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Abstract

This technical report describes CHERI ISAv7, the seventh version of the Capability Hardware
Enhanced RISC Instructions (CHERI) Instruction-Set Architecture (ISA) being developed by
SRI International and the University of Cambridge. This design captures nine years of research,
development, experimentation, refinement, formal analysis, and validation through hardware
and software implementation. CHERI ISAv7 is a substantial enhancement to prior ISA ver-
sions. We differentiate an architecture-neutral protection model vs. architecture-specific in-
stantiations in 64-bit MIPS, 64-bit RISC-V, and x86-64. We have defined a new CHERI
Concentrate compression model. CHERI-RISC-V is more substantially elaborated. A new
compartment-ID register assists in resisting microarchitectural side-channel attacks. Experi-
mental features include linear capabilities, capability coloring, temporal memory safety, and
64-bit capabilities for 32-bit architectures.

CHERI is a hybrid capability-system architecture that adds new capability-system primi-
tives to commodity 64-bit RISC ISAs, enabling software to efficiently implement fine-grained
memory protection and scalable software compartmentalization. Design goals include incre-
mental adoptability within current ISAs and software stacks, low performance overhead for
memory protection, significant performance improvements for software compartmentalization,
formal grounding, and programmer-friendly underpinnings. We have focused on providing
strong, non-probabilistic, efficient architectural foundations for the principles of least privilege
and intentional use in the execution of software at multiple levels of abstraction, preventing and
mitigating vulnerabilities.

The CHERI system architecture purposefully addresses known performance and robust-
ness gaps in commodity ISAs that hinder the adoption of more secure programming models
centered around the principle of least privilege. To this end, CHERI blends traditional paged
virtual memory with an in-address-space capability model that includes capability registers,
capability instructions, and tagged memory. CHERI builds on the C-language fat-pointer lit-
erature: its capabilities can describe fine-grained regions of memory, and can be substituted
for data or code pointers in generated code, protecting data and also improving control-flow
robustness. Strong capability integrity and monotonicity properties allow the CHERI model to
express a variety of protection properties, from enforcing valid C-language pointer provenance
and bounds checking to implementing the isolation and controlled communication structures
required for software compartmentalization.

CHERTI’s hybrid capability-system approach, inspired by the Capsicum security model, al-
lows incremental adoption of capability-oriented design: software implementations that are
more robust and resilient can be deployed where they are most needed, while leaving less criti-
cal software largely unmodified, but nevertheless suitably constrained to be incapable of having
adverse effects. Potential deployment scenarios include low-level software Trusted Computing
Bases (TCBs) such as separation kernels, hypervisors, and operating-system kernels, as well as
userspace TCBs such as language runtimes and web browsers. We also see potential early-use
scenarios around particularly high-risk software libraries (such as data compression, protocol
parsing, and image processing), which are concentrations of both complex and historically
vulnerability-prone code exposed to untrustworthy data sources, while leaving containing ap-
plications unchanged.
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Chapter 1

Introduction

CHERI (Capability Hardware Enhanced RISC Instructions) extends commodity RISC Instruct-
ion-Set Architectures (ISAs) with new capability-based primitives that improve software ro-
bustness to security vulnerabilities. The CHERI model is motivated by the principle of least
privilege, which argues that greater security can be obtained by minimizing the privileges ac-
cessible to running software. A second guiding principle is the principle of intentional use,
which argues that, where many privileges are available to a piece of software, the privilege to
use should be explicitly named rather than implicitly selected. While CHERI does not prevent
the expression of vulnerable software designs, it provides strong vulnerability mitigation: at-
tackers have a more limited vocabulary for attacks, and should a vulnerability be successfully
exploited, they gain fewer rights, and have reduced access to further attack surfaces. CHERI
allows software privilege to be minimized at two granularities:

Fine-grained code protection CHERI provides support for fine-grain protection and inten-
tional use through in-address-space memory capabilities, which replace integer virtual-
address representations of code and data pointers. The aim here is to minimize the rights
available to be exercised on an instruction-by-instruction basis, limiting the scope of
damage from inevitable software bugs. CHERI capabilities protect the integrity and valid
provenance of pointers themselves, as well as allowing fine-grained protection of the in-
memory data and code that pointers refer to. These protection policies can, to a large
extent, be based on information already present in program descriptions — e.g., from C-
language types, memory allocators, and run-time linking. This application of least privi-
lege and intentional use provides strong protection against a broad range of memory- and
pointer-based vulnerabilities and exploit techniques — buffer overflows, format-string at-
tacks, pointer injection, data-pointer-corruption attacks, control-flow attacks, and so on.
Many of these goals can be achieved through code recompilation on CHERI.

Secure encapsulation At a coarser granularity, CHERI also supports secure encapsulation
and intentional use through the robust and efficient implementation of highly scalable
in-address-space software compartmentalization using object capabilities. The aim here
is to minimize the set of rights available to larger isolated software components, building
on efficient architectural support for strong software encapsulation. These protections are
grounded in explicit descriptions of isolation and communication provided by software
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authors, such as through explicit software sandboxing. This application of least privilege
and intentional use provides strong mitigation of application-level vulnerabilities, such as
logical errors, downloaded malicious code, or software Trojans inserted in the software
supply chain.

Effective software compartmentalization depends on explicit software structure, and can
require significant code change. Where compartmentalization already exists in soft-
ware, CHERI can be used to significantly improve compartmentalization performance
and granularity. Where that structure is not yet present, CHERI can improve the adoption
path for compartmantalization due to supporting in-address-space compartmentalization
models.

CHERI is designed to support incremental adoption within current security-critical, C-
language Trusted Computing Bases (TCBs): operating-system (OS) kernels, key system li-
braries and services, language runtimes supporting higher-level type-safe languages, and appli-
cations such as web browsers and office suites. While CHERI builds on many historic ideas
about capability systems (see Chapter 11), one of the key contributions of this work is CHERI’s
hybrid capability-system architecture. In this context, hybrid refers to combining aspects from
conventional architectures, system software, and language/compiler choices with capability-
oriented design. Key forms of hybridization in the CHERI design include:

A RISC capability system A capability-system model is blended with a conventional RISC
user-mode architecture without disrupting the majority of key RISC design choices.

An MMU-enabled capability system A capability-system model is cleanly and usefully com-
posed with conventional ring-based privilege and virtual memory based on MMUs (Mem-
ory Management Units).

A C-language capability system CHERI can be targeted by a C/C++-language compiler with
strong compatibility, performance, and protection properties.

Hybrid system software CHERI supports a range of OS models including conventional MMU-
based virtual-memory designs, hybridized designs that host capability-based software
within multiple virtual address spaces, and pure single-address-space capability systems.

Incremental adoptability Within pieces of software, capability-aware design can be disre-
garded, partially adopted, or fully adopted with useful and predictable semantics. This
allows incremental adoption within large software bases, from OS kernels to application
programs.

We hope that these hybrid aspects of the design will support gradual deployment of CHERI
features in existing software, rather than obliging a clean-slate software design, thereby offering
a more gentle hardware-software adoption path.

In the remainder of this chapter, we describe our high-level design goals for CHERI, the
notion that CHERI is an architecture-neutral protection model with architecture-specific map-
pings (such as CHERI-MIPS and CHERI-RISC-V), an introduction to the CHERI-MIPS con-
crete instantiation, a brief version history, an outline of the remainder of this report, and our
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publications to date on CHERI. A more detailed discussion of our research methodology, in-
cluding motivations, threat model, and evolving approach from ISA-centered prototyping to a
broader architecture-neutral protection model may be found in Chapter 10. Historical context
and related work for CHERI may be found in Chapter 11. The Glossary at the end of the re-
port contains stand-alone definitions of many key ideas and terms, and may be useful reference
material when reading the report.

1.1 CHERI Design Goals

CHERI has three central design goals aimed at dramatically improving the security of con-
temporary C-language TCBs, through processor support for fine-grained memory protection
and scalable software compartmentalization, whose (at times) conflicting requirements have
required careful negotiation in our design:

Fine-grained memory protection improves software resilience to escalation paths that allow
low-level software bugs involving individual data structures and data-structure manipu-
lations to be coerced into more powerful software vulnerabilities; e.g., through remote
code injection via buffer overflows, control-flow and data-pointer corruption, and other
memory-based techniques. Unlike MMU-based memory protection, CHERI memory
protection is intended to be driven by the compiler in protecting programmer-described
data structures and references, rather than via coarse page-granularity protections. CHERI
capabilities limit how pointers can be used by scoping the ranges of memory (via bounds)
and operations that can be performed (via permissions). They also protect the integrity,
provenance, and monotonicity of pointers in order to prevent inadvertent or inappropriate
manipulation that might otherwise lead to privilege escalation.

Memory capabilities may be used to implement data pointers (protecting against a variety
of data-oriented vulnerabilities such as overflowing buffers) and also to implement code
pointers (supporting the implementation of control-flow integrity by preventing corrupted
code pointers and return addresses from being used). Fine-grained protection also pro-
vides the foundation for expressing compartmentalization within application instances.
We draw on, and extend, ideas from recent work in C-language software bounds checking
by combining fat pointers with capabilities, allowing capabilities to be substituted for C
pointers with only limited changes to program semantics.

CHERI permits efficient implementation of dialects of C and C++ in which various in-
valid accesses, deemed to be undefined behavior in those languages, and potentially
giving arbitrary behavior in their implementations, are instead guaranteed to throw an
exception.

Software compartmentalization involves the decomposition of software (at present, primar-
ily application software) into isolated components to mitigate the effects of security
vulnerabilities by applying sound principles of security, such as abstraction, encapsu-
lation, type safety, and especially least privilege and the minimization of what must be
trustworthy (and therefore sensibly trusted!). Previously, it seems that the adoption of
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compartmentalization has been limited by a conflation of hardware primitives for virtual
addressing and separation, leading to inherent performance and programmability prob-
lems when implementing fine-grained separation. Specifically, we seek to decouple the
virtualization from separation to avoid scalability problems imposed by MMUs based
on translation look-aside buffers (TLBs), which impose a very high performance penalty
as the number of protection domains increases, as well as complicating the writing of
compartmentalized software.

A viable transition path must be applicable to current software and hardware designs. CHERI
hardware must be able to run most current software without significant modification, and
allow incremental deployment of security improvements starting with the most critical
software components: the TCB foundations on which the remainder of the system rests,
and software with the greatest exposure to risk. CHERI’s features must significantly im-
prove security, to create demand for upstream processor manufacturers from their down-
stream mobile and embedded device vendors. These CHERI features must at the same
time conform to vendor expectations for performance, power use, and compatibility to
compete with less secure alternatives.

We draw on formal methodologies wherever feasible, to improve our confidence in the
design and implementation of CHERI. This use is necessarily subject to real-world constraints
of timeline, budget, design process, and prototyping, but it has helped increase our confidence
that CHERI meets our functional and security requirements. Formal methods can also help to
avoid many of the characteristic design flaws that are common in both hardware and software.
This desire requires us not only to perform research into CPU and software design, but also to
develop new formal methodologies, and adaptations and extensions of existing ones.

We are concerned with satisfying the need for trustworthy systems and networks, where
trustworthiness is a multidimensional measure of how well a system or other entity satisfies its
various requirements — such as those for security, system integrity, and reliability, as well as
human safety, and total-system survivability, robustness, and resilience, notably in the presence
of a wide range of adversities such as hardware failures, software flaws, malware, accidental
and intentional misuse, and so on. Our approach to trustworthiness encompasses hardware and
software architecture, dynamic and static evaluation, formal and non-formal analyses, good
software-engineering practices, and much more.

1.2 Architecture Neutrality and Architectural Instantiations

CHERI consists of an architectural-neutral protection model, and a set of instantiations of that
model across multiple ISAs. Our initial mapping into the 64-bit MIPS ISA has allowed us to
develop the CHERI approach; we have now expanded to include a more elaborated mapping
into the 64-bit RISC-V ISA, and a sketch mapping into the x86-64 ISA. In doing so, we have
attempted to maximize the degree to which specification is architecture neutral, and minimize
the degree to which it is architecture specific. Even within a single ISA, there are multiple
potential instantiations of the CHERI protection model, which offer different design tradeofts
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— for example, decisions about whether to have separate integer and capability register files or
to merge them into a single register file.

The successful mapping into multiple ISAs has led us to believe that the CHERI protec-
tion model is a portable protection model, that support portable software stacks in much the
same way that portable virtual-memory-based operating systems can be implemented across
a variety of architectural MMUs. Unlike MMUs, whose software interactions are primarily
with the operating system, CHERI interacts directly with compiler-generated code, key system
libraries, compartmentalization libraries, and applications; across all of these, we have found
that an architecture-neutral approach can be highly effective, offering portability to the vast
majority of CHERI-aware C/C++ code. We first consider the architecture-neutral model, and
then applications of our approach in specific ISAs.

1.2.1 The Architecture-Neutral CHERI Protection Model

The aim of the CHERI protection model, as embodied in both the software stack (see Chap-
ter 2) and architecture (see Chapter 3), is to support two vulnerability mitigation objectives:
first, fine-grained pointer and memory protection within address spaces, and second, primitives
to support both scalable and programmer-friendly compartmentalization within address spaces.
The CHERI model is designed to support low-level TCBs, typically implemented in C or a C-
like language, in workstations, servers, mobile devices, and embedded devices. In contrast
to MMU-based protection, this is done by protecting references to code and data (pointers),
rather than the location of code and data (virtual addresses). This is accomplished via an in-
address-space capability-system model: the architecture provides a new primitive, the capabil-
ity, that software components (such as the OS, compiler, run-time linker, compartmentalization
runtime, heap allocator, etc.) can use to implement strongly protected pointers within virtual
address spaces.

In the security literature, capabilities are tokens of authority that are unforgeable and dele-
gatable. CHERI capabilities are integer virtual addresses that have been extended with meta-
data to protect their integrity, limit how they are manipulated, and control their use. This meta-
data includes a rag implementing strong integrity protection (differentiating valid and invalid
capabilities), bounds limiting the range of addresses that may be dereferenced, permissions
controlling the specific operations that may be performed, and also sealing, used to support
higher-level software encapsulation. Protection properties for capabilities include the ISA en-
suring that capabilities are always derived via valid manipulations of other capabilities (prove-
nance), that corrupted in-memory capabilities cannot be dereferenced (integrity), and that rights
associated with capabilities are non-increasing (monotonicity).

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and
dereferenced using CHERI-aware instructions that expect capability operands rather than in-
teger virtual addresses. On hardware reset, initial capabilities are made available to software
via special and general-purpose capability registers. All other capabilities will be derived from
these initial valid capabilities through valid capability transformations.

In order to continue to support non-CHERI-aware code, dereference of integer virtual ad-
dresses via legacy instruction is transparently indirected via a default data capability (DDC)
for loads and stores, or a program-counter capability (PCC) for instruction fetch.
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A variety of programming-language and code-generation models can be used with a CHERI-
extended ISA. As integer virtual addresses continue to be supported, C or C++ compilers might
choose to always implement pointers via integers, selectively implement certain pointers as
capabilities based on annotations or type information (i.e., a hybrid C interpretation), or al-
ternatively always implement pointers as capabilities except where explicitly annotated (i.e.,
a pure-capability interpretation). Programming languages may also employ capabilities inter-
nal to their implementation: for example, to protect return addresses, vtable pointers, and other
virtual addresses for which capability protection can provide enhanced vulnerability mitigation.

When capabilities are being used to implement pointers (e.g., to code or data) or internal
addresses (e.g., for return addresses), they must be constructed with suitably restricted rights,
to accomplish effective protection. This is a run-time operation performed using explicit in-
structions (e.g., to set bounds, mask permissions, or seal capabilities) by the operating system,
run-time linker, language runtime and libraries, and application code itself:

The operating-system kernel may narrow bounds and permissions on pointers provided as
part of the start-up environment when executing a program binary (e.g., to arguments
or environmental variables), or when returning pointers from system calls (e.g., to new
memory mappings).

The run-time linker may narrow bounds and permissions when setting up code pointers or
pointers to global variables.

The system library may narrow bounds and permissions when returning a pointer to newly
allocated heap memory.

The compartmentalization runtime may narrow bounds and permissions, as well as seal ca-
pabilities, enforcing compartment isolation (e.g., to act as sandboxes).

The compiler may insert instructions to narrow bounds and permissions when generating code
to take a pointer to a stack allocation, or when taking a pointer to a field of a larger
structure allocated as a global, on the stack, or on the heap.

The language runtime may narrow bounds and permissions when returning pointers to newly
allocated objects, or when setting up internal linkage, as well as seal capabilities to non-
dereferenceable types.

The application may request changes to permissions, bounds, and other properties on point-
ers, in order to further subset memory allocations and control their use.

The CHERI model can also be used to implement other higher-level protection properties.
For example, tags on capabilities in memory can be used to support accurate C/C++-language
temporal safety via revocation or garbage collection, and sealed capabilities can be used to en-
force language-level encapsulation and type-checking features. The CHERI protection model
and its implications for software security are described in detail in Chapter 2.

CHERI is an architecture-neutral protection model in that, like virtual memory, it can be
deployed within multiple ISAs. In developing CHERI, we initially considered it as a con-
crete extension to the 64-bit MIPS ISA; using it, we could explore the implications downwards
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into the microarchitecture, and upwards into the software stack. Having developed a mature
hardware-software protection model, we used this as the baseline in deriving an architecture-
neutral CHERI protection model. This architecture-neutral model is discussed in detail in
Chapter 3. We have demonstrated the possibility of adding CHERI protection to more than one
base ISA by providing a detailed concrete instantiation for the 64-bit MIPS ISA (Chapter 4),
a draft instantiation in the RISC-V ISA (Chapter 5), and a lightweight architectural sketch for
the x86-64 ISA (Chapter 6).

1.2.2 An Architecture-Specific Mapping into 64-bit MIPS

The CHERI-MIPS ISA (see Chapter 4) is an instantiation of the CHERI protection model as an
extension to the 64-bit MIPS ISA [50]. CHERI adds the following features to the MIPS ISA!
to support granular memory protection and compartmentalization within address spaces:

Capability registers describe the rights (protection domain) of the executing thread to access
memory, and to invoke object references to transition between protection domains. We
model these registers as a separate capability register file, supplementing the general-
purpose integer register file.

