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Capacitary Inequalities of the Brunn-Minkowski Type 
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1. Introduction 

The main purpose of this paper is to show how so-called :a :-concave capacities 
may be built up from Newton capacity c, in lR"(n > 3) in much the same way as :~ :- 
concave measures from Lebesgue measure m n in lR"(n > 1). 

Throughout,  O, f2 o . . . .  stand for non-empty, open, and convex subsets of IR" 
and J%,~(O) denotes the class of all convex bodies contained in f2. 

Recall that a positive Radon measure # in f2 is said to be :~ :-concave if 
- ~ < a < + ~  and 

#(2A + (1 - 2)B) => (2#'(A) + (1 - 2)#'(B)) TM 

all A, BeYt'(12), 0 < 2 < 1, 
(1.1) 

[2, 3, 6]. In a similar way a capacity # in f2 will be called :~ :-concave if(1.1) is true. 
Below, for any positive function f, we introduce the short-hand notation f , , ,  = 

_ f - l ~ , ,  a = _  ~ ;  =(sgn~)ff / t l - , . ) ,  ~4:0, - o o  < a <  I/n; =ln f ,  co=0; and = an 
arbitrary positive constant for ~ =  l/n, respectively. Using this convention, a 
positive Radon measure # in f2 with s u p p # = f 2  is :~:-concave precisely when 
a< 1/n,#,Cm n, and a suitable version of the function (d#/dm,),,,, is concave. In a 
similar way, given a Borel function f :  f2~]0 ,  + ~ [ ,  the capacity fc ,  is :~ :-concave 
as soon as the function f , , . - 2  is concave (Theorem 3.1). However, as is readily 
seen, this construction does not exhaust the class of all :a :-concave capacities 
in 12. 

To establish the crucical estimate 

c'./~"- ~'(A + n) >= c'./~"- %4) + c'./r 2~(B), A, nzx(~.") (1.2) 

it is natural to compare the equilibrium potentials in IR" of the underlying convex 
bodies. In what follows, suppose 12,Q 0 . . . .  e3V(IR") if n-<2 and let U~A=P. 
[Brownian motion hits A before fY=R"\S2] be the equilibrium potential of 
Ae X'(O) relative to O. Then, if Aie X'(OiL i=0 ,  1, we use an id6a of Gabriel [7, 8] 
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to prove that 

u~l-~)~~ > ua~~ ~ 0 < 2 < 1  (1.3) (1--).)Ao+ 3,AI = UAI' 

(Theorem 2.1), which immediately implies (1.2). 
Interestingly enough, the inequality (1.3) also enlarges the previously known 

collection of xt:-concave measures, a fact we express as a simple convexity 
property of the Poisson kernel in a convex polyhedron (Corollary 2.1). 

2. A Brunn-Minkowski Version of the Gabriel-Lewis Inequality 

Theorem2.1. Let xlelR n, Aie~r(Qi), i=0,1,  and set ~x=(1-~,)~o+2~p 
~=x,A,[2, 0 < 2 <  1. Then 

The special case Ao=Al,~2o=(21 is due to Gabriel [7, 8] and Lewis [9]. A 
parabolic extension of the Gabriel-Lewis inequality has recently been settled by 
the author [5]. Note that Theorem 2.1 may be interpreted as a Brunn-Minkowski 
inequality of Brownian motion (for other estimates of this type see [6, 4], and a 
forthcoming paper by Antoine Ehrhard, Strasbourg). 

The proof of Theorem 2.1 given below does not contain any new ingredients. 
Nevertheless, for the sake of completeness we will provide all details in what 
follows. 

Lemma 2.1. For any AeX(g2), Vu~=O in Q\A. 

Proof (assuming 0~ A). If 0 < ~ < 1, then by the maximum principle u~(~(-)) >_ u~ 
and it follows that the non-zero harmonic map x. Vu~(x), x~2\A, must be 
negative. 

Proof of Theorem 2.1 [assuming (2o, g21~(lR")].  Let, for brevity, u~ = UA,t~* ~4, 
0 < 2 < 1 .  

In what follows, suppose 0 < 2 < 1 is fixed and set 

u*(x)=sup{uo(Xo)^Ul(Xa);x=(1-2)Xo+2XpXieOi, i=O, 1}, xe(2z. 

We shall prove the inequality u* <u  a. To this end, we show that the statement 
(u* 6 ua) leads to a contradiction. 

In fact, suppose there exists an (e, 2)el0,  1 [ x 0 k such that sup(u* - u [ ) =  u~(2) 
-u](2) is strictly positive. Of course, 2e [2~\A~ because u~lo~ ~ = 0 and ualA~ = 1. Let 
2 = ( 1 - 2 ) s  p where t h e  Xie~i and u~(2)=Uo(2o)^ul(s Certainly, 
(Xo, Xl)e(Oo x g21)\(A o x A1). Also, it is easy to see that the relation 2or fqeA 1 
is contradictory. Indeed, s +oo[) due to harmonicity and if 
Xo~ u o l(]uo(2o), + ob D is sufficently close to 2 o, then u1((2- (1 - 2)Xo)/~ ) > u*(s 
forcing u*(2)>u~(2), which cannot hold. Thus, by symmetry, (20,2 0 
6 ((2o\Ao) x ((21\A 0. 

