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Abstract

We consider the polyhedral approach to solving the capacitated facility location prob-
lem. The valid inequalities considered are the knapsack, 
ow cover, e�ective capacity, single
depot, and combinatorial inequalities. The 
ow cover, e�ective capacity, and single depot
inequalities form subfamilies of the general family of submodular inequalities.

The separation problem based on the family of submodular inequalities is NP-hard in
general. For the well-known subclass of 
ow cover inequalities, however, we show that if the
client set is �xed, and if all capacities are equal, then the separation problem can be solved
in polynomial time.

For the 
ow cover inequalities based on an arbitrary client set, and for the e�ective
capacity and single depot inequalities we develop separation heuristics. An important part
of all these heuristic is based on constructive proofs that two speci�c conditions are necessary
for the e�ective capacity inequalities to be facet de�ning. The proofs show precisely how
structures that violate the two conditions can be modi�ed to produce stronger inequalities.

The family of combinatorial inequalities was originally developed for the uncapacitated
facility location problem, but is also valid for the capacitated problem. No computational
experience using the combinatorial inequalities has been reported so far. Here we suggest
how partial output from the heuristic identifying violated submodular inequalities can be
used as input to a heuristic identifying violated combinatorial inequalities.

We report on computational results from solving 60 small and medium size problems.

Key words: Cutting planes; Facets; Location problems.



We study the cutting plane approach to solving the capacitated facility location (CFL) problem.
The polyhedral structure of CFL has been studied by Aardal (1992) and Aardal, Pochet and
Wolsey (1993), by Leung and Magnanti (1989) for the equal capacity case, and by Deng and
Simchi-Levi (1993) for the case of equal capacities and unsplit demands. Cornu�ejols, Sridha-
ran and Thizy (1991) compared the strength of various Lagrangean relaxations of CFL, and
relaxations obtained by completely dropping di�erent sets of the de�ning constraints. They also
did an extensive computational study using these relaxations and several heuristics proposed in
the literature. Very little experience, however, in using strong valid inequalities to solving CFL
has been reported on so far, except for some preliminary work by Aardal (1992). For related
capacitated network design problems encouraging computational results are obtained by e.g.
Bienstock and G�unl�uk (1994), and Magnanti, Mirchandani and Vachani (1995).

In Section 1 we �rst introduce necessary notation, and a formulation of CFL that is non-
standard as it contains redundant aggregate variables and constraints. The purpose of adding
aggregate information is to provide the building blocks for two relaxations of CFL. Facet de�ning
inequalities for these relaxations are well-known, and will be generated automatically, given our
formulation, by the mixed-integer optimizer used in the computational study.

In Section 2 we describe the family of submodular inequalities for CFL as introduced by
Aardal et al., and state conditions for special cases of the submodular inequalities, namely

ow cover, e�ective capacity, and single depot inequalities, to be facet de�ning. Here we also
give proofs that two conditions are necessary for the e�ective capacity inequalities to be facet
de�ning. The proofs, di�erent from the proof in Aardal et al., are constructive and provides
precise ways of strengthening inequalities that violate the speci�c necessary conditions. The
family of combinatorial inequalities, developed by Cornu�ejols and Thizy (1922), and Cho et al.
(1983a) for the uncapacitated facility location problem, are described brie
y in Section 3.

In Section 4 we �rst show that the separation problem based on the 
ow cover inequalities
for a �xed client set can be solved in polynomial time if all capacities are equal. Next we suggest
a general heuristic for �nding appropriate subsets of depots and clients, which are then used as
input to specialized heuristics for �nding violated 
ow cover, e�ective capacity and single depot
inequalities. An important part of the heuristics for identifying violated e�ective capacity and
single depot inequalities builds on the proofs of the necessary conditions presented in Section
2. We also suggest how the subsets generated by the general heuristic can be used to identify
violated combinatorial inequalities.

The separation heuristics developed in Section 4 have been implemented as subroutines
of MINTO (Savelsbergh et al. (1994)) and are used, together with the system constraints of
MINTO, to solve CFL. In Section 5 we report on computational experience from solving 60
small and medium size test problems. The computational results indicate that the knapsack
cover inequalities, which are automatically generated by MINTO from our formulation of CFL,
are the single most important ones as they close a substantial part of the duality gap for many
instances. In most cases, however, more problem speci�c inequalities are needed in order to
further close the gap.