Capability registers contain a tag, object type, permission mask, base, length, and offset
(allowing the description of not just a bounded region, but also a pointer into that region,
improving C-language compatibility). Capability registers are suitable for describing
both data and code, and can hence protect both data integrity/confidentiality and control
flow. Certain registers are reserved for use in exception handling; all others are available
to be managed by the compiler using the same techniques used with conventional regis-
ters. Over time, we imagine that software will increasingly use capabilities rather than
integers to describe data and object references.

Another potential integration into the ISA (which would maintain the same CHERI pro-
tection semantics) would be to extend the existing general-purpose integer registers so
that they could also hold capabilities. This might reduce the hardware resources required
to implement CHERI support. However, we selected our current approach to maintain
consistency with the MIPS ISA extension model (in which coprocessors have indepen-
dent register files), and to minimize Application Binary Interface (ABI) disruption on
boundaries between legacy and CHERI-aware code for the purposes of rapid architec-
tural and software iteration. We explore the potential space of mappings from the CHERI
model into the ISA in greater detail in Section 3.10.1, as well as in Chapters 5 and 6 where
we consider alternative mappings into non-MIPS ISAs.

Capability instructions allow executing code to create, constrain (e.g., by reducing bounds
or permissions), manage, and inspect capability register values. Both unsealed (memory)
and sealed (object) capabilities can be loaded and stored via memory capability registers

"Formally, CHERI instructions are added to MIPS as a MIPS coprocessor — a reservation of opcode space in-
tended for third-party use. Despite the suggestive term “coprocessor”’, CHERI support will typically be integrated
tightly into the processor pipeline, memory subsystem, and so on. We therefore eschew use of the term.
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(i.e., dereferencing). Object capabilities can be invoked, via special instructions, allow-
ing a transition between protection domains, but are immutable and non-dereferenceable,
providing encapsulation of the code or data that they refer to. Capability instructions im-
plement guarded manipulation: invalid capability manipulations (e.g., to increase rights
or length) and invalid capability dereferences (e.g., to access outside of a bounds-checked
region) result in an exception that can be handled by the supervisor or language runtime.
A key aspect of the instruction-set design is intentional use of capabilities: explicit ca-
pability registers, rather than ambient authority, are used to indicate exactly which rights
should be exercised, to limit the damage that can be caused by exploiting bugs. Tradeoffs
exist around intentional use, and in some cases compatibility or opcode utilization may
dictate implicit capability selection; for example, legacy MIPS load and store instructions
implicitly dereference a Default Data Capability as they are unable to explicitly name a
capability register. Most capability instructions are part of the user-mode ISA, rather
than the privileged ISA, and will be generated by the compiler to describe application
data structures and protection properties.

Tagged memory associates a 1-bit tag with each capability-aligned and capability-sized word
in physical memory, which allows capabilities to be safely loaded and stored in memory
without loss of integrity. Writes to capability values in memory that do not originate from
a valid capability in the capability register file will clear the tag bit associated with that
memory, preventing accidental (or malicious) dereferencing of invalid capabilities.

This functionality expands a thread’s effective protection domain to include the transitive
closure of capability values that can be loaded via capabilities via those present in its
register file. For example, a capability register representing a C pointer to a data struc-
ture can be used to load further capabilities from that structure, referring to further data
structures, which could not be accessed without suitable capabilities.

Non-bypassable tagging of unforgeable capabilities enables not only reliable and secure
enforcement of capability properties, but also reliable and secure identification of capa-
bilities in memory for the purposes of implementing other higher-level protection prop-
erties such as temporal safety.

In keeping with the RISC philosophy, CHERI instructions are intended for use primarily
by the operating system and compiler rather than directly by the programmer, and consist of
relatively simple instructions that avoid (for example) combining memory access and register
value manipulation in a single instruction. In our current software prototypes, there are di-
rect mappings from programmer-visible C-language pointers to capabilities in much the same
way that conventional code generation translates pointers into general-purpose integer register
values; this allows CHERI to continuously enforce bounds checking, pointer integrity, and so
on. There is likewise a strong synergy between the capability-system model, which espouses
a separation of policy and mechanism, and RISC: CHERTI’s features make possible the imple-
mentation of a wide variety of OS, compiler, and application-originated policies on a common
protection substrate that optimizes fast paths through hardware support.

Our prototype of this approach, instantiating our ideas about CHERI capability access to a
specific instruction set (the 64-bit MIPS ISA) has necessarily led to a set of congruent imple-
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mentation decisions about register-file size, selection of specific instructions, exception han-
dling, memory alignment requirements, and so on, that reflect that starting-point ISA. These
decisions might be made differently with another starting-point ISA as they are simply sur-
face features of the underlying approach; we anticipate that adaptations to ISAs such as ARM,
RISC-V, and x86-64 would adopt instruction-encoding conventions, and so on, more in keeping
with their specific flavor and design (see Chapters 5 and 6).

Other design decisions reflect the goal of creating a platform for prototyping and exploring
the design space itself; among other choices, this includes the initial selection of 256-bit capa-
bilities, giving us greater flexibility to experiment with various bounds-checking and capability
behaviors. However, a 256-bit capability introduces potentially substantial cache overhead for
pointer-intensive applications — so we have also developed a “compressed” 128-bit in-memory
representation. This approach exploits redundancy between the virtual address represented by
a capability and its lower and upper bounds — but necessarily limits granularity, leading to
stronger alignment requirements.

In our CHERI-MIPS prototype implementation of the CHERI model, capability support
is tightly coupled with the existing processor pipeline: instructions propagate values between
general-purpose integer registers and capability registers; capabilities transform interpretation
of virtual addresses generated by capability-unaware instructions including by transforming the
program counter; capability instructions perform direct memory stores and loads both to and
from general-purpose integer registers and capability registers; and capability-related behaviors
deliver exceptions to the main pipeline. By virtue of having selected the MIPS-centric design
choice of exposing capabilities as a separate set of registers, we maintain a separate capability
register file as an independent hardware unit — in a manner comparable to vector or floating-
point units in current processor designs. The impacts of this integration include additional
control logic due to maintaining a separate register file, and a potentially greater occupation of
opcode space, whereas combining register files might permit existing instructions to be reused
(with care) across integer and capability operations.

Wherever possible, CHERI systems make use of existing hardware designs: processor
pipelines and register files, cache memory, system buses, commodity DRAM, and commodity
peripheral devices such as NICs and display cards. We are currently focusing on enforcement
of CHERI security properties on applications running on a general-purpose processor; in future
work, we hope to consider the effects of implementing CHERI in peripheral processors, such
as those found in Network Interface Cards (NICs) or Graphical Processing Units (GPUs).

1.2.3 Architectural Neutrality: CHERI-RISC-V and CHERI-x86-64

We believe that the higher-level memory protection and security models we describe encom-
pass not only a number of different potential expressions within a single ISA (e.g., whether to
have separate capability registers or to extend general-purpose integer registers to also option-
ally hold capabilities), but also be applied to other RISC (and CISC) ISAs. This should allow
reasonable source-level software portability (leaving aside language runtime and OS assembly
code, and compiler code generation) across the CHERI model implemented in different archi-
tectures — in much the same way that conventional OS and application C code, as well as APIs
for virtual memory, are moderately portable across underlying ISAs.
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We have therefore developed two further mappings of the CHERI protection model into
specific ISAs: CHERI-RISC-V (Chapter 5) and CHERI-x86-64 (Chapter 6). CHERI-RISC-V
is a draft architecture that we are in the process of defining and implementing: RISC-V derives
many of it foundational design choices from MIPS, with some more contemporary architectural
choices such as hardware page-table walking, and the adaptation to CHERI is very similar. In
some areas, we have chosen to leave open specific aspects of the design, learning from our
work on CHERI-MIPS, to allow evaluation of performance tradeoffs — e.g., as relates to using
a split or merged capability register file. CHERI-x86-64 is an architectural sketch that we have
developed to better understand how the CHERI model might apply to more CISC instruction
sets. Despite substantive underlying differences between x86-64 and MIPS, we find that many
aspects of our approach carry through. We do not yet have implementation aims for CHERI-
x86-64, although we hope to explore this further in the future.

1.3 Deterministic Protection

CHERI has been designed to provide strong, non-probabilistic protection rather than depending
on short random numbers or truncated cryptographic hashes that can be leaked and reinjected,
or that could be brute forced. Essential to this approach is using out-of-band memory tags
that prevent confusion between data and capabilities. Software stacks can use these features to
construct higher-level protection properties, such as preventing the transmission of pointers via
Inter-Process Communication (IPC) or network communications. They are also an essential
foundation to strong compartmentalization, which assumes a local adversary.

1.4 Formal Modeling and Provable Protection

The design process for CHERI has used formal semantic models as an important tool in various
ways. Our goal here has been to understand how we can support the CHERI design and en-
gineering process with judicious use of mathematically rigorous methods, both in lightweight
ways (providing engineering and assurance benefits without the costs of full formal verifica-
tion), and using machine-checked proof to establish high confidence that the architecture design
provides specific security properties.

The basis for all this has been use of formal specifications of the ISA instruction behavior
as a fundamental design tool, initially for CHERI-MIPS in L3 [37], and now for CHERI-MIPS
and CHERI-RISC-V in Sail [8]. L3 and Sail are domain-specific languages specifically de-
signed for expressing instruction behavior, encoding data, etc. Simply moving from the infor-
mal pseudocode commonly used to describe instruction behavior to parsed and type-checked
artifacts already helps maintain clear specifications. The CHERI-MIPS instruction descriptions
in Chapter 7 are automatically included from the Sail model, keeping documentation and model
in sync.

Both L3 and Sail support automatic generation of executable models (variously in SML,
OCaml, or C) from these specifications. These executable models have been invaluable, both
as golden models for testing our hardware prototypes, and as emulators for testing CHERI soft-
ware above. The fact that they are automatically generated from the specifications again helps
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keep things in sync, enabling regression testing on any change to the specification, and makes
for easy experimentation with design alternatives. The generated emulators run fast enough
to boot FreeBSD in a few minutes (booting cheribsd currently takes around 250s, roughly
320kips).

We have also used the models to automatically generate ISA test cases, both via simple
random instruction generation, and using theorem-prover and SMT approaches [16].

Finally, the models support formal verification, with mechanised proof, of key architec-
tural security properties. L3 and Sail support automatic generation of versions of the models
in the definition languages of (variously) the HOL4, Isabelle, and Coq theorem provers, which
we have used as a basis for proofs. Key architectural verification goals including proving not
just low-level properties, such as the monotonicity of each individual instruction and proper-
ties of the CHERI Concentrate compression scheme, but also higher-level goals such as com-
partment monotonicity, in which arbitrary code sequences isolated within a compartment are
unable to construct additional rights beyond those reachable either directly via the register file
or indirectly via loadable capabilities. We have proven a number of such properties about the
CHERI-MIPS ISA, to be documented in future papers and reports.

The CHERI design process has also benefitted from an interplay with our work on rigorous
semantics for C [79, 78].

1.5 CHERI ISA Version History

A complete version history, including detailed notes on instruction-set changes, can be found
in Appendix A. A short summary of key ISA versions is presented here:

CHERI ISAv1 - 1.0-1.4 - 2010-2012 Early versions of the CHERI ISA explored the integra-
tion of capability registers and tagged memory — first in isolation from, and later in com-
position with, MMU-based virtual memory. CHERI-MIPS instructions were targeted
only by an extended assembler, with an initial microkernel (“Deimos”) able to create
compartments on bare metal, isolating small programs from one another. Key early de-
sign choices included:

e to compose with the virtual-memory mechanism by being an in-address-space pro-
tection feature, supporting complete MMU-based OSes,

e to use capabilities to implement code and data pointers for C-language TCBs, pro-
viding reference-oriented, fine-grained memory protection and control-flow integrity,

e to impose capability-oriented monotonic non-increase on pointers to prevent privi-
lege escalation,

e to target capabilities with the compiler using explicit capability instructions (includ-
ing load, store, and jumping/branching),

e to derive bounds on capabilities from existing code and data-structure properties,
OS policy, and the heap and stack allocators,

e to have both in-register and in-memory capability storage,
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e to use a separate capability register file (to be consistent with the MIPS coprocessor
extension model),

e to employ tagged memory to preserve capability integrity and provenance outside
of capability registers,

e to enforce monotonicity through constrained manipulation instructions,

e to provide software-defined (sealed) capabilities including a “sealed” bit, user-defined
permissions, and object types,

e to support legacy integer pointers via a Default Data Capability (DDC),
e to extend the program counter (PC) to be the Program-Counter Capability (PCC),

e to support not just fine-grained memory protection, but also higher-level protection
models such as software compartmentalization or language-based encapsulation.

CHERI ISAv2 - 1.5 - August 2012 This version of the CHERI ISA developed a number of
aspects of capabilities to better support C-language semantics, such as introducing tags
on capability registers to support capability-oblivious memory copying, as well as im-
provements to support MMU-based operating systems.

UCAM-CL-TR-850 - 1.9 - June 2014 This technical report accompanied publication of our
ISCA 2014 paper on CHERI memory protection. Changes from CHERI ISAv2 were sig-
nificant, supporting a complete conventional OS (CheriBSD) and compiler suite (CHERI
Clang/LLVM), a defined CCall/CReturn mechanism for software-defined object capabili-
ties, capability-based load-linked/store-conditional instructions to support multi-threaded
software, exception-handling improvements such as a CP2 cause register, new instruc-
tions CToPtr and CFromPtr to improve compiler efficiency for hybrid compilation, and
changes relating to object capabilities, such as user-defined permission bits and instruc-
tions to check permissions/types.

CHERI ISAv3 - 1.10 - September 2014 CHERI ISAv3 further converges C-language point-
ers and capabilities, improves exception-handling behavior, and continues to mature sup-
port for object capabilities. A key change is shifting from C-language pointers being rep-
resented by the base of a capability to having an independent “offset” (implemented as a
“cursor”) so that monotonicity is imposed only on bounds, and not on the pointer itself.
Pointers are allowed to move outside of their defined bounds, but can be dereferenced
only within them. There is also a new instruction for C-language pointer comparison
(cPtrcmp), and a NULL capability has been defined as having an in-memory representa-
tion of all zeroes without a tag, ensuring that BSS (pre-zeroed memory) operates without
change. The offset behavior is also propagated into code capabilities, changing the be-
havior of PCC, EPCC, CJR, CJALR, and several aspects of exception handling. The sealed
bit was moved out of the permission mask to be a stand-alone bit in the capability, and we
went from independent CSealCode and CSealData instructions to a single CSeal instruc-
tion, and the CSetType instruction has been removed. While the object type originates as
a virtual address in an authorizing capability, that interpretation is not mandatory due to
use of a separate hardware-defined permission for sealing.
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UCAM-CL-TR-864 - 1.11 - January 2015 This technical report refines CHERI ISAv3’s con-
vergence of C-language pointers and capabilities; for example, it adds a CIncOffset
instruction that avoids read-modify-write accesses to adjust the offset field, as well as
exception-handling improvements. TLB permission bits relating to capabilities now
have modified semantics: if the load-capability bit is not present, than capability tags
are stripped on capability loads from a page, whereas capability stores trigger an excep-
tion, reflecting the practical semantics found most useful in our CheriBSD prototype.

CHERI ISAv4 / UCAM-CL-TR-876 - 1.15 - November 2015 This technical report describes
CHERI ISAv4, introducing concepts required to support 128-bit compressed capabilities.
A new CSetBounds instruction is added, allowing adjustments to both lower and upper
bounds to be simultaneously exposed to the hardware, providing more information when
making compression choices. Various instruction definitions were updated for the poten-
tial for imprecision in bounds. New chapters were added on the protection model, and
how CHERI features compose to provide stronger overall protection for secure software.
Fast register-clearing instructions are added to accelerate domain switches. A full set of
capability-based load-linked, store-conditional instructions are added, to better support
multi-threaded pure-capability programs.

CHERI ISAvS / UCAM-CL-TR-891 - 1.18 - June 2016 CHERIISAVS primarily serves to in-
troduce the CHERI-128 compressed capability model, which supersedes prior candidate
models. A new instruction, CGetPCCSet0ffset, allows jump targets to be more efficiently
calculated relative to the current PCC. The previous multiple privileged capability per-
missions authorizing access to exception-handling state has been reduced down to a sin-
gle system privilege to reduce bit consumption in capabilities, but also to recognize their
effective non-independence. In order to reduce code-generation overhead, immediates to
capability-relative loads and stores are now scaled.

CHERI ISAv6 / UCAM-CL-TR-907 - 1.20 - April 2017 CHERI ISAv6 introduces support for
kernel-mode compartmentalization, jump-based rather than exception-based domain tran-
sition, architecture-abstracted and efficient tag restoration, and more efficient generated
code. A new chapter addresses potential applications of the CHERI protection model to
the RISC-V and x86-64 ISAs, previously described relative only to the 64-bit MIPS ISA.
CHERI ISAv6 better explains our design rationale and research methodology.

CHERI ISAv7 / UCAM-CL-TR-927 - 7.0 - June 2019 CHERI ISAv7 differentiates an arch-
itecture-neutral CHERI protection model vs. its architecture-specific instantiations in 64-
bit MIPS, 64-bit RISC-V, and x86-64. A new capability compression scheme, CHERI
Concentrate, is defined, and the previous scheme, CHERI-128, is deprecated. CHERI-
MIPS now supports special-purpose capability registers, which have been moved out of
the numbered general-purpose capability register space. New special-purpose capability
registers, including those for thread-local storage, have been defined. CHERI-RISC-V
is more substantially elaborated. A new compartment-ID register assists in resisting mi-
croarchitectural side-channel attacks. New optimized instructions with immediate fields
improve the performance of generated code. Experimental 64-bit capabilities have been
defined for 32-bit architectures, as well as instructions to accelerate spatial and temporal



28

CHAPTER 1. INTRODUCTION

memory safety. The opcode reencoding begun in prior CHERI ISA specification versions
has now been completed.

1.5.1 Changes in CHERI ISA 7.0-ALPHA1

This release of the CHERI Instruction-Set Architecture is an interim version intended for sub-
mission to DARPA/AFRL to meet the requirements of CTSRD deliverable A0O1:

The CHERI ISA specification version numbering scheme has changed to include the
target major version in the draft version number.

