
HAL Id: hal-01484405
https://hal.inria.fr/hal-01484405

Submitted on 7 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Capability Driven Development – An Approach to
Support Evolving Organizations

Janis Stirna, Jānis Grabis, Martin Henkel, Jelena Zdravkovic

To cite this version:
Janis Stirna, Jānis Grabis, Martin Henkel, Jelena Zdravkovic. Capability Driven Development – An
Approach to Support Evolving Organizations. 5th Working Conference on the Practice of Enterprise
Modeling (PoEM), Nov 2012, Rostock, Germany. pp.117-131, �10.1007/978-3-642-34549-4_9�. �hal-
01484405�

https://hal.inria.fr/hal-01484405
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Capability Driven Development – an Approach to
Support Evolving Organizations

Janis Stirna1, Jānis Grabis2, Martin Henkel1, Jelena Zdravkovic1

1Department of Computer and Systems Sciences, Stockholm University, Forum 100,

SE-16440, Kista, Sweden
{js, martinh, jelenaz}@dsv.su.se

2 Information Technology Institute, Riga Technical University, Kalku 1, Riga, Latvia
grabis@rtu.lv

Abstract. The need for organizations to operate in changing environments is
addressed by proposing an approach that integrates organizational development
with information system (IS) development taking into account changes in the
application context of the solution – Capability Driven Development (CDD). A
meta-model for representing business and IS designs consisting of goals, key
performance indicators, capabilities, context and capability delivery patterns, is
been proposed. The use of the meta-model is exemplified by a case from the
energy efficiency domain. A number of issues related to use of the CDD
approach, namely, capability delivery application, CDD methodology, and tool
support also are discussed.

Keywords. Enterprise modeling, capabilities, capability driven development,
model driven development

1 Introduction

In order to improve alignment between business and information technology,
information system (IS) developers continuously strive to increase the level of
abstraction of development artifacts. A key focus area is making the IS designs more
accessible to business stakeholders to articulate their business needs more efficiently.
These developments include object-orientation, component based development,
business process modeling, enterprise modeling (EM) and software services design.
These techniques are mainly aimed at capturing relatively stable, core properties of
business problems and on representing functional aspects of the IS [1]. However, the
prevalence and volatility of the Internet shifts the problem solving focus to capturing
instantaneous business opportunities [2] and increases the importance of non-
functional aspects. Furthermore, the context of use for modern IS is not always
predictable at the time of design; instead as IS should have the capability to support
different contexts. Hence, we should consider the context of use and under which
circumstances the IS, in congruence with the business system, can provide the needed
business capability. Hence, system’s capability is determined not only during the
design-time but also at run-time when the system’s ability to handle changes in

contexts is put to test. The following anecdotal evidence can be used to illustrate
importance of capabilities. A small British bakery was growing successfully and
decided to promote their business by offering their cupcakes at a discount via
collective buying website, Groupon. As a result it had to bake 102 000 cupcakes and
suffered losses comparable to its yearly profit. The bakery did not have mechanisms
in place to manage the unforeseen and dramatic surge in demand - it did not have the
capability of baking 102 000 cupcakes nor mechanisms for foreseeing the
consequences. Another example is a mobile telecommunications company offering
telephone services over its network, similar in all respects to traditional fixed-line
providers. Such a service consists of the same home telephone, with an additional box
between the telephone and the wall. However, unlike ordinary fixed-line telephony, it
cannot connect to emergency services (112) in the event of a power outage. In this
case the provided capability is unstable in a changing context.

A capability-driven approach to development should be able to elevate all such
issues and to produce solutions that fit the actual application context.

From the business perspective, we define a capability as being the ability to
continuously deliver a certain business value in dynamically changing circumstances.
Software applications (and their execution environments) are an integral part of
capabilities. This means that it is important to tailor these applications with regard to
functionality, usability, reliability and other factors required by users operating in
varying contexts. That puts pressure on software development and delivery methods.
The software development industry has responded by elaborating Model Driven
Development (MDD) methods and by adopting standardized design and delivery
approaches such as service-oriented architecture and cloud computing. However,
there are a number of major challenges when it comes to making use of MDD to
address business capabilities:
§ The gap between business requirements and current MDD techniques. Model

driven approaches and tools still operate with artifacts defined on a relatively low
abstraction level.

§ Inability to model execution contexts. In complex and dynamically changing
business environments, modeling just a service providing business functionality in
very limited context of execution is not sufficient.

§ High cost for developing applications that work in different contexts. Software
developers, especially SMEs, have difficulties to market their software globally
because of the effort it takes to adhere to localization requirements and constraints
in the context of where the software will be used.

§ Limited support for modeling changes in non-functional requirements. Model
driven approaches focus on functional aspects at a given time point, rather than
representing evolution of both functional and non-functional system requirements
over time.

