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Abstract. The Fourth IPCC Assessment Report concluded

that ice sheet flow models, in their current state, were un-

able to provide accurate forecast for the increase of polar

ice sheet discharge and the associated contribution to sea

level rise. Since then, the glaciological community has un-

dertaken a huge effort to develop and improve a new genera-

tion of ice flow models, and as a result a significant number

of new ice sheet models have emerged. Among them is the

parallel finite-element model Elmer/Ice, based on the open-

source multi-physics code Elmer. It was one of the first full-

Stokes models used to make projections for the evolution

of the whole Greenland ice sheet for the coming two cen-

turies. Originally developed to solve local ice flow problems

of high mechanical and physical complexity, Elmer/Ice has

today reached the maturity to solve larger-scale problems,

earning the status of an ice sheet model. Here, we summarise

almost 10 yr of development performed by different groups.

Elmer/Ice solves the full-Stokes equations, for isotropic but

also anisotropic ice rheology, resolves the grounding line

dynamics as a contact problem, and contains various basal

friction laws. Derived fields, like the age of the ice, the

strain rate or stress, can also be computed. Elmer/Ice in-

cludes two recently proposed inverse methods to infer badly

known parameters. Elmer is a highly parallelised code thanks

to recent developments and the implementation of a block

preconditioned solver for the Stokes system. In this paper, all

these components are presented in detail, as well as the nu-

merical performance of the Stokes solver and developments

planned for the future.

1 Introduction

Since the 2007 IPCC report (Solomon et al., 2007), theoret-

ical glaciology has taken a big leap towards improved ice

sheet flow models, in order to provide reliable future es-

timates of the dynamical contribution of ice sheets to sea

level rise. These models were originally designed to recon-

struct the evolution of ice sheets over past glaciological cy-

cles, neglecting short-term responses and local features. The

new challenge of running ice sheet models to provide esti-

mates of future sea level rise has created the need for a new

generation of ice sheet models (Vaughan and Arthern, 2007;

Gillet-Chaulet and Durand, 2010; Blatter et al., 2011; Kirch-

ner et al., 2011; Alley and Joughin, 2012). This new genera-

tion of ice sheet models includes a set of requisites that are

essential to provide a sufficiently accurate description of the

ice flow dynamics.
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As a first requisite, these models must be able to describe

the ice flow heterogeneity, and particularly the major con-

tribution of individual ice streams to the total ice discharge.

This requires the use of an unstructured mesh in the horizon-

tal plane (e.g. Gillet-Chaulet et al., 2012; Larour et al., 2012;

Seddik et al., 2012) or of adaptive multi-grid methods (Corn-

ford et al., 2013b). These mesh techniques are essential to

produce hundred-metre-scale grid sizes in areas of interest,

especially near the coast, while for the interior regions where

variations in velocity gradients are small, classic grid sizes

can be kept to save computing resources. Grid refinement is

even more essential when considering the dynamics of the

grounding line, i.e. the boundary between the grounded ice

sheet and the floating ice shelf, because a grid size that is

too large gives inconsistent grounding line dynamics (Du-

rand et al., 2009; Pattyn et al., 2013).

The second important requisite is to have an accurate de-

scription of the complex state of stress prevailing in ice

streams to solve the full-Stokes system, or at least to adopt

a higher-order asymptotic formulation. As shown by the

ISMIP-HOM inter-comparison exercise (Pattyn et al., 2008),

higher-order models are needed to describe the ice flow in ar-

eas where the basal topography and slipperiness vary greatly,

which are generally the most dynamic regions within ice

sheets. Higher-order models are also necessary to properly

describe the dynamics of the grounding line. The MISMIP

inter-comparison (Pattyn et al., 2012) indicated the need to

solve the full-Stokes equations near the grounding line to ob-

tain fully accurate results.

The consequences of these first two requisites, i.e. high

numerical resolution at places of interest and higher-order

formulations, are a high computing cost and the necessity to

develop parallel codes, able to run on hundreds of CPUs. Re-

cent studies (Larour et al., 2012; Gillet-Chaulet et al., 2012;

Seddik et al., 2012; Cornford et al., 2013b) have fulfilled

these requirements and have shown that by deploying high-

performance computing (HPC) techniques this challenge can

be successfully taken on. In this context, Elmer/Ice takes ad-

vantage of being backed by a large open-source community

that also develops new numerical and HPC techniques for the

code (e.g. Malinen, 2007).

The third requisite, and from the physical point of view the

most challenging, is to implement physically founded bound-

ary conditions. These improvements are far more complex

and it will take more time to fully address them in the ice

sheet flow models. The recently observed changes in coastal

glacier dynamics (e.g. Moon et al., 2012) are certainly driven

by changes in ice sheet and ice shelf boundary conditions,

and consequently linked to changes in the ocean and atmo-

sphere components of the climatic system. In the simplest

cases, changes in the climatic components directly drive the

changes at the boundaries of the ice mass. This is the case for

surface air temperature or ocean temperature which directly

drive the temperature boundary condition of the upper sur-

face or the bottom ice/ocean interface, respectively. In other

more complex cases, the link between changes in the ocean

and/or atmosphere and changes in the ice flow is indirect. In-

termediate processes (often not observable) are involved, as

in the case for example of the link between surface runoff and

basal sliding or ocean temperature and calving rate. Thus,

a dedicated model is required to describe the processes re-

sponsible for the transfer of these changes to the ice mass.

Driving this dedicated transfer model might require coupling

the ice sheet model with an atmosphere or an ocean model.

The last important requisite for a forecast model is to be

able to simulate present-day observations with as much fi-

delity as possible (Aschwanden et al., 2013). This point must

be addressed clearly using data assimilation techniques and

specific inverse methods to estimate the less well known pa-

rameters of the model (e.g. Heimbach and Bugnion, 2009;

Arthern and Gudmundsson, 2010; Morlighem et al., 2010).

Recent ice sheet model developments have started to fulfil

some of these priority requisites, leading the way toward the

new generation of ice sheet models (Bueler and Brown, 2009;

Pollard and DeConto, 2009; Rutt et al., 2009; Larour et al.,

2012; Leng et al., 2012; Winkelmann et al., 2011; Favier

et al., 2012; Gillet-Chaulet et al., 2012). Among them, the

Elmer/Ice model already includes many of these requisites.

Elmer/Ice is the glaciological extension of Elmer, the open-

source finite element (FE) software developed by CSC in

Finland (http://www.csc.fi/elmer/). Elmer is a multi-physics

code base from which it was possible to develop new spe-

cialised modules for computational glaciology while main-

taining the compatibility with the main Elmer distribution.

Thus, Elmer/Ice still benefits from the developments of the

standard Elmer distribution. In this paper, for simplicity we

refer to Elmer/Ice even if some of the features described be-

long to the main Elmer distribution. Elmer/Ice was not orig-

inally designed as an ice sheet model since the first appli-

cations were restricted to local areas of interest or glaciers

(Le Meur et al., 2004; Zwinger et al., 2007; Zwinger and

Moore, 2009). Elmer/Ice was primarily developed to solve

the flow of anisotropic polar ice and the evolution of its

strain-induced fabric (Gillet-Chaulet et al., 2006; Durand

et al., 2007; Seddik et al., 2008, 2011; Ma et al., 2010;

Martín and Gudmundsson, 2012). It has since then been

used to model the flow of a cold firn-covered glacier using

a dedicated snow/firn rheological law (Zwinger et al., 2007).

Elmer/Ice has been the only full-Stokes model to perform the

whole set of the ISMIP-HOM experiments (Gagliardini and

Zwinger, 2008; Pattyn et al., 2008) and is still the only full-

Stokes model to participate in the grounding line experiments

MISMIP (Pattyn et al., 2012). Elmer/Ice was further used

as a reference for the later MISMIP3d experiments (Pattyn

et al., 2013). Recently, data assimilation was implemented

within Elmer/Ice (Jay-Allemand et al., 2011; Schäfer et al.,

2012; Gillet-Chaulet et al., 2012) to infer poorly known pa-

rameters such as basal drag. Today, Elmer/Ice is the only

three-dimensional full-Stokes model that solves the ground-

ing line dynamics (Favier et al., 2012), and it will be the
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only full-Stokes model able to run forecast simulations for

the whole Greenland ice sheet for the coming AR5 IPPC re-

port, in the framework of both SeaRISE (Seddik et al., 2012)

and ice2sea (Gillet-Chaulet et al., 2012; Shannon et al., 2013;

Edwards et al., 2013) programmes.

In this paper, we summarise ten years of consistent devel-

opments and present the current state of the new-generation

ice sheet model Elmer/Ice (Elmer library version 7.0 SVN

revision 5955). We only focus on the past developments that

are relevant for simulations of three-dimensional ice sheets.

Specific developments regarding two-dimensional flow line

or glacier applications are not presented here, but one can

consult previous publications on these types of applications

(the complete list of Elmer/Ice publications can be found on

http://elmerice.elmerfem.org/). Section 2 presents the gov-

erning equations implemented in Elmer/Ice. The associated

boundary conditions are discussed in Sect. 3. Other useful

equations, such as the equation to evaluate the age of the ice,

are presented in Sect. 4. Section 5 is dedicated to the inverse

methods implemented in Elmer/Ice. Some technical aspects

related to the resolution of these equations in the framework

of the FE method are discussed in Sect. 6. The efficiency

of Elmer/Ice was verified by standard convergence and scal-

ability tests described in Sect. 7. Finally, we provide some

insights into the future planned developments in Sect. 8.