The heuristics we propose seem e�ective in generating violated e�ective capacity and single
depot inequalities, and we are able to solve seven problems to optimality at the root node of
the branch-and-bound tree, by generating these inequalities in addition to the MINTO system
inequalities. For twenty-one of the problems the percentage time reduction was more than 75%,
compared to the time needed if we solved the problems by pure branch-and-bound.
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1 Problem Formulation

LetM = f1; : : : ; mg be the set of facilities (depots) and N = f1; : : : ; ng the set of clients. Client
k has demand dk and the capacity of depot j is mj . The total demand of the clients in the
subset S � N is denoted by d(S). The �xed cost of opening facility j is fj and the per unit cost
of 
ow between depot j and client k is cjk .

Let yj = 1 if depot j is open and yj = 0 otherwise. The 
ow from depot j to client k on the
arc (j; k) is denoted by vjk. The total 
ow from depot j to all clients is denoted by vj . We want
to determine which depots should be opened and how the 
ow should be distributed in order to
satisfy all clients demand, as well as the capacity restrictions, at minimum cost. Consider the
following formulation of CFL:

minf
X

j2M

X

k2N

cjkvjk +
X

j2M

fjyj : (v; y) 2 XCFLg

where

XCFL = f(v; y) 2 IRm�n � ZZm :
X

j2M

vjk = dk; k 2 N; (1)

vj =
P

k2N vjk ; j 2M; (2)

vj � mjyj ; j 2M; (3)

0 � vjk � dkyj ; j 2M; k 2 N; (4)
X

j2M

vj = d(N); (5)

yj � 1; j 2Mg: (6)

The standard formulation of CFL does not include the aggregate constraints (2) and (5), and
has capacity constraints

P
k2N vjk � mjyj ; j 2 M instead of constraints (3). The reason why

we include the aggregate information is that by combining appropriate aggregate constraints
with constraints (6), we obtain the surrogate knapsack polytope XK, and the single-node 
ow
polytope XSNF ,

XK = fy 2 ZZm+ :
X

j2M

mjyj � d(N); yj � 1; j 2Mg; (7)

XSNF = f(v; y) 2 IRm
+ � ZZm+ :

X

j2M

vj = d(N); vj � mjyj ; yj � 1; j 2Mg: (8)

The knapsack cover inequalities and 
ow cover inequalities, developed for XK and XSNF

respectively, see Wolsey (1975) and Padberg et al. (1985), are shown to be facet de�ning for
conv(XCFL) by Aardal (1992). Separation heuristics based on these families of inequalities are
incorporated in the system routines of the mixed-integer optimizer MINTO, and can therefore be
applied directly to formulation (1){(6). Hence, formulation (1){(6) is useful for computational
purposes, even though it contains redundant information.

2 The Submodular Inequalities and Important Special Cases

Submodular inequalities were �rst introduced by Wolsey (1989) for general �xed-charge network

ow problems, and adapted to CFL by Aardal (1992), and Aardal et al. (1993). Choose a subset
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K � N of clients, and let J � M be a subset of depots. For each depot j 2 J choose a subset
Kj � K. Once the sets K; J and Kj for j 2 J are known, we can de�ne the e�ective capacity
of depot j as �mj = min(mj ; d(Kj)).

De�nition 1 A set function f de�ned on N = f1; :::; ng is submodular on N if

f(A) + f(B) � f(A [B) + f(A \ B)

for all A;B � N .

Proposition 1 (Aardal et al. (1993).) The function

f(J) = maxf
X

j2J

X

k2Kj

vjk : (9)

X

k2Kj

vjk � �mjyj ; j 2 J;

X

fj2J:Kj3kg

vjk � dk; k 2 K;

vjk � 0; j 2 J; k 2 K;

yj = 1; j 2 J; g

is submodular on M.

The value of f(J) is the maximum 
ow from the depots in J to the clients in K given the
arc set f(j; k) : j 2 J; k 2 Kjg. The di�erence in maximum 
ow when all depots are open,
and when all depots except depot j are open, is called the increment function and is de�ned as
�j(J n fjg) = f(J)� f(J n fjg).

Proposition 2 (Aardal et al. (1993).) Let K � N , J �M; and choose for each j 2 J a subset
Kj � K. The submodular inequality

X

j2J

X

k2Kj

vjk +
X

j2J

�j(J n fjg)(1� yj) � f(J) (10)

is valid for conv (XCFL).

