operator
Q(z) − T acting on G has a bounded inverse defined everywhere and the Krein
resolvent formula holds,

(H − z)−1 − (HT − z)−1 = γ (z)
(
Q(z)− T

)−1
γ ∗(z̄).

(B) The set spec HT\spec H consists exactly of real numbers z such that 0 ∈
spec

(
Q(z)− T

)
.

(C) (Theorem 1 in [16]) Let z ∈ spec HT\spec H, then z is an eigenvalue of HT if and
only if 0 is an eigenvalue of Q(z)− T , and in this case γ (z) is an isomorphism of
the corresponding eigensubspaces.

This statement is especially useful if the spectrum of H is a discrete set and the
spectrum of HT is expected to have a positive measure, because one can describe the
most part of the spectrum of HT in terms of Q(z)− T .
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Example 5. Consider the example given by (6) and (7). The corresponding Krein function
s(z) can be obtained as follows. The restriction D of S given by � f = 0 is

D f = − f ′′ + V f, dom D = { f ∈ H2[0, l] : f (0) = f (l) = 0}. (8)

In what follows we denote the eigenvalues of D by μk , k = 0, 1, 2 . . . , μ0 < μ1 <

μ2 < . . . .
Let two functions u1, u2 ∈ H2[0, l] satisfy

u1, u2 ∈ ker(S − z),
u1(0; z) = 0, u′

1(0; z) = 1,
u2(0; z) = 1, u′

2(0; z) = 0. (9)

Clearly, for their Wronskian one has w(z) = u′
1(x; z)u2(x; z)− u1(x; z)u′

2(x; z) ≡ 1.
Both u1, u2 as well as their derivatives with respect to x are entire functions of z.

Let z /∈ spec D, then any function f with − f ′′ + V f = z f can be written as

f (x; z) = f (l)− f (0)u2(l; z)

u1(l; z)
u1(x; z) + f (0)u2(x; z),

and the calculation of f ′(0) and − f ′(l) gives

s(z) = 1

u1(l; z)

(−u2(l; z) 1
w(z) −u′

1(l; z)

)
≡ 1

u1(l; z)

(−u2(l; z) 1
1 −u′

1(l; z)

)
. (10)

It can be directly seen that s(z) is real and self-adjoint for real z. Clearly, the matrix s has
simple poles at μk , which are at the same time simple zeros of u1(l; z). More precisely,
by the well-known arguments, see e.g. Eq. (I.4.13) in [29], there holds

∂u1(l; z)

∂z

∣∣∣
z=μk

= u2(l;μk)

∫ l

0
u2

1(s, μk) ds,

and u2(l;μk) �= 0 due to u′
1(l;μk)u2(l;μk) ≡ w(μk) = 1.

4. Reduction to a Discrete Problem on the Lattice

To describe the spectrum of � we use the Krein resolvent formula. Denote by � the
operator acting on each edge as φm,n,r/u �→ −φ′′

m,n,r/u + Vφm,n,r/u on functions sat-
isfying only the condition (5a). Clearly, for such functions the expression φ′

m,n given
by (5c) makes sense. This operator is not symmetric, as it is a proper extension of the
self-adjoint operator �.
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Proposition 6. The operator � is closed and the triple
(
l2(Z2), �, �′),

� : dom� � φ = (φm,n,r , φm,n,u) �→ (
φm,n

) ∈ l2(Z2),

�′ : dom� � φ = (φm,n,r , φm,n,u) �→ (
φ′

m,n

) ∈ l2(Z2),

is a boundary triple for �.

Proof. Denote by � the direct sum of operators − d2

dt2 + V with the domain H2[0, l]
over all edges Em,n,r/u . Clearly, � is a closed operator, and the functionals

gm,n,1(φ) = φm,n,r (0)− 1

β
φm,n,u(0),

gm,n,2(φ) = φm,n,r (0)− e−iπnθφm−1,n,r (l),

gm,n,3(φ) = φm,n,r (0)− 1

β
eiπmθφm,n−1,u(l)

are continuous with respect to the graph norm of �. Therefore, the restriction of � to
functions on which all these functionals vanish is a closed operator, and this is exactly
�. For any φ ∈ dom� the inclusions �φ,�′φ ∈ l2(Z2) follow from the Sobolev
inequality, and both �, �′ are continuous with respect to the graph norm of �.

