

Conference Paper

Capacitance Measurements System Using RC Circuit

Wisnu Djatmiko

Dept. Vocational of Electronics Engineering, Fac. of Engineering, Universitas Negeri Jakarta

Abstract

This article reports the technique of measuring capacitance using the concept of charging capacitors in the RC-series circuit. The proposed capacitance measuring system is built using 3 sub-systems: (1) Arduino MO board (with 12-bit internal ADC) to control the process of discharging and charging capacitor voltages using the digitalWrite() function; (2) ERM20004FB-2 LCD with *I*2*C*-serial module to display measurement data; and (3) $R_{CHARGE}C_X$ -series circuit (R_{CHARGE} is a carbon-film 89. 7Mohm resistor and C_X is the capacitor to be measured). The charging time of the capacitor voltage from $0V_S$ to $0.5V_S(\Delta t)$ is calculated using the analogRead() and micros() functions. The C_X value is calculated using the equation $C_X = \frac{\Delta t}{(693.1471 \times R)} nF$ and with the value Δt displayed on the LCD module. The capacitance measuring system has been tested to measure capacitance of 14 ceramic-disk capacitors from 1nF to 100nF with an error rate< $\pm 0.7\%$ (compared to LCR-821. The results of the study concluded that the error rate was influenced by changes in the resistance value of R_{CHARGE} .

Keywords: capacitance measurement, RC circuits, Arduino MO application

1. Introduction

Microcontroller systems can be implemented to measure capacitance by using 3 ways: (1) using an RC or LC relaxation oscillator (R and L values are known), measuring the output frequency, and calculating capacitance using resonance frequency equations [1 - 3]; (2) using RC Monostable-MV (R value known), measure T_{ON} pulse width, and calculating capacitance using pulse width equation [4 - 5]; and (3) using a capacitor charging system in RC-series circuit with a stable DC voltage source, measuring the charging time until the capacitor voltage reaches a certain value, and calculating capacitance using the charging equation of the capacitor [6-9]. The accuracy of the capacitance measurement by measuring the charging time can be increased using Arduino M0 which has a 12-bit ADC [10].

Corresponding Author: Wisnu Djatmiko wisnu.dj@unj.ac.id

Received: 11 January 2019 Accepted: 14 February 2019 Published: 25 March 2019

Publishing services provided by Knowledge E

the Creative Commons Attribution License, which

permits unrestricted use and redistribution provided that the original author and source are credited.

Selection and Peer-review under the responsibility of the 3rd ICTVET 2018 Conference Committee.

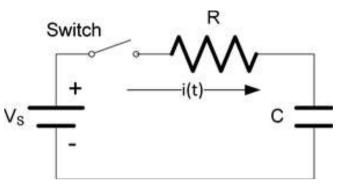


Figure 1: RC circuit with DC voltage source.

2. Methods and Equipment

2.1. Methods

2.1.1. RC charging circuit

The RC charging circuit is realized using a DC voltage source, resistor, and capacitor connected in series as shown in Figure 1 [11]. When the switch is closed, current i(t) flows from the voltage source through resistors and capacitors so that equations (1) to (3).

$$V_S = V_R + V_C \tag{1}$$

$$V_{S} = i(t)R + \frac{1}{c} \int_{t=0}^{t=\infty} i dt$$
 (2)

$$i(t) = \frac{V_S}{R} e^{-\frac{t}{RC}}$$
(3)

The capacitor voltage can be calculated using equation (4). If the values of R, VS, and Δt (the charging time of VC(t) = $0.5V_S$ to V_S) is known, then capacitance can be calculated using equations (5) to (7) [11].

$$V_c(r) = V_s \left(1 - e^{-\frac{t}{RC}} \right) \tag{4}$$

$$e^{-\frac{r}{RC}} = \frac{V_S - V_C(t)}{V_S}$$
(5)

$$-t = RC \ln\left(\frac{V_S - 0, 5V_S}{V_S}\right) \tag{6}$$

$$C_X = \frac{\Delta t}{0,6931471 \times R_{CHG}} Farad \tag{7}$$

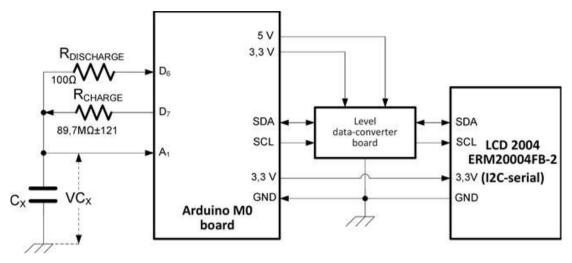


Figure 2: Capacitance measurement system circuit.

