
The Capability Maturity Model for
Software

Mark C. Paulk
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Bill Curtis
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Mary Beth Chrissis
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Charles V. Weber
IBM Federal Systems Company

6300 Diagonal Highway
Boulder, CO 80301

Abstract
This paper provides an overview of the latest version of the Capability Maturity Model
for Software, CMM v1.1. Based on over six years of experience with software process
improvement and the contributions of hundreds of reviewers, CMM v1.1 describes the
software engineering and management practices that characterize organizations as
they mature their processes for developing and maintaining software. This paper
stresses the need for a process maturity framework to prioritize improvement actions,
describes the process maturity framework of five maturity levels and the associated
structural components, and discusses future directions for the CMM.

Keywords: capability maturity model, CMM, process maturity framework, software
process improvement, process capability, process performance, maturity level, key
process area, software process assessment, software capability evaluation.

1

1 Introduction
After two decades of unfulfilled promises about productivity and quality gains
from applying new software methodologies and technologies, organizations
are realizing that their fundamental problem is the inability to manage the
software process. In many organizations, projects are often excessively late
and over budget, and the benefits of better methods and tools cannot be
realized in the maelstrom of an undisciplined, chaotic project.

In November 1986, the Software Engineering Institute (SEI), with assistance
from the Mitre Corporation, began developing a process maturity framework
that would help organizations improve their software process. In September
1987, the SEI released a brief description of the process maturity framework
[Humphrey 87a] which was later expanded in Humphrey's book, Managing
the Software Process [Humphrey89]. Two methods, software process
assessment1 and software capability evaluation2 and a maturity
questionnaire [Humphrey87b] were developed to appraise software process
maturity.

After four years of experience with the software process maturity framework
and the preliminary version of the maturity questionnaire, the SEI evolved the
maturity framework into the Capability Maturity Model for Software (CMM)
[Paulk91, Weber91]. The CMM presents sets of recommended practices in a
number of key process areas that have been shown to enhance software
process capability. The CMM is based on knowledge acquired from software
process assessments and extensive feedback from both industry and
government.

The Capability Maturity Model for Software provides software organizations
with guidance on how to gain control of their processes for developing and
maintaining software and how to evolve toward a culture of software
engineering and management excellence. The CMM was designed to guide
software organizations in selecting process improvement strategies by
determining current process maturity and identifying the few issues most

1 A software process assessment is an appraisal by a trained team of software professionals to determine
the state of an organization's current software process, to determine the high-priority software process-
related issues facing an organization, and to obtain the organizational support for software process
improvement.
2 A software capability evaluation is an appraisal by a trained team of professionals to identify contractors
who are qualified to perform the software work or to monitor the state of the software process used on an
existing software effort.

2

critical to software quality and process improvement. By focusing on a limited
set of activities and working aggressively to achieve them, an organization
can steadily improve its organization-wide software process to enable
continuous and lasting gains in software process capability.

The initial release of the CMM, v1.0, was reviewed and used by the software
community during 1991 and 1992. A workshop was held in April, 1992 on
CMM v1.0, and was attended by about 200 software professionals. The
current version of the CMM, v1.1 [Paulk93a, Paulk93b], is the result of the
feedback from that workshop and ongoing feedback from the software
community.

1.1 Immature Versus Mature Software
Organizations
Setting sensible goals for process improvement requires an understanding of
the difference between immature and mature software organizations. In an
immature software organization, software processes are generally improvised
by practitioners and their management during the course of the project. Even
if a software process has been specified, it is not rigorously followed or
enforced. The immature software organization is reactionary, and managers
are usually focused on solving immediate crises (better known as fire fighting).
Schedules and budgets are routinely exceeded because they are not based
on realistic estimates. When hard deadlines are imposed, product
functionality and quality are often compromised to meet the schedule.

In an immature organization, there is no objective basis for judging product
quality or for solving product or process problems. Therefore, product quality
is difficult to predict. Activities intended to enhance quality such as reviews
and testing are often curtailed or eliminated when projects fall behind
schedule.

On the other hand, a mature software organization possesses an
organization-wide ability for managing software development and
maintenance processes. The software process is accurately communicated to
both existing staff and new employees, and work activities are carried out
according to the planned process. The processes mandated are usable and
consistent with the way the work actually gets done. These defined processes
are updated when necessary, and improvements are developed through
controlled pilot-tests and/or cost benefit analyses. Roles and responsibilities
within the defined process are clear throughout the project and across the
organization.