Let φ,ψ ∈ dom�, then the integration by parts gives

〈φ,�ψ〉 − 〈�φ,ψ〉
≡

∑
m,n∈Z, i=r,u

(
〈φm,n,i ,−ψ ′′

m,n,i + Vψm,n,i 〉 − 〈−φ′′
m,n,i + Vφm,n,i , ψm,n,i 〉

)

≡
∑

m,n∈Z, i=r,u

(
〈φm,n,i ,−ψ ′′

m,n,i 〉 − 〈−φ′′
m,n,i , ψm,n,i 〉

)

=
∑

m,n∈Z

{
φm,n,r (0)ψ

′
m,n,r (0) +

1

β
φm,n,u(0)βψ

′
m,n,u(0)

− φm−1,n,r (l)ψ
′
m−1,n,r (l)− 1

β
φm,n−1,u(l)βψ

′
m,n−1,u(l)

− φ′
m,n,r (0)ψm,n,r (0)− 1

β
φ′

m,n,u(0)βψm,n,u(0)

+ φ′
m−1,n,r (l)ψm−1,n,r (l) +

1

β
φ′

m,n−1,u(l)βψm,n−1,u(l)
}

=
∑

m,n∈Z

{
φm,nψ

′
m,n,r (0) + βφm,nψ

′
m,n,u(0)

− eiπnθφm,nψ
′
m−1,n,r (l)− βe−iπmθφm,nψ

′
m,n−1,u(l)

− φ′
m,n,r (0)ψm,n − βφ′

m,n,u(0)ψm,n

+ φ′
m−1,n,r (l)e

iπnθψm,n + βφ′
m,n−1,u(l)e

−iπmθψm,n

}
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=
∑

m,n∈Z

{
φm,n

(
ψ ′

m,n,r (0) + βψ ′
m,n,u(0)

− e−iπnθψ ′
m−1,n,r (l)− βeiπmθψ ′

m,n−1,u(l)
) − (

φ′
m,n,r (0) + βφ′

m,n,u(0)

− e−iπnθφ′
m−1,n,r (l)− βeiπmθφ′

m,n−1,u(l)
)
ψm,n

}

=
∑

m,n∈Z

(
φm,nψ

′
m,n − φ′

m,nψm,n
) ≡ 〈�φ,�′ψ〉 − 〈�′φ, �ψ〉.

Now we verify the surjectivity condition. Choose functions f0, f1 ∈ H2[0, l], with
f0(0) = f ′

1(0) = 1, f ′
0(0) = f1(0) = 0, f ( j)

k (l) = 0, j, k = 0, 1. Let g, g′ ∈ l2(Z2).
For any p, q ∈ Z denote

h p,q,1(x) = gp,q f0(x) +
g′

p,q

4
f1(x),

h p,q,2(x) = βgp,q f0(x) +
g′

p,q

4β
f1(x),

h p,q,3(x) = gp,qeiπqθ f0(l − x) + e−iπqθ
g′

p,q

4
f1(l − x),

h p,q,4(x) = βgp,qe−iπqθ f0(l − x) + eiπpθ
g′

p,q

4β
f1(l − x),

then h p,q, j ∈ H2[0, l], j = 1, . . . , 4, and these functions satisfy

h p,q,1(0) = 1

β
h p,q,2(0) = e−iπqθh p,q,3(l) = 1

β
eiπpθh p,q,4(l) = gp,q ,

h′
p,q,1(0) = β h′

p,q,2(0) = −eiπqθh′
p,q,3(l) = −β e−iπpθh′

p,q,4(l) = g′
p,q

4
,

h p,q,1(l) = h p,q,2(l) = h p,q,3(0) = h p,q,4(0)

= h′
p,q,1(l) = h′

p,q,2(l) = h′
p,q,3(0) = h′

p,q,4(0) = 0.

