CaO-Based Sorbents for CO₂ Capture Prepared by Ultrasonic Spray Pyrolysis

Maryam Sayyah,^{b&} Brandon R. Ito,^{a&} Massoud Rostam-Abadi,^c Yongqi Lu,^c and Kenneth S. Suslick^a*

Materials Synthesis

- The USP apparatus is represented in Figure S1. The custom nebulizer base was constructed at the University of Illinois at ¹⁰ Urbana-Champaign electronics shop and contains a 1.65 MHz fixed frequency piezoceramic. The nebulization cell was constructed from a 57 mm O-ring flat flange (Chemglass, # CG-138-02) which has been modified to taper to a 24/40 ground glass joint at the top. Additionally, the cell was outfitted with a ¹⁵ solution addition arm and carrier gas inlet arm. A circular polyethylene membrane (2 mils thickness, cut from a Ziploc[®] bag) was clamped to the nebulization cell and the assembly was centered over the piezoceramic on the nebulizer base. Water was
- added to couple the piezoceramic to the plastic membrane and ²⁰ any air bubbles trapped under the membrane were removed. Argon was flowed through the nebulization cell at 1 l/min and carried an ultrasonically generated mist through a quartz furnace tube preheated to 600 °C. A 2 in. Vigruex column was inserted between the nebulization cell and furnace tube to make more
- ²⁵ uniform droplet sizes. After passing through the furnace, the resulting product was collected in four bubblers each containing ~50 mL of ethanol.

The precursor solution was prepared volumetrically by dissolving the appropriate amount of calcium nitrate tetrahydrate (Aldrich,

³⁰ >99%) and aluminum nitrate nonahydrate (Aldrich, >98%) in 95% ethanol such that the correct Al to Ca ratios in the product ⁵⁵ were achieved. The products were concentrated by rotary evaporation and dried at ~ 80 °C for ~ 12 h prior to characterization.

35 Materials Characterization

Scanning Electron Micrographs (SEMs) were taken using a Hitachi S4800 SEM at an accelerating voltage of 10 kV. Samples were sputter-coated with Au/Pd alloy before SEM analysis. Transmission Electron Micrographs (TEMs) were taken using a ⁴⁰ JEOL 2100 Cryo TEM at an operating voltage of 200 kV. Scanning transmission electron micrographs (STEM) were collected using a JEOL 2010F with an accelerating voltage of 200 keV. Elemental Analysis (EA) was done in the Microanalysis Lab at the University of Illinois at Urbana-Champaign on a Perkin

- ⁴⁵ Elmer Sciex DRCe ICP-MS and a Model CE 440 CHN Analyzer. Powder diffraction patterns were collected using Cu K α radiation ($\lambda = 1.5418$ Å) with a Seimens Bruker D5000 instrument operating at 40 kV and 30 mA and scanning $2\Theta = 10^{\circ}$ to 90° at a rate of 1.0°/min. Surface area (SA) measurements were obtained
- ⁵⁰ using a 3-point BET (Brunauer, Emmett, Teller) adsorption curve on a Quantachrome Instruments Nova 2200e Surface Area and Pore Analyzer. Thermogravimetric analysis (TGA) was conducted on a ThermoScientific VersaTherm thermogravimetric analyzer.

6	Ń)

Sorbent Al/Ca atomic ratio (Al ₂ O ₃ /CaO mass ratio)	Pre-calcine SA m ² /g	Post-calcine SA m ² /g
0.03 (0.03)	19.6	27.2
0.08 (0.07)	20.4	29.1
0.16 (0.15)	19.8	22.7
0.24 (0.22)	23.7	26.2
0.38 (0.35)	15.9	19.0
0.56 (0.51)	46.4	33.9

Table S1. Pre- and post-calcine surface areas of the sorbents containing various Al/Ca ratios.

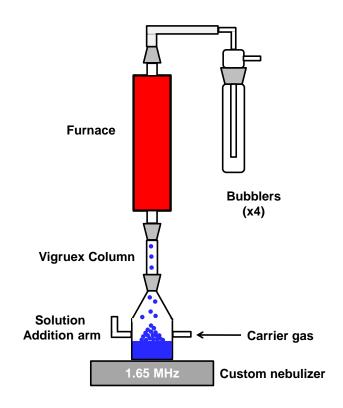


Figure S1. Experimental setup of the USP apparatus.

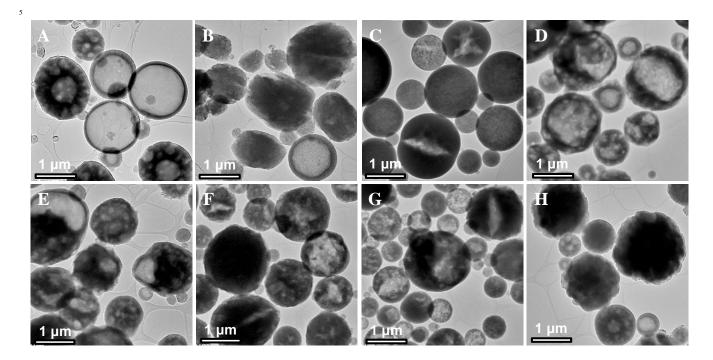


Figure S2. TEM images of Al-containing sorbents with various Aluminum to Calcium ratios. (A) 0 (B) 0.03 (C) 0.08 (D) 0.16 (E) 0.24 (F) 0.38 (G) 0.56 (H) 1.17