A significant refactoring of early chapters in the report has taken place: there is now
a more clear distinction between architecture-neutral aspects of CHERI, and those that
are architecture specific. The CHERI-MIPS ISA is now its own chapter distinct from
architecture-neutral material. We have aimed to maximize architecture-neutral content
— e.g., capability semantics and contents, in-memory representation, compression, etc.
— using the architecture-specific chapters to address only architecture-specific aspects
of the mapping of CHERI into the specific architecture — e.g., as relates to register-file
integration, exception handling, and the Memory Management Unit (MMU). In some
areas, content must be split between architecture-neutral and architecture-specific chap-
ters, such as behavior on reset, handling of the System_Access_Registers permission
and its role in controlling architecture-specific behavior, and the integration of CHERI
with virtual memory, where the goals are largely architecture neutral but mechanism is
architecture specific.

There are now dedicated chapters for each of our applications of CHERI to each of three
ISAs: 64-bit MIPS (Chapter 4), 64-bit RISC-V (Chapter 5), and x86-64 (Chapter 6).

Our CHERI-RISC-V prototype has been substantially elaborated, and now includes an
experimental encoding in Appendix C. We have somewhat further elaborated our x86-64
model, including addressing topics such as new page-table bits for CHERI, including
a hardware-managed capability dirty bit. We also consider potential implications for
RISC-V compressed instructions.

We have completed an opcode renumbering for CHERI-MIPS. The “proposed new en-
coding” from CHERI ISAv6 has now become the established encodings; the prior encod-
ings are now documented as “deprecated encodings”.

Substantial improvements have been made to descriptive text around memory protection,
with the concept of “pointer protection” — i.e., as implemented via tags — more clearly
differentiated from memory protection.

We now more clearly describe how terms like “lower bound” and “upper bound” relate
to the base, offset, and length fields.

We now more clearly differentiate language-level capability semantics from capability
use in code generation and the ABI, considering pure-capability and hybrid C as distinct
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from pure-capability and hybrid code generation. We explain that different language-
level integer interpretations of capabilities are supportable by the architecture, depending
on compiler code-generation choices.

e Potential software policies for revocation, garbage collection, and capability flow control
based on CHERI primitives are described in greater detail.

e Monotonicity is more clearly described, as are the explicit opportunities for non-mono-
tonicity around exception handling and cCall Selector 1. Handling of disallowed requests
for non-monotonicity or bypass of guarded manipulation by software is more explicitly
discussed, including the opportunities for both exception throwing and tag stripping to
maintain CHERI’s invariants.

e Further notes have been added regarding the in-memory representation of capabilities,
including the storage of NULL capabilities, virtual addresses for non-NULL capabilities,
and how to store integer values in untagged capability registers. These values now appear
in the bottom 64 bits of the in-memory representation. Topics such as endianness are also
considered.

e NULL capabilities are now defined as having a base of 0x0, the maximum length sup-
ported in a particular representation (2% for 128-bit capabilities, and 24 — 1 for 256-bit
capabilities), and no granted permissions. NULL capabilities continue to have an all
zeros in-memory representation. This allows integers to be stored in the offset of an
untagged capability without concern that they may hold values that are unrepresentable
with respect to capability bounds.

e New instructions CReadHwr and CWriteHwr have been added. These have allowed us to
migrate special capability registers (SCRs) out of the general-purpose capability register
file, including DDC, the new user TLS register (CULR), the new privileged TLS register
(CPLR), KR1C, KR2C, KCC, KDC, and EPCC. Access to privileged special registers
continues to be authorized by the Access_System_Registers permission on PCC.

e With this migration, C0 is now available to use as a NULL capability register, which is
more consistent with the baseline MIPS ISA in which RO is the zero register. The only
exception to this is in capability-relative load and store instructions, and the CTestSubset
instruction, in which an operand of C0 specifies that DDC should be used.

e Various instruction pseudo-ops to access special registers, such as CGetDefault, now ex-
pand to special capability register access instructions instead of capability move instruc-
tions.

e With consideration of merged rather than split integer and capability register files for
RISC-V and x86-64, and a separation between general-purpose capability registers and
special capability registers (SCRs) on 64-bit MIPS, we avoid describing the integer reg-
ister file as the “general-purpose register file”. We describe a number of tradeoffs around
ISA design relating to using a split vs. merged register file; avoiding the use of specific
capability registers as special registers assists in supporting both register-file approaches.
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The CPU reset state of various capability registers is now more clearly defined. Most
capability registers are initialized to NULL on reset, with the exception of DDC, PCC,
KCC, and EPCC. These defaults authorize initial access to memory for the boot process,
and are designed to allow CHERI-unaware code to operate oblivious to the capability-
system feature set.

We more clearly describe design choices around failure-mode choices, including throw-
ing exceptions and clearing tag bits. Here, concerns in conclude stylistic consistency
with the host architecture, potential use cases, and interactions with the compiler and
operating system.

In general, we now refer to software-defined permissions rather than user-defined per-
missions, as these permissions without an architectural interpretation may be used in any
ring.

Permission numbering has been rationalized so that 128-bit and 256-bit microarchitec-
tural permission numbers consistently start at 15.

The existing permission Permit_Seal, which authorized sealing and explicit unsealing of
sealed capabilities, has now been broken out into two separate permissions: Permit_Seal,
which authorizes sealing, and Permit_Unseal, which authorizes explicit unsealing. This
will allow privilege to be reduced where unsealing is desirable (e.g., within object imple-
mentations, or in C++ vtable use) by not requiring that permission to seal for the object
type is also granted.

The ISA quick reference has been updated to reflect new instructions, as well as to more
correctly reflect endianness.

We have added a reference to a new technical report, Capability Hardware Enhanced
RISC Instructions (CHERI): Notes on the Meltdown and Spectre Attacks [147], which
considers the potential interactions between CHERI and the recently announced Spectre
and Meltdown microarchitectural side-channel attacks. CHERI offers substantial poten-
tial to assist in mitigating aspects of these attacks, as long as the microarchitecture per-
forms required capability checks before performing any speculative memory accesses.

We have added two new instructions, Get the architectural Compartment ID (CGetCID)
and Set the architectural Compartment ID (CSetCID), which allow information on com-
partments to be passed to via architecture to microarchitecture in order to support mitiga-
tion of side-channel attacks. This could be used to tag branch-predictor entries to control
the compartments in which they can be used, for example. A new Permit_Set_CID per-
mission allows capabilities to delegate use of ranges of CIDs.

Bugs have been fixed in the definitions of capability-relative load and store instruc-
tions: permission checks involving the Permit_LLoad, Permit_Load_Cap, Permit_Store,
and Permit_Store_Cap permissions were not properly updated from our shift from an un-
tagged capability register file to a tagged register file. All loads now require Permit_Load.
If Permit_Load_Cap is also present, then tags will not be stripped when loading into a
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capability register. All stores now require Permit_Store. If Permit_Store_Cap is also
present, then storing a tagged capability will not generate an exception.

e New Capability Set Bounds From Immediate (CSetBoundsImm) and Capability Increment
Offset From Immediate (CIncOffsetImm) instructions have been added. These instruc-
tions optimize global-variable setup and stack allocations by reducing the number of
instructions and registers required to adjust pointer values and set bounds.

e New Capability Branch if Not NULL (CBNZ) and Capability Branch if NULL (CBEZ) in-
structions have been added, which optimize pointer comparisons to NULL.

e A new Capability to Address (CGetAddr) instruction allows the direct retrieval of a capa-
bility’s virtual address, rather than requiring the base and offset to be separately retrieved
and added together. This facilitates efficient implementation of a CHERI C variant in
which all casts of capabilities to integers have virtual-address rather than offset inter-
pretation. A capability’s virtual address is now more directly defined when we specify
capability fields.

e We more clearly describe CCall Selector 1 as “exception-free domain transition” rather
than “userspace domain transition”, as it is also intended to be used in more privileged
rings.

e We have shifted to more consistently throwing an exception at jump instructions (e.g.,
CJR) that go out of bounds, rather than throwing the exception when fetching the first
instruction at the target address. This provides more debugging information when using
compressed capabilities, as otherwise EPCC might have unrepresentable bounds in the
event that the jump target is outside of the representable region.

e The exception vectors use during failures of Selector 0 and Selector 1 cCall have been
clarified. The general-purpose exception vector is used for all failure modes with CCall
Selector 1.

e New experimental instruction Test that Capability is a Subset of Another (CTestSubset)
has been added. This instruction is intended to be used by garbage collectors that need
to rapidly test whether a capability points into the range of another capability.

e A new experimental 64-bit capability format for 32-bit virtual addresses has been added
(Section D.7).

e A description of an experimental /inear capability model has been added (Section D.10).
This model introduces the concept that a capability may be linear —i.e., that it can only be
moved rather copied in memory-to-register, register-to-register, and register-to-memory
operations. This introduces two new instructions, Linear Load Capability Register (LLCR)
and Linear Store Capability Register (LSCR). This functionality has not yet been fully
specified.
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e An experimental appendix considers possible implementations of indirect capabilities,
in which a capability value points at an actual capability to utilize, allowing table-based
capability lookups (Section D.11).

e An experimental appendix considering potential forms of compression for capability per-
missions has been added (Section D.8).

e We have added a reference to our ICCD 2017 paper, Efficient Tagged Memory, which
describes how to efficiently implement tagged memory in memory subsystems not sup-
porting inline tags directly in DRAM [54].

1.5.2 Changes in CHERI ISA 7.0-ALPHA2

This version of the CHERI Instruction-Set Architecture is an interim version distributed for
review by DARPA and our collaborators:

e We have removed the range check from the CToPtr specification, as this has proven mi-
croarchitecturally challenging. We anticipate that current consumers requiring this range
check can use the new CTestSubset instruction alongside CToPtr.

e Use of a branch-delay slot with cCall Selector 1 has been removed.

e With the addition of CReadHwr and CwriteHwr and shifting of special capability registers
out of the general-purpose capability register file, we have now removed the check for the
Access_System_Registers permission for all registers in the general-purpose capability
register file.

e A new CCheckTag instruction is added, which throws an exception if the tag is not set on
the operand capability. This instruction could be used by a compiler to shift capability-
related exception behavior from invalid dereference to calculation of an invalid capability
via a non-exception-throwing manipulation.

e We have added a new CLCBI instruction that allows capability-relative loads of capabilities
to be performed using a substantially larger immediate (but without a general-purpose
integer-register operand). This substantially accelerates performance in the presence of
CHERI-aware linkage by avoiding multi-instruction sequences to load capabilities for
global variables.

e We have added new discussion relating to microarchitectural side channels such as Spec-
tre and Meltdown (Section 2.5).

e We have added a reference to our ASPLOS 2019 paper, CheriABI: Enforcing Valid
Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environ-
ment, which describes how to adapt a full MMU-based OS design to support ubiquitous
use of capabilities to implement C and C++ pointers in userspace [28].
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e We have added a reference to our POPL 2019 paper, ISA Semantics for ARMvS8-A, RISC-
V, and CHERI-MIPS, which describes a formal modeling approach for instruction-set
architectures, as well as a formal model of the CHERI-MIPS ISA [8].

e We have added a reference to our POPL 2019 paper, Exploring C Semantics and Pointer
Provenance, which describes a formal model for C pointer provenance, and is evaluated
in part using pure-capability CHERI code [78].

e We have added a description of an experimental compact capability coloring scheme,
a possible candidate to replace our Local-Global capability flow-control model (Sec-
tion D.13). In the proposed scheme, a series of orthogonal “colors” can be set or cleared
on capabilities, authorized by a color space implemented in a style similar to the sealed-
capability object-type space using a single permission. For a single color implementing
the Local-Global model, two bits are still used. However, for further colors, only a single
bit is used. This could make available further colors to use for kernel-user separation,
inter-process isolation, and so on.

e An experimental Permit_Recursive_Mutable_Load permission is described, which, if not
present, causes further capabilities loaded via that capability to be loaded without store
permissions (see Section D.6).

e We have added a new experimental CLoadTags instruction that allows tags to be loaded
for a cache line without pulling data into the cache.

e A new experimental sealed entry capability feature is described, which permits entry
via jump but otherwise do not allow dereferencing (Section D.12). These are similar
to enter capabilities from the M-Machine [18], and could provide utility in providing
further constraints on capability use for the purposes of memory protection — e.g., in the
implementation of C++ v-tables.

e A new experimental memory type token feature is described, which provides an alterna-
tive mechanism to object types within pairs of sealed capabilities (Section D.14).

1.5.3 Changes in CHERI ISA 7.0-ALPHA3

This version of the CHERI Instruction-Set Architecture is an interim version distributed for
review by DARPA and our collaborators:

e The CHERI Concentrate capability compression format is now documented, with a more
detailed rationale section than the prior CHERI-128 section.

e The CLCBI (Capability Load Capability with Big Immediate) instruction, which acceler-
ates position-independent access to global variables, is no longer considered experimen-
tal.

e The architecture-neutral description of tagged memory has been clarified.
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The maximum supported lengths for both compressed and uncompressed capabilities has
been updated: 2°4 for 128-bit +capabilities, and 25* — 1 for 256-bit capabilities.

It is clarified that CLoadTags instruction must provide cache coherency consistent with
other load instructions. We recommend ‘“non-temporal” behavior, in which unnecessary
cache-line fills are avoided to limit cache pollution during revocation.

We now define the object type for unsealed capabilities, returned by the CGetType instruc-
tion, as 264 — 1 rather than 0.

An experimental section has been added on how CHERI capabilities might compose with
memory-versioning schemes such as Sparc ADI and Arm MTE (see Section D.9).

Pseudocode throughout the CHERI ISA specification is now generated from our Sail
formal model of the CHERI-MIPS ISA [&].

The Glossary has been updated for CHERI ISAv7 changes including CHERI-RISC-V,
split vs. merged register files, capabilities for physical addresses, and special capability
registers.

Capability exception codes are now shared across architectures.

CHERI-RISC-V now includes capability-relative floating-point load and store instruc-
tions. We have clarified that existing RISC-V floating-point load and store instructions
are constrained by DDC.

CHERI-RISC-V now throws exceptions, rather than clearing tags, when non-monotonic
register-to-register capability operations are attempted.

While a specific encoding-mode transition mechanism is not yet specified for CHERI-
RISC-V, candidate schemes are described and compared in greater detail.

CHERI-RISC-V’s “capability encoding mode” now has different impacts for uncom-
pressed instructions vs. compressed instructions: In the compressed ISA, jump instruc-
tions also become capability relative.

CHERI-RISC-V page-table entries now contain a ‘“capability dirty bit” to assist with
tracking the propagation of capabilities.

Throwing an exception on an out-of-bounds capability-relative jump rather than on the
target fetch is now more clearly explained: This improves debuggability by maintaining
precise information about context state on jump, whereas after the jump, bounds may
not be representable due to capability compression. When an inappropriate EPCC is
installed, the exception will still be thrown on instruction fetch.

A new ErrorEPCC special register has been defined, to assist with exceptions thrown
within exception handlers; its behavior is modeled on the existing MIPS ErrorEPC spe-
cial register.
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1.5.4 Changes in CHERI ISA 7.0-ALPHA4

This version of the CHERI Instruction-Set Architecture is an interim version distributed for
review by DARPA and our collaborators:

e We have added new instructions CSetAddr (Set capability address to value from register),
CAndAddr (Mask address of capability — experimental), and CGetAndAddr (Move capabil-
ity address to an integer register, with mask — experimental), which optimize common
virtual-address-related operations in language runtimes such as WebKit’s Javascript en-
gine. These instructions cater better to a language mapping from C’s intptr_t type to the
virtual address, rather than offset, of a capability, which has been our focus previously.
These complement the previously added CGetAddr that allows easier compiler access to a
capability’s virtual address.

e We have added two new experimental instructions, CRAM (Retrieve Mask to Align Capa-
bilities to Precisely Representable Address) and CRRL (Round to Next Precisely Repre-
sentable Value), which allow software to retrieve alignment information for the base and
length for a proposed set of bounds.

e (Move, which was previously an assembler pseudo-operation for CIncOffset, is now a
stand-alone instruction. This avoids the need to special case sealed capabilities when
CIncOffset is used solely to move, not to modify, a capability.

e The names of the instructions CSetBoundsImmediate and CIncOffsetImmediate have been
shortened to CSetBoundsImm and CIncOffsetImm.

e The instructions CCheckType and CCheckPerm have been deprecated, as they have not
proven to be particularly useful in implementing multi-protection-domain systems.

e We have added a new pseudo-operation, CAssertInBounds, described in Section 7.5.5,
allows an exception to be thrown if the address of a capability is not within bounds.

e The instruction CCheckTag has now been assigned an opcode.

e We have revised the encodings of many instructions in our draft CHERI-RISC-V speci-
fication in Appendix C.

e We more clearly specify that when a special register write occurs to EPC, the result is
similar to CSet0ffset but with the tag bit stripped, in the event of a failure, rather than an
exception being thrown.

e We have added a reference to our TaPP 2018 paper, Pointer Provenance in a Capabil-
ity Architecture, which describes how architectural traces of pointer behavior, visible
through the CHERI instruction set, can be analyzed to understand software and structure.

e We have added a reference to our ICCD 2018 paper, CheriRTOS: A Capability Model
for Embedded Devices, which describes an embedded variant of CHERI using 64-bit

capabilities for 32-bit addresses, and how embedded real-time operating systems might
utilize CHERI features.
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We have revised our description of conventions for capability values, including when
used as pointers, to hold integers, and for NULL value, to more clearly describe their
use. We more clearly describe the requirements for the in-memory representation of
capabilities, such as a zeroed NULL capability so that BSS behaves as desired. We
provide more clear architecture-neutral explanations of pointer dereferencing, capability
permissions and their composition, the namespaces protected by capability permissions,
exception handling, exception priorities, virtual memory, and system reset. These defini-
tions appear in Chapter 3. Chapter 4, which describes CHERI-MIPS, has been shortened
as a variety of content has been made architectural neutral.

More detailed rationale is provided for our composition of CHERI with MIPS exception
handling.