Define φ(p,q) = (
φ
(p,q)
m,n,r , φ

(p,q)
m,n,u

) ∈ H with

φ
(p,q)
p,q,r = h p,q,1, φ

(p,q)
p,q,u = h p,q,2, φ

(p,q)
p−1,q,r = h p,q,3, φ

(p,q)
p,q−1,u = h p,q,4,

φ
(p,q)
m,n,i = 0 for all other m, n ∈ Z and i = r, u.

Clearly, by construction φ(p,q) ∈ dom� and there holds
(
�φ(p,q)

)
m,n ≡ φ

(p,q)
m,n =

gp,qδmpδnq and
(
�′φ(p,q)

)
m,n ≡ (

φ(p,q)
)′

m,n = g′
p,qδmpδnq , m, n ∈ Z. It is easy to see

that the series φ = ∑
m,n φ

(m,n) converges in the graph norm of �, hence φ ∈ dom�.
Since H2[0, l] is continuously imbedded in C1[0, l], we have �φ = ∑

m,n �φ
(m,n) = g

and �′φ = ∑
m,n �

′φ(m,n) = g′. The surjectivity condition is proved.
It remains to note that the set ker �∩ker �′ contains the direct sum of C∞

0 (0, l) over
all edges and is obviously dense in H. �
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The operator� is the restriction of� to the set of function φ satisfying �′φ = α�φ.
Consider another self-adjoint extension �0 given by �φ = 0. Clearly, �0 is exactly
the direct sum of the operators D from (8) over all the edges Em,n,r/u . In particular,
spec�0 = spec D.

Let z /∈ spec D, g ∈ l2(Z2) and ψg be the solution of (� − z)ψg = 0 satis-
fying the boundary condition �ψg = g. Consider the corresponding Krein function
Q(z) : l2(Z2) � g �→ �′ψg ∈ l2(Z2). Application of Proposition 4 gives the following
implicit description of the spectrum of �.

Proposition 7. A number z ∈ R \ spec�0 ≡ R \ spec D lies in spec� iff 0 ∈
spec

[
Q(z)− α

]
. Such z is an eigenvalue of � iff 0 is an eigenvalue of Q(z)− α.

Therefore, outside the discrete set spec�0 ≡ spec D we can reduce the spectral prob-
lem for � to the spectral problem for Q(z)− α. Let us calculate Q(z) more explicitly;
actually this is our key construction.

Proposition 8. For z /∈ spec D there holds

Q(z) = (1 + β2)
(
s11(z) + s22(z)

)
+ s12(z)M(θ, β), (11)

where M(θ, β) is the discrete magnetic Laplacian in l2(Z2),

(
M(θ, β)g

)
m,n = eiπnθgm+1,n + e−iπnθgm−1,n + β2 (e−iπmθgm,n+1 + eiπmθgm,n−1),

g = (gm,n) ∈ l2(Z2).

Proof. Note that for φ = (φm,n,r , φm,n,u) in the notation of Proposition 6 there holds

⎛
⎜⎝

⎛
⎜⎝
φm,n,r (0)
φm,n,r (l)
φm,n,u(0)
φm,n,u(l)

⎞
⎟⎠

⎞
⎟⎠
(m,n)∈Z2

= C�φ, �′φ = B

⎛
⎜⎜⎝

⎛
⎜⎜⎝
φ′

m,n,r (0)−φ′
m,n,r (l)

φ′
m,n,u(0)−φ′

m,n,u(l)

⎞
⎟⎟⎠

⎞
⎟⎟⎠
(m,n)∈Z2

with operators B : l2(Z2)⊗ C
4 → l2(Z2) and C : l2(Z2) → l2(Z2)⊗ C

4 given by

B :