2.1.2. Description of the capacitance measurement system

The capacitance measuring system (Figure 2) was built using the concept of charging a capacitor C_X in an RC-series circuit that is controlled by Arduino MO using pinMode() and digitalWrite Before the charging cycle, the C_X voltage is emptied through $R_{DISCHARGE}$ which is connected to the ground through a digital pin 6. C_X charging cycle is done through R_{CHARGE} which is connected to a voltage of 3.3 Volts via digital pin 7. C_X charging time from $0V_S$ to $0.5V_S(\Delta t)$ is calculated using the micros() function and then the capacitance can be calculated (equation 7) and displayed to the ERM20004FB-2 LCD with *I2C*-serial module. The pseudo-code of the Arduino MO-based capacitance measuring system uses the concept of charging capacitors in the RC-series circuit as described below:

- 1. discharging C_X until $VC_X = 0$ Volts,
- 2. charging C_X and save time (t1),
- 3. stop charging when the ADC = $2048(VC_X = 0.5V_S)$,
- 4. save time (t2),
- 5. calculate Δt and C_X using equation 7,
- 6. show C_X and Δt values to LCD, and
- 7. repeat step 1.

KnE Social Sciences

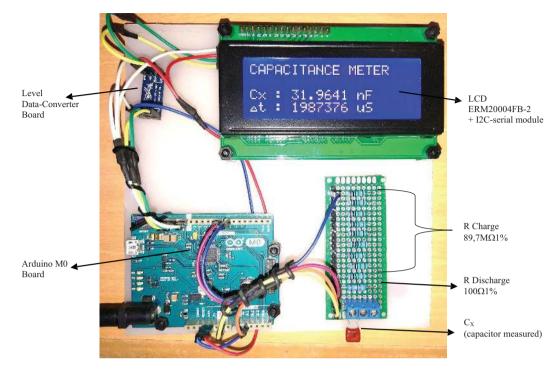


Figure 3: Capacitance measuring system when measuring $C_X(323K \text{ or } 32nF\pm5\%)$.

3. Results

 $R_{\text{DISCHARGFNG}}$ is set at 1000hm1% to get a fast discharge time ($t_{6RC} = 120\mu Sec$) when connected with C_X maximum (100nF) and R_{CHARGING} determined at 89. 7MOhm (9 resistors in series) to get Δt minimum > $50000\mu S$ when connected to C_X minimum (1nF). Level data converter module (3.3Volt to 5Volt) is used to connect SDA and SCL signals from Arduino M0 to 4×20 char LCD boards (with *I2C*-serial module). Capacitor measurement system has been successfully created (Figure 3 , not calibrated, and has been tested to measure the capacitance of 14 ceramis-disks capacitors alternately using GWinstek LCR-821 (5 times each) and the results are shown in Table 1. Sketch of the system is created using Arduino IDE ver. 1.9.0-Beta and written in the following paragraph:

```
1 #include <LiquidCrystal I2C.h>
 2 LiquidCrystal I2C lcd(0x27,20,4);
 3 byte delta[]=
 4 { B00000,B00000,B00000,B00100,B01010, B10001, B11111,B00000 };
 5 unsigned long t1, t2, dt; float R, nanoF;
 6 void setup()
 7 { lcd.begin(); lcd.clear();
 8
     lcd.setCursor(0, 0); lcd.print("CAPACITANCE METER");
 9
     lcd.setCursor(0, 2); lcd.print("Cx : ");
     lcd.createChar(0, delta); lcd.setCursor(0, 3); lcd.write(0);
10
     lcd.setCursor(1, 3); lcd.print("t : ");
11
     pinMode(7, OUTPUT); digitalWrite(7, LOW);
12
13
     pinMode(8, OUTPUT); digitalWrite(8, LOW);
14
    delay(5000);
15
     analogReadResolution(12);
     R = 89.7;
16
17 }
18 void loop()
19 { do { pinMode(8, OUTPUT);
20
          digitalWrite(8, LOW);
21
          delay(2000);
2.2
        } while(analogRead(0) < 1);</pre>
    pinMode(8, INPUT);
23
24
     digitalWrite(7,HIGH);
25
     t1 = micros();
26
     while(analogRead(1) < 2048){}//ADC=2048 equal to 0,5VS</pre>
27
     t2 = micros();
28
     digitalWrite(7,LOW);
29
     dt = t2 - t1;
30
    nanoF = dt/(693.1471*R);
31
     lcd.setCursor(5, 2); lcd.print(nanoF, 4); lcd.print(" nF
                                                                 ");
     lcd.setCursor(5, 3); lcd.print(dt); lcd.print(" uS ");
32
33 }
```

 C_X measurement results (columns 2 and 4 in Table 1) are the average of 5 measurements using LCR- 821 and using capacitance measuring system. The % error (column 8) value is calculated using equation (8).

$$\% error = \frac{C_X \text{system value} - C_X \text{LCR-821}}{C_X \text{LCR-821}} \times 100$$
(8)

