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Quantum capacitance of electrolyte-gated bilayer graphene 
eld-e�ect transistors is investigated in this paper. Bilayer graphene
has received huge attention due to the fact that an energy gap could be opened by chemical doping or by applying external
perpendicular electric 
eld. So, this extraordinary property can be exploited to use bilayer graphene as a channel in electrolyte-gated

eld-e�ect transistors.	e quantum capacitance of bi-layer graphene with an equivalent circuit is presented, and also based on the
analytical model a numerical solution is reported. We begin by modeling the DOS, followed by carrier concentration as a function� in degenerate and nondegenerate regimes. To further con
rm this viewpoint, the presented analytical model is compared with
experimental data, and acceptable agreement is reported.

1. Introduction

Recently, graphene, an atomic layer of carbon atoms arranged
in a two-dimensional (2D) honeycomb lattice, has drawn re-
searchers’ attention due to its exceptional mechanical and
electrical properties for new semiconductor materials and
devices [1–3]. Bilayer graphene (BLG), the stacking of two-
monolayer graphene, as a newmaterial with outstanding elec-
trical and physical properties holds the great promise to be
used as a conducting channel in FETs [4, 5]. 	e energy dis-
persion relation of conductance and valence bands of each
graphene layer is linearly touching on Dirac points [6]. As
shown in Figure 1, the two layers are arranged in Bernal stack-
ing which its lattice constant within a layer is given by � =0.246 nm and the layer spacing by � = 0.334 nm. BLG is typ-
ically arranged in AA-stacked and AB-stacked arrangements.
A bandgap in BLGs can be created by applying a perpendic-
ular electric 
eld and incorporating the inversion symmetry

breaking between double layers in the atomic structure. Two
di�erent stacking shapes of the BLG (AA, AB) in layers result
from interlayer coupling e�ects in low energy, which shows
a di�erent band structure [7]. 	e study had shown that AA-
stacked BLG is gapless metallic [8], whereas AB-stacked BLG
is semiconductingwith a bandgap, and the bandgap is tunable
in the presence of external electric 
eld perpendicular to the
BLG [9].

Nowadays, electrolyte-gated bilayer graphene 
eld-e�ect
transistors (EGFETs) have caughtmuch attention due to their
advantages such as small size and the possibilities for mass
production. 	eir short and consistent response times are
very favorable to the electronics industry. EGFETs introduced
new features such as the integration of compensation anddata
processing circuits in the same circuit for this type of sensors
[10]. Recently, microelectronic advances have been exploited
and applied to improve EGFETs fabrication. Because of the
electrolyte ionic properties, electrical parts of EGFETs cannot
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Figure 1: Schematic of bilayer graphene, AA- and AB-stacking.

have contact with liquid; only the gate area is open. EGFETs
can be based on many materials as their detectors such as
membrane and graphene [11]. On the other hand, in 2011,
Ye et al. presented a comparative study of high carrier density
transport in ion-gated mono-, bi-, and trilayer graphenes
using electric double-layer transistors [12].

In this paper, EGFET has been employed to study the
electron transport of graphene [13]. As shown in Figure 2, the
bilayer graphene based electrolyte-gated transistor consists of
source and drain (gold), in which anAB stacked of the bilayer
graphene sheet which is employed as a conducting channel
on an oxidized silicon/SiO2 substrate is proposed. 	erefore,
a back gate controlled the current through the graphene. A
photoresist layer as an insulator has been employed which re-
sults in the creation of a small window, which exposes the
electrolyte [14]. 	e interfacial capacitance of the graphene
was measured by the standard three-electrode electrochemi-
cal cell using a potentiostat, which the potential of graphene
is controlled with respect to a reference electrode (a platinum
electrode) [15]. By assuming that the source and substrate ter-
minals are held at ground potential, the channel region has
the characteristics of the resistor in small voltage between the
source and drain (�DS) [16]. It is notable that, by applying
this con
guration, the background capacitance can be mini-
mized, and the graphene edges do not expose to the electro-
lyte. To control the gate voltage precisely, a platinum counter
electrode is included to form the standard three-electrode
electrochemical con
guration.

	e focus of this paper is to model the quantum capacit-
ance of bilayer graphene based EGFET. To address this possi-
bility, two interfacial capacitances which arise from the
double layer formed by ions at the graphene ionic liquid inter-
face and the quantum capacitance of graphene have a strong
in�uence on themeasurement of the total capacitance. To un-
derstand the electrical response of the bilayer graphene
based EGFET device, an electrical equivalent circuit for the
mentioned structure is developed and discussed in Figure 3.