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

h(1)m,n

h(2)m,n

h(3)m,n

h(4)m,n

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ �→ (

h(1)m,n + e−iπnθh(2)m−1,n + βh(3)m,n + βeiπmθh(4)m,n−1

)
,

and

C : (gm,n) �→

⎛
⎜⎜⎝

⎛
⎜⎜⎝

gm,n

eiπnθgm+1,n
βgm,n

βe−iπmθgm,n+1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ ,

cf. (5).
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Let g ∈ l2(Z2). For z /∈ spec S, finding the solution φ with (� − z)φ = 0 and
�φ = g reduces to a series of boundary value problems for components of φ,

(
− d2

dt2 + V (t)− z
)
φm,n,r/u(t) = 0,

⎛
⎜⎝

⎛
⎜⎝
φm,n,r (0)
φm,n,r (l)
φm,n,u(0)
φm,n,u(l)

⎞
⎟⎠

⎞
⎟⎠ = Cg,

and
⎛
⎜⎜⎝
φ′

m,n,r (0)−φ′
m,n,r (l)

φ′
m,n,u(0)−φ′

m,n,u(l)

⎞
⎟⎟⎠ =

⎛
⎜⎝

s11(z) s12(z) 0 0
s21(z) s22(z) 0 0

0 0 s11(z) s12(z)
0 0 s21(z) s22(z)

⎞
⎟⎠

⎛
⎜⎝
φm,n,r (0)
φm,n,r (l)
φm,n,u(0)
φm,n,u(l)

⎞
⎟⎠ .

For Q(z)g ≡ �′φ one has

�′ψ = B

⎛
⎜⎜⎝

⎛
⎜⎜⎝
φ′

m,n,r (0)−φ′
m,n,r (l)

φ′
m,n,u(0)−φ′

m,n,u(l)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

Therefore, Q(z) = BK (z)C , where K (z) is a linear operator on l2(Z2)⊗ C
4 with the

matrix

K (z) = diag

⎛
⎜⎝

⎛
⎜⎝

s11(z) s12(z) 0 0
s21(z) s22(z) 0 0

0 0 s11(z) s12(z)
0 0 s21(z) s22(z)

⎞
⎟⎠

⎞
⎟⎠ .

In other words, for any g ∈ l2(Z2) one has

Cg =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

gm,n

eiπnθgm+1,n
βgm,n

βe−iπmθgm,n+1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ ,

K (z)Cg =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

s11(z)gm,n + eiπnθ s12(z)gm+1,n
s21(z)gm,n + eiπnθ s22(z)gm+1,n

β
(
s11(z)gm,n + e−iπmθ s12(z)gm,n+1

)
β
(
s21(z)gm,n + e−iπmθ s22(z)gm,n+1

)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ ,

and, finally,
(
Q(z)g

)
m,n = (

BK (z)Cg
)

m,n

= (1 + β2)
(
s11(z) + s22(z)

)
gm,n + eiπnθ s12(z)gm+1,n + e−iπnθ s21(z)gm−1,n

+ β2e−iπmθ s12(z)gm,n+1 + β2eiπmθ s21(z)gm,n−1. (12)

As can be seen from (10), there holds s12(z)=s21(z) and (12) becomes exactly (11). �
Corollary 9. A number z ∈ R \ spec D lies in the spectrum of L iff

0 ∈ spec
[
(1 + β2)

(
s11(z) + s22(z)

) − α + s12(z)M(θ, β)
]
.
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5. Spectral Analysis

To describe the spectrum of�we need some additional information on the Krein matrix
s(z) from (10).

Proposition 10. The matrix s(z) has the following properties:

(A) s12(z) �= 0 for all z /∈ spec D.
(B) For any α ∈ R the function

η(z) = α

s12(z)
− (1 + β2)

s11(z) + s22(z)

s12(z)
(13)

can be extended to an entire function.

(C) The function
1

1 + β2 η(z) is the discriminant of the (generalized) Sturm-Liouville

operator

P = − d2

dt2 + W (t) + WKP(t), (14)

where W is the periodic extension of V , W (t + nl) = V (t), t ∈ [0, l), n ∈ Z,

and WKP is the Kronig-Penney potential, WKP(t) = α

1 + β2

∑
k∈Z

δ(t − kl); such

operators P are also called Kronig-Penney Hamiltonians.
(D) There holds η(μk) ≤ −2(1 + β2) for even k and η(μk) ≥ 2(1 + β2) for odd k.