2 Governing equations

2.1 Ice flow equations

Ice is a fluid with an extremely high viscosity that flows

very slowly so that inertia and acceleration terms entering

the momentum equation can be neglected. Therefore, the

three-dimensional velocity field and the pressure field of an

ice mass flowing under gravity are obtained by solving the

Stokes equations over the ice volume �. The Stokes equa-

tions express the conservation of linear momentum

divσ + ρg = divτ − grad p + ρg = 0, (1)

and the mass conservation

divu = trε̇ = 0 . (2)

In these equations, ρ is the ice density, g = (0,0,−g) the

gravity vector, u = (u,v,w) the ice velocity vector, σ = τ −

pI the Cauchy stress tensor with p = −trσ/3 the isotropic

pressure, τ the deviatoric stress tensor and I the identity ma-

trix. This system of equations of unknowns u and p is closed

by adopting one of the rheological laws presented in the next

section. The conditions that are applied on the boundary Ŵ of

the volume � are discussed in Sect. 3.

2.2 Rheological laws for polar ice

Even if most ice sheet models assume an isotropic rheolog-

ical law for ice, it is well known that the viscous response

of polar ice can be strongly anisotropic, and that this re-

sponse depends on the crystal orientation distribution, i.e.

the ice fabric (e.g. Gagliardini et al., 2009). Elmer/Ice in-

cludes the classic isotropic Glen’s flow law as well as two

anisotropic flow laws. As shown in various applications, the

anisotropy of polar ice has a strong influence on the over-

all flow (Zwinger et al., 2013) and will in turn modify the

age–depth relationship (Gillet-Chaulet et al., 2006; Seddik

et al., 2011). In central parts of ice sheets, ice anisotropy and

the development of fabric can explain the observed hetero-

geneity of the ice deformation along a drilling (Durand et al.,

2007). On the coastal area, due to the large contrast of the

stress regimes for the grounded part and for the ice shelf, the

ice anisotropy induces an apparent hardening of the ice up to

a factor 10 when ice moves from grounded to floating (Ma

et al., 2010).

When ice is assumed to behave as an isotropic material,

its rheology is given by a Norton–Hoff power law, known as

Glen’s law in glaciology, which links the deviatoric stress τ

with the strain rate ε̇:

τ = 2ηε̇, (3)

where the effective viscosity η is defined as

η =
1

2
(EA)−1/nε̇

(1−n)/n
e . (4)

In Eq. (4), ε̇2
e = tr(ε̇2)/2 is the square of the second in-

variant of the strain rate and A = A(T ′) is a rheological pa-

rameter which depends on T ′, the ice temperature relative

to the pressure melting point, via an Arrhenius law. The en-

hancement factor E in Eq. (4) is often used to account for

anisotropy effects, by prescribing an ad hoc value depend-

ing on the ice age and/or type of flow. Due to the state of

stress, E is expected to be greater than 1 for grounded ice

of polar ice sheets, whereas a value lower than 1 should be

used for floating ice shelves (Ma et al., 2010). A compress-

ible form of Glen’s law (Gagliardini and Meyssonnier, 1997),

well adapted to describe the flow of firn, is also implemented

in Elmer/Ice (Zwinger et al., 2007).

Both implemented anisotropic flow laws depend on the ice

polycrystalline fabric, which is described by its second- and

fourth-order orientation tensors a(2) and a(4), respectively,

defined as

a
(2)
ij = 〈cicj 〉 and a

(4)
ijkl = 〈cicj ckcl〉, (5)

where c is the crystal c axis unit vector and 〈〉 denotes the av-

erage over all the grains that compose the polycrystal. By

definition odd-order orientations tensors are null, and the

higher the order of the orientation tensor the better the de-

scription of the fabric. However, it can be shown that with

a linear flow law, knowing the second- and fourth-order ori-

entation tensors is sufficient to uniquely define the macro-

scopic flow law (Gillet-Chaulet et al., 2005; Gagliardini

www.geosci-model-dev.net/6/1299/2013/ Geosci. Model Dev., 6, 1299–1318, 2013
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et al., 2009). For random c axes distribution the non-zero en-

tries of a(2) are a
(2)
11 = a

(2)
22 = a

(2)
33 = 1/3, for a single maxi-

mum fabric with its maximum in the third direction, a
(2)
33 >

1/3 and a
(2)
11 ≈ a

(2)
22 < 1/3, and for a girdle-type fabric in

the plane (x1,x2), a
(2)
33 < 1/3 and a

(2)
11 ≈ a

(2)
22 > 1/3. In ad-

dition to three eigenvalues, three Euler angles are necessary

to uniquely define a(2) with respect to a general reference

frame. It can be shown analytically with a linear flow that

if the second- and fourth-order orientation tensors have the

same eigenframe, the polycrystal behaviour will exhibit or-

thotropic symmetries (Gillet-Chaulet et al., 2006). The equa-

tions for the fabric evolution are presented in Sect. 2.5.

The first anisotropic flow law implemented in Elmer/Ice is

the non-linear General Orthotropic Flow Law (GOLF, Gillet-

Chaulet et al., 2005; Ma et al., 2010). The GOLF provides

a non-collinear and non-linear relation between strain rate

and stress, using the concept of structure tensors. In its initial

form, the ice was assumed to behave as a linearly viscous or-

thotropic material. In more recent works (Martín et al., 2009;

Ma et al., 2010), the GOLF has been extended to a non-

linear form by adding an invariant in the anisotropic linear

law. The simplest choice is either to add the second invariant

of the strain rate ε̇e (Martín et al., 2009) or the second in-

variant of the deviatoric stress τe (with τ 2
e = tr(τ 2)/2, Pettit

et al., 2007; Ma et al., 2010). No theoretical or experimental

results are available today to discard one of these two solu-

tions, and other solutions based on anisotropic invariants of

the deviatoric stress and/or the strain rate are also possible.

In Elmer/Ice, both solutions are implemented. Using the sec-

ond invariant of the deviatoric stress, for a given fabric and

a given state of stress, the corresponding strain rate relative

to the isotropic response is the same for the linear and non-

linear cases. Using the strain-rate invariant in the same way

as Martín et al. (2009) leads to an opposite definition of the

anisotropy ratios: for a given strain rate, the corresponding

stress relative to the isotropic response is the same for the

linear and non-linear cases. When using the stress second in-

variant, the GOLF reads

2Aτn−1
e τ =

3
∑

r=1

[

ηr tr(Mr · ε̇)MD
r + ηr+3(ε̇ · Mr + Mr · ε̇)D

]

. (6)

The six dimensionless anisotropy viscosities ηr(a
(2)) and

ηr+3(a
(2)) (r = 1, 2, 3) are functions of eigenvalues of the

second-order orientation tensor a(2), which represent a mea-

sure of the anisotropy strength. The three structure tensors

Mr are given by the dyadic products of the three eigenvec-

tors of a(2), which then represent the material symmetry axes.

In the method proposed by Gillet-Chaulet et al. (2006), the

six dimensionless viscosities ηr(a
(2)) are tabulated as a func-

tion of the fabric strength (i.e. the a
(2)
i ) using a micro-macro

model. Various micro-macro models, from the assumption of

uniform stress within the ice polycrystal to the assumption

of uniform strain rate, as well as different crystal anisotropy

can be used to tabulate the six viscosities ηr . The most re-

alistic polycrystalline response is obtained using the visco-

plastic self-consistent model (VPSC, Castelnau et al., 1996,

1998), with the two crystal anisotropy parameters chosen so

that the experimentally observed polycrystal anisotropy is re-

produced (Gillet-Chaulet et al., 2006; Ma et al., 2010). When

the ice is isotropic, ηr = 0 and ηr+3 = 1 (r = 1, 2, 3), then

the GOLF (6) reduces to Glen’s isotropic flow law (3) with

E = 1.

The second anisotropic flow law implemented in

Elmer/Ice is the Continuum-mechanical Anisotropic Flow

model based on an anisotropic Flow Enhancement factor

(CAFFE, Seddik et al., 2008; Placidi et al., 2010). The

CAFFE model assumes collinearity between the strain rate

and deviatoric stress tensors, so that the general form of

Glen’s law (3) is not modified, but the enhancement factor

E is a function of the polycrystalline deformability D such

that

E(D) =

{

(1 − Emin)D
t + Emin 1 ≥ D ≥ 0 ,

4D2(Emax−1)+25−4Emax
21 5/2 ≥ D > 1 ,

(7)

with

t =
8

21

(

Emax − 1

1 − Emin

)

, Emax ≈ 10 , Emin ≈ 0.1 . (8)

The polycrystalline deformability D is a function of strain

rate and fabric. When D = 0, the minimal enhancement fac-

tor Emin is reached, which corresponds to an uni-axial com-

pression on a single maximum fabric. For an isotropic fab-

ric, D = 1 and the response is identical whatever the strain

rate, whereas the maximal enhancement Emax is obtained for

D = 5/2, which corresponds to a single maximum fabric un-

dergoing simple shearing. The adopted form for the poly-

crystalline deformability, which verifies the above criteria,

reads

D = 5

[(

ε̇ · a(2) − a(4) : ε̇
)

: ε̇
]

ε̇2
e

. (9)

2.3 Evolution of the surface boundaries

For transient simulations, the upper and lower boundaries

of the domain are allowed to evolve, following an advec-

tion equation. Evolution of the upper surface z = zs(x,y, t)

is given by

∂zs

∂t
+ us

∂zs

∂x
+ vs

∂zs

∂y
− ws = as, (10)

where (us,vs,ws) are the surface velocities obtained from

the Stokes solution and as = as(x,y, t) is the accumu-

lation/ablation prescribed as a vertical component only.