We are more careful to use the term “pointer” to refer to the C-language type, verses
integer or capability values that maybe used by the compiler to implement pointers.

With the advent of ISA variations utilizing a merged register file, we are more careful to
differentiate integer registers from general-purpose registers, as general-purpose registers
may also hold capabilities.

We more clearly define the terms “upper bound” and “lower bound”.

We now more clearly describe the effects of our principle of intentionality on capability-
aware instruction design in Section 3.6.

We better describe the rationale for tagged capabilities in registers and memory, in con-
trast to cryptographic and probabilistic protections, in Section 8.2.

We have made a number of improvements to the CHERI-x86-64 sketch, described in
Chapter 6, to improve realism around trap handling and instruction design.

We have rewritten our description of the interaction between CHERI and Direct Memory
Access (DMA) in Section 3.8.4. to more clearly describe tag-stripping and capability-
aware DMA options.

1.5.5 Changes in CHERI ISA 7.0

This version of the CHERI Instruction-Set Architecture is a full release of the Version 7 speci-
fication:

e We have now deprecated the CHERI-128 capability compression format, in favor of

CHERI Concentrate.

e The RISC-V AUIPC instruction now returns a PCC-relative capability in the capability

encoding mode.
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e Capabilities now contain a flags field, which will hold state that can be changed without
affecting privilege. Corresponding experimental CGetFlags and CSetFlags instructions
have been added. These are described in greater detail in Section D.1.

e The capability encoding-mode bit in CHERI-RISC-V is specified as a bit in the flags
field of a capability. The current mode is defined as the flag bit in the currently installed
PCC. Design considerations and other potential options are described in Chapter 8.

e We now more explicitly describe the reset states of special and general-purpose capability
registers for CHERI-MIPS and CHERI-RISC-V.

e Compressed capabilities now contain a dedicated otype field that always holds an object
type (see sections 2.3.7 and 3.3.1), rather than stealing bounds bits for object type when
sealing. Now, any representable capability may be sealed. Several object type values are
reserved for architectural experimentation (see table 3.2).

e More detail is provided regarding the integration of CHERI Concentrate with special
registers, its alignment requirements, and so on.

o Initial discussion of a disjoint capability tree for physical addresses and hardware facili-
ties using these has been added to the experimental appendix, in appendix D.16.

e Initial discussion of a hybrid 64/128-bit capability design has been added to the experi-
mental appendix, in appendix D.15.

e We have added formal Sail instruction semantics for CHERI-RISC-V; this is currently in
Appendix C.

e We have added a reference to our IEEE TC 2019 paper, CHERI Concentrate: Practical
Compressed Capabilities, which describes our current approach to capability compres-
sion.

e We have added a reference to Alexandre Joannou’s PhD dissertation, High-performance
memory safety: optimizing the CHERI capability machine, which describes approaches
to improving the efficiency of capability compression and tagged memory.

1.6 Experimental Features

Appendix D describes a number of experimental features that extend CHERI with new func-
tionality. These include several architectural features:

e Capability flags that allow non-security bit-wise metadata to be associated with capabil-
ities

e Instructions to assist with memory-allocation alignment

e Fast capability subset testing and non-temporal tag loading to better support sweeping
revocation for temporal memory safety
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o Efficient tag rederivation for use with swapping, memory compression, memory encryp-
tion, and virtual-machine migration

e A recursive mutable load permission that limits the store rights via future capability loads
e 64-bit capabilities for 32-bit architectures

e More efficient capability permission representations

e Memory versioning for use with capabilities

e Linear capabilities

e Indirect capabilities

e Sealed entry capabilities (with dedicated, hardware object type)

e Capability coloring for capability flow control

e Sealing with large object type fields in memory

e A system for mixing 64-bit and 128-bit capabilities

e Capabilities referencing physical addresses

e Use of capabilities across a system for peripherals and accelerators

e New instructions to improve code density

We believe that these represent interesting, and in some cases promising, portions of the de-
sign space beyond the baseline CHERI. However, they appear in an appendix because: (1) we
do not yet recommend their use; (2) they have not been thoroughly evaluated across architec-
ture, hardware, and software with respect to utility, security, compatibility, microarchitectural
realism, nor performance; and/or (3) their preservation of essential CHERI security properties
has not been formally proven. They are therefore included to provide insight into potential
future directions or interesting potential alternative points in the overall design space.

1.7 Document Structure
This document is an introduction to, and a reference manual for, the CHERI protection model
and instruction-set architecture.

Chapter 1 introduces the CHERI protection model, our architecture-neutral approach, and spe-
cific CHERI-MIPS and CHERI-RISC-V ISAs.

Chapter 2 describes the high-level model for the CHERI approach in terms of architectural
features, software protection objectives, and software mechanism.
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Chapter 3 provides a detailed description of architecture-neutral aspects of the CHERI protec-
tion model, including capability and tagged-memory models, categories of new instructions,
etc.

Chapter 4 describes an architecture-specific mapping of the CHERI protection model into the
64-bit MIPS architecture. This includes specification of the CHERI-MIPS capability coproces-
sor, register file, Translation Look-aside Buffer (TLB), privilege model, and other ISA-specific
semantics.

Chapter 5 describes a draft architecture-specific mapping of the CHERI protection model into
the 64-bit RISC-V architecture. This includes specification of the CHERI-RISC-V architecture
extension, register file, Memory Management Unit (MMU), privilege models, and other ISA-
specific semantics.

Chapter 6 provides an “architectural sketch” of how the CHERI protection model might be
mapped into the x86-64 ISA, a decidedly non-RISC instruction set.

Chapter 7 provides a detailed description of each new CHERI-MIPS instruction, its pseudo-
operations, and how compilers should handle floating-point loads and stores via capabilities.

Chapter 8 discusses the design rationale for many aspects of the CHERI-MIPS ISA, as well as
our thoughts on future refinements based on lessons learned to date.

Chapter 9 outlines a detailed (but not formally proved) argument for why a reference monitor
above CHERI provides certain security properties, and touches on some issues in the specifi-
cation that formal proof has to deal with.

Chapter 10 describes the motivations and hardware-software co-design research approach taken
in developing CHERI, including major phases of the research. ~ Chapter 11 describes the

historical context for this work, including past systems that have influenced our approach.

Chapter 12 discusses our short- and long-term plans for the CHERI protection model and
CHERI-MIPS ISA, considering both our specific plans and open research questions that must
be answered as we proceed.

Appendix A provides a more detailed version history of the CHERI protection model and
CHERI-MIPS ISA.

Appendix B is a quick reference for CHERI-MIPS instructions and encodings.
Appendix C is a quick reference for the proposed CHERI-RISC-V instructions and encodings.

Appendix D specifies a number of CHERI-MIPS instructions that we still consider experimen-
tal, and hence are not included in the main specification.

Appended E describes our prior (now deprecated) CHERI-128 compression scheme, which has
been superseded by CHERI Concentrate.

The report also includes a Glossary defining many key CHERI-related terms.

Future versions of this document will continue to expand our consideration of the CHERI
model and CHERI-MIPS instruction-set architecture, its impact on software, and evaluation
strategies and results. Additional information on our prototype CHERI hardware and software
implementations, as well as formal methods work, can be found in accompanying reports.



40 CHAPTER 1. INTRODUCTION
1.8 Publications

As our approach has evolved, and project developed, we have published a number of papers
and reports describing aspects of the work. Our conference papers contain greater detail on
the rationale for various aspects of our hardware-software approach, along with evaluations of
micro-architectural impact, software performance, compatibility, and security:

e In the International Symposium on Computer Architecture (ISCA 2014), we published
The CHERI Capability Model: Revisiting RISC in an Age of Risk [153]. This paper
describes our architectural and micro-architectural approaches with respect to capability
registers and tagged memory, hybridization with a conventional Memory Management
Unit (MMU), and our high-level software compatibility strategy with respect to operating
systems.

e In the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2015), we published Beyond the PDP-11: Architec-
tural support for a memory-safe C abstract machine [2 1], which extends our architectural
approach to better support convergence of pointers and capabilities, as well as to further
explore the C-language compatibility and performance impacts of CHERI in larger soft-
ware corpora.

e In the IEEE Symposium on Security and Privacy (IEEE S&P, or “Oakland”, 2015), we
published CHERI: A Hybrid Capability-System Architecture for Scalable Software Com-
partmentalization [146], which describes a hardware-software architecture for mapping
compartmentalized software into the CHERI capability model, as well as extends our
explanation of hybrid operating-system support for CHERI.

e In the ACM Conference on Computer and Communications Security (CCS 2015), we
published Clean Application Compartmentalization with SOAAP [46], which describes
our higher-level design approach to software compartmentalization as a a form of vul-
nerability mitigation, including static and dynamic analysis techniques to validate the
performance and effectiveness of compartmentalization.

e In the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2016), we published Into the depths of C: elaborating the de facto stan-
dards [79], which develops a formal semantics for the C programming language. As
part of that investigation, we explore the effect of CHERI on C semantics, which led us
to refine a number of aspects of CHERI code generation, as well as refine the CHERI
ISA. In the other direction, understanding the changes needed to port existing software
to CHERI has informed our views on what C semantics should be.

e In the September-October 2017 issue of IEEE Micro, we published Fast Protection-
Domain Crossing in the CHERI Capability-System Architecture [143], expanding on ar-
chitectural and microarchitectural aspects of the CHERI object-capability compartmen-
talization model described in our Oakland 2015 paper.
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e In the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2017), we published CHERI-JNI: Sinking the Java se-
curity model into the C [20]. This paper describes how to use CHERI memory safety and
compartmentalization to isolate Java Native Interface (JNI) code from the Java Virtual
Machine, imposing the Java memory and security model on native code.

e In the MIT Press book, New Solutions for Cybersecurity, we published two chapters on
CHERI. Balancing Disruption and Deployability in the CHERI Instruction-Set Archi-
tecture (ISA) discusses our research and development approach, and how CHERI hy-
bridizes conventional architecture, microarchitecture, operating systems, programming
languages, and general-purpose software designs with a capability-system model [136].
Fundamental Trustworthiness Principles in CHERI discusses how CHERI fulfills a num-
ber of critical trustworthiness principles [92].

e In the International Conference on Computer Design (ICCD 2017), we published Ef-
ficient Tagged Memory [54]. This paper describes how awareness of the architectural
semantics of tagged pointers can be used to improve performance and reduce DRAM
access overheads for tagging implemented over DRAM without innate tag storage.

e In the International Conference on Computer Design (ICCD 2019), we published Cheri-
RTOS: A Capability Model for Embedded Devices [157]. This paper describes an embed-
ded variant on CHERI using 64-bit capabilities for 32-bit addresses, and how embedded
real-time operating systems might utilize CHERI features.

e In the ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
2019), we published ISA Semantics for ARMvS-A, RISC-V, and CHERI-MIPS, which
describes a formal modeling approach and formal models for several instruction sets
including CHERI-MIPS [£].

e In the ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
2019), we published Exploring C Semantics and Pointer Provenance, describing a formal
model for C pointer provenance and its practical evaluation, including via pure-capability
C code on the CHERI architecture [78].

e In the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2019), we published CheriABI: Enforcing Valid Pointer
Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment [28].
This paper describes how to adapt a full MMU-based OS design to support ubiquitous
use of capabilities to implement C and C++ pointers in userspace.

e In IEEE Transactions on Computers, we published CHERI Concentrate: Practical Com-
pressed Capabilities [152]. This paper describes our compressed 128-bit and 64-bit ca-
pability formats, evaluating the effects of precision loss in bounds, and the potential
performance impact of the approach.

We have additionally released several technical reports, including this document, describ-
ing our approach and prototypes. Each has had multiple versions reflecting evolution of our
approach:
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This report, the Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture [137, , , , ], describes the CHERI ISA, both as a high-
level, software-facing model and the specific mapping into the 64-bit MIPS instruction
set. Successive versions have introduced improved C-language support, support for scal-
able compartmentalization, and compressed capabilities.

The Capability Hardware Enhanced RISC Instructions: CHERI Programmer’s Guide |
describes in greater detail our mapping of software into instruction-set primitives in both
the compiler and operating system; earlier versions of the document were released as the
Capability Hardware Enhanced RISC Instructions: CHERI User’s Guide [133].

The Bluespec Extensible RISC Implementation: BERI Hardware Reference [144, ]
describes hardware aspects of our prototyping platform, including physical platform and
practical user concerns.

The Bluespec Extensible RISC Implementation: BERI Software Reference [132, ]
describes non-CHERI-specific software aspects of our prototyping platform, including
software build and practical user concerns.

The technical report, Clean application compartmentalization with SOAAP (extended
version) [45], provides a more detailed accounting of the impact of software compart-
mentalization on software structure and security using conventional designs, with poten-
tial applicability to CHERI-based designs as well.

The technical report, Capability Hardware Enhanced RISC Instructions (CHERI): Notes
on the Meltdown and Spectre Attacks [147] explores the potential interactions between
CHERI, a fundamentally architectural protection technique, and the recently announced
Spectre and Meltdown microarchitectural side-channel attacks. The report describes a
modest architecture extension identifying CHERI compartment identifiers to the microar-
chitecture, and also explores opportunities for Spectre mitigation arising from performing
capability checks in speculation.

The following technical reports are PhD dissertations that describe both CHERI and our

path to our current design:

e Robert Watson’s PhD dissertation, New approaches to operating system security ex-

tensibility, describes the operating-system access-control and compartmentalization ap-
proaches, including FreeBSD’s MAC Framework and Capsicum, which motivated our
work on CHERI [ 128, ].

e Jonathan Woodruff’s PhD dissertation, CHERI: A RISC capability machine for practical

memory safety, describes our CHERI1 prototype implementation [ 154].

e Robert Norton’s PhD dissertation, Hardware support for compartmentalisation, describes

how hardware support is provided for optimized domain transition using the CHERI2
prototype implementation [96].
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e Alexandre Joannou’s PhD dissertation, High-performance memory safety: optimizing the
CHERI capability machine, describes hardware optimizations for efficient implementa-
tion of CHERI capabilities such as capability compression for a 128-bit capability format
and a hierarchical tag cache for efficient tagged memory [55].

As our research proceeded, and prior to our conference and journal articles, we published a
number of workshop papers laying out early aspects of our approach:

e Our philosophy in revisiting of capability-based approaches is described in Capabilities
Revisited: A Holistic Approach to Bottom-to-Top Assurance of Trustworthy Systems, pub-
lished at the Layered Assurance Workshop (LAW 2010) [95], shortly after the inception
of the project.

e Mid-way through creation of both the BERI prototyping platform, and CHERI protection
model and CHERI-MIPS ISA, we published CHERI: A Research Platform Deconflating
Hardware Virtualization and Protection at the Workshop on Runtime Environments, Sys-
tems, Layering and Virtualized Environments (RESoLVE 2012) [148].

e Jonathan Woodruff, whose PhD dissertation describes our initial CHERI prototype, pub-
lished a workshop paper on this work at the CEUR Workshop’s Doctoral Symposium
on Engineering Secure Software and Systems (ESSoS 2013): Memory Segmentation to
Support Secure Applications [95].

e In the USENIX Workshop on the Theory and Practice of Provenance (TaPP), we pub-
lished Pointer Provenance in a Capability Architecture [74]. This paper describes how
architectural traces of pointer behavior, visible through the CHERI instruction set, can
be analyzed to understand software structure and security.

Further research publications and technical reports will be forthcoming.
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Chapter 2

The CHERI Protection Model

This chapter describes the portable CHERI protection model, its use in software, and its im-
pact on potential software vulnerabilities; concrete mappings into computer architecture are
left to later chapters. We consider a number of topics from a more abstract, software-facing
perspectives: the principles underlying the model, our goals for capabilities, hybridization with
conventional architectural designs, implications for operating-system and language support and
compatibility, and concerns around microarchitectural side channels.

There are many potential concrete mappings of this abstract software-facing protection
model into specific Instruction-Set Architectures (ISAs), but most key aspects of the model can
be shared across target architectures, including the capability protection model, composition
with virtual memory, and tagged memory. Whether used for memory protection or compart-
mentalization, CHERI’s properties should hold with considerable uniformity across underlying
architectural implementations (e.g., regardless of capability size, whether capabilities are stored
in their own register file or as extensions to general-purpose integer registers, etc.), and should
support common (and ideally portable) programming models and approaches.

We detail cross-architecture aspects of CHERI in Chapter 3. Our current instantiations
within concrete ISAs include the mature CHERI-MIPS ISA (Chapter 4), a draft CHERI-RISC-
V ISA (Chapter 5), and a high-level sketch of a CHERI-x86-64 (Chapter 6). CHERI-MIPS re-
mains our reference instantiation, and has been validated with a complete end-to-end hardware-
software stack including ISA-level simulations, FPGA implementation, operating system, com-
piler, linker, debugger, and application suite. CHERI-RISC-V is a draft specification that has
not yet seen significant use. Our motivations for targeting this second ISA are detailed in
Chapter 5; they include demonstrating the portability of the CHERI approach, a desire to use a
more contemporary ISA as a baseline, and the potential opportunity for technology transition.
We include our x86-64 sketch to explore how the CHERI protection model might apply to the
dominant non-RISC architecture.

2.1 Underlying Principles

The design of CHERI is influenced by two broad underlying principles that are as much philo-
sophical as architectural, but are key to all aspects of the design:

45
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The principle of least privilege It should be possible to express and enforce a software design
in which each program component can execute with only the privileges it requires to
perform its function. This is expressed in terms of architectural privileges (e.g., by al-
lowing restrictions to be imposed in terms of bounds, permissions, etc., encapsulating a
software-selected but hardware-defined set of rights) and at higher levels of abstraction
in software (e.g., by allowing sealed capabilities to refer to encapsulated code and data
incorporating both a software-selected and software-defined set of rights). This prin-
ciple has a long history in the research literature, and has been explored (with varying
degrees of granularity) both in terms of the expression of reduced privilege (i.e., through
isolation and compartmentalization) and the selection of those privileges (e.g., through
hand separation, automated analysis, and so on).