4. Discussion

Referring to equation (7), there are 2 variables that affect the measurement results of capacitance: (1) stability of the Δt ; and (2) stability of the R_{CHARGE} . Because Δt is generated from the function of micros() which has a $4\mu S$ resolution [12] so that it is assumed that it does not affect the measurement results, the change in the R_{CHG} value will cause a change in the value of the C_X measurement. If the R_{CHARGE} value rises, then the C_X measurement value will decrease and vice versa. The average

	capasitor (ceramics disk) value	measurement results					
No.		LCR-821		capacitance measuring system			% measurement error
		\mathbf{C}_{X} (nF)	SD	\mathbf{C}_{X} (nF)	SD	$\Delta t(\mu S)$	
1	2	3	4	5	6	7	8
1	102K (10nF 10%)	0,9208	0,0091	0,9271	0,0110	68,732	0,68
2	302M (3nF 20%)	3,1005	0,0143	3,0948	0,0509	219,994	-0,18
3	472K (4n7F 10%)	4.4351	0,0016	4.4334	0,0859	229,528	-0.04
4	103G (10nF 2%)	9,4243	0,0018	9,4108	0,0058	567,639	-0,14
5	103K (10nF 10%)	9,7432	0,0068	9,7289	0,0109	586,508	-0,15
6	153J (15nF 5%)	15,4270	0,0083	15,4217	0,0377	899,649	-0,03
7	223K (22nF 10%)	20.7686	0,0103	20.6276	0,0392	1,266,618	-0.68
8	273K (27nF 10%)	25.9722	0,0181	25.7965	0,0241	1,590,332	-0.68
9	333K (33nF 10%)	31.9410	0,0113	31.9659	0,0796	1,984,776	0.08
10	473J (47nF 5%)	41.9192	0,0274	41.8124	0,1494	2,598,063	-0.25
11	563K (56nF 10%)	52.7006	0,0576	52.6150	0,0948	3,255,986	-0.16
12	633J (63nF 5%)	69.0542	0,1407	68.8577	0,0623	4,272,470	-0.28
13	104K(100nF 10%)	94,3276	0,1942	94,4634	0,1975	5,891,775	0,14
14	104J(100nF 5%)	98.5234	0,0575	98.5654	0,2419	6,128,104	0.04

TABLE 1: Data from measurement of 14 capacitors.

 $R_{\rm CHARGE}$ value is $89.7 M\Omega$ with standard deviation 121 (measured 5 times using LCR-821, so it can be concluded that there is a correlation between the % error value of the measurement of the capacitance measuring system and the instability of the $R_{\rm CHARGE}$ value.

5. Conclusion

An Arduino-based capacitance measuring system uses the technique of calculating the charging time of the capacitor voltage in the RC-series circuit has been successfully made to measure the capacitance of 14 ceramic-disk capacitors with a measurement error rate< $\pm 0.7\%$ (compared to LCR- 821.

Funding

This capacitance measurement system research can be completed with research funds from the Faculty of Engineering, Universitas Negeri Jakarta (based on PPK Decree

Faculty of Engineering, Universitas Negeri Jakarta, number 461.a/SP/2018- May 23, 2018

Acknowledgement

The researchers thanked many colleagues in the Laboratory of Instrument & Control of the Faculty of Engineering, Universitas Negeri Jakarta for their contributions and support for this research. The researcher also thanked all the reviewers who provided valuable input and helped complete this article.

Conflict of Interest

The researcher does not have a conflict of interest related to the completion of this article.

References

- [1] Taufik, M., (2017). Rancang bangun alat ukur kapasitor dan induktor digital, *Jurnal PROtek* ,vol. 04, no. 1, pp. 35-40.
- [2] Yulianto, Y., (2014 . Rancang bangun alat ukur resistansi, induktasi, dan kapasitansi meter digital, Bachelor thesis, Universitas Negeri Yogjakarta.
- [3] Marpaung,P., et al. (2007). Desain dan implementasi LC meter berbasis PC, in Proceedings of the Seminar Nasional Aplikasi Teknologi In ormasi 2007, pp. C109-C112.
- [4] Ramtonio, "Capacitance meter with Arduino and 555 Timer", Internet: www. instructables.com/id/Capacitance-meter-with-arduino-and-555-timer/, 2018 [Maret 30, 2018.
- [5] Ardi, I. (2002 . Digital capacitance meter. Bachelor thesis, STMIK Jakarta STI & K.
- [6] Lie, Y. (2003 . Kapasitor meter dengan metode kurva pengisian. Bachelor thesis, Petra Christian University.
- [7] Hagiwara, N. and Saegusa, T. (1983 . An RC discharge digital capacitance meter. IEEE Transactions on Instrumentation and Measurement , vol.32, issue: 2, pp. 316-321.
- [8] Taha, S. (2010). A novel digital capacitance meter. International Journal of Electronics, vol. 66:2, pp. 317-320.

- [9] Arduino, "Capacitance meter and RC time constants Internet: www.arduino.cc /en/ Tutorial/CapacitanceMeter, 2018 [Maret 30, 2018 .
- [10] Arduino, "Arduino M0 Internet: store.arduino.cc/usa/arduino-mO, 2018 [6 Sept 2018
- [11] Djatmiko, W. (2013 . Teknik Pulsa. Jakarta: Lembaga Pengembangan Pendidikan UNJ, ISBN: 978-602-390-053-4.
- [12] Arduino, "micros (", Internet:www.arduino.cc/reference/en/language/functions/time/ micros/, 2018 [6 Sept 2018.