Elmer/Ice provides a surface melting parameterisation based

on positive degree-day (PDD) method (Reeh, 1991), supple-

mented by the semi-analytical solution for the PDD integral
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by Calov and Greve (2005) (Seddik et al., 2012). The accu-

mulation/ablation distribution can also be inferred from a re-

gional climate model either directly as in Gillet-Chaulet et al.

(2012) and Shannon et al. (2013) or using a surface elevation

parameterisation as in Edwards et al. (2013).

The lower surface of an ice sheet is either in contact with

the bedrock or the ocean. The evolution of the lower surface

z = zb(x,y, t) is given as

∂zb

∂t
+ ub

∂zb

∂x
+ vb

∂zb

∂y
− wb = ab⊥

[

1 +

(

∂zb

∂x

)2

+

(

∂zb

∂y

)2
]1/2

, (11)

where (ub,vb,wb) are the basal velocities and ab⊥ =

ab⊥(x,y, t) is the melting/accretion function, taken perpen-

dicular to the surface.

Assuming a rigid, impenetrable bedrock z = b(x,y), the

following topological conditions must be fulfilled by zs and

zb:

zs(x,y, t) ≥ zb(x,y, t) ≥ b(x,y) ∀x,y, t. (12)

The weak formulation of Eq. (10) or Eq. (11), in combina-

tion with the constraints (12) forms a variational inequality.

Technically, it is solved using a method of imposed Dirichlet

conditions that are released by a criterion based on the resid-

ual, as described in Sect. 6.5. In Gagliardini et al. (2010),

melting below the ice shelf was prescribed using a param-

eterised expression following Walker et al. (2008). As dis-

cussed in Sect. 8, a proper description of the basal melt-

ing below ice shelves will certainly require the coupling of

Elmer/Ice with an ocean model or at least the implementa-

tion of a plume-type model.

The margin boundary of an ice sheet is either land- or

marine-terminated, depending on whether the bedrock ele-

vation at the ice front is located above or below sea level,

respectively. In both cases, the front position evolves with

time and its evolution is governed by the imbalance be-

tween ice flux and ablation/basal melting/calving processes.

Land-terminated fronts can be treated classically by adopting

a minimal ice thickness hmin, so that the exact condition (12)

is replaced by the less strict one zs(x,y, t) ≥ b(x,y) + hmin

(and zb(x,y, t) = b(x,y)).

Where the ice sheet is marine-terminated, this type of

treatment cannot be applied because the sea water pressure

and lateral buttressing forces would not be correctly taken

into account. The front boundary of a marine-terminated ice

sheet must therefore be allowed to move over time, as a func-

tion of the calving rate and ice flux at the margin.

Assuming that the calving front is a vertical surface,

it can be described by the implicit function Fc(x,y, t) =

0 (Greve and Blatter, 2009). Denoting by grad Fc =

(∂Fc/∂x,∂Fc/∂y,0) its gradient, Nc = | grad Fc| the norm

and nc = grad Fc/Nc the unit normal vector (assumed to

point out of the ice), the calving front evolves as follows

∂Fc

∂t
+ u

∂Fc

∂x
+ v

∂Fc

∂y
= Ncc⊥, (13)

where c⊥ is the calving rate. The latter is defined as the

ice volume flux across the calving front, c⊥ = (u − wc) · nc,

where wc is the kinematic velocity of the calving front

(Greve and Blatter, 2009). Implementation of calving laws to

evaluate the calving rate c⊥ is part of the developments cur-

rently ongoing in Elmer/Ice, as discussed more in details in

Sect. 8. Moving the mesh both vertically (upper and lower

surface) and horizontally (calving front) induces additional

terms in the convection part of equations and in turn techni-

cal issues that are discussed in Sect. 6.1.

2.4 Heat equation

The temperature within the ice is obtained from the general

balance equation of internal energy and reads

ρcv

(

∂T

∂t
+ u · grad T

)

= div(κ grad T ) + D : σ , (14)

where κ = κ(T ) and cv = cv(T ) are the heat conductivity

and specific heat of ice, respectively. The last term in the heat

equation represents the amount of energy produced by vis-

cous deformation. The ice temperature T is bounded by the

pressure melting point Tm, so that T ≤ Tm, or equivalently

T ′ ≤ 0, with T ′ = T − Tm being the homologous tempera-

ture entering the Arrhenius law to estimate Glen’s parameter

in Eqs. (4) and (6). This inequality, as well as temperature-

dependent material properties, make the solution of the heat

transfer equation a non-linear problem which is solved using

an iterative method as presented in Sect. 6.5.

2.5 Fabric description and evolution

Assuming that recrystallisation processes do not occur and

that the ice fabric is induced solely by deformation, the evo-

lution of the second-order orientation tensor a(2) defined by

Eq. (5) can be written as

∂a(2)

∂t
+ grad a(2) · u = W · a(2) − a(2) · W − ι(C · a(2)

+ a(2) · C − 2a(4) : C), (15)

where W is the spin tensor defined as the antisymmetric part

of the velocity gradient. The tensor C is defined as

C = (1 − α)ε̇ + αksAτn−1
e τ . (16)

The interaction parameter α controls the relative weight-

ing of the strain rate ε̇ and the deviatoric stress τ in the fab-

ric evolution Eq. (15). When α = 0, the fabric evolution is

solely controlled by the state of strain rate, whereas in the

case where α = 1 the fabric evolves under the influence of the

deviatoric stress solely. In between, as for the VPSC, both the

strain rate and deviatoric stress contribute to the fabric evolu-

tion. Assuming ι = 1, an interaction parameter α = 0.06 is in

accordance with the crystal anisotropy and the VPSC model

used to derive the polycrystalline behaviour (Gillet-Chaulet
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et al., 2006). Seddik et al. (2008, 2011) adopted instead α = 0

and a value of ι lower than 1. In Eq. (15), the fourth-order

orientation tensor is evaluated assuming a closure approxi-

mation giving a(4) as a tensorial function of a(2) (Chung and

Kwon, 2002; Gillet-Chaulet et al., 2006). Theoretically, re-

crystallisation processes, such as continuous and migration

recrystallisation, can be included by adding terms in Eq. (15)

to parameterise on the polycrystalline scale the phenomena

occurring at the grain scale (Seddik et al., 2011). Because

experimental data are currently missing, these parameterisa-

tions have not yet been validated and are not presented here.

3 Boundary conditions

For all the equations presented above, classic Dirichlet, Neu-

mann, Robin, symmetric and periodic boundary conditions

can be applied on the boundary of the domain. In this sec-

tion, we present the conditions to be applied on the different

boundaries of an ice sheet for the main equations presented

above, and we focus more specifically on the treatment of the

basal boundary.

3.1 Ice/atmosphere boundary

The upper free surface z = zs(x,y, t), also denoted Ŵs, is in

contact with the atmosphere and is therefore a stress-free sur-

face, so that

σns = −patmns ≈ 0 for z = zs, (17)

where ns is the normal outward-pointing unit vector to the

free surface. For the dating equation, fabric equations and all

other transport equations, Dirichlet conditions are applied on

the upper surface only where the ice velocity enters the do-

main (mainly in the accumulation area). Where z = zs and

u · ns ≤ 0, the temperature is equal to the imposed surface

temperature, T (x,y,zs, t) = Ts(x,y, t), and the fabric is as-

sumed to be isotropic, a(2)(x,y,zs, t) = I/3. For the heat

equation, a heat flux can be imposed at the upper surface to

account for melt-water refreezing.

3.2 Ice/bedrock boundary

The lower interface z = zb(x,y, t), also denoted Ŵb, may be

in contact with either the sea or the bedrock, so two kinds of

boundary conditions coexist on a single surface. The condi-

tions to be applied where the ice is in contact with the sea are

presented in the next section. Where the ice is in contact with

the bedrock (i.e. zb = b), the following conditions apply:

u · nb + ab⊥ = 0, (18)

σnti = ff (u,N)uti , i = 1,2, (19)

where σnti = t i · σnb and uti = u · t i (i = 1,2) are the basal

shear stresses and basal velocities, respectively, defined in

terms of tangent vectors t i and normal outward-pointing

unit vector to the bedrock nb. Note that the boundary con-

dition Eq. (18) for the Stokes problem is equivalent to the

free-surface Eq. (11). The effective pressure N is defined

as the difference between the ice normal stress and the wa-

ter pressure, such as N = −σnn − pw with σnn = nb · σnb.