§ Limited support for “plasticity” in applications. The current context-aware and
front-end adaptation systems focus mainly on technical aspects (e.g., location
awareness and using different devices) rather than on business context awareness.

§ Limited platform usage. Limited modeling support for defining ability the IS to
make use of new platforms, such as cloud computing platforms. Cloud computing
is a technology driven phenomenon, and there is little guidance for development
of cloud based business applications.

We propose to support the development of capabilities by using EM techniques as
a starting point of the development process, and to use model-based patterns to
describe how the software application can adhere to changes in the execution context.
Our vision is to apply enterprise models representing enterprise capabilities to create
executable software with built-in contextualization patterns thus leading to Capability
Driven Development (CDD).

The objective of this paper is to present the capability meta-model, to discuss its
feasibility by using an example case, and to outline a number of open development
issues related to practical adoption of the CDD approach.

The research approach taken in this paper is conceptual and argumentative.
Concepts used in enterprise modeling, context representation and service specification
are combined together to establish the capability meta-model. Preliminary validation
and demonstration of the CDD approach is performed using an example of designing
a decision support system for optimizing energy flows in a building. Application of
the meta-model is outlined by analyzing its role in development of capability delivery
applications. The CDD methodology is proposed following the principles of agile,
iterative and real-time software development methodologies.

The remainder of the paper is organized as follows. Section 2 presents related
work. In section 3 requirements for CDD are discussed. Section 4 presents the CDD
meta-model. It is applied to an example case in section 5. Section 6 discusses aspects
of development methodology need for the CDD approach. The paper ends with some
concluding remarks in section 7.

2 Related Work

In the strategic management discipline, a company’s resources and capabilities are
long-time seen as the primary source of profitability and competitive advantage – [3]
has united them into what has become known as the resource-based view of the
company. Accordingly, Michael Porter’s value chain identifies top-level activities
with the capabilities needed to accomplish them [4]. In Strategy Maps and Balanced
Scorecards, Kaplan and Norton also analyze capabilities through the company’s
perspectives, e.g. financial, customers’, and other [5]. Following this, in the research
within Business-IT alignment, there have been attempts to consider resources and
capabilities as the core components in enterprise models, more specifically, in
business value models [6, 7]. However, in none of these works, capabilities are
formally linked to IS models. In the SOA reference architecture [8] capability has
been described as a business functionality that, through a service, delivers a well-
defined user need. However, in the specification, not much attention is given to the
modeling of capability, nor it is linked to software services. In the Web Service
research, capability is considered purely on the technical level, through service level
agreements and policy specifications [9].

In order to reduce development time, to improve software quality, and to increase
development flexibility, MDD has established itself as one of the most promising
software development approaches. However, [10] show that the widely practiced
MDD specialization - Model Driven Architecture [11] and following methodologies,

mainly assume requirements as given a priori. [12] and [13] indicate that MDA starts
with system analysis’s models. They also survey various methods for integrating
requirements into an overall model-driven framework, but do not address the issue of
requirements origination. There is a limited evidence of MDA providing the promised
benefits [14]. Complexity of tools, their methodological weaknesses, and too low
abstraction level of development artifacts are among the main areas of improvement
for MDD tools [15].

Business modeling and Enterprise Modeling (EM) [16] has been used for business
development and early requirements elicitation for many years, but a smooth (nearly
automated) transition to software development has not been achieved due to
immaturity of the existing approaches and lack of tools. Enterprise-wide models are
also found in [17], where the enterprise architecture of ArchiMate is extended with an
intentional aspect capturing the goals and requirements for creating an enterprise
system. A comparable solution is developed in [18], where a generic process is
presented for linking i* and the OO-Method as two representatives of Goal-Oriented
Requirements Engineering (GORE) and MDD, respectively. In [19] a recent analysis
of the current state in this area is presented, as well as proposed a meta-model for
integrating EM with MDD.

Model driven approaches also show promise to development of cloud-based
applications, which has been extensively discussed at the 1st International Conference
on Cloud Computing and Service Sciences, c.f. [20, 21]. However, these
investigations currently are at the conceptual level and are aimed at demonstrating a
potential of MDD for cloud computing. A number of European research project, e.g.
REMICS and SLA@SOI have been defined in this area.

Methods for capturing context in applications and services have achieved high
level of maturity and they provide a basis for application of context information in
software development and execution. [22] describe MDD for context-aware
applications, where the context model is bound to a business model, encompassing
information about user’s location, time, profile, etc. Context awareness has been
extensively explored for Web Services, both methods and architectures, as reported in
[23]. It is also studied in relation to workflow adaptation [24]. Lately, [25] has
suggested a formal context model, compounded by ontologies describing users,
devices, environment and services. In [26] an extension to State charts to capture
context dependent variability in processes has been proposed.