3

In a mature organization, managers monitor the quality of the software
products and the process that produced them. There is an objective,
quantitative basis for judging product quality and analyzing problems with the
product and process. Schedules and budgets are based on historical
performance and are realistic; the expected results for cost, schedule,
functionality, and quality of the product are usually achieved. In general, a
disciplined process is consistently followed because all of the participants
understand the value of doing so, and the necessary infrastructure exists to
support the process.

1.2 Fundamental Concepts Underlying Process
Maturity
A software process can be defined as a set of activities, methods, practices,
and transformations that people use to develop and maintain software and the
associated products (e.g., project plans, design documents, code, test cases,
and user manuals). As an organization matures, the software process
becomes better defined and more consistently implemented throughout the
organization.

Software process capability describes the range of expected results that
can be achieved by following a software process. The software process
capability of an organization provides one means of predicting the most likely
outcomes to be expected from the next software project the organization
undertakes.

Software process performance represents the actual results achieved by
following a software process. Thus, software process performance focuses on
the results achieved, while software process capability focuses on results
expected.

Software process maturity is the extent to which a specific process is
explicitly defined, managed, measured, controlled, and effective. Maturity
implies a potential for growth in capability and indicates both the richness of
an organization's software process and the consistency with which it is
applied in projects throughout the organization.

As a software organization gains in software process maturity, it
institutionalizes its software process via policies, standards, and
organizational structures. Institutionalization entails building an infrastructure
and a corporate culture that supports the methods, practices, and procedures

4

of the business so that they endure after those who originally defined them
have gone.

2 The Five Levels of Software Process Maturity
Continuous process improvement is based on many small, evolutionary steps
rather than revolutionary innovations. The staged structure of the CMM is
based on principles of product quality espoused by Walter Shewart, W.
Edwards Deming, Joseph Juran, and Philip Crosby. The CMM provides a
framework for organizing these evolutionary steps into five maturity levels that
lay successive foundations for continuous process improvement. These five
maturity levels define an ordinal scale for measuring the maturity of an
organization's software process and for evaluating its software process
capability. The levels also help an organization prioritize its improvement
efforts.

A maturity level is a well-defined evolutionary plateau toward achieving a
mature software process. Each maturity level comprises a set of process
goals that, when satisfied, stabilize an important component of the software
process. Achieving each level of the maturity framework establishes a
different component in the software process, resulting in an increase in the
process capability of the organization.

Organizing the CMM into the five levels shown in Figure 2.1 prioritizes
improvement actions for increasing software process maturity. The labeled
arrows in Figure 2.1 indicate the type of process capability being
institutionalized by the organization at each step of the maturity framework.

5

Initial
(1)

Repeatable
(2)

Defined
(3)

Managed
(4)

Optimizing
(5)

Disciplined
process

Standard,
consistent
process

Predictable
process

Continuously
improving
process

Figure 2.1 The Five Levels of Software Process Maturity

2.1 Behavioral Characterization of the Maturity
Levels
Maturity Levels 2 through 5 can be characterized through the activities
performed by the organization to establish or improve the software process, by
activities performed on each project, and by the resulting process capability
across projects. A behavioral characterization of Level 1 is included to

6

establish a base of comparison for process improvements at higher maturity
levels.

2.1.1 Level 1 - The Initial Level

At the Initial Level, the organization typically does not provide a stable
environment for developing and maintaining software. Such organizations
frequently have difficulty making commitments that the staff can meet with an
orderly engineering process, resulting in a series of crises. During a crisis,
projects typically abandon planned procedures and revert to coding and
testing. Success depends entirely on having an exceptional manager and a
seasoned and effective software team. Occasionally, capable and forceful
software managers can withstand the pressures to take shortcuts in the
software process; but when they leave the project, their stabilizing influence
leaves with them. Even a strong engineering process cannot overcome the
instability created by the absence of sound management practices.

In spite of this ad hoc, even chaotic, process, Level 1 organizations frequently
develop products that work, even though they may be over the budget and
schedule. Success in Level 1 organizations depends on the competence and
heroics of the people in the organization3 and cannot be repeated unless the
same competent individuals are assigned to the next project. Thus, at Level 1,
capability is a characteristic of the individuals, not of the organization.

2.1.2 Level 2 - The Repeatable Level

At the Repeatable Level, policies for managing a software project and
procedures to implement those policies are established. Planning and
managing new projects is based on experience with similar projects. Process
capability is enhanced by establishing basic process management discipline
on a project by project basis. An effective process can be characterized as
one which is practiced, documented, enforced, trained, measured, and able to
improve.