The principle of intentional use When multiple rights are available to a program, the selec-
tion of rights used to authorize work on behalf of the program should be explicit, rather
than implicit in the architecture or another layer of software abstraction. The effect of
this principle is to avoid the accidental or unintended exercise of rights that could lead to
a violation of the intended policy. It helps counter what are classically known as ‘con-
fused deputy’ problems, in which a program will unintentionally exercise a privilege that
it holds legitimately, but on behalf of another program that does not (and should not) ex-
ercise that privilege [49]. This principle, common to many capability systems but usually
not explicitly stated, has been applied throughout the CHERI design, from architectural
privileges (e.g., the requirement to explicitly identify capability registers used for load
or store) through to the sealed capability mechanism that can be used to support object-
capability models such as found in CheriBSD.

These principles, which offer substantial mitigations against software vulnerabilities or mali-
cious code, guide the integration of a capability-system model with the general-purpose instruc-
tion set — and its exposure in the software model. A more detailed exploration of the design
principles embodied in and supported by CHERI can be found in Fundamental Trustworthiness
Principles in CHERI [92].

2.2 CHERI Capabilities: Strong Protection for Pointers

The purpose of the CHERI ISA extensions is to provide strong protection for pointers within
virtual address spaces, complementing existing virtual memory provided by Memory Manage-
ment Units (MMUs). These protections apply to the storage and manipulation of pointers, and
also accesses performed via pointers. The rationale for this approach is two-fold:

1. A large number of vulnerabilities in Trusted Computing Bases (TCBs), and many of the
application exploit techniques, arise out of bugs involving pointer manipulation, corrup-
tion, and use. These occur in several ways, with bugs such as those permitting attackers
to coerce arbitrary integer values into dereferenced pointers, or leading to undesirable
arithmetic manipulation of pointers or buffer bounds. These can have a broad variety of
impacts — including overwriting or leaking sensitive data or program metadata, injection
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of malicious code, and attacks on program control flow, which in turn allow attacker
privilege escalation.

Virtual memory fails to address these problems as (a) it is concerned with protecting data
mapped at virtual addresses rather than being sensitive to the context in which a pointer
is used to reference the address — and hence fails to assist with misuse of pointers; and
(b) it fails to provide adequate granularity, being limited to page granularity — or even
more coarse-grained “large pages” as physical memory sizes grow.

2. Strong integrity protection, fine-grained bounds checking, encapsulation, and monotonic-
ity for pointers can be used to construct efficient isolation and controlled communication,
foundations on which we can build scalable and programmer-friendly compartmentaliza-
tion within address spaces. This facilitates deploying fine-grained application sandbox-
ing with greater ubiquity, in turn mitigating a broad range of logical programming errors
higher in the software stack, as well as resisting future undiscovered vulnerability classes
and exploit techniques.

Virtual memory also fails to address these problems, as (a) it scales poorly, paying a high
performance penalty as the degree of compartmentalization grows; and (b) it offers poor
programmability, as the medium for sharing is the virtual-memory page rather than the
pointer-based programming model used for code and data sharing within processes.

Consequently, CHERI capabilities are designed to represent language-level pointers with
additional metadata to protect their integrity and provenance, enforce bounds checks and per-
missions (and their monotonicity), and hold additional fields supporting undereferenceable (i.e.,
sealed) software-defined pointers suitable to implement higher-level protection models such as
separation and efficient compartmentalization. Unlike virtual memory, whose functions are
intended to be managed by low-level operating-system components such as kernels, hypervi-
sors, and system libraries, CHERI capabilities are targeted at compiler and language-runtime
use, allowing program structure and dynamic memory allocation to direct their use. We antic-
ipate CHERI being used within operating-system kernels, and also in userspace libraries and
applications, for the purposes of both memory protection and compartmentalization.

Significant attention has gone into providing strong compatibility with the C and C++ pro-
gramming languages, widely used in off-the-shelf TCBs such as OS kernels and language run-
times, and also with conventional MMUs and virtual-memory models — which see wide use
today and continue to operate on CHERI-enabled systems. This is possible by virtue of CHERI
having a hybrid capability model that securely composes a capability-system model with con-
ventional architectural features and programming-language pointer interpretation. CHERI is
designed to support incremental migration via selective recompilation (e.g., transforming point-
ers into capabilities, as discussed below). It provides several possible strategies for selectively
deploying changes into larger code bases — constructively trading off source-code compatibility,
binary compatibility, performance, and protection.

Most source code can be recompiled to employ CHERI capabilities transparently by virtue
of existing pointer syntax and semantics, which the compiler can map into capability use just as
it currently maps that functionality into integer virtual-address use — while providing additional
metadata to the architecture allowing the implementation of stronger memory safety. Code in
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Figure 2.1: CHERI enforces strict integrity, provenance validity, monotonicity, bounds, per-
missions, and encapsulation on pointers, mitigating common vulnerabilities and exploit tech-
niques.
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which all pointers (and implied virtual addresses) are implemented solely using capabilities
is referred to as pure-capability code. Capability use can also be driven selectively, albeit less
transparently, through annotation of C pointers and types to indicate that hybrid capability code
generation should be used when operating on those pointers — referred to as hybrid-capability
code. It is also possible to imagine compilers making automatic policy-based decisions about
capability use on a case-by-case basis, based on trading off compatibility, performance, and
protection with only limited programmer intervention. It is further worth observing that, al-
though the primary focus of CHERI has been protecting pointers using capabilities, capabili-
ties are a more generalizable hardware data type that can be used to protect other types from
corruption and mis-manipulation.

2.3 Architectural Capabilities

In current systems, pointers are integer values that are commonly stored in two architectural
forms: in integer registers, and in memory. Capabilities are likewise stored in registers and
memory, and contain integer values interpreted as virtual addresses; they also contain addi-
tional metadata to implement protection properties around pointers, such as bounds. Capabil-
ities are therefore larger than the virtual addresses they protect — typically between 2x (e.g.,
128-bit compressed capabilities on a 64-bit architecture) and 4x (e.g., 256-bit uncompressed
capabilities on a 64-bit architecture). The majority of the capability is stored in a register or in
addressable memory, as is the case for current integer pointers; however, there is also a 1-bit tag
that may be inspected via the instruction set, but is not visible via byte-wise loads and stores.
This tag is used to record whether the capability is valid; it is preserved by legal capability op-
erations but cleared by other operations on that memory. Some of CHERI’s protections are for
pointers themselves (e.g., their integrity and provenance validity), whereas others are for the
pointee data or code referenced by pointers (e.g., bounds and permissions). CHERI’s sealing
feature protects both a pointer (via immutability) and the pointee (via non-dereferenceability).
Extending architectures with capability registers and suitable memory storage naturally
aligns with many current architectural and microarchitectural design choices, as well as software-
facing considerations such as compiler code generation, stack layout, operating-system behav-
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ior, and so on. However, the generalized CHERI protection model can be mapped into architec-
tures in many different forms. For example, an early design choice might be between holding
capabilities in a dedicated capability register file or extending existing 64-bit registers to hold
128-bit capabilities. While this and many other choices will affect a variety of factors in the ar-
chitecture and microarchitecture, the resulting protection model can be considered portable in
that common protection properties and usage patterns can be mapped into various architectural
instantiations. These topics are considered further in Chapter 3.

In the remainder of this section, we describe the high-level protection properties and other
functionality that capabilities grant to pointers and the execution environment (see Figure 2.1):

e Capability tags for pointer integrity and provenance (Section 2.3.1)
e Capability bounds to limit the dereferenceable range of a pointer (Section 2.3.2)
e Capability permissions to limit the use of a pointer (Section 2.3.3)

e (Capability monotonicity and guarded manipulation to prevent privilege escalation (Sec-
tion 2.3.4)

e Capability sealing to implement software encapsulation (Section 2.3.6)

e Capability object types to enable a software object-capability model (Section 2.3.7)

e Sealed capability invocation to implement non-monotonic domain transition (Section 2.3.8)
e Capability control flow to limit pointer propagation (Section 2.3.10)

e Capability compression to reduce the in-memory overhead of pointer metadata (Sec-
tion 2.3.11)

e Hybridization with integer pointers (Section 2.3.12)
e Hybridization with MMU-based virtual memory (Section 2.3.13)
e Hybridization with ring-based privilege (Section 2.3.14)

e Failure modes and exception delivery (Section 2.3.15)

Capability revocation (Section 2.3.16)

These features allow capabilities to be architectural primitives upon which higher-level soft-
ware protection and security models can be constructed (see Section 2.4).
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2.3.1 Tags for Pointer Integrity and Provenance

Each location that can hold a capability — whether a capability register or a capability-sized,
capability-aligned word of memory — has an associated 1-bit tag that consistently and atomi-
cally tracks capability validity for the value stored at that location:

Capability registers each have a 1-bit tag tracking whether the in-register value is a valid
capability. This bit will be set or cleared only as permitted by guarded manipulation.

Capability-sized, capability-aligned words of memory each have a 1-bit tag associated with
the location, which is not directly addressable via data loads or stores: tagged memory.
Depending on the ISA variant, this may be at 128-bit or 256-bit granularity. The capa-
bility’s virtual address, as well as its other metadata such as bounds and permissions, are
stored within the capability in addressable memory; these fields are protected by the cor-
responding unaddressable tag bit. If untagged memory exists in the system, the tags of
capability values stored to those locations are discarded, and all loaded capability values
will have the tag bit unset.

Tags atomically follow capabilities into and out of capability registers when their values are
loaded from, or stored to, tagged memory. Stores of other non-capability types — e.g., of bytes
or half words — automatically and atomically clear the tag in the destination memory location.
This allows in-memory pointer corruption by data stores to be detected on next attempted deref-
erence — for example, this prevents arbitrary data received over the network from being directly
dereferenced as a pointer.

The capability tag controls which operations can be performed using a capability. Attempt-
ing controlled operations on an untagged capability will cause an precise exception.

Regardless of the value of the tag bit, capability register fields can be accessed: they can be
extracted and, subject to guarded manipulation, modified. Similarly, addressable portions of the
capability can be read from memory using ordinary data load and store instructions. Capability
values can also be loaded and stored via other valid capabilities regardless of the validity of the
loaded or stored capability. An untagged capability value is simply data: allowing capability
registers to hold untagged values allows them to be used for capability-oblivious operations.
For example, a region of memory can be copied via capability registers, including pointers
within data structures, preserving the value of the tag bit for each copied location.

However, other operations that dereference or otherwise use a capability require that the
capability have its tag set — i.e., be a valid capability. Dereferencing refers to using the ca-
pability to load or store data or other capabilities, or to fetch instructions. This includes the
implied dereference associated with the Default Data Capability controlling legacy integer-
relative loads and stores. A valid tag is also required to use a capability to seal or unseal
another capability, to jump to that capability, to use it to set the architectural compartment ID,
or to call it for the purposes of domain transition. Detailed information on which instructions
require capabilities to have valid tags, or operate on untagged capability values, may be found
in the instruction reference.

Valid capabilities can be constructed only by deriving them from existing valid capabilities,
which ensures pointer provenance (Figure 2.1). In almost all cases, a new capability value will
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be derived from a single capability value — e.g., as a result of reducing bounds or permissions.
In a few cases, a capability may derive from multiple other capability values. For example,
a sealed capability is derived from both the authorizing sealing capability and an original data
capability. Similarly, an explicitly unsealed capability is derived from both the sealed capability
and the capability that authorizes its unsealing.

Implementing C pointers as tagged capabilities allows them to be reliably identified in
the virtual address space, which can help support techniques such as garbage collection. The
CHERI ISA has been designed to avoid leakage of virtual addresses out of tagged capabilities
(e.g., into general-purpose integer registers) during normal memory allocation, comparison,
manipulation, and dereference, to facilitate reliable detection of pointers in both registers and
memory. Virtual addresses can be extracted from capabilities — e.g., for debugging purposes —
but avoiding doing so in code generation supports potential use of techniques such as copying
garbage collection.

Our CHERI prototype implements tagged memory using partitioned memory, with tags
and associated capability-sized units linked and propagated by the cache hierarchy in order to
provide suitable atomicity. However, it is also possible to imagine implementations in which
DRAM or non-volatile memory is extended to store tags with capability-sized units as well
— which might be more suitable for persistent memory types where atomicity is not simply a
property of coherent access through the cache. We similarly assume that DMA will clear tags
when writing to memory, although it is possible to imagine future DMA implementations that
are able to propagate tags (e.g., to maintain tags on pointers in descriptor rings).

2.3.2 Bounds on Pointers

Capabilities contain lower and upper bounds for each pointer; while the pointer may move out
of bounds (and perhaps back in again), attempts to dereference an out-of-bounds pointer will
throw a hardware exception. This prevents exploitation of buffer overflows on global variables,
the heap, and the stack, as well as out-of-bounds execution. Allowing pointers to sometimes
be out-of-bounds with respect to their buffers — without faulting — is important for de-facto
C-language compatibility. The 256-bit capability variant allows pointers to stray arbitrarily out
of bounds. The 128-bit scheme imposes some restrictions, as bounds compression depends
on redundancy between the pointer and bounds, which may not be present if the pointer is
substantially outside of its bounds (see Section 3.4.4 for details).

Bounds originate in allocation events. The operating system places bounds on pointers to
initial address-space allocations during process startup (e.g., via the initial register file, and
ELF auxiliary arguments), and on an ongoing basis as new address-space mappings are made
available (e.g., via mmap system calls). Most bounds originate in the userspace language runtime
or compiler-generated code, including the run-time linker for function pointers and global data,
the heap allocator for pointers to heap allocations, and generated code for pointers taken to
stack allocations. Programming languages may also offer explicit subsetting support to allow
software to impose its own expectations on suitable bounds for memory accesses to complex
objects (such as in-memory video streams) or in their own memory allocators.



52 CHAPTER 2. THE CHERI PROTECTION MODEL

2.3.3 Permissions on Pointers

Capabilities additionally extend each pointer with a permissions mask controlling how the
pointer may be used; for example, the run-time linker or compiler may set the permissions
so that pointers to data cannot be reused as code pointers, or so that pointers to code cannot be
used to store data. Further permissions control the ability to load and store capabilities them-
selves, allowing the compiler to implement policies such as dereferenceable code and data
pointers cannot be loaded from character strings. Permissions can also be made accessible
to higher-level aspects of the run-time and programmer model, offering dynamic enforcement
of concepts similar to const.! Languages may provide further facilities to allow programmer-
directed refinement of permissions — for example, for use in Just-in-Time (JIT) compilers.

Permissions changes, as with bounds setting, are often linked to allocation events. Per-
missions on capabilities for initial memory memory mappings will be introduced by the ker-
nel during process startup; further capabilities returned for new mappings will also have their
permissions restricted based on intended use. Executable capabilities representing function
pointers and return addresses will be refined by the run-time linker. Read-only and read-write
capabilities referring to data will be refined by the run-time linker, heap allocator, and stack
allocator.

Permissions also control access to the sealing facility used for encapsulation (see Sec-
tion 2.3.6). While sealing permission could be granted with all data and code capabilities, best
practice in privilege minimization suggests that a separate hierarchy of sealing pointers should
be maintained instead. Returning independent sealing capabilities via a dedicated system-call
interface reduces opportunities for arbitrary code and data capabilities being used improperly
for this purpose.

2.3.4 Capability Monotonicity via Guarded Manipulation

Capability monotonicity is a property of the CHERI ISA design ensuring that new capabilities
must be derived from existing capabilities only via valid manipulations that may narrow (but
never broaden) rights ascribed to the original capability. This property prevents broadening
the bounds on pointers, increasing the permissions on pointers, and so on, eliminating many
manipulation attacks and inappropriate pointer reuses. Monotonicity also underlies effective
isolation for software compartmentalization by ensuring that delegated capabilities cannot be
used to reach other resources despite further manipulation. CHERI enforces capability mono-
tonicity via four mechanisms:

Limited expressivity Some instructions are prevented, by design, from expressing an increase
of rights due to the expression of their operands and implementation. For example, per-
missions on capabilities are modified using a bitwise ‘and’ operation, and hence cannot
express an increase in permissions.

Exceptions on monotonicity violation Some instructions may be able to represent non-mono-
tonic operations, but attempts to use them non-monotonically will lead to an exception

The C-language const qualifier conflates several orthogonal properties and thus can not be enforced auto-
matically. Our language extensions include more constrained __input and __output qualifiers.
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being delivered. For example, an attempt to broaden bounds on a capability might throw
an exception without writing back the non-monotonically modified capability. Throwing
an exception at the point of violation may ease debugging close to the point of violation.

Stripping the tag in register write-back As an alternative to throwing an exception, a non-
monotonic operation might succeed in writing back a new capability — but with the tag
bit cleared, preventing future dereference. Clearing the tag allows the failure to be dis-
covered by an explicit software check, or on the next attempt to dereference. This may
make debugging more expensive (if additional checks are introduced, perhaps with help
from the compiler) or more tricky (if loss of the tag is only discovered substantially later).

Stripping the tag during memory store Tagged memory ensures that attempts to directly mod-
ify capability fields (whether non-monotonically or otherwise) will clear the tag, causing
later attempts to dereference the capability to fail. This ensures that attempts to modify
capabilities cannot bypass guarded manipulation.

Selecting which enforcement mechanism to use will reflect the specific operation being im-
plemented, concerns about about ease of debugging, as well as the context of the surrounding
architecture. For example, in some architectures, exceptions can be thrown on any instruc-
tion (e.g., MIPS), while in others it is preferable for exceptions to be thrown only on memory
accesses (e.g., ARMv8). As a result of these combined architectural features, guarded manip-
ulation implements non-bypassable capability monotonicity.

Monotonicity allows reasoning about the set of reachable rights for executing code, as they
are limited to the rights in any capability registers, and inductively, the set of any rights reach-
able from those capabilities — but no other rights, which would require a violation of mono-
tonicity. Monotonicity is a key foundation for fine-grained compartmentalization, as it pre-
vents delegated rights from being used to gain access to other undelegated areas of memory.
More broadly, monotonicity contributes to the implementation of the principle of intentional
use, in that capabilities not only cannot be used for operations beyond those for which they are
authorized, but also cannot inadvertently be converted into capabilities describing more broad
rights.