Now suppose helP," and h. gu~(2i)>0 ( i=0  or 1). Then, if s > 0  is sufficiently 
small, ui(2 ~ + sh) > ui(Sci) and, hence, u~(5c + s2ih) > u*(2), where 2 i = (2 i -  1)2 + 1 - i, 
so that u~(5r + s2ih ) > u](ir Accordingly, h. [Tua(s and it follows that the non- 
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zero vectors 17ui(~ ) and Vui(Ycl) are parallel. In the following, let a=lVu~(~)l, ai 
= I Vui(~i)l, and v = Vu~(ic)/a, respectively. 

F r o m  now on we assume that  u*(~)=Uo(~o). The  case u~'(~)=u102i) m a y  be 
t reated in a quite similar way. 

Let hG]R n be such that  the scalar •=h.v+-O. For  each real s close to 0 there 
exists a unique r = r(s), with Irl minimal ,  satisfying the equat ion  

Uo(YC o + sh/a o ) -  Uo(~o) --- ul(~ i + rh/a i ) -  ul(~l) .  

Wri t ing ~(s) = (1 - 2) (Xo + sh/ao) + 2(xl + r(s)h/al) = ;c + ((1 - 2)s/a o + 2r(s)/al)h we 
now have  

Uo(~ o + sh/ao) - u~(~(s)) < u*(Yc(s)) - u~(~(s)) < Uo(YCo)- u~(Yc). 

In part icular,  

DZ(uo(YCo + sh/ao) - u~(x(s)))ls = o < 0. (2.1) 

To  analyse (2.1) we introduce the following Tay lo r  expansions  

ui(Sci+sh/ai)=ui(~ci)+tcs+bls2+o(s2) as s---~0 ( i = 0 . 1 )  

and get 

r ( s ) = s + x - l ( b o - b l ) s 2 + o ( s  2) as s ~ 0 .  

Moreover ,  setting p = (1 - 2)/a 0 + 2/a~ and 

u~(fc+sh)=u~z(fc)+tcas+Bs2 +o(s  2) as s ~ O ,  

respectively, a s t ra ightforward calculation yields 

u~(~(s)) = u~(Yc) + ~caps + [p2B d- 2(a/a 1) (b o - bl)]s z + O(S 2) as s ~ 0 .  

Thus  f rom (2.1), ~.(bo, b i ) - P 2 B < O  for a suitable vector  r  z, which does not  
depend on h. But then, for any  h~IR", 

1 2 1 2 - 2 2 ~ _ 

~" (~o AUo(SCo), ~ Aui(Scl)) - p2 Au~(Sc) < 0  , 

or, stated otherwise, I Vua(~)l = 0. F r o m  this contradic t ion we conclude that  u* < ua 
and the p roof  of  Theo r em 2.1 is completed.  

Corol lary 2.1. Assume (2 is a convex polyhedron in IR" and denote by F any ( n -  1)- 
a be the harmonic measure at xGf2 relative to t2. Then dimensional facet  o f  (2. Let  x x 

an appropriate version of  the restricted Poisson kernel 

f2 x r i ( ~ c ~ F ) ~ ] 0 ,  + ~ [ ,  (x, z),'-~[ dx~/dtrrit~nv)] (z) 

raised to the power - 1 / (n -  1) is convex. 
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Here ri denotes the relative interior operator. 
The special case ~ = {x. > 0} (n > 2) with 

d~(z)= r(n/2) x. 
[ix~zN,dz, x . > 0 ,  z , = 0 ,  l~n/ 2 

shows that, generally, there does not exist any greater real number than - 1/(n-  1) 
possessing the property stated in Corollary 2.1. 

Proof Let A, B c= r i (~nF)  be arbitrary compact and convex sets. Then, by applying 
Theorem 2.1, we conclude that 

{ x~, + (a - ~)r(2A + (1 - 2)B) > x~(A) A xy~ 

all x, yeO, 0 < 2 < 1  

which is just another way to state what we want to prove [3, Theorems 3.2, 
and 3.1]. []  

3. :a :-Concave Capacities Induced by Newton Capacity 

Recall that if p is a capacity in ~ [11, p. 7.30] and f:~--*[0,  +0o]  is a Borel 
function, then, by definition, 

( f#)(A)= Sfd#= ~ I~(An{f>s})ds,  Ae~(O) .  
A 0 

Theorem 3.1. Let n > 3 and - ~ < ~ < 1/(n-  2). Moreover, assume f :  ~410 ,  + ~ [ 
is such that f , , ,_ 2 is concave. Then the capacity fc,  is :~:-concave. 