Projects in Level 2 organizations have installed basic software management
controls. Realistic project commitments are based on the results observed on
previous projects and on the requirements of the current project. The software
managers for a project track software costs, schedules, and functionality;
problems in meeting commitments are identified when they arise. Software
requirements and the work products developed to satisfy them are baselined,

3 Selecting, hiring, developing, and/or retaining competent people are significant issues for organizations
at all levels of maturity, but they are largely outside the scope of the CMM.

7

and their integrity is controlled. Software project standards are defined, and
the organization ensures they are faithfully followed. The software project
works with its subcontractors, if any, to establish a customer-supplier
relationship.

Processes may differ between projects in a Level 2 organization. The
organizational requirement for achieving Level 2 is that there are policies that
guide the projects in establishing the appropriate management processes.

The software process capability of Level 2 organizations can be summarized
as disciplined because planning and tracking of the software project is stable
and earlier successes can be repeated. The project's process is under the
effective control of a project management system, following realistic plans
based on the performance of previous projects.

2.1.3 Level 3 - The Defined Level

At the Defined Level, the standard process for developing and maintaining
software across the organization is documented, including both software
engineering and management processes, and these processes are integrated
into a coherent whole. This standard process is referred to throughout the
CMM as the organization's standard software process. Processes established
at Level 3 are used (and changed, as appropriate) to help the software
managers and technical staff perform more effectively. The organization
exploits effective software engineering practices when standardizing its
software processes. There is a group that is responsible for the organization's
software process activities, e.g., a software engineering process group, or
SEPG [Fowler90]. An organization-wide training program is implemented to
ensure that the staff and managers have the knowledge and skills required to
fulfill their assigned roles.

Projects tailor the organization's standard software process to develop their
own defined software process, which accounts for the unique characteristics
of the project. This tailored process is referred to in the CMM as the project's
defined software process. A defined software process contains a coherent,
integrated set of well-defined software engineering and management
processes. A well-defined process can be characterized as including
readiness criteria, inputs, standards and procedures for performing the work,
verification mechanisms (such as peer reviews), outputs, and completion
criteria. Because the software process is well defined, management has good
insight into technical progress on all projects.

8

The software process capability of Level 3 organizations can be summarized
as standard and consistent because both software engineering and
management activities are stable and repeatable. Within established product
lines, cost, schedule, and functionality are under control, and software quality
is tracked. This process capability is based on a common, organization-wide
understanding of the activities, roles, and responsibilities in a defined software
process.

2.1.4 Level 4 - The Managed Level

At the Managed Level, the organization sets quantitative quality goals for both
software products and processes. Productivity and quality are measured for
important software process activities across all projects as part of an
organizational measurement program. An organization-wide software
process database is used to collect and analyze the data available from the
projects' defined software processes. Software processes are instrumented
with well-defined and consistent measurements at Level 4. These
measurements establish the quantitative foundation for evaluating the
projects' software processes and products.

Projects achieve control over their products and processes by narrowing the
variation in their process performance to fall within acceptable quantitative
boundaries. Meaningful variations in process performance can be
distinguished from random variation (noise), particularly within established
product lines. The risks involved in moving up the learning curve of a new
application domain are known and carefully managed.

The software process capability of Level 4 organizations can be summarized
as being quantifiable and predictable because the process is measured and
operates within measurable limits. This level of process capability allows an
organization to predict trends in process and product quality within the
quantitative bounds of these limits. Because the process is both stable and
measured, when some exceptional circumstance occurs, the "special cause"
of the variation can be identified and addressed. When the known limits of the
process are exceeded, action is taken to correct the situation. Software
products are of predictably high quality.

2.1.5 Level 5 - The Optimizing Level

At the Optimizing Level, the entire organization is focused on continuous
process improvement. The organization has the means to identify
weaknesses and strengthen the process proactively, with the goal of
preventing the occurrence of defects. Data on the effectiveness of the

9

software process is used to perform cost benefit analyses of new technologies
and proposed changes to the organization's software process. Innovations
that exploit the best software engineering practices are identified and
transferred throughout the organization.

Software project teams in Level 5 organizations analyze defects to determine
their causes. Software processes are evaluated to prevent known types of
defects from recurring, and lessons learned are disseminated to other
projects.

There is chronic waste, in the form of rework, in any system simply due to
random variation. Waste is unacceptable; organized efforts to remove waste
result in changing the system, i.e., improving the process by changing
"common causes" of inefficiency to prevent the waste from occurring. While
this is true of all the maturity levels, it is the focus of Level 5.