Equation (18) is the no-penetration condition accounting

for basal melting (ab⊥ < 0) or basal accretion (a⊥b > 0),

whereas Eq. (19) stands for the general form of a friction

law. When ff = 0, the ice slides perfectly over the bedrock,

whereas when ff → +∞ basal sliding is null. The three dif-

ferent friction laws implemented in Elmer/Ice are presented

below.

The first friction law linearly relates the basal shear stress

to the basal velocity, such as

σnti + βuti = 0, i = 1,2, (20)

where β ≥ 0 is the basal friction parameter. As shown later,

this simple law is used for data assimilation and in this case

β is a control parameter.

The second law implemented in Elmer/Ice is a Weertman-

type sliding law:

σnti + βmum−1
b uti = 0, i = 1,2, (21)

where ub is the norm of the sliding velocity ub = u − (u ·

nb)nb, βm is a sliding parameter and m an exponent. When

m = 1, the Weertman-type friction law Eq. (21) reduces to

the linear law Eq. (20). Theoretically, in the case of ice slid-

ing without cavitation over an undulating bed, m is equal to

1/n (Lliboutry, 1968), where n is Glen’s law exponent.

The third friction was proposed by Schoof (2005) from

mathematical expansions and by Gagliardini et al. (2007)

from FE simulations. This law describes the flow of clean

ice over a rigid bedrock when cavitation is likely to occur:

σnti

CN
+

(

χ u1−n
b

1 + αq(χ ub)q

)1/n

uti = 0 i = 1,2, (22)

where χ = 1/(CnNnAs), αq = (q−1)q−1/qq , As is the slid-

ing parameter in the absence of cavitation and n Glen’s

law exponent, resulting in a non-linear relation between the

basal drag σnti and the basal sliding velocity uti . The max-

imal value of σnti is C and the exponent q ≥ 1 controls the

post-peak decrease. When the post-peak exponent q is equal

to 1, the basal drag tends asymptotically to its maximum

value C (no post-peak decrease). Note that in the limit case

where N ≫ 0, the sliding parameter As and the friction pa-

rameter βm are inversely proportional. As shown by Schoof

(2005), the coefficient C should be chosen smaller than the

maximum local positive slope of the bedrock topography at

a decimetre to metre scale, so that the ratio σnti /N ≤ C ful-

fills Iken’s bound (Iken, 1981). The friction law Eq. (22) is

strongly related to the water pressure pw through the effec-

tive pressure N . The law Eq. (22) can then be used to cou-

ple the hydrology and the ice dynamics. The hydrological
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model and its implementation in Elmer/Ice are presented in

de Fleurian et al. (2013).

For the heat equation, the geothermal heat flux qgeo is im-

posed where the basal temperature is lower than the pres-

sure melting point (T < Tm or T ′ < 0), and the following

Neumann-type boundary condition applies:

κ(T )( grad T · nb) |Ŵb = qgeo + |σnti uti |, (23)

where |σnti uti | is the heat energy induced by basal friction.

Where the temperature melting point is reached (T = Tm),

the amount of melted water is estimated from the imbalance

of heat fluxes and surface production:

ab =
qgeo + |σnti uti | − κ grad T · nb

ρL
, (24)

where L is the latent heat of ice.

3.3 Ice/sea boundary

At the bottom surface z = zb(x,y, t) where the ice is in con-

tact with the ocean (i.e. zb > b) and at the front of the ice

sheet, the normal stress is equal to the sea pressure pw(z, t),

which evolves vertically as follows:

pw(z, t) =

{

ρwg(lw(t) − z), z < lw(t)

0, z ≥ lw(t),
(25)

where ρw is the sea water density and lw the sea level. The

Neumann condition applied on these ice/ocean interfaces is

thus

σnc = −pwnc. (26)

3.4 Grounding line dynamics

The position of the grounding line is part of the solution and

can evolve with time. Its position at each time step is deter-

mined by solving a contact problem. The contact is tested

by comparing at each node where zb = b the normal force

Rn exerted by the ice on the bedrock and the equivalent wa-

ter force Fw. Rn is directly evaluated from the residual of

the Stokes system, whereas Fw is obtained by integrating the

water pressure over the boundary elements using the bound-

ary element shape functions. Then, if Rn > Fw and zb = b,

the boundary conditions Eqs. (18) and (19) apply; whereas

if Rn = Fw and zb = b, or zb > b, the boundary condition

Eq. (26) applies instead.

4 Auxiliary equations

The goal of an ice sheet simulation, usually, is to obtain infor-

mation on either the geometry, the age/depth relationship or

simply the exerted stresses and forces on a particular surface

in contact with the ice. This section introduces the methods

needed to obtain such information.

4.1 Age equation

The age A of the ice at each point of the ice sheet domain is

obtained by solving the following equation:

∂A

∂t
+ u · grad A = 1, (27)

where z = zs and u · ns ≤ 0, the age of the ice is zero, i.e.

A(x,y,zs,t) = 0 (Zwinger and Moore, 2009). By solving the

age equation we can compute isochrones and determine dat-

ing as a function of depth at an ice core (drilled or planned)

location. Input parameters entering other equations might

also be age-dependent, such as the enhancement factor for

example.

4.2 Depth and elevation

It is often very useful to know the depth below the upper

surface or the height above the bedrock at each point of the

ice sheet domain. For example, it can be used to prescribe

parameterisation of the temperature or the ice fabric fields

as a function of depth. With the FE method, using unstruc-

tured meshes, the depth d(x,y,z, t) = zs − z or the height

h(x,y,z, t) = z − zb at any point M(x,y,z) cannot be esti-

mated directly because nodes are not necessarily vertically

aligned. Therefore, we compute the depth d (or equivalently

height h) field by solving the following equations:

∂d

∂z
= −1 , or

∂h

∂z
= 1, (28)

with the boundary conditions d = 0 on z = zs or h = 0 on

z = zb.

Effectively, we solve, here for the height h, the following

system:

− ez · ∇ (ez · ∇h) = 0, (29)

ez · ∇h|∂� = 1, (30)

with the boundary condition h|Ŵb = 0 and the unity vec-

tor ez in the vertical direction. The variational form is ob-

tained after integrating Eq. (29) by parts and accounting for

the boundary condition Eq. (30), leading to a degenerated

Laplace equation of the form

−

∫

�

∇ (ez · ∇h) · ϕezd� =

∫

�

(ez · ∇h)∇ϕ · ezd� −

∮

∂�

ϕez · ndŴ. (31)

4.3 Stress and strain rate

Elmer/Ice includes solvers to compute the Cauchy stress,

deviatoric stress or strain rate fields from the Stokes solu-

tion, and also includes eigenvalues of these tensor variables.
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In addition, calculating of the stress from the velocity and

isotropic pressure fields is a matter of interest because dif-

ferent methods can lead to noticeably different solutions. In

Elmer/Ice, the components σij of the nodal Cauchy stress

field are obtained from an existing Stokes solution (u,p)

by writing the variational version of the constitutive law in

a componentwise manner as
∫

�

σij8d� =

∫

�

ei · σej8d�

=

∫

�

ei ·

(

η
(

grad u + grad T u
)

− pI
)

ej8d�. (32)

This results in solving six independent equations, one for

each of the six independent components of the stress tensor.

In a similar manner, components ε̇ij of the nodal strain rate

tensor are obtained from the following variational form:
∫

�

ε̇ij8d� =

∫

�

ei ·

(

grad u + grad T u
)

ej8d�. (33)

5 Inverse methods within Elmer/Ice

The ice effective viscosity η(x,y,z) in Eq. (3) and the basal

friction coefficient β(x,y) in Eq. (20) are two particularly

important input fields when modelling the flow of real glacio-

logical systems. However, these two parameters are used

to represent complex processes, and their values in situ are

poorly constrained and can vary by several orders of magni-

tude with time and space. On the other hand, our knowledge

of some of the outputs of the model (surface velocity, surface

elevations) has considerably increased recently with data ac-

quired by remote spatial observation.

Two variational inverse methods have been implemented

within Elmer/Ice to constrain η(x,y,z) and β(x,y) in diag-

nostic simulations from topography and surface horizontal

velocity data. Both methods are based on minimising a cost

function that measures the mismatch between the model and

the observations. The two methods are briefly described be-

low and their implementation in Elmer/Ice is verified in

Sect. 7.

5.1 Robin inverse method

This method, initially proposed by Arthern and Gudmunds-

son (2010), consists in solving alternatively the natural Neu-

mann-type problem, defined by Eqs. (1) and (2) and the sur-

face boundary conditions (17), and the associated Dirich-

let-type problem, defined by the same equations except that

the Neumann upper-surface condition Eq. (17) is replaced by

a Dirichlet condition where observed surface horizontal ve-

locities are imposed, such that

u = uobs and v = vobs for z = zs. (34)

The cost function that expresses the mismatch between the

solutions of the two models is given by

Jo =

∫

zs

(uN − uD) · (σN − σD) · ndŴ, (35)

where superscripts N and D refer to the Neumann and

Dirichlet problem solutions, respectively.