Proof We first consider the special case ~ = 1/(n-  2). 

Following the convention that c,(B(O;r))= r" 2, 

c,(A)= lim lim [XI"-2UBA(O;')(X), AeJt~(~ ") 
Ixl~ + ~ r ~ + a o  

and, hence, for any fixed A, Be ~r 

c . (2A+(1-2)B)>c , (A)^c , (B) ,  0 < 2 < 1 ,  

in view of Theorem 2.1. In particular, 

c,(2A/c~/t"-Z)(A)+(1-2)B/cX,/("-2~(B))>=l, 0 < 2 < 1 ,  

and (1.2) follows by choosing 2 as the solution of the equation 

,Vc~./~"- ~ ( A )  = (1 - ,~)Id./("- ~)(B). 
Next suppose 0 < �9 < 1/(n-  2) and set lift = ~/(1 - a ( n -  2)). Given A, Be ;~"(IR") and 
0 < 2 <  1, we shall prove that 

c.((2A + (1 - 2)B)c~ ( f  > sP})s a- lds 
0 

[(i (i )T > ,l c.(Ar~{f>sP})sP-~ds + ( 1 - 2 )  c.(Br~{f>s~})sP-~ds , 
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which, however, is an immediate consequence of (1.2) and a standard inequality 
from the theory of :ct:-concave measures [-3, Theorem 3.1 or 6, Theorem 5.1]. 

Finally, the case - oe _<e<0 may be treated in a similar way and we omit the 
details here. 

This completes the proof of Theorem 3.1. []  

4. Some Simple Examples 

Example 4.1. The Newtonian capacity of a rectangular box in ~3 is a concave 
function of the edge lengths. []  

Example 4.2. If a body AeJ~((lR 3) carries the total charge p>0 ,  then the 
electrostatic energy E(A, p) equals p2/c3(A ). Hence, for all A, Be ~(IR 3) and p, q > 0, 

E(A + B, p + q) < E(A, p) + E(B, q) 

by the H/Alder inequality. []  

Example 4.3. Consider an A e ~(IR 2) and suppose 9 = (0, 0, 1) and e > 0. Following 

the convention that IR z =lR2x {0} =CIR 3, the sets A_+ 29 define a plate condenser 

A(e) = A -  ~ 9 w A + ~ g possessing the capacity c(A, e) equal to the total mass 

g 
of the equilibrium measure # of A + ~ 9 relative to the half space {x 3 > 0}. Thus, 

using probabilistic normalizations (Port and Stone [10]), it follows that 

1 ( 1 1 
uan+2~ I x - y + 2  I ]dp(y) '  Y30 ] 

where the integrand equals 

o 1 
21x_yf3 + ~ 

uniformly in ye  A + 2 g as Ixl--* + oo subject to the restriction x 3 = e/2. By applying 

Theorem 2.1 we now have for all A, B e ~ ( I R  3) and e , 6 > 0 , 0 < 2 < 1 ,  

(2e + (1 -- 2)6)2c(2A + (1 - 2)B, 2e + (1 - 2)6) 

_-> [~2c(A, ~)] ^ E62c(B, 6)]. 

Finally, noting that c(- , . )  is positive homogenous of degree one, we get 

(e q- 6)2/3cl/3(A -1- B, e + 6) ~ e2/3cl/3(A, e) -t- 62/3cl/a(B, 6). [] 

Example 4.4. Let t 2 e ~ ( ~ " ) ( n > 3 )  be bounded and suppose f : O ~ ] 0 ,  + ~ [  is 
concave. Then 

II/ll~ 
S f ' dc ,  =p ~ s p - t c . ( f  >-_ s)ds, 

o 
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where  the  func t i on  c~/~'- 2)(f > s), 0 < s < Ilfll | is dec r ea s ing  a n d  concave .  W e  m a y  
n o w  a p p l y  k n o w n  e l e m e n t a r y  in teg ra l  i nequa l i t i e s  [1, L e m m a  3.1] to  d e d u c e  

tha t  t he  func t ion  

1 
is concave .  F u r t h e r m o r e ,  the  func t i on  

n P fVdc,/c,(g2) , p > O, 

decreases .  [ ]  

Example 4.5. S u p p o s e  # is an  :~ : - c o n c a v e  c a p a c i t y  in IR" and,  in add i t ion ,  suppose  
# is symmet r i c ,  t ha t  is, # ( A ) =  # ( - A ) ,  A e ~(~,").  Then ,  for  all bar re l s  A, B __c IR" and  

eve ry  x e ~ , "  a n d  0 >  1, 

/~(a n ( B  + x)) > #(an(B + Ox)). 

Indeed ,  # is i nc rea s ing  a n d  the  c l a im  a b o v e  fo l lows  at  once  f r o m  the  set r e l a t ion  

0 + 1  0 - 1  
A n ( B +  x ) ~ = - - ~ - ( A ~ ( B + O x ) ) + - ~ ( A n ( B - O x ) ) .  [] 
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