Non-functional aspects of service-oriented applications are controlled using QoS
data and SLA. Dynamic binding and service selection methods allow replacing under-
performing services in run-time [27]. However, QoS and SLA focus only on a limited
number of technical performance criteria with little regard to business value of these
criteria.

In summary, there are a number or contributions in addressing the problem of
adjusting the IS depending on the context, however business capability concept is not
explicitly addressed in the context development.

3 Requirements for Capability Driven Development

In this section we discuss a number of requirements motivating the need for CDD.
Currently the business situation in which the IS will be used is predetermined at

design time. At run-time, only adaptations that are within the scope of the planned
situation can usually be made. But in the emerging business contexts we need rapid
response to changes in the business context and development of new capabilities,
which also requires run-time configuration and adjustment of applications. In this
respect a capability modeling meta-model linking business designs with application
contexts and IS components is needed.

Designing capabilities is a task that combines both business and IS knowledge.
Hence both domains need to be integrated in such a way that allows establishing IS
support for the business capabilities.

Current EM and business development approaches have grown from the principle
that a single business model is owned by a single company. In spite of distributed
value chains and virtual organizations [28] this way of designing organizations and
their IS still prevails. The CDD approach would aim to support co-development and
co-existence of several business models by providing “connection points” between
business models based on goals and business capabilities.

Most of the current MDD approaches are only efficient at generating relatively
simple data processing applications (e.g. form-driven). They do not support e.g.
complex calculations, advanced user interfaces, scalability of the application in the
cloud. CDD should bring the state of the art further by supporting the modeling of the
application execution context; this includes the ability to model the ability to switch
service providers and platforms. Furthermore, the capability approach would also
allow deploying more adequate security measures, by designing overall security
approaches at design-time and then customizing them at deployment and run-time.

4 Foundation for Capability Driven Development

The capability meta-model presented in this section provides the theoretical and
methodological foundation for the CDD. The meta-model is developed on the basis of
industrial requirements and related research on capabilities. Initial version of such a
meta-model is given in Figure 1. The meta-model has three main sections:
§ Enterprise and capability modeling. This focuses on developing organizational

designs that can be configured according to the context dependent capabilities in
which they will be used. I.e. this captures a set of generic solutions applicable in
many different business situations.

§ Capability delivery context modeling. Represents the situational context under
which the solutions should be applied including indicators for measuring the
context properties.

§ Capability delivery patterns representing reusable solutions for reaching business
goals under different situational contexts. The context defined for the capability
should match the context in which the pattern is applicable in.

Fig. 1. The initial capability meta-model

4.1 Enterprise and Capability Modeling

This part covers modeling of business goals, key performance indicators (KPI), and
business processes needed to accomplish the goals. We also specify resources
required to perform processes. The associations between these modeling components
are based on the meta-model of EM approach EKD [29]. The concept of capability
extends this meta-model towards being suitable for CDD.

Capability expresses an ability to reach a certain business objective within the
range of certain contexts by applying a certain solution. Capability essentially links
together business goals with patterns by providing contexts in which certain patterns
(i.e. business solutions) should be applicable.

Each capability supports or is motivated by one business goal. In principle business
goals can be seen as internal means for designing and managing the organization and
capabilities as offerings to external customers. A capability requires or is supported
by specific business processes, provided by specific roles, as well as it needs certain
resources and IS components. The distinguishing characteristic of the capability is
that it is designed to be provided in a specific context. The desired goal fulfillment
levels can be defined by using a set of goal fulfillment indicators – Goal KPIs.

4.2 Context Modeling

The context is any information that can be used to characterize the situation, in which
the capability can be provided. It describes circumstances, i.e. context situation, such
as geographical location, platforms and devices used and as well as business
conditions and environment. These circumstances are defined by different context
types. The context situation represents the current context status. Each capability
delivery pattern is valid for a specific set of context situations as defined by the
pattern validity space. The context KPIs are associated with a specific capability
delivery pattern. They represent context measurements, which are of vital importance
for the capability delivery. The context KPI are used to monitor whether the pattern
chosen for capability delivery is still valid for the current context situation. If the

GoalCapability requires

KPI

requires

influences

Context requires

Context
Type

measured by

Pattern

requires

Process

motivates

Process
Variant Resource

Context
Situation has

Measurable
Property

Goal KPIContextl KPIrequires

defines

supported by requires

pattern is not valid, then capability delivery should be dynamically adjusted by
applying a different pattern or reconfiguring the existing pattern (i.e., changing
delivery process, reassigning resources etc.). Technically, the context information is
captured using a context platform in a standardized format (e.g. XCoA). Context
values change according to a situation. The context determines how a capability is
delivered, which is represented by a pattern.