The two notable exceptions to capability monotonicity are invocation of sealed capabilities
(see Section 2.3.8) and exception delivery (see Section 2.3.15). Where non-monotonicity is
present, control is transferred to code trusted to utilize a gain in rights appropriately — for exam-
ple, a trusted message-passing routine in the userspace runtime, or an OS-provided exception
handler. This non-monotonicity is required to support protection-domain transition from one
domain holding a limited set of rights to destination domain that holds rights unavailable to the

originating domain — and is therefore also a requirement for fine-grained compartmentalization
(see Section 2.4.4).

2.3.5 Capability Flags

Capabilities include a flags field that can be manipulated freely. Unlike the permissions field, it
does not determine privilege, i.e., the state of this field is orthogonal to capability monotonicity.
Currently, there are only architecture-specific interpretations for this field: CHERI-RISC-V
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uses it to control opcode interpretation on instruction fetch. In the future, other non-security
behavioral flags relating to capabilities may be placed here.

2.3.6 Sealed Capabilities

Capability sealing allows capabilities to be marked as immutable and non-dereferenceable,
causing hardware exceptions to be thrown if attempts are made to modify, dereference, or jump
to them. This enables capabilities to be used as unforgeable tokens of authority for higher-
level software constructs grounded in encapsulation, while still allowing them to fit within the
pointer-centric framework offered by CHERI capabilities. Sealed capabilities are the founda-
tion for building the CheriBSD object-capability model supporting in-address-space compart-
mentalization, where pairs of sealed code and data capabilities are object references whose
invocation triggers a protection-domain switch. Sealed capabilities can also be used to sup-
port other operating-system or language robustness features, such as representing other sorts
of delegated (non-hardware-defined) rights, or ensuring that pointers are dereferenced only by
suitable code (e.g., in support of language-level memory or type safety).

2.3.7 Capability Object Types

Capabilities contain an additional piece of metadata, an object type, updated when a capability
undergoes (un)sealing. Object types allow multiple sealed capabilities to be indelibly (and
indivisibly) linked, so that the kernel or language runtime can avoid expensive checks (e.g.,
via table lookups) to confirm that they are intended to be used together. For example, for
object-oriented compartmentalization models (such as the CheriBSD object-capability model),
pairs of sealed capabilities can represent objects: one is the code capability for a class, and the
other is a data capability representing the data associated with a particular instance of an object.
In the CheriBSD model, these two sealed capabilities have the same value in their object-type
field, and two candidate capabilities passed to object invocation will not be accepted together
if their object types do not match.

The object-type field is set when a capability is sealed based on a second input capability
authorizing use of the type space — itself simply a capability permission authorizing sealing
within a range of values specified by the capability’s bounds. A similar model authorizes
unsealing, which permits a sealed capability to be restored to a mutable and dereferenceable
state — if a suitable capability to have sealed it is held. This is used in the CheriBSD model
during object invocation to grant the callee access to its internal state.

A similar model could be achieved without using an unsealing mechanism: a suitably privi-
leged component could inspect a sealed capability and rederive its unsealed contents. However,
authorizing both sealing and unsealing based on type capabilities allows the right to construct
encapsulated pointers to be delegated, without requiring recourse to a privileged software su-
pervisor at the cost of additional domain transitions — or exercise of unnecessary privilege.
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2.3.8 Sealed Capability Invocation

CHERI supports two forms of non-monotonicity: jump-like capability invocation, and excep-
tion handling (see Section 2.3.15). In CHERI-MIPS, the cCall instruction (optionally paired
with use of the CReturn instruction) accepts a pair of sealed capability operands on which var-
1ous checks are performed (for example, that they are valid, sealed, and have matching object
types). If all tests are passed, then additional capabilities become available to the executing
CPU context — either by virtue of unsealing of the operand registers (jump-like CCall) or by
control transferring to the exception handler (exception-based CCall).

For both models, the destination execution environment has well-defined and reliable prop-
erties, such as a controlled target program-counter capability and additional data capability that
can be used to authorize domain transition. The jump-like model avoids the microarchitectural
overhead of exception delivery, behaving much like a conventional jump to register, permitting
an in-address-space domain switch without changing rings.

In both cases, the newly executing code has the ability to further manipulate execution state,
and impose semantics such as call-return secure function invocation (CheriBSD) or secure
asynchronous message passing (microkernel), which will likely be followed by a privilege de-
escalation as a target domain is entered (see Section 2.4.4).

Object-Capability Policies in CHERI

Consider an execution environment having access to several capabilities sealed with the same
otype. The tests required by the jump-like CCall mechanism describe a Cartesian product of
method rights (indicated by the sealed code capability) and object rights (sealed data capability)
to this environment. Regardless of how the environment came to have these sealed capabilities,
it is free to pair any sealed code capability with any sealed data capability and have the CCall
tests pass.

Non-Cartesian and/or stateful policies can, however, be encoded by indirection, using mem-
ory to store additional data to be checked by the invoked subsystem on entry. The sealed data
pointers given out by the invoked subsystem now no longer directly reference objects; instead,
they reference “data trampolines” describing the pairing of object(s) and remote agent(s) with
associated access rights information. Attenuation of access rights is no longer necessarily an
ambiently available action and requires either the explicit construction of membranes (i.e.,
proxy objects) or active cooperation of the invoked subsystem (or an agent acting on its behalf)
to create new data trampoline(s).

2.3.9 Capability Protection for Non-Pointer Types

While the design of CHERI capabilities is primarily focused on the protection of pointers,
the pointer interpretation of capabilities depends entirely on a capability’s permissions mask.
If the mask authorizes load, store, and fetch instructions, then the capability has a pointer
interpretation. Capabilities are not required to have those permissions set, however, allowing
capabilities to be used for other purposes — for example, to protect other critical data types
from in-memory corruption (such as implementing UNIX file descriptors or stack canaries), or
to authorize access to system services (such as authorizing use of specific system calls identified
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by the capability). Sealed capabilities and a set of software-defined permissions bits facilitate
these use cases by permitting non-architecture-defined capability interpretations while retaining
capability-based protections.

2.3.10 Capability Flow Control

The CHERI capability model is designed to support the implementation of language-level
pointers: tagged memory allows capabilities to be stored in memory, and in particular, embed-
ded within software-managed data structures such as objects or the stack. CHERI is therefore
particularly subject to a historic criticism of capability-system models — namely, that capability
propagation makes it difficult to track down and revoke rights (or to garbage collect them). To
address this concern, CHERI has three mechanisms by which the flow of capabilities can be
constrained:

Capability TLB bits extend the existing load and store permissions on TLB entries (or, in ar-
chitectures with hardware page-table walkers, page-table entries) with new permissions
to authorize loading and storing of capabilities. This allows the operating system to
maintain pages from which tagged capabilities cannot be loaded (tags will be transpar-
ently stripped on load), and to which capabilities cannot be stored (a hardware exception
will be thrown). This can be used, for example, to prevent tagged capabilities from be-
ing stored in memory-mapped file pages (as the underlying object might not support tag
storage), or to create regions of shared memory through which capabilities cannot flow.

Capability load and store permission bits extend the load and store permissions on capabil-
ities themselves, similarly allowing a capability to be used only for data access — if suit-
ably configured. This can be used to create regions of shared memory within a virtual
address space through which capabilities cannot flow. For example, it can prevent two
separated compartments from delegating access to one another’s memory regions, instead
limiting communication to data traffic via the single shared region.

Capability control-flow permissions “color’” capabilities to limit propagation of specific types
of capabilities via other capabilities. This feature marks capabilities as global or local to
indicate how they can be propagated. Global capabilities can be stored via any capabil-
ity authorized for capability store. Local capabilities can be stored only via a capability
specifically authorized as store local. This can be used, for example, to prevent propa-
gation of temporally sensitive stack memory between compartments, while still allowing
garbage-collected heap memory references to be shared.

This feature remains under development, as we hope to generalize it to further uses such
as limiting the propagation of ephemeral DRAM references in persistent-memory sys-
tems. However, it is used successfully in the CheriBSD compartmentalization model to
improve memory safety and limit obligations of garbage collection.

The decision to strip tags on load, but throw an exception on store, reflects pragmatic
software utilization goals: language runtimes and system libraries often need to implement
capability-oblivious memory copying, as the programmer may not wish to specify whether a
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region of memory must (or must not) contain capabilities. By stripping tags rather than throw-
ing an exception on load, a capability-oblivious memory copy is safe to use against arbitrary
virtual addresses and source capabilities — without risk of throwing an exception. Software that
wishes to copy only data from a source capability (excluding tag bits due to a non-propagation
goal) can simply remove the load-capability permission from the source capability before be-
ginning a memory copy.

On the other hand, it is often desirable to detect stripping of a capability on store via a
hardware exception, to ease debugging. For example, it is typically desirable to catch storing
a tagged capability to a file as early as possible in order to avoid debugging a later failed
dereference due to loss of a tag. Similarly, storing a tagged capability to a virtual-memory page
might be an indicator to a garbage collector that it may now be necessary to scan that page in
search of capabilities.

This design point conserves TLB and permission bits; there is some argument that complet-
ing the space (i.e., shifting to three or four bits each) would offer functional improvements — for
example, the ability to avoid exceptions on a capability-oblivious memory copy via a capability
that does not authorize capability store, or the ability to transparently strip tags on store to a
shared memory page. However, we have not yet found these particular combinations valuable
in our software experimentation,

2.3.11 Capability Compression

The 256-bit in-memory representation of CHERI capabilities provides full accuracy for pointer
lower bounds and upper bounds, as well as a large object type space with software-defined
permissions. The 128-bit implementation of CHERI uses floating-point-like fat-pointer com-
pression techniques that rely on redundancy between the three 64-bit virtual addresses. The
compressed representation exchanges stronger alignment requirements (proportional to object
size) for a more compact representation. The CHERI Concentrate compression model (see
Section 3.4.4) maintains the monotonicity inherent in the 256-bit model: no ISA manipula-
tion of a capability can grant increased rights, and when unrepresentable cases are generated
(e.g., a pointer substantially out of bounds, or a very unaligned object), the pointer becomes
un-dereferenceable. Memory allocators already implement alignment requirements for heap
and stack allocations (word, pointer, page, and superpage alignments), and these algorithms
require only minor extension to ensure fully accurate bounds for large memory allocations.
Small allocations require no additional alignment, where the definition of ‘small’ depends on
the compression format used and might be from 4 kiB to 1 MiB. Relative to a 64-bit pointer, the
128-bit design reduces per-pointer memory overhead (with a strong influence on cache foot-
print for some software designs) by roughly two thirds, compared to the 256-bit representation.

2.3.12 Hybridization with Integer Pointers

Processors implementing CHERI capabilities also support existing programs compiled to use
conventional integer pointers rather than capabilities, using two special capabilities:

Default Data Capability indirects and controls non-capability-based pointer-based load and
store instructions.
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Figure 2.2: CHERI supports a wide range of operational software models including: unmodi-
fied MMU-based RISC operating systems; hybrid operating systems utilizing the MMU to sup-
port a process model and/or virtualization while using CHERI within virtual address spaces;
and pure single-address-space CHERI-based operating systems.

Program Counter Capability extends the conventional program counter with capability meta-
data, indirecting and controlling instruction fetches.

Programs compiled to use capabilities to represent pointers (whether implicitly or via ex-
plicit program annotations) will not use the default data capability, instead employing capability
registers and capability-based instructions for pointer operations and indirection. The program-
counter capability will be used regardless of the code model employed, although capability-
aware code generation will employ constrained program-counter bounds and permissions to
implement control-flow robustness rather than using a single large code segment. Support for
legacy loads and stores can be disabled by installing a sufficiently constrained (e.g., untagged)
default data capability.

Different compilation modes and ABIs provide differing levels of compatibility with exist-
ing code — but include the ability to run entirely unmodified non-CHERI binaries, to execute
non-CHERI code in sandboxes within CHERI-aware applications, and CHERI-aware code in
sandboxes within CHERI-unaware applications.

2.3.13

The above features compose naturally with, and complement, the Virtual-Memory (VM) mod-
els commonly implemented using commodity Memory Management Units (MMUs) in current
OS designs (Figure 2.2). Capabilities are within rather than between address spaces; they pro-
tect programmer references to data (pointers), and are intended to be driven primarily by the
compiler rather than by the operating system. In-address-space compartmentalization comple-
ments process isolation by providing fine-grained memory sharing and highly efficient domain
switching for use between compartments in the same application, rather than between inde-
pendent programs via the process model. Operating-system kernels will also be able to use
capabilities to improve the safety of their access to user memory, as user pointers cannot be
accidentally used to reference kernel memory, or accidentally access memory outside of user-
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provided buffers. Finally, the operating system might choose to employ capabilities internally,
and even in its interactions with userspace, in referencing kernel data structures and objects.

2.3.14 Hybridization with Architectural Privilege

Conventional architectures employ ring-based mechanisms to control use of architectural priv-
ilege: only code executing in “supervisor” or “kernel” mode is permitted to access the virtual
address space with supervisor rights, but also to control the MMU, certain cache management
operations, interrupt-related features, system-call return, and so on. The ring model prevents
unprivileged code from manipulating the virtual address space (and other processor features)
in such a way as to bypass memory protection and isolation configured by the operating sys-
tem. Contemporary instantiations may also permit virtualization of those features, allowing
unmodified operating systems to execute efficiently over microkernels or hypervisors. CHERI
retains support for these models with one substantial modification: use of privileged features
within privileged rings, other than in accessing virtual memory as the supervisor, depends on
the program-counter capability having a suitable hardware permission set.

This feature similarly allows code within kernels, microkernels, and hypervisors to be com-
partmentalized, preventing bypass of the capability model within the kernel virtual address
space through control of virtual memory features. The feature also allows vulnerability miti-
gation by allowing only explicit use of privileged features: kernel code can be compiled and
linked so that most code executes with a program-counter capability that does not authorize use
of privilege, and only by jumping to selected program-counter capabilities can that privilege be
exercised, preventing accidental use. Finally, this feature paves the way for process and object
models in which the capability model is used without recourse to rings.

2.3.15 Failure Modes and Exceptions

Bounds checks, permissions, monotonicity, and other properties of the CHERI protection model
inevitably introduce the possibility of new ISA-visible failure modes when software violates
rules imposed through capabilities (whether due to accident or malicious intent). In general,
in our prototyping, we have selected to deliver hardware exceptions as early as possible when
such events occur; for example, on attempts to perform disallowed load and store operations, to
broaden bounds, and so on. This allows the operating system (which in turn may delegate to the
userspace language runtime or application) the ability to catch and handle failures in various
ways — such as by emulating disallowed accesses, converting to a language-visible exception,
or performing some diagnostic or mitigation activity.

Different architectures express differing design philosophies for when exceptions may be
delivered, and there is flexibility in the CHERI model in when exceptions might be deliv-
ered. For example, while an attempt to broaden (rather than narrow) bounds could generate
an immediate exception (our prototyping choice), the operation could instead generate a non-
dereferenceable pointer as its output, in effect deferring an exception until the time of an at-
tempted load, store, or instruction fetch. The former offers slightly improved debuggability (by
exposing the error earlier), whereas the latter can offer microarchitectural benefits by reducing
the set of instructions that can throw exceptions. Both of these implementations ensure mono-
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tonicity by preventing derived pointers from improperly allowing increased access following
guarded manipulation, and are consistent with the model.

2.3.16 Capability Revocation, Garbage Collection, and Flow Control

Revocation is a key design concern in capability systems, as revocation is normally imple-
mented via table indirection — an approach in tension with the CHERI design goal of avoid-
ing table-based lookups or indirection on pointer operations. As described in Section 2.3.10,
CHERI provides explicit ISA-level features to constrain the flow of capabilities in order to
reduce the potential overhead in walking through memory to find outstanding capabilities to
resources (e.g., to implement garbage collection or sweeping revocation). There are also ex-
plicit features in the instruction-set architecture that directly support the implementation of both
pointer and object-capability revocation:

MMU-based virtual-address revocation As CHERI capabilities are evaluated prior to virtual
addressing (i.e., they are pointers within address spaces), the MMU can be used not only
to maintain virtual address spaces, but also to explicitly prevent the dereferencing of
pointers to virtual address ranges — regardless of the capability mechanism. Combined
with a policy of either non-reuse of virtual address space (as distinct from non-reuse
of physical address space), sweeping revocation, or garbage collection, this allows all
outstanding capabilities (and any further capabilities derived from them) to be revoked
without the need to search for those capabilities in the register file or memory. This
revocation is subject to the granularity and scalability limitations of MMUSs: for example,
it is not possible to revoke portions of the virtual address space smaller than one page.

This low-level hardware mechanism must be combined with suitable software manage-
ment of the virtual address space in order for it to be effective. For example, a policy
of non-reuse of the virtual address space at allocation time will prevent stale capabili-
ties from referring to a new allocation after an old one has been freed. A further policy
of revoking MMU mappings for the region of virtual address space will prevent use of
the freed memory as a communications channel from the point of free. Asynchronous
and batched revocations will improve performance, subject to windows of opportunity
in which use after free (but not use after re-allocation) might still be possible. It is also
worth observing explicitly that non-reuse of the virtual address space in no way implies
non-reuse of physical memory, as memory underlying revoked virtual addresses can be
safely reused. An alternative to virtual address-space non-reuse is garbage collection, in
which outstanding references to freed (and perhaps revoked) virtual address space are
sought and explicitly invalidated.

Use of the MMU for virtual address-space revocation is subject to a number of limits
depending on the non-reuse and garbage-collection policies adopted. For example, if
small, sub-page-size, tightly packed memory allocations are freed in a manner that leads
to fragmentation (i.e., both allocated and freed memory within the same virtual page),
then revocation will not be possible — as it would prevent access to valid allocations
(which could be emulated only at great expense). Similarly, fragmentation of the virtual
address space may lead to greater overhead in the OS’s virtual-memory subsystem, due
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to the need to maintain many individual small mappings, as well as the possibility of
reduced opportunity to use superpages should revocations occur that are expressed in
terms of smaller page sizes.

However, overall, the MMU provides a non-bypassable means of preventing use of all
outstanding capabilities to a portion of the virtual address space, permitting strong revo-
cation to be used where appropriate.