The software process capability of Level 5 organizations can be characterized
as continuously improving because Level 5 organizations are continuously
striving to improve the range of their process capability, thereby improving the
process performance of their projects. Improvement occurs both by
incremental advancements in the existing process and by innovations using
new technologies and methods. Technology and process improvements are
planned and managed as ordinary business activities.

2.2 Process Capability and the Prediction of
Performance
The maturity of an organization's software process helps to predict a project's
ability to meet its goals. Projects in Level 1 organizations experience wide
variations in achieving cost, schedule, functionality, and quality targets. As
illustrated in Figure 2.4, three improvements in meeting targeted goals are
expected as the organization's software process matures. These expectations
are based on the quantitative results process improvement has achieved in
other industries, and they are consistent with the initial case study results
reported from software organizations [Dion92, Humphrey91b, Lipke92,
Wohlwend93].

First, as maturity increases, the difference between targeted results and actual
results decreases across projects. For instance, Level 1 organizations often
miss their originally scheduled delivery dates by a wide margin, whereas
higher maturity level organizations should be able to meet targeted dates with

10

increased accuracy. (This is illustrated in Figure 2.4 by how much of the area
under the curve lies to the right of the target line.)

Second, as maturity increases, the variability of actual results around targeted
results decreases. For instance, in Level 1 organizations delivery dates for
projects of similar size are unpredictable and vary widely. Similar projects in
a higher maturity level organization, however, will be delivered within a
smaller range. (This is illustrated in Figure 2.4 by how much of the area under
the curve is concentrated near the target line.)

Third, targeted results improve as the maturity of the organization increases.
That is, as a software organization matures, costs decrease, development time
becomes shorter, and productivity and quality increase. In a Level 1
organization, development time can be quite long because of the amount of
rework that must be performed to correct mistakes. In contrast, higher maturity
level organizations have increased process efficiency and reduce costly
rework, allowing development time to be shortened. (This is illustrated in
Figure 2.4 by the horizontal displacement of the target line from the origin.)

The improvements in predicting a project's results represented in Figure 2.4
assume that the software project's outcomes become more predictable as
noise, often in the form of rework, is removed from the software process.
Unprecedented systems complicate the picture since new technologies and
applications lower the process capability by increasing variability. Even in the
case of unprecedented systems, the management and engineering practices
characteristic of more mature organizations help identify and address
problems earlier in the development cycle than they would have been
detected in less mature organizations. In some cases a mature process
means that "failed" projects are identified early in the software life cycle and
investment in a lost cause is minimized.

The documented case studies of software process improvement indicate that
there are significant improvements in both quality and productivity as a result
of the improvement effort [Dion92, Humphrey91b, Lipke92, Wohlwend93].
The return on investment seems to typically be in the 5:1 to 8:1 range for
successful process improvement efforts.

11

P
ro

b
ab

ili
ty

Time/$/...

T
ar

g
et

 N

11

22

P
ro

b
ab

ili
ty

Time/$/...

T
ar

g
et

 N
+a

44

P
ro

b
ab

ili
ty

Time/$/...

T
ar

g
et

 N
-y

55
P

ro
b

ab
ili

ty

Time/$/...
T

ar
g

et
 N

-z

33

P
ro

b
ab

ili
ty

Time/$/...

T
ar

g
et

 N
-x

Schedule and cost targets
are typically overrun by
Level 1 organizations.

Plans based on past
performance are more
realistic in Level 2
organizations

With well-defined processes,
performance improves in
Level 3 organizations

Based on quantitative
understanding of process
and product, performance
continues to improve in
Level 4 organizations

Performance continuously
improves in Level 5
organizations

Figure 2.4 Process Capability as Indicated by Maturity Level

12

2.3 Skipping Maturity Levels
Trying to skip levels is counterproductive because each maturity level in the
CMM forms a necessary foundation from which to achieve the next level. The
CMM identifies the levels through which an organization should evolve to
establish a culture of software engineering excellence. Organizations can
institute specific process improvements at any time they choose, even before
they are prepared to advance to the level at which the specific practice is
recommended. However, organizations should understand that the stability of
these improvements is at greater risk since the foundation for their successful
institutionalization has not been completed. Processes without the proper
foundation fail at the very point they are needed most – under stress – and
they provide no basis for future improvement.

For instance, a well-defined software process that is characteristic of a Level 3
organization, can be placed at great risk if management makes a poorly
planned schedule commitment or fails to control changes to the baselined
requirements. Similarly, many organizations have collected the detailed data
characteristic of Level 4, only to find that the data were uninterpretable
because of inconsistency in the software development processes.