The Gâteaux derivatives of the cost function Jo with re-

spect to the parameters η and β for perturbations η′ and β ′,

respectively, are given by

dηJo =

∫

�

4η′
(

(ε̇D
e )2 − (ε̇N

e )2
)

d�, (36)

dβJo =

∫

zb

β ′
(

|uD|2 − |uN|2
)

dŴ, (37)

where the symbol ε̇2
e denotes the square of the second invari-

ant of the strain rate as defined for Eq. (4) and | · | defines the

norm of the velocity vector. Note that this derivative is exact

only for a linear rheology and thus is only an approximation

of the true derivative of the cost function when using Glen’s

flow law Eq. (3) with n > 1 in Eq. (4).

5.2 Control inverse method

For a linear isotropic rheology (a scalar viscosity η indepen-

dent of the velocity, i.e. n = 1 in Eq. 4), the Stokes system

of equations is self-adjoint. Denoting by λ and q the adjoint

variables corresponding to u and p, respectively, they are so-

lutions of the following equations:

2divηε̇λ − grad q = 0, (38)

trε̇λ = 0, (39)

where ε̇λ is the equivalent of the strain rate tensor constructed

with λ. For a non-linear rheology, the operator used by the

forward solver (Stokes operator) remains self-adjoint when

equipped with the Newton linearisation (Petra et al., 2012).

The cost function is chosen to measure the mismatch be-

tween the modelled and observed surface velocities

Jo =

∫

Ŵs

j (u − uobs)dŴ, (40)

where j is the mismatch measure function and uobs are the

observed surface velocities. The choice of j can be case-

dependent and will affect the boundary condition terms of

the adjoint system. For example, as the surface velocity di-

rection is mainly governed by topography, we can discard the

error on the velocity direction and express j as

j (u − uobs) =
1

2

(

|uH| − |uobs
H |

)2
, (41)
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where subscript H refers to the horizontal component

of the velocity vectors (Gillet-Chaulet et al., 2012). The

Gâteaux derivatives of Eq. (40) with respect to η and β are

obtained as follows:

dηJo =

∫

�

−2η′
(

ε̇λ : ε̇
)

d�, (42)

dβJo =

∫

Ŵb

−β ′u · λdŴ. (43)

5.3 Regularisation

When working with non-perfect (noisy) data, it is neces-

sary to add a regularisation term in the cost function to im-

prove the conditioning of the inverse problem and ensure the

existence of a unique minimum. The regularisation term is

based on a priori information on the solution either from

measurements, from analytical solutions (Raymond Pralong

and Gudmundsson, 2011), or from assumptions on the spa-

tial variations of the variable. In Elmer/Ice, a smoothness

constraint on a variable α can be imposed in the form of

a Tikhonov regularisation penalising the first spatial deriva-

tives of α as in Morlighem et al. (2010), Jay-Allemand et al.

(2011), and Gillet-Chaulet et al. (2012):

Jreg =
1

2

∫

Ŵb

(

(

∂α

∂x

)2

+

(

∂α

∂y

)2

+

(

∂α

∂z

)2
)

dŴ. (44)

The Gâteaux derivative of Jreg with respect to α for a per-

turbation α′ is obtained by

dαJreg =

∫

Ŵb

((

∂α

∂x

)(

∂α′

∂x

)

+

(

∂α

∂y

)(

∂α′

∂y

)

+

(

∂α

∂z

)(

∂α′

∂z

))

dŴ. (45)

The total cost function to minimise then reads

Jtot = Jo + λJreg, (46)

where λ is a positive ad hoc parameter. The cost function

minimum is therefore no longer the best possible fit to obser-

vations, but a compromise (through the tuning of λ) between

fitting with observations and smoothness in α.

5.4 Minimisation

The Gâteaux derivatives of Jo are given by a continuous

scalar product represented by the integral terms in Eqs. (37)

and (42). When discretized on the FE mesh, these equations

are transformed into a discrete Euclidean product as follows:

dγ Jo =

∫

∇γ Joγ
′ ≈

Np
∑

i=1

Wi∇
i
γ Joγ

′
i , (47)

where γ represents η or β, ∇γ Jo is the continuous Fréchet

derivative of Jo, the expression of which is given by com-

parison with Eqs. (37) and (42), ∇i
γ Jo is its value at mesh

node i = (1, . . . ,Np) and Wi is the nodal weight associated

with node i and computed following the standard integration

scheme. The sum of all weights is the volume (or area) of

the FE mesh. The discrete gradients of Jo at each mesh node

used for the minimisation are then given by Wi∇
i
γ Jo and ac-

count for the volume or area surrounding each node.

The minimisation of the cost function Jo with respect to

ηi or βi is done using the limited memory quasi-Newton rou-

tine M1QN3 (Gilbert and Lemaréchal, 1989) implemented in

Elmer/Ice in reverse communication mode. This method uses

an approximation of the second derivatives of the cost func-

tion and is therefore more efficient than a fixed-step gradient

descent.

How we define the inner product used to compute the

Gâteaux derivatives affects the definition of the Fréchet

derivatives, and could affect the convergence of the min-

imisation, but does not affect the minimum we are seek-

ing to achieve. As for glaciological applications, velocities

and strain rates can vary by several orders of magnitude in-

side the domain, and we have observed that including the

nodal weights in the definition of the Fréchet derivatives

leads to good convergence properties when using an unstruc-

tured mesh where large elements correspond to low-velocity

areas, and vice versa. Possible alternatives are, for the con-

trol inverse method (Morlighem et al., 2010), to use a cost

function that measures the logarithm of the misfit or, for the

Robin inverse method (Arthern and Gudmundsson, 2010), to

use a spatially varying step size rather than a fixed step in

the gradient descent algorithm, as proposed in Schäfer et al.

(2012).

6 Numerical implementation and specificities

6.1 Mesh and deforming geometry

Ice sheets and ice caps have a very small aspect ratio, hori-

zontal dimensions being much larger than the vertical dimen-

sions, and therefore meshing requires special care. The strat-

egy commonly adopted in Elmer/Ice for meshing glaciers,

ice sheets and ice caps is to mesh first the horizontal 2-D

footprint and then extrude it vertically. These meshes are then

vertically structured with the same number of layers over

the whole domain, whereas the horizontal dimension can be

meshed using an unstructured mesh. This is one of the main

advantage of a FE ice flow model in comparison to the clas-

sically used finite difference or volume methods for which

the grid has the same size over all the domain, unless a mesh

adaptive method is implemented (Cornford et al., 2013a).

The unstructured mesh of the footprint can be created

using triangle-shaped elements of various sizes to account

for the spatial heterogeneity of the variables gradient. The

horizontal size of the elements can be controlled using,

for example, a metric constructed from the Hessian ma-

trix of observed surface speed (Gillet-Chaulet et al., 2012).
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Technically, optimising the mesh sizes according to this met-

ric is done using the freely available anisotropic mesh adap-

tation software YAMS (Frey and Alauzet, 2005). Because of

the overall size of ice sheets, the mesh is then partitioned and

all partitions are solved in parallel using the Message Passing

Interface (MPI). In Elmer/Ice, the mesh can be generated ei-

ther by extrusion as a preprocessing step or by a built-in mesh

extrusion feature which operates on the parallel level. This

internal procedure efficiently removes some of the possible

bottlenecks in preprocessing as the maximum mesh size is

no longer constrained by serial operations. Also, in the case

of an extruded mesh, certain operations become trivial, as

for example modifying the geometry or computing the depth

or elevation, which efficiently becomes a one-dimensional

problem.

For transient simulation, the geometry of the ice sheet is

evolving with time and the mesh has to be deformed to follow

these changes. The common approach to deform geometries

in Elmer/Ice, if dealing with unstructured meshes, is to rear-

range the nodes by solving a pseudo linear elasticity problem.

Any mesh displacement, 1x, in Elmer/Ice is relative to the

initial mesh position, x0, i.e. x(t) = x0 +1x(t). A deforma-

tion of the surface, for instance, can be induced by a chang-

ing free-surface elevation, h. Hence, the prescribed vertical

deformation here is 1x(t) · ez = h(t) − h(t = 0). Inside the

bulk mesh, the corresponding deformation is then obtained

by solving

−∇ ·

(

2Yκ

(1 − κ)(1 − 2κ)
ǫ + λ

Y

2(1 + κ)
∇ ·1xI

)

= 0, (48)

where Y and κ are respectively a pseudo Young’s modulus

and Poisson ratio, describing the resistance against the de-

formation and its directional ratio. Further, ǫ describes the

symmetric strain tensor

ǫ =
1

2

(

∇1x + (∇1x)T
)

. (49)

In consequence, the induced mesh velocity from the re-

computation of 1x by Eq. (48) from one discrete time-level

t to t + 1t then is given by

um =
1x(t + 1t) − 1x(t)

1t
. (50)

The continuum equations, as presented above, strictly, are

valid only in a fixed reference frame. In ice sheets or glaciers,

however, the geometry by nature is not fixed. In a fixed ref-

erence frame, if u is the fluid velocity, the total change of

a scalar property, 9,

d9

dt
=

∂9

∂t
+ u · grad 9, (51)

consists of the local change and of a convective part

u · grad 9.