(Recall that μk are the eigenvalues of D.)
(E) For all real z with |η(z)| < 2(1 + β2) there holds η′(z) �= 0. The function η has no

local minima with η = 2(1 + β2) and no local maxima with η = −2(1 + β2).

Proof. Recall that s(z) is given by (10) with u1, u2 from (9). There holds s12(z) =
1

u1(l; z)
and s12(z) �= 0 for all z /∈ spec D since z �→ u1(l; z) is an entire function. This

proves (A).
Substituting (10) for z /∈ spec D in (13) one arrives at

η(z) = (1 + β2)
(
u′

1(l; z) + u2(l; z)
)

+ αu1(l; z)

and η obviously has analytic extension to all points of spec D. This proves (B).
To understand the meaning of η look at the operator (14). This operator acts as

f �→ − f ′′ + W f on functions f ∈ H2(R \ lZ) satisfying

(
f ′(kl+)
f (kl+)

)
=

(
1

α

1 + β2

0 1

) (
f ′(kl−)
f (kl−)

)
, k ∈ Z. (15)

Let y1, y2 be two solutions of (P − z)y = 0 with y1(0+; z) = y′
2(0+; z) = 0 and

y′
1(0+; z) = y2(0+; z) = 1. Consider the matrix

M(z) =
(

y′
1(l+; z) y′

2(l+; z)
y1(l+; z) y2(l+; z)

)
.

It is well-known that the spectrum of P consists exactly of real z satisfying tr M(z) ≡
y′

1(l+; z) + y2(l+; z) ∈ [−2, 2], see e.g. [15,22]. The function tr M(z) is called the dis-
criminant or the Lyapunov function of P and plays an important role in the study of
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second order differential operators; if α = 0, the study of this function is a classical
topic of the theory of ordinary differential equations, see e.g. [10,29].

On the other hand, note that on the interval (0, l) the solutions y1 and y2 coin-
cide with u1 and u2 from (9), respectively. In particular, y1,2(l−; z) = u1,2(l; z) and
y′

1,2(l−; z) = u′
1,2(l; z) Therefore, taking into account the boundary conditions (15) we

can write M(z) in the form

M(z) =
( α

1 + β2 u1(l; z) + u′
1(l; z)

α

1 + β2 u2(l; z) + u′
2(l; z)

u1(l; z) u2(l; z)

)
,

and tr M(z) = 1

1 + β2 η(z), which proves (C). The items (D) and (E) describe typical

properties of the discriminants of one-dimensional periodic operators.
To prove (D) note that for any k one has u1(l, μk) = 0, and η(μk) = (1 +

β2)
((

u′
1(l;μk) + u2(l;μk)

)
, i.e.

1

1 + β2 η(μk) coincides with the value of the discrimi-

nant of the classical periodic Sturm–Liouville problem (α = 0), for which the requested
inequalities are well known, see e.g. Lemma VIII.3.1 in [10].

The first part of (E) is known for much more general potentials, see e.g. Lemma 5.2
in [22]. As for the second part, local maxima with η = −2(1 + β2) and local minima
with η = 2(1 + β2) would be isolated eigenvalues of P , which is impossible, because
the spectrum of P is absolutely continuous [30]. �

Therefore, up to the discrete set spec D the spectrum of � is the preimage of
spec M(θ, β) under the entire function η. The operator M(θ, β) is very sensitive to
the arithmetic properties of θ and is closely related to the Harper operator, cf. [38]. The
nature of the spectrum of M(θ, β) in its dependence on θ is described in the follow-
ing proposition, which summarizes Theorem 2.7 in [38] (Item A), Theorem 4.2 in [38],
Theorem 1.6 in [5] and the main theorem in [4] (Item B), and Theorem 2.1 in [8] (Item C).