At the same time, it must be recognized that process improvement efforts
should focus on the needs of the organization in the context of its business
environment, and higher-level practices may address the current needs of an
organization or project. For example, when prescribing what steps an
organization should take to move from Level 1 to Level 2, frequently one of the
recommendations is to establish a software engineering process group
(SEPG), which is an attribute of Level 3 organizations. While an SEPG is not
a necessary characteristic of a Level 2 organization, they can be a useful part
of the prescription for achieving Level 2.

3 Operational Definition of the Capability Maturity
Model

The CMM is a framework representing a path of improvements recommended
for software organizations that want to increase their software process
capability. This operational elaboration of the CMM is designed to support the
many ways it will be used. There are at least four uses of the CMM that are
supported:

13

° Assessment teams will use the CMM to identify strengths and
weaknesses in the organization.

° Evaluation teams will use the CMM to identify the risks of selecting
among different contractors for awarding business and to monitor
contracts.

° Upper management will use the CMM to understand the activities
necessary to launch a software process improvement program in their
organization.

° Technical staff and process improvement groups, such as an SEPG,
will use the CMM as a guide to help them define and improve the
software process in their organization.

Because of the diverse uses of the CMM, it must be decomposed in sufficient
detail that actual process recommendations can be derived from the structure
of the maturity levels. This decomposition also indicates the key processes
and their structure that characterize software process maturity and software
process capability.

3.1 Internal Structure of the Maturity Levels
Each maturity level has been decomposed into constituent parts. With the
exception of Level 1, the decomposition of each maturity level ranges from
abstract summaries of each level down to their operational definition in the
key practices, as shown in Figure 3.1. Each maturity level is composed of
several key process areas. Each key process area is organized into five
sections called common features. The common features specify the key
practices that, when collectively addressed, accomplish the goals of the key
process area.

3.2 Maturity Levels
A maturity level is a well-defined evolutionary plateau toward achieving a
mature software process. Each maturity level indicates a level of process
capability, as was illustrated in Figure 2.1. For instance, at Level 2 the
process capability of an organization has been elevated from ad hoc to
disciplined by establishing sound project management controls.

14

Maturity Levels

Key
Practices

contain

contain

Key Process Areas

Implementation or
Institutionalization

Goals

Process
Capability

describe

achieve

indicate

organized by

Common
Features

address

Infrastructure or
Activities

Figure 3.1 The CMM Structure

15

3.3 Key Process Areas
Except for Level 1, each maturity level is decomposed into several key
process areas that indicate where an organization should focus on to improve
its software process. Key process areas identify the issues that must be
addressed to achieve a maturity level.

Each key process area identifies a cluster of related activities that, when
performed collectively, achieve a set of goals considered important for
enhancing process capability. The key process areas have been defined to
reside at a single maturity level as shown in Figure 3.2. The path to achieving
the goals of a key process area may differ across projects based on
differences in application domains or environments. Nevertheless, all the
goals of a key process area must be achieved for the organization to satisfy
that key process area.

The adjective "key" implies that there are process areas (and processes) that
are not key to achieving a maturity level. The CMM does not describe all the
process areas in detail that are involved with developing and maintaining
software. Certain process areas have been identified as key determiners of
process capability; these are the ones described in the CMM.

The key process areas may be considered the requirements for achieving a
maturity level. To achieve a maturity level, the key process areas for that level
must be satisfied.

16

 Quality management
Process measurement and analysis

Initial (1)

Repeatable (2)
 Software configuration management
 Software quality assurance
 Software subcontract management
 Software project tracking and oversight
 Software project planning
Requirements management

Defined (3)

 Peer reviews
 Intergroup coordination
 Software product engineering
 Integrated software management
 Training program
 Organization process definition
Organization process focus

Managed (4)

 Process change management
 Technology change management
Defect prevention

Optimizing (5)

 Software quality management
 Quantitative process management

Figure 3.2 The Key Process Areas by Maturity Level

17

The specific practices to be executed in each key process area will evolve as
the organization achieves higher levels of process maturity. For instance,
many of the project estimating capabilities described in the Software Project
Planning key process area at Level 2 must evolve to handle the additional
project data available at Level 3, as is described in Integrated Software
Management.

The key process areas at Level 2 focus on the software project's concerns
related to establishing basic project management controls.

° The purpose of Requirements Management is to establish a common
understanding between the customer and the software project of the
customer's requirements that will be addressed by the software project.
This agreement with the customer is the basis for planning and
managing the software project.