It can be seen in Figure 3 that the equivalent circuit is
composed of an ohmic resistance of a solution (�s) in ser-
ies with the double-layer capacitance and the quantum

capacitance of bilayer graphene. In order to present the acc-
umulation of a layer of counterions on a charged electrode,�double layer is de
ned [17]. 	e capacitance versus potential
of a double-layer graphene device was measured in ionic
liquid in 1-butyl-3-methylimidazolium hexa�uorophosphate
(BMIMPF6) which can be expressed as �double layer = �0�/�
where �0 = 8.85 × 10−12 Fm−1 is the dielectric constant of the
ionic liquid and it is the radius of the counterions [18]. For
BMIM-PF6 ionic liquid, � ≈ 7 and � ≈ 0.3 nm, which leads
to double-layer capacitance of ≈ 21 
Fcm−2 [16]. It could be
stated that the quantum capacitance of the bilayer graphene
based electrolyte-gated FETs can bemodeled, holding the fact
that the smaller of the two capacitances dominates the total
capacitance [19]. On one hand, the double-layer capacitance
can be neglected compared to the predicted quantum capac-
itance of bilayer graphene, while, on the other hand, the
double-layer capacitance is not strongly dependent on the
potential, making it straightforward to determine the quan-
tum capacitance of bilayer graphene. In 2009, the quantum
capacitance of bilayer graphene in an ionic liquid electrolyte
wasmeasured byXia et al. [18]. He found out that in hismeas-
urements Debye ionic screening length of the ionic liquid is
virtually zero which makes the quantum capacitance a domi-
nant source of the measured capacitance. 	e aim of this
study is to evaluate the quantum capacitance of bilayer gra-
phene sheet as a function of voltage and validate theoretical
predictions with the experimental results [18].

2. Proposed Model

An important quantity in the design of nanoscale devices is
the quantum capacitance. To model a theoretical prediction
of quantum capacitance for ideal bilayer graphene based elec-
trolyte-gated FETs, the expression for quantum capacitance is
used [20] as follows:

� = ����, (1)

where �� = . �� is the charge measured in coulombs, 
is the charge of the electron, � is the BLG’s intrinsic carrier



Journal of Nanomaterials 3

Bilayer grapheneCE

Source-drain electrodes

(Au)

VsdVref

Au

SiO2

Si

RE

Ionic liquid electrolyte

Insulation 
    layer

+

−

Figure 2: Schematics of the proposed structure and the electrical circuit of the bilayer graphene based EGFET.
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Figure 3: Equivalent circuit of bilayer graphene based electrolyte-
gated 
eld-e�ect transistor.

concentration, and �� = ��/ is the voltage applied to the
devices, where� is energy. By the substitution of the quantum
capacitance model, (2) can be expressed as

� = 2 ���� . (2)

According to (2), the carrier concentration and the energy
dispersion of BLG is necessary to be calculated for model-
ing the quantum capacitance. Understanding the electronic
structure of bilayer graphene starts with looking at its band
structure. It has been shown that the bandgap of BGNs can
be varied by means of an external perpendicular electric 
eld
and induced signi
cant bandgap between the valence and
conduction bands from a zero-gap semiconductor to an insu-
lator [21–24]. 	e energy band structure of AB which is
stacking biased BGN using tight-binding method has been
studied in [25]. Equation (3) illustrates energy (�) and biased

voltage (�) relationship of BGN. 	e energy dispersion of
BLG is expressed as

� (�) = �1 + �22
± √�2� + �

2

4 + �2⊥2 ± 12√4 (�2 + �2⊥) �2� + �4⊥,
(3)

where �2� = (V4/(4 + V2�2⊥/2))/(V2 + �2⊥) is electron’s dispersion
in monolayer graphene [26], �⊥ = 0.35 eV is an interlayer
hopping energy [6],�1 and�2 are the potential energy of 
rst
and second layers, respectively, and � is the potential energy
di�erence between 
rst and second layers (� = �1 − �2). By
using the energy dispersion of BLG, density of state (DOS) as
a fundamental parameter of BLG indicates available energy
states that can be de
ned as

DOS = ( ℎ2�∗
(� − ��)� 2�)

−1

, (4)

where ℎ is the reduced Plank’s constant and �∗ is the
e�ective mass of electron in the BLG. �� is de
ned as �� =
(�/2��ℎ)√(�2 + 2�2⊥)/(�2 + �2⊥) where �� = (√2/3) at ℎ ≈
1 × 106m ⋅ s−1 is the Fermi Velocity. � is de
ned as � =
±[2�∗(� − ��)/ℎ2]1/2+�� where �� = ��/2+(�1+�2)/2 and�� is the energy gap. DOS indicates available energy states. It
is notable that electrical property of materials from metallic
to semiconducting is changing by the gradient of DOS near
the Dirac point. In the next step, the carrier concentration of
BGL is given by