4.3 Capability Delivery Pattern

A pattern is used to: “describe a problem that occurs over and over again in our
environment, and then describes the core of the solution to that problem in such a way
that you can use this solution a million times over, without ever doing it the same way
twice” [30]. This principle of describing a reusable solution to a recurrent problem in
a given context has been adopted in various domains such as software engineering,
information system analysis and design [31] as well as organizational design.
Organizational patterns have proven to be a useful way for the purpose of
documenting, representing, and sharing best practices in various domains (c.f. [32]).

In the CDD approach we amalgamate the principle of reuse and execution of
software patterns with the principle of sharing best practices of organizational
patterns. Hence, capability delivery patterns are generic and abstract design
proposals that can be easily adapted, reused, and executed. Patterns will represent
reusable solutions in terms of business process, resources, roles and supporting IT
components (e.g. code fragments, web service definitions) for delivering a specific
type of capability in a given context. In this regard the capability delivery patterns
extend the work on task patterns performed in the MAPPER project [33].

Each pattern describes how a certain capability is to be met within a certain context
and what resources, process, roles and IS components are needed. In order to provide
a fit between required resources and available resources, KPIs for monitoring
capability delivery quality are defined in accordance with organization’s goals. KPIs
measure whether currently available resources are sufficient in the current context. In
order to resolve resource availability conflicts, conflict resolutions rules are provided.

5 Example Case

To exemplify the proposed approach we model a case of a building operator aiming to
run its buildings efficiently and in an environmentally sustainable manner. The case is
inspired by the FP7 project EnRiMa – “Energy Efficiency and Risk Management in
Public Buildings” (proj. no. 260041). The objective of the EnRiMa project is to
develop a decision support system (DSS) for optimizing energy flows in a building. In
this paper we envision how this service will be used after the DSS will be operational.
The challenge that the capability driven approach should address is the need to
operate different buildings (e.g. new, old, carbon neutral) in different market
conditions (e.g. fixed energy prices, flexible prices), different energy technologies
(e.g. energy storage, photovoltaic (PV)), and with different ICT technologies (e.g.
smart sensors, advanced ICT infrastructure, closed ICT infrastructure, remote

monitoring, no substantial ICT support). The EnRiMa DSS aims to provide building
specific optimization by using customized energy models describing the energy flows
for each building. The optimization can be based on using building data from the on-
site buildings management systems, for example giving the current temperature and
ventilation air flow. The project also aims to provide a DSS that can be installed on-
site or via deployment in the cloud.

Fig. 2. A generic goal model for a building operator

5.1 Enterprise Modeling

The top goal is refined into a number of sub-goals, each lined to one or several KPIs.
This is a simplification; in real life there are more sub-goals and KPIs to consider than
figure 2 shows. In this particular case the decomposition of the top goal into the five
sub-goals should be seen in conjunction with the KPIs. I.e. the building operator
wants to achieve all of the sub-goals, but since that is not possible for each particular
building the owner defines specific KPIs to be used for the optimization tasks.

In summary, KPIs are used for designing the capabilities to set the level of goal
fulfillment that is being expected from the capabilities. In the capability driven
approach presented here we use indicators to define different level of goal fulfillment
that we can expect.

Processes are central for coordinating the resources that are needed for a capability.
In this case there are processes that are executed once e.g. for the initial configuration
of the system and then-re executed when the context changes. We here include four
basic processes:

Energy audit and configuration process. As a part of improving the energy
efficiency of a building there is a need to perform an energy audit and to configure the
decision support system with general information on building. The energy audit will
result in a model of the building energy flows, for example to determine how much of
the electricity that goes to heating, and to determine the technical equipment (such as
boilers) efficiency level. Besides the energy flow there is also a need to configure the
system with information of the glass area of the building, hours of operation and so
on. Depending on the desired capability the process can take a number of variants,
ranging from simple estimation to full-scale audits. Note that if the context changes,
for example if the installed energy technology in the building changes, there is a need

Goal 1.2: To
minimize CO2

emissions

Goal 1.3: To
minimize energy

consumption

Goal 1.4: To
minimize

energy costs

Goal 1.5: To
use renewable

energy

Goal 1.1: To
satisfy occupant

requirements

Goal 1: To run the building
efficiently and environmentally

sustainable

GoalKPI:
Occupant

satissfaction

GoalKPI:
Desired

temperature (C)

require

GoalKPI: CO2
emissions (kg

per year)

requires

GoalKPI: Energy
consumption

(kWh/m2)

requires

GoalKPI:
Enery costs

(€)

requires

GoalKPI:
Renewables

(%)

requires

to repeat the configuration. We here define two variant of this process: Template
based – using generic building data to estimate energy flows, Full energy audit –
doing a complete energy flow analysis, leading to a detailed model of the building

ICT infrastructure integration process. To continuously optimize the energy
efficiency of a building there is a need to monitor the building behavior via its
installed building management system. For example, by monitoring the temperature
changes the cooling system can be optimized to not compensate for small temperature
fluctuations. This process can take several variants, depending on the context in the
form of the building management system ability to integrate with external systems. In
this case we define two variants: Manual data entry – data entered manually,
Integration – data fetched directly from the building management system. The actual
integration process depends on which building management system is installed (e.g.
Siemens Desigo system).