° The purpose of Software Project Planning is to establish reasonable
plans for performing the software engineering and for managing the
software project. These plans are the necessary foundation for
managing the software project.

° The purpose of Software Project Tracking and Oversight is to establish
adequate visibility into actual progress so that management can take
effective actions when the software project's performance deviates
significantly from the software plans.

° The purpose of Software Subcontract Management is to select qualified
software subcontractors and manage them effectively.

° The purpose of Software Quality Assurance is to provide management
with appropriate visibility into the process being used by the software
project and of the products being built.

° The purpose of Software Configuration Management is to establish and
maintain the integrity of the products of the software project throughout
the project's software life cycle.

The key process areas at Level 3 address both project and organizational
issues, as the organization establishes an infrastructure that institutionalizes
effective software engineering and management processes across all
projects.

18

° The purpose of Organization Process Focus is to establish the
organizational responsibility for software process activities that improve
the organization's overall software process capability.

° The purpose of Organization Process Definition is to develop and
maintain a usable set of software process assets that improve process
performance across the projects and provide a basis for defining
meaningful data for quantitative process management. These assets
provide a stable foundation that can be institutionalized via mechanisms
such as training.

° The purpose of Training Program is to develop the skills and knowledge
of individuals so they can perform their roles effectively and efficiently.
Training is an organizational responsibility, but the software projects
should identify their needed skills and provide the necessary training
when the project's needs are unique.

° The purpose of Integrated Software Management is to integrate the
software engineering and management activities into a coherent, defined
software process that is tailored from the organization's standard
software process and related process assets. This tailoring is based on
the business environment and technical needs of the project.

° The purpose of Software Product Engineering is to consistently perform a
well-defined engineering process that integrates all the software
engineering activities to produce correct, consistent software products
effectively and efficiently. Software Product Engineering describes the
technical activities of the project, e.g., requirements analysis, design,
code, and test.

° The purpose of Intergroup Coordination is to establish a means for the
software engineering group to participate actively with the other
engineering groups so the project is better able to satisfy the customer's
needs effectively and efficiently.

° The purpose of Peer Reviews is to remove defects from the software work
products early and efficiently. An important corollary effect is to develop
a better understanding of the software work products and of the defects
that can be prevented. The peer review is an important and effective
engineering method that can be implemented via inspections, structured
walkthroughs, or a number of other collegial review methods.

19

The key process areas at Level 4 focus on establishing a quantitative
understanding of both the software process and the software work products
being built.

° The purpose of Quantitative Process Management is to control the
process performance of the software project quantitatively. Software
process performance represents the actual results achieved from
following a software process. The focus is on identifying special causes
of variation within a measurably stable process and correcting, as
appropriate, the circumstances that drove the transient variation to occur.

° The purpose of Software Quality Management is to develop a
quantitative understanding of the quality of the project's software
products and achieve specific quality goals.

The key process areas at Level 5 cover the issues that both the organization
and the projects must address to implement continuous and measurable
software process improvement.

° The purpose of Defect Prevention is to identify the causes of defects and
prevent them from recurring. The software project analyzes defects,
identifies their causes, and changes its defined software process.

° The purpose of Technology Change Management is to identify beneficial
new technologies (i.e., tools, methods, and processes) and transfer them
into the organization in an orderly manner. The focus of Technology
Change Management is on performing innovation efficiently in an ever-
changing world.

° The purpose of Process Change Management is to continually improve
the software processes used in the organization with the intent of
improving software quality, increasing productivity, and decreasing the
cycle time for product development.

3.4 Goals
The goals summarize the key practices of a key process area and can be
used to determine whether an organization or project has effectively
implemented the key process area. The goals signify the scope, boundaries,
and intent of each key process area. Satisfaction of a KPA is determined by
achievement of the goals.

20

3.5 Common Features
For convenience, the practices that describe the key process areas are
organized by common features. The common features are attributes that
indicate whether the implementation and institutionalization of a key process
area is effective, repeatable, and lasting. The five common features are:

Commitment to
Perform

Commitment to Perform describes the actions the
organization must take to ensure that the process is
established and will endure. Commitment to Perform
typically involves establishing organizational policies and
senior management sponsorship.

Ability to Perform Ability to Perform describes the preconditions that must
exist in the project or organization to implement the
software process competently. Ability to Perform typically
involves resources, organizational structures, and training.

Activities
Performed

Activities Performed describes the roles and procedures
necessary to implement a key process area. Activities
Performed typically involve establishing plans and
procedures, performing the work, tracking it, and taking
corrective actions as necessary.