� = ∫DOS ⋅  (�) ��, (5)

where  (�) = 1/(1 + (�−��)/��	) is the Fermi-Dirac distribu-
tion function which gives the probability of occupation of a
state at any energy level. In this function,�
 is the Fermi level,�� is Boltzmann’s Constant, and ! is the temperature. Using
DOS calculated from (4), the carrier concentration reads

� = �∗ℎ22� ∫
+∞

0

�� 1
1 + (�−��)/��	��, (6)

where �=(� − �g). As depicted in Figure 4, the carrier con-
centration is plotted for di�erent values of �.
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Figure 4: Carrier concentration versus energy (�).
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Figure 5: 	e quantum capacitance of bilayer graphene based
electrolyte-gated FETs.

It is apparently seen that the calculated carrier concen-
tration model points out the strong dependence of voltage
showing that the voltage increment e�ect will in�uence the
carrier concentration. Substituting the carrier concentration
in (2), the quantum capacitance of BLG is expressed as

� = "2�∗ℎ22� �� 1
1 + (�−��)/��	 . (7)

Equation (7) provides a quantitative description of the quan-
tum capacitance of bilayer graphene in terms of Fermi veloc-
ity [27], carrier density, temperature, and fundamental physi-
cal quantities. According to the relation between energy band
structure and the graphene potential, the quantum capac-
itance-voltage characteristic of bilayer graphene is depicted
as shown in Figure 5.

	e overall quantum capacitance versus gate potential for
the bilayer graphene is similar to that of a single layer gra-
phene. To get a greater insight into the quantum capacitance
of bilayer graphene based electrolyte-gated FETs devices, sev-
eral outstanding features of the �-� characteristics are em-
barked. First of all, the quantum capacitance possesses amin-
imum value at the Dirac point which is close to zero. On the
other hand, the linear increase of the capacitance with a volt-
age which is symmetric with respect to the Dirac point can
be considered as the other perceptible feature of the quantum
capacitance model. In order to validate the proposed model,
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Figure 6: Comparison between bilayer graphene quantum capaci-
tance model with experimental extracted data.

the comparison between the quantum capacitance model of
bilayer graphene based electrolyte-gated FETs with extracted
experiment data is done as illustrated in Figure 6 [18].

It is noteworthy that the theoretical slope is greater than
the measured slope for bilayer graphene. A possible explana-
tion for thismight be that the suggestedmodel is based on the
pure and ideal bilayer graphene in which, in reality, various
impurities and defects exist. It seems possible that these re-
sults are due to the fact that the impurities can drastically
lower the slope for bilayer graphene. However, unlike single
layer graphene, a theory for treating impurities in bilayer gra-
phene has not yet been developed [18].	ese 
ndings further
support the idea of the e�ects of impurities on both the 
rst
and second layers, which requires a self-consistent theory to
include the screening of the impurity 
eld by the carriers in
both layers. 	is is further complicated by the possibility of
impurities intercalated between the two layers. Further exper-
imental studies should be done to investigate the quantitative
understanding of bilayer graphene. It is apparently seen that
there is a favorable agreement between the proposed model
of bilayer graphene based electrolyte-gated FETs and experi-
mental results. It can be concluded that the presented model
can be applied as a powerful tool to optimize the bilayer gra-
phene based electrolyte-gated FETs performance.

3. Conclusion

BLGs can be employed in digital electronics because their
bandgap can be varied bymeans of an external perpendicular
electric 
eld and can induce a signi
cant bandgap between
the valence and conduction bands turning it from a zero-gap
semiconductor to an insulator. Carriermobility values as high

as 200,000 cm2 (Vs)−1 (200 times higher than in silicon) can
be achieved by graphene, which are increased by increasing
carrier density [22]. According to the graphene structure, it
can satisfy our major requirement of a channel in electrolyte-
gated FETs due to its large surface-to-volume ratio, high
conductivity, high mobility, and strong mechanical and elas-
ticity properties. 	e aim of this paper was to model the
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quantum capacitance of bilayer graphene based electrolyte-
gated FETs with an equivalent circuit of the proposed device.
For purposes of veri
cation, a comparison study between the
model and experimental data was done and notable agree-
ment is reported which shows that bilayer graphene based
electrolyte-gated FETs model can be used to predict bilayer
graphene behavior in graphene based devices.
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