Deployment process. Depending on the access needs the decision support system
can be executed at the building site, at a remote locations, or in a cloud platform
provided by an external provider. Process variants: On-site, External, Cloud provider.

Energy efficiency monitoring and optimization process. This process is at the core
of delivering the capability, i.e. monitoring, analyzing and optimizing the energy
flows is what can lead to a lower the energy consumption. A very basic variant,
addressing a simple context is to just monitor for failures in one of the building
systems. A more advanced variant, catering to highly automated buildings is to
perform a daily, automated, analysis to change the behavior of the installed building
technologies. Process variants: Passive monitoring – monitoring for failures, Active
optimization – performing pro-active optimizations based on detailed estimations

Depending on the context the variants of these processes can be activated, this will
be described in the next section.

5.2 Context Modeling

The DSS can be deployed to a wide range of contexts. To exemplify the varying
conditions we here describe two simplified context types:

Older building, low ICT Monitoring – where the building got a low degree of ICT
integration abilities, and the overall desire of the building owner is to monitor the
buildings energy usage and minimize costs.

Modern building, high ICT infrastructure – where integration with the building
system is possible, a building model allowing continuous optimizations is possible,
and the building owner wants to balance CO2 emissions and cost minimization.

Each of these context types can be addressed by capabilities (see figures 3 and 4)
that guide through selecting the right processes or process variants; this will be further
described in the section on patterns. The examples here present the enterprise models
at design-time. To detect a context change at runtime we define a set of context-KPIs.
These allow us to monitor the goal fulfillment at runtime by comparing the
measurable situational properties. For example, Context KPI: Energy consumption
200 kWh/m2 should be compared with the actual energy consumption (see figure 3).

Fig. 3. Capability, context and capability delivery pattern for “Older building with low ICT

infrastructure”

Fig. 4. Capability, context and capability delivery pattern for “Modern building with high ICT

infrastructure.”

The patterns shown here omit details such as forces and usage guidelines, e.g.
explaining how to apply and use the processes and/or executable services. In a real
life case they should be developed and included in the pattern body.

5.3 Capability Delivery Patterns

The EnRiMa DSS will be used to balance various, often contradictory, operator goals,
e.g. to lower the energy costs in buildings and to reduce CO2 emissions. Each building
however is different, and thus the context of execution for the system will vary.
Therefore we design a set of process variants. The role of capability delivery patterns
is to capture and represent which process variants should be used at which contexts
delivering which capabilities. For example, if a building has Siemens Desigo building
management system, then a pattern describing how to integrate it with the EnRiMa

ReqContext:
No PV

installed

ReqContext:
No energy

storage

ReqContext:
Closed ICT

infrastructure,

Cability: Older building, low ICT infrastructure

ReqContext:
Fixed price

energy contracts

Pattern: Older building, low ICT
Solution:
Proc: Energy audit and configuration
Proc: Infrastructure integration
process
Proc: Deploymen in cloud
Proc: negotiate temperature intervals
with the occupants
Proc: Passive monitoring and
advisory mode for these KPIs

Context: No
PV installed

Context: No
energy
storage

Context: Closed
proprietary system

Context situation: MI building in Riga

Context: Fixed
electricity and

gas prices

Context KPI: desired
temperature 19 C

Context KPI: CO2
emissions 1100

kg per year)

Context KPI: Energy
consumption 200

kWh/m2

Context KPI:
Enery costs

100000€

Context KPI:
Renewables

5 %

Pattern: Manual data
entry

uses

supported by

required by

required by

ReqContext:
Some data
available

Context: Ambient
temperature data

for 3 months

Pattern: Run
template based audit

uses

required by

ReqContext:
No PV

installed

ReqContext:
No energy

storage

ReqContext:
Open ICT

infrastructure,

Cability: Modern building, high ICT infrastructure

ReqContext:
Open energy

market

Pattern: Modern building, high ICT
Solution:
Proc: Energy audit and configuration
Proc: Infrastructure integration
process
Proc: Deployment as external service
Proc: negotiate temperature intervals
with the occupants
Proc: daily update of building sensor
data, weather data, pricing data,
scenario generation
Proc: Active optimization with these
KPIs

Context: No
PV installed

Context: No
energy
storage

Context: Siemens
Desigo building

management system

Context situation: AH building in Stockholm

Context:
Spot pricing

model

Context KPI: desired
temperature 18.5-

21.5 C

Context KPI: CO2
emissions 1100

kg per year)