Accurate garbage collection Traditional implementations of C are not amenable to accurate
garbage collection because unions and types such as intptr_t allow a register or memory
location to contain either an integer value or a pointer. CHERI-C does not have this
limitation: The tag bit makes it possible to accurately identify all memory locations that
contain data that can be interpreted as a pointer. In addition, the value of the pointer
(encoded in the offset) is distinct from the base and length; thus, code that stores other
data in low bits of the pointer will not affect the collector. Garbage collection is the
logical dual of revocation: garbage collection extends the lifetime of objects as long as
they have valid references, whereas revocation curtails the lifetime of references once the
objects to which they refer are no longer valid. A simple stop-the-world mark-and-sweep
collector for C can perform both tasks, scanning all reachable memory, invalidating all
references to revoked objects, and recycling unreachable memory.

More complex garbage collectors typically rely on read or write barriers (i.e., mecha-
nisms for notifying the collector that a reference has been read or written). These are
typically inserted by the compiler; however, in the context of revocation the compiler-
generated code must be treated as untrusted. It may be possible to use the permission bits
— either in capabilities themselves or in page-table entries — to introduce traps that can be
used as barriers.

Capability tags for sweeping revocation In addition to supporting garbage collection, capa-
bility tags in registers and memory also allow the reliable identification of capabilities
for the purposes of explicit revocation. Subject to safety in the presence of concurrency
(e.g., by suspending software execution in the virtual address space, or temporarily lim-
iting access to portions of the virtual address space), software can reliably sweep through
registers and memory, clearing the tags (or otherwise replacing) for capabilities that are
to be revoked. This comes at potentially significant cost, which can be mitigated through
use of the MMU - e.g., to prevent capabilities from being used in certain pages intended
only to store data, or to track where capabilities have been stored via a capability dirty
bit in virtual-memory metadata.

Revocation of sealed capabilities When the interpretation of sealed capabilities is performed
by a trustworthy software exception handler, there is the opportunity for that exception
handler to implement revocation semantics explicitly. For example, the CCall selector
0/creturn exception handler could interpret the virtual address of a sealed capability as
pointing to a table entry within the kernel, rather than directly encapsulating a pointer to
user memory. The address could be split into two parts: a table index, and a generation
counter. The table entry could then itself contain a generation counter. Sealed object-
capability references to the table entry would incorporate the value of the counter at the
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time of sealing, and the CCall mechanism would check the generation count, rejecting
invocation on a mismatch. When object-capability revocation is desired, the table gen-
eration counter could be bumped, preventing any further use of outstanding references.
This approach would be subject to limits on table-entry reuse and the size of the table;
for example, a reasonable design might employ a 24-bit table index (permitting up to
224 objects in the system at a time) and a 40-bit generation counter. Use of the 24-bit
object-type could further increase the number of objects permissible in the system con-
currently. Many other similar schemes incorporating explicit checks for revocation based
on software interposition employing counters, tables, etc., can be imagined.

CHERI includes several architectural features to facilitate techniques such as garbage col-
lection and sweeping revocation. Tags allow capabilities to be accurately identified in both
registers and memory. In addition, CHERI can limit the flow of capabilities via various mecha-
nisms, limiting the memory areas that must be swept for the two techniques: MMU permissions
controlling capability load and store via specific pages; capability permissions controlling ca-
pability load and store via specific capabilities; and the local-global feature that controls the
propagation of subsets of capabilities. These primitives may be combined to support higher-
level software policies such as:

e “capabilities may not be shared between address spaces”

e “local stack capabilities may be stored only to the local stack”

e “this shared-memory buffer can be used only for data sharing, not capability sharing”

e “capabilities can flow only one way through this shared buffer”

e “only the TCB can introduce capabilities to shared memory between compartments”

e “supervisor involvement is required to share sealed capabilities between compartments”

e “first store of a capability to any page will deliver an exception to the supervisor”

As a result, garbage collection and sweeping revocation can rely on strong invariants about
capability propagation that limit the areas of memory that must be swept for garbage collection
or revocation.

2.4 Software Protection and Security Using CHERI

The remainder of the chapter explores these ideas in greater detail, describing the high-level
semantics offered by the ISA and how they are mapped into programmer-visible constructs
such as C-language features. The description in this chapter is intended to be agnostic to
the specific Instruction-Set Architecture (ISA) in which CHERI is implemented. Whereas the
implementation described in later chapters maps into the 64-bit MIPS ISA, the overall CHERI
strategy is intended to support a variety of ISA backends, and could be implemented in the
64-bit ARMvS8, SPARCV9, or RISC-V ISAs with only modest localization. In particular, it
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is important that programmers be able to rely on the properties described in this chapter —
regardless of the ISA-level implementation — and that software abstractions built over these
properties have consistent behavior that can be depended upon to mitigate vulnerabilities.

2.4.1 Abstract Capabilities

The CHERI architecture imposes tight constraints on capability manipulation and use includ-
ing provenance validity and monotonicity. While these rules generally permit the execution
of current C and C++ code without significant modification, there are occasions on which the
programmer model of pointer properties (for example) may violate rules for capabilities. For
example, the architecture maintains provenance validity of capabilities from reset, permitting
them to remain valid only if they are held in tagged memory or registers. In practice, oper-
ating systems may swap memory pages from DRAM to disk and back, violating architectural
provenance validity. The OS kernel is able to maintain the appearance of provenance valid-
ity for swapped pages by saving tags when swapping out, and re-deriving capabilities from
valid architectural capabilities when swapped back in — maintaining the abstract capabilities
that compiler-generated code works with. Our ASPLOS 2019 paper on CheriABI explores
this issue in detail [28], covering topics such as context switching, the C-language runtime,
virtual-memory behavior, and debugging.

2.4.2 C/C++ Language Support

CHERI has been designed so that there are clean mappings from the C and C++ programming
language into these protection properties. Unlike conventional virtual memory, the compiler
(rather than the operating system) is intended to play the primary role in managing these pro-
tections. Protection is within address spaces, whether in a conventional user process, or within
the operating-system kernel itself in implementing its own services or in accessing user mem-
ory:

Spatial safety CHERI protections are intended to directly protect the spatial safety of userspace
types and data structures. This protection includes the integrity of pointers to code and
data, as well as implied code pointers in the form of return addresses and vtable entries;
bounds on heap and stack allocations; the prevention of executable data, and modification
of executable code via permission.

Temporal safety CHERI provides instruction-set foundations for higher-level temporal safety
properties, such as non-reuse of heap allocations via garbage collection and revocation,
and compiler clearing of return addresses on the stack. In particular, the capability tags
on registers and in memory allows pointers to be reliably located and atomically replaced
with a different value (including an invalid capability). Acceleration features allow capa-
bilities to be located more efficiently than simply sweeping all of physical memory.

Software compartmentalization CHERI provides hardware foundations for highly efficient
software compartmentalization, the fine-grained decomposition of larger software pack-
ages into smaller isolated components that are granted access only to the memory (and
also software-defined) resources they actually require.
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Enforcing language-level properties CHERI’s software-defined permission bits and sealing
features can also be used to enforce other language-level protection objectives (e.g., opac-
ity of pointers exposed outside of their originating modules) or to implement hardware-
assisted type checking for language-level objects (e.g., to more robustly link C++ objects
with their corresponding vtables).

CHERI protections are implemented by a blend of functionality:

Compiler and linker responsible for generating code that manipulates and dereferences code
and data pointers, compile-time linkage, and stack allocation.

Language runtime responsible for ensuring that program run-time linkage, memory alloca-
tion, and exceptions implement suitable policies in their refinement and distribution of
capabilities to the application and its libraries.

Operating-system kernel responsible for interactions with conventional virtual memory, main-
taining capability state across context switches, reporting protection failures via signals
or exceptions, and implementing domain-transition features used with compartmental-
ization.

Application program and libraries responsible for distributing and using pointers, allocat-
ing and freeing memory, and employing higher-level capability-based protection features
such as compartmentalization during software execution.

Data-Pointer Protection

Depending on the desired compilation mode, some or all data pointers will be implemented
using capabilities. We anticipate that memory allocation (whether from the stack or heap, or
via kernel memory mapping) will return capabilities whose bounds and permissions are suitable
for the allocation, which will then be maintained for any derived pointers, unless explicitly
narrowed by software. This will provide the following general classes of protections:

Pointer integrity protection Overwriting a pointer in memory with data (e.g., received over a
socket) will not be able to construct a dereferenceable pointer.

Pointer provenance checking and monotonicity Pointers must be derived from prior point-
ers via manipulations that cannot increase the range or permissions of the pointer.

Bounds checking Pointers cannot be moved outside of their allocated range and then be deref-
erenced for load, store, or instruction fetch.

Permissions checking Pointers cannot be used for a purpose not granted by its permissions.
In as much as the kernel, compiler, and run-time linker restrict permissions, this will (for
example) prevent data pointers from being used for code execution.

Bounds or permissions subsetting Programmers can explicitly reduce the rights associated
with a capability — e.g., by further limiting its valid range, or by reducing permissions
to perform operations such as store. This might be used to narrow ranges to specific
elements in a data structure or array, such as a string within a larger structure.
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Flow control on pointers Capability (and hence pointer) flow propagation can be limited us-
ing CHERTI’s capability flow-control mechanism, and used to enforce higher-level poli-
cies such as that stack capabilities cannot be written to global data structures, or that
non-garbage-collectable capabilities cannot be passed across domain transitions.

Code-Pointer Protection

Again with support of the compiler and linker, CHERI capabilities can be used to implement
control-flow robustness that prevents code pointers from being corrupted or misused. This
can limit various forms of control-flow attacks, such as overwriting of return addresses on
the stack, as well as pointer re-use attacks such as Return-Oriented Programming (ROP) and
Jump-Oriented Programming (JOP). Potential applications include:

Return-address protection Capabilities can be used in place of pointers for on-stack return
addresses, preventing their corruption.

Function-pointer protection Function pointers can also be implemented as capabilities, pre-
venting corruption.

Exception-state protection On-stack exception state and signal frame information also con-
tain pointers whose protection will limit malicious control-flow attacks.

C++ vtable protection A variety of control-flow attacks rely on either corrupting C++ vtables,
or improper use of vtables, which can be detected and prevented using CHERI capabili-
ties to implement both pointers to, and pointers in, vtables.

2.4.3 Protecting Non-Pointer Types

One key property of CHERI capabilities is that although they are designed to represent pointers,
they can also be used to protect other types — whether those visible directly to programmers
through APIs or languages, or those used only in lower-level aspects of the implementation
to improve robustness. A capability can be stripped of its hardware interpretation by masking
all hardware-defined permission bits (e.g., those authorizing load, store, and so on). A set of
purely software-defined permission bits can be retrieved, masked, and checked using suitable
instructions. Sealed capabilities further impose immutability on capability fields. These non-
pointer capabilities benefit from tag-based integrity and provenance protections, monotonicity,
etc. There are many possible use cases, including:

e Using CHERI capabilities to represent hardware resources such as physical addresses, in-
terrupt numbers, and so on, where software will provide implementation (e.g., allocation,
mapping, masking), but where capabilities can be stored and delegated.

e Using CHERI capabilities as canaries in address spaces: while stripping any hardware-
defined interpretation, tagged capabilities can be used to detect undesired memory writes
where bounds may not be suitable.
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e Using CHERI capabilities to represent language-level type information, where there is
not a hardware interpretation, but unforgeable tokens are required — for example, to au-
thorize use of vtables by suitable C++ objects.

2.4.4 Isolation, Controlled Communication, and Compartmentalization

In software compartmentalization, larger complex bodies of software (such as operating-system
kernels, language runtimes, web browsers, and office suites) are decomposed into multiple
components that run in isolation from one another, having only selectively delegated rights to
the broader application and system, and limited further attack surfaces. This allows the im-
pact of exploited vulnerabilities or faults to be constrained, subject to software being suitably
structured — i.e., that its privileges and functionality have been suitable decomposed and safely
represented. Software sandboxing is one example of compartmentalization, in which particu-
larly high-risk software is tightly isolated due to the risks it poses — for example, in rendering
HTML downloaded from a web site, or in processing images attached to e-mail. Compartmen-
talization is a more general technique, of which sandboxing is just one design pattern, in which
privileges are delimited and minimized to improve software robustness [57, , , 46]. Soft-
ware compartmentalization is one of the few known techniques able to mitigate future unknown
classes of software vulnerability and exploitation, as its protective properties do not depend on
the specific vulnerability or exploit class being used by an attacker.

Software compartmentalization is build on two primitives: software isolation and controlled
communication. CHERI hybridizes two orthogonal mechanisms exist to construct isolation and
controlled communication: the conventional MMU (using multiple virtual address spaces as
occurs in widely used sandboxed process models), and CHERI’s in-address-space capability
mechanism (by constructing closures in the graph of reachable capabilities). These mecha-
nisms can be combined to construct fine-grained software compartmentalization within vir-
tual address spaces, which may complement (or even replace) a virtual-address-based process
model.

To constrain software execution using CHERI, a more privileged software runtime must
arrange that only suitable capabilities are delegated to software that must run in isolation. For
example, the runtime might grant software access to its own code, a stack, global variables,
and heap storage, but not to the private privileged state of the runtime, nor to the internal state
of other isolated software components. This is accomplished by suitably initializing the thread
register file of the software (and hence CPU register file when it begins execution) to point
into an initial set of delegated code and allocation capabilities, and then exercising discretion
in storing capabilities into any further memory that it can reach. Capability nonforgeability,
monotonicity, and provenance validity ensure that new rights cannot be created by constrained
software, and that existing rights cannot be escalated. As isolation refers not just to the initial
state, but also the continuing condition of software, discretion in delegating capabilities must
be continued throughout execution, in much the same way that software isolation using the
MMU depends not just on safe initial configuration, but safe continuing configuration as code
executes.

In order to achieve compartmentalization, and not simply isolation, CHERI’s selective non-
monotonic mechanisms can be used: exception handling, and jump-based invocation. If the



2.4. SOFTWARE PROTECTION AND SECURITY USING CHERI 67

software supervisor arranges that additional rights will be acquired by the exception handler
(using more privileged kernel code and data capabilities), then the exception handler will be
able to perform non-monotonic transformations on the set of capabilities in the register file,
accessing memory (and other resources) unavailable to the isolated code. Sealed capabilities
allow encapsulated handles to resources to be delegated to isolated code in such a manner that
the sealed capabilities and resources they describe can be protected from interference. CHERI’s
jump-based invocation mechanism allows those resources to be unsealed in a controlled man-
ner, with control flow transferred to appropriate receiving code in a way that protects both the
caller and callee. This source of non-monotonicity can also be used to implement domain tran-
sition by having the caller discard rights prior to performing the jump, and the callee acquire
any necessary rights via unsealing of its capabilities. It is essential to CHERI’s design that
exercise of non-monotonicity support reliable transfer of control to code trusted with newly
acquired rights.

Efficient controlled communication can persist across domain transitions through the ap-
propriate delegation of capabilities to shared memory, as well as the delegation of sealed
capabilities allowing selected domain switching. CHERI’s permissions allow uses of shared
memory to be constrained in a variety of ways. The software configuring compartmentaliza-
tion might choose to delegate load-only or load-execute access to shared code or read-only
data segments. Other permissions constrain the propagation of capabilities; for example, the
software supervisor might allow communication only using data and not capabilities via a com-
munication ring between two mutually distrusting phases in a processing pipeline. Similarly,
CHERTI’s local-global protections might be utilized to prevent capabilities for non-garbage-
collectable memory from being shared between mutually distrusting components, while still
allowing garbage-collectable heap allocations to be delegated.

Collectively, these mechanisms allow a variety of software-defined compartmentalization
models to be constructed. We have experimented with several, including the CheriBSD in-
process compartmentalization mechanism, which models domain transition on a secure func-
tion call with trusted stack maintained by the operating-system kernel via exception-based
invocation [146, ], and microkernel-based systems that utilize jump-based domain tran-
sition within a single-address-space operating system, which model domain transition on asyn-
chronous or synchronous message passing. Effective software compartmentalization relies not
only on limiting access to memory, but also a variety of other properties such as appropriate
(perhaps fair or prioritized) scheduling, resource allocation, and non-leakage of data or rights
via newly allocated or freshly reused memory, which are higher-level properties that must be
ensured by the software supervisor. While many of these concerns exist in MMU-based soft-
ware compartmentalization, they can take on markedly different forms or implications. For
example, the zeroing of memory before reuse prevents the leakage of rights, and not just data,
in the capability model. As with MMU-based isolation and compartmentalization, CHERI
provides strong architectural primitives, and is not intended to directly address microarchitec-
tural concerns such as cache side channels or information leakage through branch predictors,
performance counters, or other state.

Substantially different architectural underpinnings for capability-based, rather than MMU-
based, compartmentalization give it quite different practical properties. For example, two pro-
tection domains sharing access to a region of memory will not experience increased page-table
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and TLB footprint by virtue of sharing a virtual address space. Similarly, the model for delegat-
ing shared memory is substantially different: simple pointer delegation, rather than page-table
construction, has far lower overhead. On the other hand, revoking access to shared memory via
the capability model requires either non-reuse of portions of the virtual address space, sweeping
capability revocation, or garbage collection (see Section 2.3.16). We have found that the two
approaches complement one another well: virtual memory continues to provide a highly useful
underpinning for conventional coarse-grained virtual-machine and process models, whereas
CHERI compartmentalization works extremely well within applications as it caters to rapid
domain switching and large amounts of sharing between fine-grained and tightly coupled com-
ponents.

2.4.5 Source-Code and Binary Compatibility

CHERI supports Application Programming Interfaces (APIs) and Application Binary Inter-
faces (ABIs) with compatibility properties intended to facilitate incremental deployment of its
features within current software environments. For example, an OS kernel can be extended to
support CHERI capabilities in selected userspace processes with only minor extensions to con-
text switching and process setup, allowing both conventional and CHERI-extended programs
to execute — without implying that the kernel itself needs to be implemented using capabili-
ties. Further, given suitable care with ABI design, CHERI-extended libraries can exist within
otherwise unmodified programs, allowing fine-grained memory protection and compartmen-
talization to be deployed selectively to the most trusted software (i.e., key system libraries) or
least trustworthy (e.g., video CODECs), without disrupting the larger ecosystem. CHERI has
been tested with a large range of system software, and efficiently supports a broad variety of C
programming idioms poorly supported by the state of the art in software memory protection. It
provides strong and reliable hardware-assisted protection in eliminating common exploit paths
that today can be mitigated only by using probabilistically correct mechanisms (e.g., grounded
in address-space randomization) that often yield to determined attackers.