For instance, if we solve Eq. (14), we should take any in-

duced mesh velocity Eq. (50) into account. This is done by

the arbitrary Lagrangian–Eulerian (ALE) formulation, which

is based on the Reynolds transport theorem (e.g. Greve and

Blatter, 2009). Conservation simply demands that in the gen-

eral reference frame of a moving mesh, Eq. (51) changes into

d9

dt
=

∂9

∂t
+ (u − um) · grad 9. (52)

A slight deviation from this is for the kinematic boundary

condition Eq. (10), as the convection term is only in the hor-

izontal plane, i.e.

∂zs

∂t
+ (us − um)

∂zs

∂x
+ (vs − vm)

∂zs

∂y
− ws = as. (53)

The same is applied to Eq. (11) for the evolution of zb.

A special case of Eq. (52) is when the surface is considered

to move horizontally (it does vertically by definition) at the

speed of the fluid particles, i.e. um = us. This, for instance, is

needed if dealing with advancing fronts in marine-terminated

glaciers. In this case, the new position of the surface is deter-

mined by x(t + 1t) = x(t) + u(t)1t . In terms of the abso-

lute mesh update 1x, this means that 1x(t +1t) = 1x(t)+

u(t)1t , which simply reflects Eq. (50) under um = us and

as = 0.

6.2 Variational formulations

Elmer/Ice relies on the FE method, and all the equations pre-

sented above are solved using a discretised variational form,

leading in turn to solving a linear system for which the un-

knowns are the nodal value of the variable. The aim of this

section is to present some technical details for the variational

forms of both the Stokes and transport equations.

6.2.1 Stokes equations

The discrete variational form of the Stokes system Eqs. (1)

and (2) is obtained by integration over the ice domain �

using the vector-valued weight function 8 and the scalar

weight function 9,
∫

�

9divud� = 0, (54)

∫

�

τ : grad 8d� −

∫

�

pdiv8d� −

∮

∂�

n · σ8dŴ

= ρ

∫

�

g · 8d�. (55)

In the relation given above, the left-hand-side term in the

momentum equation given in Eq. (1) has been integrated by

parts. One part is re-formulated by applying Green’s theo-

rem, transforming it from an integral over the domain � into
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one over the closed boundary of the domain Ŵ, for which

Neumann or Newton boundary conditions can be set (e.g.

vanishing deviatoric surface stress components). The numer-

ical solution of Eq. (54) is obtained by either using the sta-

bilised method from Franca and Frey (1992) or the residual

free bubbles method in Baiocchi et al. (1993).

For non-linear rheology, e.g. n = 3 in Glen’s law (Eq. 4)

and Eq. (54) is non-linear and needs to be solved iteratively.

For the (k + 1)-st iterations of the non-linear loop, the effec-

tive viscosity ηk+1 is estimated from Eq. (4) using the pre-

viously computed velocity field uk (fixed-point method or

Picard method) or a Newton linearisation such as

ηk+1 = ηk + (uk+1 − uk) ·
∂η

∂u
. (56)

Convergence is obtained much faster with the Newton iter-

ation than with the Picard method, but the former algorithm is

known to diverge when starting too far from the solution. In

practice, the solution is initially approached by performing

some Picard iterations, and then activating the Newton lin-

earisation for the last iterations. Because the convergence is

problem-dependent and depends on the initial solution, there

is no general rule stating when to start the Newton iteration

scheme. The efficiency of the Newton method is illustrated

on a test case in Sect. 7.2.

6.2.2 Transport equations

Assuming A = (A) or A = (a
(2)
11 ,a

(2)
22 ,a

(2)
12 ,a

(2)
23 ,a

(2)
13 ), equa-

tions for the age of ice (Eq. 27) or the ice fabric evolution

(Eq. 15) can be expressed using the generic form

∂Ai

∂t
+ div(Aiu) + KiAi = Fi, (57)

where i = 1, K = 0 and F = 1 for the dating equation and

where i = 1, . . . ,5, and K and F are vector functions of C,

W, a(2) and a(4) for the fabric evolution equations. For in-

compressible fluids (ice), div(Aiu) simplifies to u· grad (Ai).

Equation (57) is a first-order hyperbolic equation, and is non-

linear when solving for the fabric evolution.

The variational formulation of the transport equations is

obtained by multiplying Eq. (57) by the test function 8 and

integrating over the ice volume �. Because in the case of

a vector solution A the set of equations is solved iteratively

for each component independently, the variational formula-

tion is presented for a scalar A, and reads
∫

�

∂A

∂t
8d� +

∫

�

div(Au)8d� +

∫

�

KA8d� =

∫

�

F8d�. (58)

The second term is then integrated by parts, so that
∫

�

∂A

∂t
8d� −

∫

�

A
∂8

∂xk

ukd� +

∫

�

KA8d�

=

∫

�

F8d� −

∮

∂�

Au · n8dŴ. (59)

Dirichlet conditions have to be applied on all the bound-

aries of � where the flow velocity is directed inside the ice

domain. Because of the missing diffusion terms in Eq. (59),

the classic Galerkin method is unstable. This transport equa-

tion is either solved using the discontinuous Galerkin method

proposed by Brezzi et al. (2004) or a semi-Lagrangian

method (Staniforth and Côté, 1991; Martín et al., 2009).

6.3 Preconditioned linear solvers

The discretisation and linearisation of the varying viscos-

ity Stokes system lead to linear systems which cannot be

solved efficiently by using standard linear solvers. A special

preconditioned version of the generalised conjugate resid-

ual (GCR) method has therefore been implemented recently

into Elmer/Ice to obtain effective parallel solutions of these

systems. This new preconditioner utilises the natural block

structure of the associated linear algebra problem and is de-

rived from approximating the associated pressure Schur com-

plement matrix S as S ≈ (1/η)M, where η denotes the vis-

cosity corresponding to the current non-linear iterate and M

is the mass matrix corresponding to the pressure approxi-

mation (for similar solvers for varying viscosity flows see

Grinevich and Olshanskii, 2009; Burstedde et al., 2009; Gee-

nen et al., 2009; ur Rehman et al., 2011). Results of scal-

ability tests done with this block preconditioned solver are

presented in Sect. 7.3. Note that in conjunction with this

Stokes solver version, we employ a bubble stabilisation strat-

egy based on utilising bubble basis functions corresponding

to the high-order version of the finite element method.

6.4 Normal consistency

All boundary conditions involving vector (velocities) or ten-

sor values (stress) are in need of a consistent description of

the surface normals. Nodal normals, by nature of the discreti-

sation applied in the FE method, are not uniquely defined, es-

pecially with linear elements. Thus, the representation of sur-

faces has non-continuous derivatives at nodes. For ice sheet

boundary conditions, this is a problem occurring typically

at the bedrock interface in the presence of sliding where a

Dirichlet-type non-penetration condition has to be applied,

i.e. u·n = 0. Depending on the nodal definition of n, this con-

dition can lead to artificial source and sinks for mass and mo-

mentum in very uneven parts of the bedrock. Gillet-Chaulet

et al. (2012) have shown that using the average of the nor-

mal to the elements sharing the node to estimate the nodal

normal can lead to an artificial mass loss of up to 10 % of

total ice discharge at the margin of Greenland. Recently, the

mass-conserving way of deducing the nodal surface (Walkley

et al., 2004) has been implemented in Elmer. For a node xj ,

with an element-correlation number Nj , the surface normal

is derived by
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nj =
1/Nj

∑Nj

i=1

∫

�k
n(xj )ϕkdV

‖1/Nj

∑Nj

i=1

∫

�k
n(xj )ϕkdV ‖

. (60)

The relation above constructs the nodal surface normal,

nj , as a sum of the normals evaluated at the adjacent ele-

ments, �k , using the same weighting functions, ϕk , as for the

momentum equation.

6.5 Accounting for inequality

As presented in Sect. 2, the ice temperature T in Eq. (14) is

bounded by the pressure melting point Tm, and the free sur-

face zb and zs in Eqs. (10) and (11) must fulfil the inequali-

ties zs(x,y, t) ≥ b(x,y)+hmin and zb(x,y, t) ≥ b(x,y). The

variational inequality is solved using a method of imposed

Dirichlet condition that are released by a criterion based on

the residual. Let

A · h = a (61)

be the matrix equation of the unconstrained system. In FE

method terminology, A is the system matrix, h the solution

vector and a the body force. We then have to solve Eq. (61)

under a constraint vector hmin. Here, we choose a minimum

value, hence a lower constraint, but the same method works

also with upper bounds, like it is applied in the case for

constraining the temperature with the local pressure melting

point. This lower constraint reads

h > hmin . (62)

In order to enforce Eq. (62) we apply the same method as

in Zwinger et al. (2007):

– A node i violating hi > hmin i is set as “active”.