Context KPI: Energy
consumption 90

kWh/m2

Context KPI:
Enery costs

100000€

Context KPI:
Renewables

50 %

Pattern: Integrate
with Siemens Desigo

supported by

required by

required by

ReqContext:
Sensor data

available

Context: Sensor
data available for

2 years

Pattern: Run full
energy audit

uses

required by

DSS and which executable components (e.g. web-services) should be used. If the
building has closed system, then manual data input should be used instead. Table 1
shows two capabilities and their relation to variants of the energy audit and
integration with the existing ICT systems of the building. Moreover we identify those
context KPIs that can be of use when monitoring the process execution.

Table 1. Example of two context patterns, each making use of process variants.

Capability delivery
pattern contains:

Capability: Old building, low
ICT

Capability: Modern building, high
ICT

ICT infrastructure
integration process

Pattern: Manual data entry Pattern: Integrate with Siemens
Desigo

Energy audit and
configuration

Pattern: Template based audit Pattern: Run full energy audit

6 Discussion

In this section we will discuss issues pertinent to usage of CDD, namely capability
delivery application (CDA), CDD methodology, and tool support.

6.1 Capability Delivery Application

A company requesting a particular capability represents it using the concepts of CDD
meta-model. The main principle of CDD is that, in comparison to traditional
development methods, the software design part is supported by improving both the
analysis side and the implementation side. From the analysis side, the capability
representation is enriched and architectural decisions are simplified by using patterns.
From the implementation side, the detailed design complexity is reduced by relying
on, for example, traditional web-services or cloud-based services. The resulting CDA
is a composite application based on external services.

Figure 5 shows three conceptual layers of the CDA: (1) Enterprise Modeling layer;
(2) design layer; and (3) execution layer. The EM layer is responsible for high level of
representation of required capabilities. The design layer is responsible for composing
meta-capabilities from capability patterns, which is achieved by coupling patterns
with executable services. The execution layer is responsible for execution of the
capability delivery application and its adjustment to the changing context.

 The requested capability is modeled using the EM techniques and according to the
capability meta-model as described in this paper. The patterns are analyzed in order to
identify atomic capabilities that can be delivered by internal or external services by
using a set of service selection methods. These service selection methods are based on
existing service selection methods [34]. Availability of internal services is identified
by matching the capability definition against the enterprise architecture, and a set of
the matching rules will have to be elaborated.

Fig. 5. Layered view of capability delivery application

A process composition language is used to orchestrate services selected for
delivering the requested capability. The process composition model includes multiple
process execution variants [35]. The capabilities are delivered with different front-
ends, which are modelled using an extended user interface modelling language. The
external services used in CDA should be able to deliver the requested performance in
the defined context. The necessary service functionality and non-functional
requirements corresponding to the context definition are transformed into a service
provisioning blueprint [36], which is used as a starting point for binding capability
delivery models with executable components and their deployment environment. The
service provisioning blueprint also includes KPIs to be used for monitoring the
capability delivery. We envision that the CDA is deployed together with its
simulation model and run-time adjustment algorithms based on goal and context
KPIs. The key task of these algorithms is enacting of the appropriate process
execution variant in response to the context change.

Business capabilities also could be delivered using traditional service-oriented and
composite applications. However, the envisioned CDA better suites the requirements
of CDD by providing integration with enterprise models and built-in algorithms for
dynamic application adjustment in response to changing execution context.

6.2 The Process of Capability Driven Development

To support development of CDA, a CDD methodology is needed. It is based on agile
and model driven IS development principles and consists of the CDD development
process, a language for representing capabilities according to the CDD meta-model,
as well as modeling tools. The main principles of the CDD methodology should be:
§ Use of enterprise models understandable to business stakeholders,
§ Support for heterogeneous development environment as opposed to a single

vendor platform,
§ Equal importance of both design-time and run-time activities with clear focus on

different development artifacts,
§ Rapid development of applications specific to a business challenge,
§ Search for the most economically and technically advantageous solution,

Capability
definition

Capability delivery
patterns

Enterprise
architecture

Process composition Service provisioning
blueprint

Front-end modelling

Capability delivery application
KPI & Algorithms

Context platform External services Application simulation
model

Enterprise
modelling layer

Design layer

Execution layer

An overview of the envisioned CDD process is shown in Figure 6. It includes three
main capability delivery cycles: 1) development of the capability delivery application;
2) execution of the capability delivery application; and 3) capability refinement and
pattern updating. These three cycles address the core requirements of the CDD by
starting development with enterprise level organizational and IS models, adjustment
of the capability delivery during the application run-time and establishing and
updating capability delivery patterns.