Proposition 11. (A) The operator M(θ, β) has no eigenvalues for all θ and β.

(B) If θ is irrational, the spectrum of M(θ, β) is a Cantor set. If, in addition, β = 1, the
spectrum has zero Lebesgue measure.

(C) For non-integer θ there holds ‖M(θ, β)‖ < 2(1 + β2).

The previous discussion gives a description of the spectrum of � in R \ spec D. Let
us include spec D into consideration.

Proposition 12. There holds spec D ⊂ spec�. Moreover, each μk ∈ spec D is an
infinitely degenerate eigenvalue of �.

Proof. Consider an eigenvalue μk of D and the corresponding eigenfunction f with
f ′(0) = 1 and let σ := f ′(l).

Let θ be rational. Take M ∈ Z such that θM ∈ 2Z. Let p, q ∈ Z. Denote by φ the
function from H whose only non-zero components are

φpM+ j,q M,r = βσ j f, φpM,q M+ j,u = −σ j f,

φ(p+1)M,q M+ j,u = σM+ j f, φpM+ j,(q+1)M,r = −βσM+ j f,

j = 0, . . . ,M − 1.
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Clearly, φ ∈ dom� and −φ′′
m,n,r/u + (V −μk)φm,n,r/u = 0 for all m, n ∈ Z. Therefore,

φ is an eigenfunction of � with the eigenvalue μk . As p and q are arbitrary, one can
construct infinitely many eigenfunctions with non-intersecting supports. Therefore, each
μk is infinitely degenerate in spec�.

Now let θ be irrational. We use arguments similar to the Schnol-type theorems [27].
For each n ∈ Z put φ−n,n,r = βeiπnθ f and φ−n,n,u = −eiπnθ f . The “chain” con-
structed from these components does not belong to H, but satisfies the boundary condi-
tions (5). Moreover, −φ′′

n,−n,r/u + (V − μk)φn,−n,r/u = 0 for all n, i.e. this chain is a
“generalized eigenfunction” of �.

Take ϕ ∈ C∞[0, l] with ϕ(0) = ϕ′(0) = 0 and ϕ(l) = ϕ′(l) = 1. For any N ∈ N

construct ψ(N ) ∈ H such that

ψ
(N )
−n,n,r/u = φ−n,n,r/u if |n| < N ,

ψ
(N )
−N ,N ,r = ϕφ−N ,N ,r , ψ

(N )
N ,−N ,u = ϕφN ,−N ,u,

ψ
(N )
m,n,i = 0 for all other m, n ∈ Z and i = r, u.

Clearly, ψ(N ) ∈ dom� for any N and ‖ψ(N )‖ ≥ √
2N‖ f ‖. Moreover, the only two

non-zero components of g(N ) = (�− μk)ψ
(N ) are

g(N )−N ,N ,r = βeiπNθ ( − ϕ′′ f − 2ϕ′ f ′ − ϕ f ′′ + (V − μk)ϕ f
)

= −βeiπNθ (ϕ′′ f + 2ϕ′ f ′ ),
and

g(N )N ,−N ,u = −eiπNθ ( − ϕ′′ f − 2ϕ′ f ′ − ϕ f ′′ + (V − μk)ϕ f
) = eiπNθ (ϕ′′ f + 2ϕ′ f ′ ).

Therefore, ‖g(N )‖ ≡ ‖(�− μk)ψ
(N )‖ = √

1 + β2 ‖ϕ′′ f + 2ϕ′ f ′‖ ≡ C and

lim
N→∞

∥∥(�− μk)ψ
(N )

∥∥
‖ψ(N )‖ ≤ lim

N→∞
C√

2N‖ f ‖ = 0,

which means that μk ∈ spec�. Let us show that μk is an eigenvalue of �. By Proposi-
tion 11(C) one has ‖M(θ, β)‖ < 2(1+β2). Recall that the spectrum of� outside spec D
is the preimage of spec M(θ, β) under the function η and, due to Proposition 10(D), does
not containμk . Asμk is an isolated point of the spectrum, it is an eigenvalue of�, which
is infinitely degenerate according to the arguments given in Remark 1. �

Now we state the main result of the paper.