2.4.6 Code Generation and ABIs

Compilers, static and dynamic linkers, debuggers, and operating systems will require extension
to support CHERI capabilities. We anticipate multiple conventions for code generation and
binary interfaces, including:

Conventional code generation Unmodified operating systems, user programs, and user li-
braries will work without modification on CHERI processors. This code will not re-
ceive the benefits of CHERI memory protection — although it may execute encapsulated
within sandboxes maintained by CHERI-aware code, and thus can participate in a larger
compartmentalized application. It will also be able to call hybrid code.

Hybrid code generation Conventional code generation, calling conventions, and binary inter-
faces can be extended to support (relatively) transparent use of capabilities for selected
pointers — whether hand annotated (e.g., with a source-code annotation) or statically de-
termined at compile time (e.g., return addresses pushed onto the stack). Hybrid code will
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generally interoperate with conventional code with relative ease — although conventional
code will be unable to directly dereference capability-based types. CHERI memory-
protection benefits will be seen only for pointers implemented via capabilities — which
can be adapted incrementally based on tolerance for software and binary-interface mod-
ification.

Pure-capability code generation Software can also be compiled to use solely capability-based
instructions for memory access, providing extremely strong memory protection. Direct
calling in and out of pure-capability code from or to conventional code or hybrid code
requires ABI wrappers, due to differing calling conventions. Extremely strong memory
protection is experienced in the handling of both code and data pointers.

Compartmentalized code is accessed and can call out via object-capability invocation and
return, rather than by more traditional function calls and returns. This allows strong iso-
lation between mutually distrusting software components, and makes use of a new calling
convention that ensures, among other properties, non-leakage of data and capabilities in
unused argument and return-value registers. Compartmentalized code might be gener-
ated using any of the above models; although it will experience greatest efficiency when
sharing data with other compartments if a capability-aware code model is used, as this
will allow direct loading and storing from and to memory shared between compartments.
Containment of compartmentalized components does not depend on the trustworthiness
of the compiler used to generate code for those components.

Entire software systems need not utilize only one code-generation or calling-convention
model. For example, a kernel compiled with conventional code, and a small amount of CHERI-
aware assembly, can host both hybrid and pure-capability userspace programs. A kernel com-
piled to use pure-capability or hybrid code generation could similarly host userspace processes
using only conventional code. Within the kernel or user processes, some components might
be compiled to be capability-aware, while others use only conventional code. Both capability-
aware and conventional code can execute within compartments, where they are sandboxed with
limited rights in the broader software system. This flexibility is critical to CHERI’s incremental
adoption model, and depends on CHERI’s hybridization of the conventional MMU, OS models,
and C programming-language model with a capability-system model.

2.4.7 Operating-System Support

Operating systems may be modified in a number of forms to support CHERI, depending on
whether the goal is additional protection in userspace, in the kernel itself, or some combination
of both. Typical kernel deployment patterns, some of which are orthogonal and may be used in
combination, might be:

Minimally modified kernel The kernel enables CHERI support in the processor, initializes
register state during context creation, and saves/restores capability state during context
switches, with the goal of supporting use of capabilities in userspace. Virtual memory
is extended to maintain tag integrity across swapping, and to prevent tags from being
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used with objects that cannot support them persistently — such as memory-mapped files.
Other features, such as signal delivery and debugging support require minor extensions
to handle additional context. The kernel can be compiled with a capability-unaware
compiler and limited use of CHERI-aware assembly. No additional protection is afforded
to the kernel in this model; instead, the focus is on supporting fine-grained memory
protection within user programs.

Capability domain switching in userspace Similar to the minimally modified kernel model,
only modest changes are made to the kernel itself. However, some additional extensions
are made to the process model in order to support multiple mutually distrusting security
domains within user processes. For example, new CCall and CReturn exception han-
dlers are created, which implement kernel-managed ‘trusted stacks’ for each user thread.
Access to system calls is limited to authorized userspace domains.

Fine-grained capability protection in the kernel In addition to capability context switching,
the kernel is extended to support fine-grained memory protection throughout its design,
replacing all kernel pointers with capabilities. This allows the kernel to benefit from
pointer tagging, bounds checking, and permission checking, mitigating a broad range of
pointer-based attacks such as buffer overflows and return-oriented programming.

Capability domain switching in the kernel Support for a capability-aware kernel is extended
to include support for fine-grained, capability-based compartmentalization within the
kernel itself. This in effect implements a microkernel-like model in which components
of the kernel, such as filesystems, network processing, etc., have only limited access to
the overall kernel environment delegated using capabilities. This model protects against
complex threats such as software supply-chain attacks against portions of the kernel
source code or compiled kernel modules.

Capability-aware system-call interface Regardless of the kernel code generation model, it
is possible to add a new system-call Application Binary Interface (ABI) that replaces
conventional pointers with capabilities. This has dual benefits for both userspace and
kernel safety. For userspace, the benefit is that system calls operating on its behalf will
conform to memory-protection policies associated with capabilities passed to the kernel.
For example, the read system call will not be able to overflow a buffer on the userspace
stack as a result of an arithmetic error. For the kernel, referring to userspace memory only
through capabilities prevents a variety of confused deputy problems in which kernel bugs
in validating userspace arguments could permit the kernel to access kernel memory when
userspace access is intended, perhaps reading or overwriting security-critical data. The
capability-aware ABI would affect a variety of user-kernel interactions beyond system
calls, including ELF auxiliary arguments during program startup, signal handling, and
so on, and resemble other pointer-compatibility ABIs — such as 32-bit compatibility for
64-bit kernels.

These points in the design space revolve around hybrid use of CHERI primitives, with a con-
tinued strong role for the MMU implementing a conventional process model. It is also possible
to imagine operating systems created without taking this view:
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Pure-capability operating system A clean-slate operating-system design might choose to min-
imize or eliminate MMU use in favor of using the CHERI capability model for all protec-
tion and separation. Such a design might reasonably be considered a single address-space
system in which capabilities are interpreted with respect to a single virtual address space
(or the physical address space in MMU-free designs). All separation would be imple-
mented in terms of the object-capability mechanism, and all memory sharing in terms
of memory capability delegation. If the MMU is retained, it might be used simply for
full-system virtualization (a task for which it is well suited), or also support mechanisms
such as paging and revocation within the shared address space.

2.5 Protection Against Microarchitectural Side-Channels

While CHERI has been designed as an architectural security mechanism — i.e., one concerned
with explicit access to memory contents or control of system functions — recent publication of
highly effective attacks against microarchitectural side channels has caused us to reconsider
CHERTI’s potential role [61]. Several of these attacks (e.g., Spectre variants) rely on overly op-
timistic speculative execution of paths that violate invariants embedded in the executing code.
For example, code may contain explicit bounds checks, but by suitably training a branch pre-
dictor, an attacker can cause the code to bypass those checks in speculative execution, which
then leaves behind a measurable result in the instruction or data cache. CHERI offers new op-
portunities to bound speculative execution such that it observes security properties otherwise
not explicitly available to the microarchitecture. Possible bounds on speculative execution
grounded in CHERI features include:

e Enforcing capability tag checks in speculation, preventing code or data pointers without
valid provenance from being used.

e Enforcing capability bounds checks in speculation, preventing any out-of-bounds mem-
ory accesses for data load/store or instruction fetch.

e Enforcing capability permission checks in speculation, preventing inappropriate loads or
stores or instruction fetch.

e Enforcing other capability protections, such as being sealed, to ensure encapsulation is
implemented in speculation.

e Limiting data-value speculation for capability values, or for values that will be combined
with capabilities (e.g., integer values that are added to a capability offset to calculate a
new capability).

e Limiting speculation across protection-domain boundary transitions.

In addition, we have extended CHERI with new instructions to get and set a software-
defined compartment ID (CID). Unlike with conventional MMU-based virtual address spaces
that have specific address-space identifiers or page-table roots identifying protection domains,
CHERI protection domains are emergent from the dynamic delegation of capabilities. The
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CID might be used by microarchitectures to limit speculation of sharing of microarchitectural
state. For example, branch-predictor entries may be tagged with a CID to prevent them from
being used with the wrong compartment. This would necessarily need to be combined with an
address-space identifier (ASID), as addresses (and hence corresponding capabilities) may have
different interpretations in different address spaces.

As with other CHERI features, CID management is authorized using a capability, allowing
regions of CIDs to be delegated to domains or switchers for their own selective use. Where
strong side-channel-free confidentiality is not required between a set of domains, the CID may
be left as-is. Otherwise, a suitably authorized software domain switcher will be able to set the
CID to a new value.

Protective effects rely, of course, on appropriate implementation in the microarchitecture.
Further notes on our thoughts on CHERI and microarchitectural side channels may be found in
our technical report, Capability Hardware Enhanced RISC Instructions (CHERI): Notes on the
Meltdown and Spectre Attacks [147].



Chapter 3

Mapping CHERI Protection into
Architecture

In this chapter, we explore architecture-neutral aspects of the mapping from the abstract CHERI
protection model into Instruction-Set Architectures (ISAs). We consider the high-level archi-
tectural goals in mappings and the implications of our specific capability-system model before
turning to the concrete definitions associated with CHERI’s architectural capabilities, register
files, tagged memory, and its composition with various existing architectural features such as
exception handling and virtual memory.

We conclude with a consideration of “deep” versus “surface” design choices: where there
is freedom to make different choices in instantiating the CHERI model in a specific ISA, with
an eye towards both the adaptation design space and also applications to further non-MIPS
ISAs, and where divergence might lead to protection inconsistency across architectures. These
topics are revisited in greater detail in Chapters 4 (CHERI-MIPS), 5 (CHERI-RISC-V), and 6
(CHERI-x86-64), addressing specify emerging CHERI variants (or, in the case of CHERI-x86-
64, a conceptual variant).

3.1 High-Level Architectural Goals

In addition to the broad abstract goal of supporting pointer-centric protection with strong com-
patibility and performance objectives, we have pursued the following architectural goals in
integrating CHERI into contemporary instruction-set architectures:

1. When mapping the CHERI model into RISC architectures, CHERI’s extensions should
subscribe to the RISC design philosophy: a load-store instruction set intended to be tar-
geted by compilers, with more complex instructions motivated by quantitative analysis.
While current page-table structures (or in the case of MIPS, simply TLB mechanisms)
are retained for functionality and compatibility, new table-oriented structures are avoided
in describing new security primitives. In general, instructions that do not access memory
or trigger an exception should be single-cycle register-to-register operations.

2. New primitives, such as tagged memory and capabilities, are aligned closely with current
microarchitectural designs (e.g., as relates to register files, pipelined and superscalar pro-
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cessors, memory subsystems, and buses), offering minimal disruption necessary to offer
substantial semantic and performance improvements that would be difficult to support
with current architectures. Where current de-facto approaches to microarchitecture must
be changed to support CHERI — such as through the adoption of architectural tagged
memory — there are efficient implementations.

. CHERI composes sensibly with MMU-based memory protection: current MMU-based

operating systems should run unmodified on CHERI designs, and as CHERI support
is introduced in an MMU-based operating system, it should compose naturally while
allowing both capability-aware and legacy programs to run side-by-side. This allows
software designers to view the system as a set of more conventional virtual address spaces
within which CHERI offers protection — or as a single-address-space system environment
as use of the MMU is minimized.

. As protection pressure shifts from conventional MMU-based techniques to reference-

oriented protection using CHERI capabilities, page-table efficiency increases as larger
page sizes cease to penalize protection.

. Utilization of protection primitives is common-case, not exceptional, occurring in perform-

ance-centric code paths such as stack and heap allocation, on pointer arithmetic, and on
pointer load and store, rather than being an infrequent higher-cost activity that can be
amortized.

. The principles of least privilege and intentional use dictate a number of aspects of CHERI

ISA design, including requiring that no confusion arise between the use of capabilities
as pointers versus integers as pointers. Load, store, and jump instructions will never
automatically select semantics based on presence of a tag — for example, to avoid oppor-
tunities accidental use of the wrong right (e.g., by virtue of a capability tag being cleared
due to an exploitable software vulnerability leading to its interpretation as an integer
virtual address). Similarly, associative lookups of capabilities are entirely avoided.

Trade-offs around this design goal inevitably exist. For example, to run unmodified soft-
ware, CHERI provides a Default Data Capability that is transparently dereferenced when
legacy integer-pointer-based code accesses memory, which we deem necessary for com-
patibility reasons. Similarly, we do not currently choose to provide granular control over
the use of ring-based processor privilege, in order to avoid the complexity and disruption
of implementing entirely new interfaces for interrupt and MMU management, using a
single permission on code capabilities rather than a broad set of possible capabilities rep-
resenting different privileges. A purer (non-hybridized) capability-system design would
avoid these design choices.

. Just as C-language pointers map cleanly and efficiently into integers today, pointers must

similarly map cleanly, efficiently, and vastly more robustly, into capabilities. This should
apply both to language-visible data and code pointers, but also pointers used in imple-
menting language features, such as references to C++ vtables, return addresses, etc.
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8.

10.

11.

12.

13.

Flexibility exists to employ only legacy integer pointers or capabilities as dictated by soft-
ware design and code generation, trading off compatibility, protection, and performance
— while ensuring that security properties are consistently enforced and can be reasoned
about cleanly.

. When used to implement isolation and controlled communication in support of compart-

mentalization, CHERI’s communication primitives scale with the actual data footprint
(i.e., the working set of the application). Among other things, this implies that commu-
nication should not require memory copying costs that grow with data size, nor trigger
TLB aliasing that increases costs as the degree of sharing increases. Our performance
goal is to support at least two orders of magnitude more active protection domains per
core than current MMU-based systems support (going from tens or hundreds to at least
tens of thousands of domains), and similarly to reduce effective domain-crossing cost by
at least two orders of magnitude.

When sharing memory or object references between protection domains, programmers
should see a unified namespace connoting efficient and comprehensible delegation.

When implementing efficient protection-domain switching, the architecture supports a
broad range of software-defined policies, calling conventions, and memory models. Where
possible, software TCB paths should be avoided — but where necessary for semantic flex-
ibility, they should be supported safely and efficiently. As with MMU-based protection-
domain representation and crossing, CHERI supports both synchronous and asynchronous
communication patterns.

Where possible, we make use of provable, deterministic protection, avoiding probabilis-
tic techniques. For example, we avoid the use of cryptographic hashes that must be
truncated to small numbers of bits within a pointer or capability, instead making use of
tagging. This not only avoids brute-force attempts against short hashes, but also allows
stronger non-reinjection properties: pointers leaked via network communications or IPC
cannot be reinjected, despite having previously been valid. This in turn allows stronger
temporal safety properties to be enforced by software, due to having stronger guarantees.
Provability is an essential aspect to our work: CHERI’s architectural safety properties
must be formally expressible, and mechanically provable from that expression.

More generally, we seek to exploit hardware performance gains wherever possible: in
eliminating repeated software-generated checks by providing richer semantics, in pro-
viding stronger underlying atomicity for pointer integrity protection that would be very
difficult to provide on current architectures, and in providing more scalable models for
memory sharing between mutually distrusting software components. By making these
operations more efficient, we encourage their more extensive use.

These and other design goals permeate CHERI’s abstract architecture-neutral design as well
as its architecture-specific instantiations.
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3.2 Capability-System Model

In CHERI, capabilities are unforgeable tokens of authority through which programs access all
memory and services within an address space. Capabilities are a fundamental hardware type
that may be held in registers (where they can be inspected, manipulated, and dereferenced
using capability instructions), or in memory (where their integrity is protected). They include
an integer virtual address, bounds, permissions, and other protective metadata including an
object type and one-bit tag.

Capability permissions determine what operations (if any) are available via the architecture.
Commonly used permissions include those authorizing memory loads, memory stores, and
instruction fetches. Where permissions authorize memory access, capability bounds limit the
range of addresses that may be accessed; for other permissions, bounds constrain other forms
of access (e.g., use of the object-type space). Memory capabilities (those authorizing memory
access) may be used to load other capabilities into registers for use. Capabilities may also be
sealed in order to make their fields immutable and the capability non-dereferenceable.

While motivated by the goal of representing pointers (protected virtual addresses), they
are also able to protect non-pointer values. For example, sealed capabilities without memory-
access permissions may be used to represent references to protection domains that can be tran-
sitioned to via software-defined object invocation.

Unforgeability is implemented by two means: tag bits and guarded manipulation. Each
capability register (and each capability-aligned physical memory location) is associated with
a tag bit indicating that a capability is valid. Attempts to directly overwrite a capability in
memory using data (rather than capability) stores automatically clears the tag bit. When data
is loaded into a register, its tag bit is also loaded; while data without a valid tag can be loaded
into a register, attempts to dereference or invoke such a register will trigger an exception.

Guarded manipulation is enforced by virtue of the ISA: instructions that manipulate capa-
bility register fields (e.g., base, offset, length, permissions, type) are not able to increase the
rights associated with a capability. Similarly, sealed capabilities can be unsealed only via the
invocation mechanism, or via the unseal instruction subject to similar monotonicity rules. This
enforces encapsulation, and prevents unauthorized access to the internal state of objects.

Collectively, unforgeability and guarded manipulation ensure that dereferenceable capabil-
ities (those with their tag set) have valid provenance: they are derived only from other valid
capabilities, and only through valid manipulations. All other capabilities will not have their tag
set, hence cannot be dereferenced.

Intentionality avoids the automatic selection of a capability from among a set in order to
locate rights to authorize a requested operation. It is always clear for every instruction what
capability will authorize its action, e.g., whether for the executing code capability (to authorize
privileged ISA operations such as MMU management), explicit operand capabilities (to query,
modify, or dereference), or implicit use of the Default Data Capability (e.g., when constraining
legacy load and store instructions). There are no associative lookups of capabilities to select
from among several options, and instructions are always clearly defined as expecting an integer
or a tagged capability as an operand, failing if that expectation is not met.

We anticipate that many languages will expose capabilities to the programmer via point-
ers or references — e.g., as qualified pointers in C, or ma