Fig. 6. Capability Driven Development methodology

CDD should also encompass run-time adjustment algorithms because the
capability is delivered in a changing context, where both business (e.g., current
business situation (growth, decline), priorities, personnel availability) and technical
(e.g., location, device, workload) matters. Once the CDA is developed and deployed,
it is continuously monitored and adjusted according to the changing context.
Monitoring is performed using KPIs included in the system during the development
and adjustment is made using algorithms provided by the CDD methodology.

Tool support also is important for CDD. EM is a part of CDD and for this purpose
a modeling tool is needed. It should mainly address the design phase because at
runtime tools provided by the target platform will be used.

We are currently planning to develop an open source Eclipse based tool for CDD
and will use Eclipse EMF plug-in and other relevant plug-ins as the development
foundation. Models are built on the basis of extensions of modeling languages such as
EKD, UML and executable BPMN 2.0.

7 Concluding Remarks and Future Work

We have proposed an approach that integrates organizational development with IS
development taking into account changes in the application context of the solution –
Capability Driven Development. We have presented a meta-model for representing
business designs and exemplified it by a case from the energy efficiency domain. This
in essence is research in progress, and hence, we have also discussed a number of
issues for future work related to use of the CDD approach, namely, capability delivery
application, CDD methodology, and tool support also are discussed.

The two important challenges to be addressed are availability of patterns and
implementation of algorithms for dynamic adjustment of CDA. In order to ensure
pattern availability an infrastructure and methods for life-cycle management of

patterns is required. In some cases, incentives for sharing patterns among companies
can be devised. That is particularly promising in the field of energy efficiency. There
could be a large number of different adjustment algorithms. Elaboration and
implementation should follow a set of general, open principles for incorporating
algorithms developed by third parties.

The main future directions are throughout validation of the capabilities meta-model
and formulation of rules for matching required capabilities to existing or envisioned
enterprise resources represented in a form of enterprise models and architectures.

References

1. Wesenberg, H. (2011) Enterprise Modeling in an Agile World, P. Johannesson, J. Krogstie,
A. L. Opdahl (Eds.): in proc, of PoEM 2011, Springer LNBIP 92, p.126-130

2. Deloitte (2009) Cloud Computing: Forecasting Change, Deloitte Consulting,
https://www.deloitte.com/assets/Dcom-Global/Local%20Assets/Documents/TMT/cloud_-
_market_overview_and_perspective.pdf

3. Barney J.B, (1991) Firm Resources and Sustained Competitive Advantage. Journal of
Management, 17(1), 99–120.

4. Porter, M.E.: Competitive Advantage: Creating and Sustaining Superior Performance, Free
Press, New York (1985)

5. Kaplan, R.S., and Norton, D.P.: Strategy Maps: Converting Intangible Assets into Tangible
Outcomes. Harvard Business School Press, Boston, MA (2004)

6. Osterwlader, A., Pigneur, Y. (2003) Modeling value propositions in e-Business.
Proceedings of the 5th International Conference on Electronic Commerce, ICEC 2003.
ACM Conference Proceedings Series 50, 2003, ISBN 1-58113-788-5

7. Kinderen, de, S., Gordijn, J., Akkermans, H. (2009) Reasoning about customer needs in
multi-supplier ICT service bundles using decision models. In Proceedings of the 11th
International Conference on Enterprise Information Systems, ICEIS 2009, 131-136

8. OASIS, (2011) Reference Architecture Foundation for Service Oriented Architecture
Version 1.0, Committee Specification Draft 03 / Public Review Draft 02 06 July 2011,
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.pdf

9. Papazoglou, M. P. and Yang, J. “Design Methodology for Web Services and Business
Processes”, Proc. Third International Workshop on Technologies for E-Services (TES 03),
LNCS, Vol. 2444, Springer-Verlag 2003, pp 54-64.

10. Asadi, M. and Ramsin, R (2008), MDA-Based Methodologies: An Analytical Survey, I.
Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, 419–431.

11. Kleppe, A., Warmer, J. and Bast, W., MDA Explained. Addison-Wesley Professional,
2003.

12. Loniewski, G., Insfran, E. and Abrahao, L. (2010), A Systematic Review of the Use of
Requirements Engineering Techniques in Model-Driven Development, D.C. Petriu, N.
Rouquette,Ø. Haugen (Eds.):MODELS 2010, Part II, LNCS 6395, pp. 213–227.

13. Yue, T., Briand, L.C. and Labiche, Y. (2011) A systematic review of transformation
approaches between user requirements and analysis models, Requirements Engineering 16,
75–99

14. Mohagheghi, P. and Dehlen, V. (2008) Where Is the Proof? - A Review of Experiences
from Applying MDE in Industry, I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA
2008, LNCS 5095, 432–443.