10

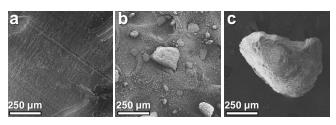
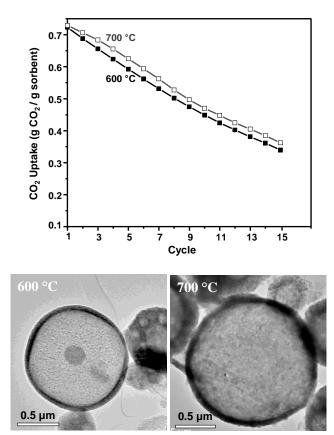



Figure S3. Low magnification SEM images of the sorbent with Al/Ca = 0.16. (a) before cycling, (b) after 2 cycles of calcination/carbonation and (c) after 15 cycles of calcination/carbonation.

Figure S5. Top panel: CO₂ uptake for pure CaO sorbents synthesised at 10 600 °C and 700 °C during 15 cycles of calcination/carbonation. Bottom panel: TEM images of the hollow pure CaO sorbent; left, synthesized at 600 °C and right at 700 °C.

TGA Protocol

- ¹⁵ Each of the materials was subjected to 15 calcination/carbonation cycles on a thermogravimetric analyzer (TGA, a ThermoScientific VersaTherm thermogravimetric analyzer). Approximately 20 mg of sample was loaded into a quartz sample boat. The instrument is controlled using Thermal Analyst Data
- $_{20}$ Acquisition Version 3.30.0 VT software which allows the user to program the TGA operation parameters. A typical TGA protocol is shown in Figure S5: (1) heat from room temperature to 250 °C at 40 deg/min under N₂, (2) hold at 250 °C for 20 min under N₂ (this is to remove any water vapor or other adsorbents), (3) heat
- ²⁵ from 250 °C to 950 °C at 40 deg/min under N₂, (4) hold at 950 °C for 5 min under N₂ (this is the calcination stage), (5) cool from 950 °C to 710 °C at -20 deg/min under N₂, (6) hold at 710 °C for 5 min under N₂, (7) maintain the temperature at 710 °C and switch the gas to CO₂ for 30 min (this is the carbonation stage),
- $_{30}$ (8) maintain the temperature at 710 °C and switch the gas back to N_2 for 5 min, (9) heat from 710 °C to 950 °C at 20 deg/min under N_2 , and (10) repeat steps 4-9. TGA data was analyzed using ThermoCahn Instruments Thermal Analyst Version 1.3.2.2 software.

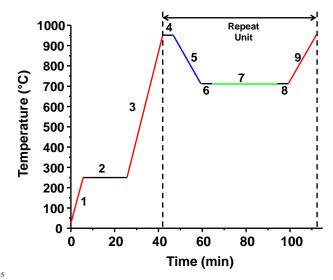


Figure S5. Diagram of the method programmed for multiple carbonation/calcinations cycles. Red corresponds to heating, black to isothermal periods under N_2 , blue to cooling, and green to isothermal periods under CO_2 .

40

Table S2. Comparison of the performance of the sorbents with Al/Ca=0.16 (i.e., 75:25 wt% CaO:Ca₁₂Al₁₄O₃₃) in the literature.

Method of synthesis	Sorbent Source/precursor	Carbonation/ Calcination	CO ₂ uptake at cycle 15 (g CO ₂ / g sorbent)	Retention Ratio (%) cycle 15/cycle 1	Reference
Calcination at 900 °C	CaO powder Al(NO ₃) ₃ ·9H ₂ O in isopropanol	700 °C, 30 min, 20% CO ₂ 850 °C, 5 min, 100% N ₂	~0.48	94	15b
Calcination at 900 °C	Ca(OH) ₂ Al(NO ₃) ₃ ·9H ₂ O in isopropanol	690 °C, 30 min, 15% CO ₂ 850 °C, 10 min, 100% N ₂	~0.22	-	15c
Calcination at 900 °C	CaO Al(NO ₃) ₃ ·9H ₂ O in isopropanol	690 °C, 30 min, 15% CO ₂ 850 °C, 5 min, 100% N ₂	~0.35	-	15d
Ultrasonic Spray Pyrolysis at 600 °C	Ca(NO ₃) ₂ ·4 H ₂ O Al(NO ₃) ₃ ·9H ₂ O	710 °C, 30 min, 100% CO ₂ 950 °C, 5 min, 100% N ₂	0.55	92	This work

Notes and references

⁵ ^a Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA. Fax: +1 217 244 318; Tel: +1 217 333 2794 E-mail: ksuslick@illinois.edu

^b Department of Chemical and Biomolecular Engineering, School of

10 Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA. Tel: +1 217 333 1532 E-mail: msayyah2@illinois.edu

^c Illinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 615 E. Peabody Dr., Champaign, IL 15 61820, USA

[&]These authors contributed equally.