Theorem 13. The spectrum of � is the union of two sets,

spec� = �0 ∪�, �0 = spec D, � = η−1( spec M(θ, β)
)
,

and has the following properties:

(A) The discrete spectrum is empty and the point spectrum coincides with �0.
(B) The set � is non-empty, moreover, the intersection [μk, μk+1] ∩� is non-empty for

any k.
(C) For rational θ the singular continuous spectrum of � is empty and the absolutely

continuous spectrum coincides with � and has a band structure.
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(D) For irrational θ , the spectrum of � is infinitely degenerate. The part � is a closed
nowhere dense set without isolated points, and � ∩ (μk, μk+1) is a Cantor set for
any k = 0, 1, 2, . . . . If additionally β = 1, then the spectrum of� has no absolutely
continuous part and the singular continuous spectrum coincides with �.

Proof. Proposition 12 shows that �0 ⊂ spec�. The spectrum of � outside spec D is
described by Corollary 9 and, in virtue of Proposition 10(B), coincides with �.

(A) Propositions 8, 10(B), and 11(A) show the absence of eigenvalues of Q(z)− α.
By virtue of Proposition 7 the operator � has no point spectrum in R \ spec D for any
θ . Therefore, due to Proposition 12 the point spectrum coincides with spec D, and all
eigenvalues have infinite multiplicity.

(B) The trivial estimate ‖M(θ, β)‖ ≤ 2(1+β2) implies the inclusion spec M(θ, β) ⊂
[−2(1 + β2), 2(1 + β2)]. The assertion follows now from Proposition 10(D).

(C) Let θ be rational. Take N ∈ Z with Nθ ∈ 2Z. The operator � appears to be
invariant under the shifts (φm,n,r , φm,n,u) �→ (φm+k N ,n+l N ,r , φm+k N ,n+l N ,u), k, l ∈ Z,
i.e. is Z

2-periodic and, therefore, the absence of singular spectrum for� follows from the
standard arguments of the Bloch theory, see e.g. Theorem 11 in [27]. Therefore by (A)
� coincides with the absolutely continuous spectrum. The spectrum of M(θ, β) consists
of finitely many bands, so is η−1(spec M(θ, β)) between any two Dirichlet eigenvalues.

(D) Now let θ be irrational. The infinite degeneracy of spec� follows from the argu-
ments of Remark 1. In view of continuity of η, the set of z ∈ R for which |η(z)| <
2(1 + β2) is a union of open disjoint intervals In . Moreover, due to Proposition 10(D)
there is exactly one such interval between any two subsequent eigenvalues of D. Put
Jn = In . Note that ∪Jn contains all points z with |η(z)| ≤ 2(1 + β2). Due to Prop-
osition 10(E), the restriction of η to Jn is a homeomorphism of Jn on the segment
[−2(1 + β2), 2(1 + β2)]. Therefore, the preimage

Kn := (
η|Jn

)−1( spec M(θ, β)
) ⊂ Jn

is a Cantor set as is true of spec M(θ, β). Moreover, the intersection of any two of sets
Km is empty, which follows from Proposition 11(C) and Proposition 10(D). Therefore,
the set ∪Kn , which coincides with�, is also closed, nowhere dense, and without isolated
points.

If β = 1, then the spectrum of M(θ, β) has zero Lebesgue measure by Proposi-
tion 11(B). Since (η|In

)−1 are real-analytic, the sets Kn and hence� = ∪Kn are also of
zero Lebesgue measure. Such a set cannot support absolutely continuous spectrum and
does not intersect the point spectrum due to (A), therefore, � is the singular continuous
spectrum. �

In view of the unitary equivalence between the operators � and L , Theorem 13
provides a complete spectral analysis of the magnetic Schrödinger operator on the peri-
odic graph. At the same time, we believe that the operator � may be considered as a
model of quasiperiodic interaction on quantum graphs and may be useful also outside
the problems related to magnetic fields.