– For each “active” node a Dirichlet condition hi = hmin i

is introduced into Eq. (61). This is achieved by setting

the ith row of the system matrix to Aij = δij , where δij

is the Kronecker symbol, and the ith entry of the force

vector to ai = hmin i . Doing so for all active nodes re-

sults in an altered, constrained system

A′ · h′ = a′. (63)

– Instead of Eq. (61) we are now solving Eq. (63), obtain-

ing a solution vector h′.

– h′ in turn is inserted into the unconstrained system

Eq. (61), defining the residual

R = A · h′ − a . (64)

– If an earlier “active” node is found to comply with

Eq. (62), it is taken of the list if, and only if, Ri < 0.

This algorithm is repeated as long as there is no change in

the active node set and the convergence criteria imposed for

the solver are met.

In a converged state, the physical meaning of the resid-

ual can be interpreted. For the heat equation Eq. (14), the

residual represents the additional cooling needed to comply

with the inequality T < Tm. For the free-surface equations

Eqs. (10) and (11), the residual can be interpreted as the per-

node additionally needed accumulation/ablation to meet the

constraint Eq. (12).

7 Elmer/Ice efficiency

7.1 Convergence tests

Convergence of the Stokes solver is tested by running the

same problem with an increased mesh resolution. The pur-

pose of this exercise is to verify the model and compare the

efficiency of the various elements and associated stabilisa-

tion methods available within Elmer. For three-dimensional

geometries, the Stokes equation can be solved using 8-node

(linear) or 20-node (quadratic) hexahedron elements, or 6-

node (linear) wedge elements. Stabilisation of the Stokes

equations is done either using the stabilised method (Franca

and Frey, 1992) or the residual free bubbles method (Baioc-

chi et al., 1993).

The Stokes solver is verified using the manufactured ana-

lytical solution first proposed in Sargent and Fastook (2010)

and subsequently modified and corrected in Leng et al.

(2013). Here, we use exactly the same geometry and set of

parameters as in Leng et al. (2013). All meshes are structured

and defined by the number of elements in x, y and z direc-

tions. The mesh discretisation is made to vary from a very

coarse mesh (20 × 20 × 5, 10 584 degrees of freedom for the

linear element) up to a fine mesh (160 × 160 × 40, 4 251 044

degrees of freedom). The modelled domain is the bumpy bed

of ISMIP-HOM experiment A (Pattyn et al., 2008) with the

80 km length. For this geometry, the finer mesh does corre-

spond to horizontal and mean vertical resolutions of 500 and

25 m, respectively. The convergence rate for the various el-

ements and stabilisation methods is obtained as the slope of

the L2 relative error norm function of the grid size refine-

ment. The L2 relative error norm of two arbitrary vectors u

and v is defined as

δu,v =
2|u − v|

|u + v|
. (65)

For simplicity, it is plotted here as a function of the cu-

bic root of the inverse of the degrees of freedom, which is

proportional to the grid size refinement. These curves for the

three components of the velocity and isotropic pressure are

plotted in Fig. 1. They show that whatever the element type

and stabilisation method, the rates of convergence (slopes of

the curves) are similar and close to 3 for velocity and pres-

sure. A rate of convergence of 3 is greater than the theoretical
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Fig. 1. Results of the convergence tests: L2 relative error norm be-

tween Elmer/Ice and analytical solutions for the 3 components of

the velocity (u,v,w) and the pressure, p, as a function of the grid

size (which is proportional to the inverse of the cubic root of the

degrees of freedom) for Franca and Frey (1992) stabilisation with

(black) 6-node wedge element, (red) 8-node hexahedron element

and with (blue) 20-node hexahedron element; and for the residual

free bubbles stabilisation (Baiocchi et al., 1993) with (green) 8-node

hexahedron element and with (magenta) 20-node hexahedron ele-

ment. The black dashed line indicates a rate of convergence of 3.

value expected (e.g. Ern and Guermond, 2004), especially for

the linear element and pressure. Surprisingly, the same rate

of convergence is obtained for linear and quadratic elements,

and for a given discretisation the quality of the solution is

even better using linear elements, so that the use of quadratic

elements is not recommendable, at least in this particular ex-

ample. For this application and the quadratic 20-node hexa-

hedron element, the residual free bubbles method is found to

be less accurate than the stabilisation method of Franca and

Frey (1992).

7.2 Picard versus Newton linearisation

Picard and Newton schemes for the non-linear solution of

the Stokes equations are compared by performing the ISMIP-

HOM experiment A005 (Pattyn et al., 2008; Gagliardini and

Zwinger, 2008) for two different initial conditions. The first

one assumes null velocity and pressure, whereas the second

initial condition is equal to the SIA solution for this problem.

The switch from the Picard to the Newton iterative scheme

is controlled by a criterion on δup,up+1 , the L2 relative error

norm, Eq. (65), between the previous p and current p + 1

velocity fields of the non-linear iteration loop. The same di-

agnostic simulation is repeated for switch criteria of 10−6
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Fig. 2. Evolution of the L2 relative error norm between two con-

secutive solutions of the Stokes system, δup,up+1 , as a function of

the non-linear iteration, for a switch criterion from the Picard to the

Newton scheme of 10−6 (Picard only, black curve), red 10−2, green

10−1, blue 1 and magenta 2 (Newton only), for the ISMIP-HOM

experiment A005 with initial conditions (circle) assuming zero ve-

locity and pressure and (triangle) estimated from the SIA solution.

The colour of the dot-dashed lines indicates the value of the switch

criterion of the corresponding colour curve.

(Picard only), 10−2, 10−1, 1 and 2 (Newton only). The non-

linearity is assumed to be resolved when δup,up+1 < 10−6.

The evolution of δup,up+1 as a function of the non-linear it-

eration indices is presented in Fig 2. As expected, the Newton

scheme is quadratically convergent, while Picard converges

only linearly (Paniconi and Putti, 1994). When the initial

condition is null velocity and pressure, it takes 40 Picard it-

erations to converge, whereas with Newton’s method alone,

it requires only 10 iterations. Surprisingly, even if it takes

less Picard iterations to converge for the SIA initial condi-

tion, the convergence of the Newton solver is only obtained

if Picard iterations are performed from δup,up+1 < 10−1. This

example shows that Newton’s method can diverge if the ini-

tial condition is too far from the converged solution. A switch

criterion δup,up+1 < 10−2 is found to work in most cases and

it reduces the non-linear iterations by a factor about 2. Be-

cause the CPU consumption is almost proportional to the

number of non-linear iterations performed within one time

step, switching from Picard to Newton iterative schemes can

reduce CPU time by the same factor.

7.3 Elmer/Ice scalability

The scalability of the new block preconditioned solver is

tested and compared with the parallel sparse direct solver

MUMPS (Amestoy et al., 1998). For this purpose, the
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Fig. 3. Acceleration (top) and efficiency (bottom) for strong scala-

bility experiments using the block preconditioner for meshes with

(red •) 2.400 × 106 nodes, (red �) 1.142 × 106 nodes and (red N)

0.708 × 106 nodes, and the MUMPS solver for meshes with (blue

�) 1.142 × 106 nodes and (blue N) 0.708 × 106 nodes. The dashed

line indicates a theoretical efficiency of 100 %.

diagnostic Stokes solution is computed using the present-day

Greenland geometry. The Greenland footprint is first meshed

using regular triangle elements and then vertically extruded.

Different meshes are constructed by varying the horizontal

element size from 5 km to 10 km, but all have 20 vertical lay-

ers. The size of the tested meshes varies from 708 000 up

to 4 580 000 nodes. Temperature and basal drag are imposed

using the same fields as in Gillet-Chaulet et al. (2012). New-

ton iterations are used after the convergence criterion reaches

5 × 10−2.

The results obtained for strong scalability, i.e. a constant

problem size with different partitionings, and for weak scala-

bility, i.e. a constant load per CPU using different mesh sizes,

are presented in Figs. 3 and 4, respectively. If the elapsed

time is tn for a number of partitions n, then, for a strong scal-

ing test, the scalability of a solver can be characterised ei-

ther by its acceleration tref/tn or its efficiency (n/nref)tref/tn,

where ref stands for the reference simulation (often the one

with the smallest mesh size). For a weak scaling test, the ac-

celeration depicted in Fig. 4 is defined as (n/nref)tref/tn .

The weak scalability experiment uses a constant number

of 4200 nodes per partition in combination with an increas-

ing number of partitions from 168 up to 1092. Weak scala-

bility is found to be greater than 60 % even for the largest

test case. Efficiency greater than 100 % is obtained with the
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Fig. 4. Efficiency for a weak scalability experiment using the block

preconditioner for an approximate number of nodes in all meshes of

4200 and meshes from 0.708 × 106 nodes up to 4.58 × 106 nodes.

new block preconditioned method for the strong scalability,

whereas for a number of partitions greater than 100, MUMPS

was always found to scale badly due to an increase of the re-

quired memory. This new solution strategy using the block

preconditioned solver clearly opens the door to applications

one order of magnitude larger in mesh size than what we

were able to achieve so far using a direct solver like MUMPS.

7.4 Inverse methods validation

We test the two inverse methods previously presented in a 2-

D example resembling a calving glacier. As our objective

is to validate the numerical implementation, we use a linear

rheology for which the two inverse methods implemented are

exact.