Measurement and
Analysis

Measurement and Analysis describes the need to measure
the process and analyze the measurements. Measurement
and Analysis typically includes examples of the
measurements that could be taken to determine the status
and effectiveness of the Activities Performed.

Verifying
Implementation

Verifying Implementation describes the steps to ensure that
the activities are performed in compliance with the process
that has been established. Verification typically
encompasses reviews and audits by management and
software quality assurance.

The practices in the common feature Activities Performed describe what must
be implemented to establish a process capability. The other practices, taken
as a whole, form the basis by which an organization can institutionalize the
practices described in the Activities Performed common feature.

21

3.6 Key Practices
Each key process area is described in terms of the key practices that
contribute to satisfying its goals. The key practices describe the
infrastructure and activities that contribute most to the effective implementation
and institutionalization of the key process area.

Each key practice consists of a single sentence, often followed by a more
detailed description, which may include examples and elaboration. These
key practices, also referred to as the top-level key practices, state the
fundamental policies, procedures, and activities for the key process area. The
components of the detailed description are frequently referred to as sub
practices. The key practices describe "what" is to be done, but they should not
be interpreted as mandating "how" the goals should be achieved. Alternative
practices may accomplish the goals of the key process area. The key
practices should be interpreted rationally to judge whether the goals of the key
process area are effectively, although perhaps differently, achieved. The key
practices are contained in the "Key Practices of the Capability Maturity Model,
Version 1.1" [Paulk93b], along with guidance on their interpretation.

4 Future Directions of the CMM
Achieving higher levels of software process maturity is incremental and
requires a long-term commitment to continuous process improvement.
Software organizations may take ten years or more to build the foundation for,
and a culture oriented toward, continuous process improvement. Although a
decade-long process improvement program is foreign to most U.S.
companies, this level of effort is required to produce mature software
organizations.

The CMM is not a silver bullet and does not address all of the issues that are
important for successful projects. For example, the CMM does not currently
address expertise in particular application domains, advocate specific
software technologies, or suggest how to select, hire, motivate, and retain
competent people. Although these issues are crucial to a project's success,
they have not been integrated into the CMM.

During the next few years, the CMM will continue to undergo extensive testing
through use in software process assessments, software capability evaluations,
and process improvement programs. CMM-based products and training
materials will be developed and revised as appropriate. The CMM is a living
document that will be improved, but it is anticipated that CMM v1.1 will remain

22

the baseline until at least 1996. This provides an appropriate and realistic
balance between the needs for stability and for continued improvement. A
book on the CMM is in progress for the SEI series published by Addison-
Wesley.

The SEI is also working with the International Standards Organization (ISO) in
its efforts to build international standards for software process assessment,
improvement, and capability evaluation. This effort will integrate concepts
from many different process improvement methods. The development of the
ISO standards (and the contributions of other methods) will influence CMM
v2.0, even as the SEI's process work will influence the activities of the ISO.

5 Conclusion
The CMM represents a "common sense engineering" approach to software
process improvement. The maturity levels, key process areas, common
features, and key practices have been extensively discussed and reviewed
within the software community. While the CMM is not perfect, it does
represent a broad consensus of the software community and is a useful tool
for guiding software process improvement efforts.

The CMM provides a conceptual structure for improving the management and
development of software products in a disciplined and consistent way. It does
not guarantee that software products will be successfully built or that all
problems in software engineering will be adequately resolved. However,
current reports from CMM-based improvement programs indicate that it can
improve the likelihood with which a software organization can achieve its cost,
quality, and productivity goals.[Dion92, Humphrey91b, Lipke92, Wohlwend93]

The CMM identifies practices for a mature software process and provides
examples of the state-of-the-practice (and in some cases, the state-of-the-art),
but it is not meant to be either exhaustive or dictatorial. The CMM identifies
the characteristics of an effective software process, but the mature
organization addresses all issues essential to a successful project, including
people and technology, as well as process.

23

6 References
Dion92 Raymond Dion, "Elements of a Process-Improvement

Program," IEEE Software, Vol. 9, No. 4, July 1992, pp. 83-
85.

Fowler90 P. Fowler and S. Rifkin, Software Engineering Process
Group Guide, Software Engineering Institute, CMU/SEI-90-
TR-24, ADA235784, September, 1990.

Humphrey87a W.S. Humphrey, Characterizing the Software Process: A
Maturity Framework, Software Engineering Institute,
CMU/SEI-87-TR-11, ADA182895, June 1987. Also
published in IEEE Software, Vol. 5, No. 2, March 1988,
pp.73-79.