We formulate several corollaries in order to answer the following natural questions
arising in the case of rational magnetic flux θ :

• Are the eigenvalues of� (and of L) isolated or embedded in the continuous spectrum?
• Is the number of gaps in the spectrum finite or infinite? Note that the rank of the

lattice defining the magnetic translation group is equal to 2, therefore, one can expect
the validity of the Bethe–Sommerfeld conjecture for θ = 0.
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We emphasize that these questions are rather non-trivial even for lattices without
any potentials; for example, rectangular lattices with δ-boundary conditions at the nodes
can have very different properties depending on the coupling constants and the ratio
between the edge lengths [13]. We will see that the introduction of scalar potentials on
edges provides a mechanism of gap creation similar to the so-called decoration [37].

The case of a non-trivial magnetic field can be treated by a simple norm estimate.

Corollary 14. If θ is non-integer, then the spectrum of � has infinitely many gaps, and
all μk lie inside the gaps.

Proof. In this case the set� does not containμk due to Propositions 10(D) and 11(D). �
Let us consider now the case without magnetic field in greater details.

Corollary 15. Let θ be integer.

(A) The part � of the spectrum of � coincides with the spectrum of the
Kronig-Penney Hamiltonian P from (14). In particular, if there are inifinitely many
gaps in the spectrum of P, then � has the same property.

(B) If V is a convex smooth function whose derivative does not vanish, then all gaps are
open for any α, the spectrum of P and hence also of� has infinitely many gaps, and
all μk are isolated in spec�.

(C) Let the gap of P near μk be closed for α = 0. Then μk is an embedded eigenvalue
of� for all α. In particular, μk lies on a band edge for α �= 0. For V = 0 and α = 0
all gaps are closed and all μk are embedded into the continuous spectrum.

Proof. (A) In this case one has spec M(θ, β) = [ − 2(1 + β2), 2(1 + β2)
]

and the set

� ≡ η−1
([ − 2(1 + β2), 2(1 + β2)

])
coincides with the spectrum of P by Proposi-

tion 10(C).
(B) Denote ν(z) = u′

1(l; z) + u2(l; z), where u1 and u2 are the special solutions
from Example 5. Clearly, ν is the discriminant of the periodic Sturm-Liouville operator

Q := − d2

dt2 + W with W from (14). If α = 0, then P = Q and η(z) = (1 + β2)ν(z)

for all z. Let V be smooth convex with V ′ �= 0 and α = 0, then it is proved in [17]
(see Lemma 3 and Theorem 2 therein) that all gaps of P are open and that μk do
not belong to spec P = �, which means that |ν(μk)| > 2. One has η(μk) = (1 +
β2)ν(μk) + αu1(l;μk) = (1 + β2)ν(μk), and the gap remains open for all α �= 0 as
|η(μk)| > 2(1 + β2).

(C) The case with V = 0 and α = 0 is obvious. If the gap near μk is closed,
then ν(μk) = ±2, η(μk) = ±2(1 + β2), and μk ∈ �. Moreover, ν′(μk) = 0. As
∂zu1(l;μk) �= 0 (see Example 5), one has η′(μk) �= 0 for α �= 0, which means that
η ∓ 2(1 + β2) changes the sign at μk . This means that there is a gap near μk . �

6. Concluding Remarks

We hope that the approach presented here can be extended to the analysis of more general
periodic magnetic systems, for example, for more complicated combinatorial structures,
for nodes and edges with geometric defects or measure potentials, or with the spin-orbital
coupling taken into account. Another open question is whether one can deal with more
general boundary conditions. Although there are some particular examples for which
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the above construction works, we are not able to present a suitable general picture at
the moment. We hope to clarify the situation, which actually goes beyond the quantum
graph context, in subsequent works.

The first version of the paper was significantly improved by the suggestions of the
referee, who pointed out that the results hold not only for periodic magnetic fields but
also for those with a constant flux per cell. The authors are indebted to him/her very
much for the attention and the careful reading.
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