Our domain is 20 km long, the bed elevation is constant

and equal to −900 m. The free-surface elevation decreases

linearly from 200 m at x = 0 km to 100 m at x = 20 km.

The free surface is stress-free, we prescribe an homogeneous

Dirichlet condition of 50 ma−1 for the horizontal velocity at

x = 0 km, we apply a Neumann condition (hydrostatic sea

pressure) at x = 20 km, and we apply a linear sliding law and

a non-penetration condition at the bedrock.

We generate a reference solution with

β = 10−3 (1.0 + sin(2πx × 2/L)) MPa m−1 a, (66)

η = 10(1.5 + sin(2πx × 6/L)) MPa a. (67)

The surface velocities computed from this reference so-

lution are then used as perfect synthetic observations (twin

experiments).

The first step in the validation process is to assess the

ability of each solver independently to reconstruct the syn-

thetic observations. For the sliding coefficient β, we start
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Fig. 5. Evolution as a function of the number of iterations of (top)

the cost function relative to the initial cost function and (bottom) the

norm of the gradient vector relative to the initial gradient norm for

the Robin (black curves) and control (red curves) inverse methods

for the inversion of β (solid curve), Eη(x,y) (dashed curve) and

Eη(x,y,z) (dotted curve).

from the initial guess βi = 10−3. The viscosity η is expressed

as η = Eηη0, and the optimisation is done on the viscos-

ity enhancement factor Eη with initial guesses Eη = 1 and

η0 = 15. It is possible a priori that several distributions of Eη,

especially in the vertical direction, can lead to the same sur-

face velocities; therefore, we made it possible in the model

to invert Eη only in the horizontal plane (x,y) when using

vertically extruded meshes. The gradient of J with respect to

Eη at a given position (x,y) is then obtained as the vertical

sum of the nodal gradients at position (x,y).

To ensure that β and Eη remain positive during the opti-

misation, β is expressed as β = 10α1 and Eη is expressed as

Eη = α2
2 . The optimisation is then done with respect to the

αi (i = 1,2). The evolution of the cost function and norm of

the gradient obtained for each test is given in Fig. 5. Both the

cost function and the gradient norm decrease and tend toward

zero with the number of iterations.

The second step in the validation process is to verify the

following approximation:

J (αi + hα′
i) − J (αi)

h
= ∇Jαi

+ o(1). (68)

For a given perturbation α′
i , the left-hand-side term is eval-

uated by computing J (αi + hα′
i) with the direct model for

several values of h, and the right-hand-side term is com-

puted directly from the nodal gradients. This test is done
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Fig. 6. Ratio 1(h) obtained with the Robin (black curves) and con-

trol (red curves) inverse methods for perturbations of the enhance-

ment factor to the viscosity Eη(x,y).

for the initial conditions of the previous twin experiments.

We also test the implementation of the Tikhonov regular-

isation, Eq. (44), by choosing the cost function such as

J =
∫

Ŵb
0.5(∂αi/∂x)2dŴ where αi = 1.0−9(1.0+sin(2.0π×

4x/L)).

For each solver, we use 10 random perturbation fields α′
i

where each nodal value of α′
i is a random number between

−50 % and 50 % of the mean value of αi . The gradient com-

puted from the two inverse methods is verified using the ratio

1(h) defined as

1(h) =

∣

∣

∣

∣

(J (αi + hα′
i) − J (αi))/h − ∇Jαi

∇Jαi

∣

∣

∣

∣

. (69)

An example of the evolution of 1(h) as a function of h is

shown in Fig. 6 for the perturbation of the enhancement fac-

tor to the viscosity Eη(x,y). For both inverse methods and all

experiments, i.e. perturbation of β (not shown), Eη(x,y,z)

(not shown), Eη(x,y) (Fig. 6) and the Tikhonov regularisa-

tion (not shown), the ratio 1(h) is found to decrease as h

decreases and it reaches a value typically lower than 10 %.

Such values are already satisfactory; nonetheless we could

obtain even more accurate gradients by automatically deriv-

ing the code itself.

Figure 7 illustrates the difference of results obtained when

inverting for Eη only in the horizontal plane or in the whole

ice volume. As can be seen, the two inferred fields Eη(x,y)

and Eη(x,y,z) are significantly different even if surface ve-

locity and observation are in comparable agreement. This

indicates that a non-unique solution can be obtained when

the number of control parameters starts to be larger than the

number of observation points.
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Fig. 7. Comparison of the obtained inverted enhancement factor

field for the control method assuming only changes in a horizon-

tal plane (Eη(x,y), left) or changes in all 3 directions (Eη(x,y,z),

right). The inverted field Eη(x,y) in the left is virtually identical to

the one prescribed to obtain the observed velocities (Eq. 67).

8 Outlook

A number of the requisites for an ice sheet model as dis-

cussed in the Introduction have already been implemented in

Elmer/Ice, and especially those necessary to accurately de-

scribe the flow of polar ice. Nevertheless, as for other ice

sheet models, the physical processes at the boundaries and

their coupling with the other components of the climate sys-

tem can still be improved in the near future. This is the pre-

requisite for running any forecast simulations of ice sheets,

and not only sensitivity experiments based on more-or-less

crude parameterisations that link changes in the atmosphere

and the ocean to changes at the boundaries of the ice sheet.

Our efforts in the near future will be dedicated to improv-

ing the physical description of the ice/atmosphere, ice/ocean

and ice/bedrock boundaries, as well as the models describing

how the pertinent variables at these interfaces are distributed.

For the basal boundary condition, numerical modelling

(Schoof, 2010) or direct measurements (Sole et al., 2011)

seem to indicate a very complex relation, most certainly non-

linear, between changes in surface runoff and modulation

of basal sliding. Two ingredients would then be required to

fully account for the complexity of basal processes in rela-

tion with changes in surface runoff: (i) a proper basal friction

law depending on the effective basal pressure (i.e. Eq. 22),

and (ii) an associated hydrological model to describe the

basal water pressure distribution. This hydrological model

is currently under development and will be presented in de

Fleurian et al. (2013).

Changes in the front position of marine-terminated

glaciers seem to have a great influence on the upstream ice

flow by modulating the buttressing force (Vieli and Nick,

2011). Determining the rate at which icebergs are calved for

many different configurations remains an open question in

glaciology. Submarine melting acting at the calving front of

glaciers certainly increases calving rate by undercutting the

ice (Rignot et al., 2010; O’Leary and Christoffersen, 2013).

A general calving law, especially for 3-D configurations, still

needs to be formulated (Benn et al., 2007). Better knowledge

of the stress distribution at the front of glaciers and of the

submarine melting distribution, as well as a reliable ice dam-

age model (e.g. Pralong, 2005; Jouvet et al., 2011), are the re-

quired ingredients to describe calving at the front of marine-

terminated glaciers. In Elmer/Ice, the already implemented

ALE formulation for the free surface accounts for moving ice

sheet margin boundaries. Because Elmer/Ice solves the full-

Stokes system, all components of the stress field are known

and can therefore be used to evaluate ice damage. Work is in

progress to implement an ice damage rheological law follow-

ing Pralong (2005) with the aim of using damage iso-surface

to locate the calving surface and move accordingly the front

surface.

Melting from beneath the ice shelves is certainly one the

most important triggers of the observed recent ice stream ac-

celerations (e.g. Payne et al., 2004; Dupont and Alley, 2005).

Not only is the total amount of basal melting important, but

also its spatial distribution (Gagliardini et al., 2010). For nu-

merical and technical reasons, coupling an ocean model with

an ice sheet model is still a challenging issue. An interme-

diate approach we would like to explore as a preliminary

step towards a complete coupling with an ocean model is

the implementation within Elmer/Ice of a plume-type model

(Holland and Feltham, 2006).

9 Conclusions

We have presented in detail the Elmer/Ice ice sheet flow

model, from the equations implemented to the way they are

solved using the FE method. Elmer/Ice contains a high me-

chanical description of ice flow: it solves the complete Stokes

equations without any approximation, includes two complex

anisotropic flow laws, resolves the grounding line dynamics

as a contact problem and incorporates a basal friction law ac-

counting for cavitation. Temperature and fabric fields within

the ice sheet domain can be determined in a coupled man-

ner with the flow solution. Other equations allowing for the

derivation of secondary variables from the Stokes solution,

such as the age of the ice, the stress or strain rate fields,

are also implemented. Two recent inverse methods have been

implemented in Elmer/Ice that make it possible to infer the

poorly known parameters to construct the initial state of the

ice sheet. From a technical point of view, Elmer/Ice reaps

the benefits of the FE method, and provides an easy mesh

adaptation method to focus on areas of interest. Elmer/Ice is

a highly parallelised code and, as a recent important improve-

ment, the new block preconditioned solver will in the near fu-

ture lead to increase significantly the size of the solved prob-

lems. As listed in the previous section, there is still a need

for future improvements and new developments, particularly

by linking more tightly the pertinent variables controlling the

flow at the boundaries, like the basal water pressure, with the

other components of the climatic system. This next step is

the requisite for driving ice sheet forecast simulations and
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furnishing reliable estimates of ice-sheet-induced sea level

rise for the coming centuries.
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