15. Henkel, M., Stirna J., (2010) Pondering on the Key Functionality of Model Driven
Development Tools: the Case of Mendix, P. Forbrig and H. Günther (eds.), in proc. of
Business Informatics Research (BIR 2010), Springer LNBIP 64, ISBN 978-3-642-16100-1

16. Nilsson, A. G., Tolis, C. and Nellborn, C. (Eds.) (1999), Perspectives on Business
Modelling: Understanding and Changing Organisations, Springer-Verlag

17. ArchiMate, An enterprise modeling language from the Open Group.
http://www.opengroup.org/archimate/

18. Pastor, O., & Giachetti, G. (2010). Linking Goal-Oriented Requirements and Model-Driven
Development. In Intentional Perspectives on Information Systems Engineering (pp. 257–
276). Springer

19. Zikra, I., Stirna, J., Zdravkovic, J. (2011) Bringing Enterprise Modeling Closer to Model-
Driven Development. In Proceedings of 4th Working Conference on Practice of Enterprise
Modeling, PoEM 2011, Springer LNBIP 92, 268-282, , ISBN 978-3-642-24848-1

20. Esparza-Peidro, J., Munoz-Escoí, F.D. (2011) Towards the next generation of model driven
cloud platforms, CLOSER 2011 - Proceedings of the 1st International Conference on Cloud
Computing and Services Science, 494-500

21. Hamdaqa, M., Livogiannis, T., Tahvildari, L. (2011) A reference model for developing
cloud applications, CLOSER 2011 - Proceedings of the 1st International Conference on
Cloud Computing and Services Science, 98-103

22. Vale, S., Hammoudi, S. (2009) COMODE: A framework for the development of context-
aware applications in the context of MDE, Proceedings of the 2009 4th International
Conference on Internet and Web Applications and Services, ICIW 2009, 261-266

23. Sheng., Q., Yu, J., Dustar, S., Eds. (2010) Enabling Context-Aware Web Services:
Methods, Architectures, and Technologies. Chapman and Hall/CRC, ISBN 1-43980-985-2

24. Smanchat, S., Ling, S., Indrawan, M. (2008) A survey on context-aware workflow
adaptations, MoMM2008 - The 6th International Conference on Advances in Mobile
Computing and Multimedia, 414-417

25. Hervas, R., Bravo, J. and Fontecha, J. (2010) A Context Model based on Ontological
Languages; a proposal for Information Visualisation. Journal of Universal Computer
Science (J.UCS) Vol. 16/12

26. Liptchinsky, V., Khazanlin R., Truong H.-L., Dustdar S., (2012) A Novel Approach to
Modeling Context-Aware and Social Collaboration Processes, J. Ralyté, X.Franch, S.
Brinkkemper, S. Wrycza (eds.), in proc. of CAiSE 2012, Springer LNCS 7328

27. Comuzzi, M., Pernici, B. (2009), A framework for QoS-based Web service contracting,
ACM Transactions on the Web 3 (3), 10-52

28. Davidow, W.H., and M.S. Malone. (1992) The Virtual Corporation: Structuring and
Revitalizing the Corporation for the 21st Century, Harper Collins Publishers

29. Bubenko, J. A. Jr., Persson, A. and Stirna, J. (2001). User Guide of the Knowledge
Management Approach Using Enterprise Knowledge Patterns. Deliverable D3, IST
Programme project Hypermedia and Pattern Based Knowledge Management for Smart
Organisations, project no. IST-2000-28401, Royal Institute of Technology, Sweden.

30. Alexander C., (1977). A pattern language, Oxford University Press, New York.
31. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995) Design Patterns: Elements of

Reusable Object-Oriented Software Architecture. Addison Wesley
32. Niwe, M. Stirna, J. (2009) Organizational Patterns for B2B Environments-Validation and

Comparison, Halpin et al. (eds.) in Enterprise Business-Process and Information Systems
Modeling, Springer LNBIP 29, ISBN 978-3-642-01861-9

33. Sandkuhl K., Stirna J., (2008) Evaluation of Task Pattern Use in Web-based Collaborative
Engineering, Proc. of the 34th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), EUROMICRO, IEEE, ISBN 978-0-7695-3276-9

34. Chen, L., Song, Z.-L., Zhang, Y., Miao, Z. (2011), A method for context-aware web
services selection, International Journal of Advancements in Computing Technology 3 (7),
291-298

35. Lu, R., Sadiq, S., Governatori, G. (2009) On managing business processes variants, Data &
Knowledge Engineering 68, 642–664.

36. Nguyen, D.K., F. Lelli, Y. Taher, M. Parkin, M.P. Papazoglou, and W. van den Heuvel
(2011) Blueprint Template Support for Engineering Cloud-Based Services, W.
Abramowicz et al. (Eds.): ServiceWave 2011, LNCS 6994, 26–37.