Humphrey87b W.S. Humphrey and W.L. Sweet, A Method for Assessing
the Software Engineering Capability of Contractors,
Software Engineering Institute, CMU/SEI-87-TR-23,
ADA187320, September 1987.

Humphrey89 W.S. Humphrey, Managing the Software Process, Addison-
Wesley, Reading, MA, 1989.

Humphrey91a W.S. Humphrey, D.H. Kitson, and J. Gale, "A Comparison of
U.S. and Japanese Software Process Maturity,"
Proceedings of the 13th International Conference on
Software Engineering, Austin, TX, 13-17 May 1991, pp. 38-
49.

Humphrey91b Watts S. Humphrey, T.R. Snyder, and Ronald R. Willis,
"Software Process Improvement at Hughes Aircraft," IEEE
Software, Vol. 8, No. 4, July 1991, pp. 11-23.

Kitson92 D.H. Kitson and S. Masters, An Analysis of SEI Software
Process Assessment Results: 1987-1991, Software
Engineering Institute, CMU/SEI-92-TR-24, July 1992.

Lipke92 W.H. Lipke and K.L. Butler, "Software Process
Improvement: A Success Story," Crosstalk: The Journal of
Defense Software Engineering, No. 38, November 1992,
pp. 29-31.

24

Paulk91 M.C. Paulk, B. Curtis, M.B. Chrissis, et al, Capability Maturity
Model for Software, Software Engineering Institute,
CMU/SEI-91-TR-24, ADA240603, August 1991.

Paulk93a M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber,
Capability Maturity Model for Software, Version 1.1,
Software Engineering Institute, CMU/SEI-93-TR-24,
February 1993.

Paulk93b M.C. Paulk, C.V. Weber, S. Garcia, M.B. Chrissis, and M.
Bush, Key Practices of the Capability Maturity Model,
Version 1.1, Software Engineering Institute, CMU/SEI-93-
TR-25, February 1993.

Weber91 C.V. Weber, M.C. Paulk, C.J. Wise, and J.V. Withey, Key
Practices of the Capability Maturity Model, Software
Engineering Institute, CMU/SEI-91-TR-25, ADA240604,
August 1991.

Wohlwend93 H. Wohlwend and S. Rosenbaum, "Software Improvements
in an International Company," Proceedings of the 15th
International Conference of Software Engineering,
Washington D.C, May 1993.

The Capability Maturity Model for Software was produced by a dedicated
group of people who spent many hours discussing the model and its features
and then trying to document it in the two versions of the CMM. Contributors to
the CMM, other than the authors, include Edward Averill, Judy Bamberger,
Joe Besselman, Marilyn Bush, Anita Carleton, Marty Carlson, Susan Dart,
Betty Deimel, Lionel Deimel, Peter Feiler, Julia Gale, Suzie Garcia, Jim Hart,
Ron Higuera, Watts Humphrey, Purvis Jackson, Tim Kasse, Richard Kauffold,
David Kitson, Mike Konrad, Peter Malpass, Mark Manduke, Steve Masters,
Mary Merrill, Judah Mogilensky, Warren Moseley, Jim Over, George
Pandelios, Bob Park, Jeff Perdue, Dick Phillips, Mike Rissman, Jim Rozum,
Jane Siegel, Christer von Schantz, Cynthia Wise, and Jim Withey.

We appreciate the administrative help from Todd Bowman, Dorothy
Josephson, Debbie Punjack, Carolyn Tady, Marcia Theoret, Andy Tsounos,
and David White; and the editorial assistance from Suzanne Couturiaux and
Bill Pollak.

25

Special thanks go to the members of the CMM Correspondence Group, who
contributed their time and effort to reviewing drafts of the CMM and providing
insightful comments and recommendations, and to the members of the CMM
Advisory Board, who helped guide us in our efforts. The current members of
the Advisory Board are Constance Ahara, Kelley Butler, Bill Curtis, Conrad
Czaplicki, Raymond Dion, Judah Mogilensky, Martin Owens, Mark Paulk, Sue
Stetak, Charlie Weber, and Ron Willis. Former members who worked with us
on CMM v1.0 include Harry Carl, Jim Hess, Jerry Pixton, and Jim Withey.

This work was sponsored by the U.S. Department of Defense.

For Further Information
For further information regarding the CMM and its associated products,
including training on the CMM and how to perform software process
assessments and software capability evaluations, contact:

SEI Customer Relations
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5800
Internet: customer-relations@sei.cmu.edu

26