De�nition 2 J �M is a cover with respect to N if
P

j2J �mj = d(N) + � with � > 0:

For the submodular inequalities to be valid we do not require the set J to be a cover. In all
special cases that are studied here, we assume, however, that J is a cover.

The �rst special case we shall consider is the well-known family of 
ow cover inequalities
developed by Padberg et al. (1985) for XSNF . Let (x)+ = max(0; x) and let, for a given set
K � N , v0j =

P
k2K vjk; j 2M .

Lemma 3 Let K � N . If J is a cover with respect to K, and if Kj = K for all j 2 J, then
f(J) = d(K) and �j(J n fjg) = (mj � �)+, where � =

P
j2J mj � d(K) > 0.
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In the 
ow cover case, the submodular inequalities (10) take the following form:

X

j2J

v0j +
X

j2J

(mj � �)+(1� yj) � d(K): (11)

Given our formulation of CFL, MINTO will automatically recognize the single-node 
ow struc-
ture (8) and generate 
ow cover inequalities (11) for K = N .

In the general case, where Kj � K for at least one j 2 J , there exists no closed-form
expression for �j(J n fjg), which makes it di�cult to characterize facet de�ning submodular
inequalities. By using maximum 
ow arguments, it is straightforward to show that �j(J nfjg) �
( �mj � �)+ for all j 2 J . Aardal et al. (1993) completely characterized the subclass of facet
de�ning submodular inequalities having �j(J nfjg) = ( �mj��)+; which are referred to as e�ective
capacity inequalities, and two subclasses of submodular facets with �j(J n fjg) > ( �mj � �)+ for
at least one j 2 J; called single depot and multi depot inequalities. We begin by describing the
e�ective capacity inequalities.

Theorem 4 (Aardal et al. (1993).) Let J � M be a cover with respect to K, and let Q � J

be the subset of depots for which �mq < mq. Assume that
P

j2M mj > d(N) +mr for all r 2 J.
The e�ective capacity inequality

X

j2J

X

k2Kj

vjk + ( �mj � �)+(1� yj) � d(K) (12)

de�nes a facet of conv(XCFL) if and only if

(1) for each pair of depots q1; q2 2 Q; Kq1 \Kq2 = ;;
(2) Kj = K for all j 2 J nQ;
(3) ([q2QKq) � K;
(4) �mq > � for all q 2 Q;

(5) if jQj � 1, then 9 j 2 J with �mj = mj > �:

Remark: If Q = ; in Theorem 4, we obtain the facet de�ning 
ow cover inequalities (11).

From the point of view of separation, it is natural to ask what to do in case we generate a
structure that violates one or more of conditions (1)-(5) of Theorem 4. Below we give proofs,
di�erent from the proofs by Aardal et al., that Conditions (1) and (4) are necessary for the
e�ective capacity inequalities (12) to be facet de�ning, by showing that an inequality that
violates any of these conditions can be strengthened. The way the proof is designed gives direct
indications on how the strengthening can be done algorithmically. The strengthening procedure
forms an important part of the separation heuristics presented in Section 4.2. To make the �rst
proof more clear, we give an example of how we can tighten an inequality when Condition (1)
is violated, i.e., when Kq1 \Kq2 6= ; for q1; q2 2 Q.

Example 1 Consider the the CFL structure shown in Figure 1. Let K = f1; 2; 3; 4g, and let
J = f1; 2; 3g. Let furthermore K1 = f1; 2g; K2 = f2; 3g, and K3 = K. Since �mj < mj for
j = 1; 2 we have Q = f1; 2g. Note that K1 \K2 = f2g. The set J de�nes a cover with respect
to K, and � = 5. The e�ective capacity inequality given this structure is

v11 + v12 + v22 + v23 + v31 + v32 + v33 + v34 + 4(1� y1) + 6(1� y2) + 4(1� y3) � 24: (13)
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Figure 1: An example of how to strengthen an e�ective capacity inequality if Kq1 \Kq1 6= ;.

If client 2 is removed from K we get a new client set K0 = f1; 3; 4g, and K0
1 = f1g; K 0

2 = f3g,
and K0

3 = K0. The new excess �0 = 1. The e�ective capacity inequality based on sets J; K0,
and K0

j for all j 2 J is

v11 + v23 + v31 + v33 + v34 + 4(1� y1) + 6(1� y2) + 8(1� y3) � 20: (14)

Adding inequality
P

j2M vj2 � 4 to inequality (14) gives

v11 + v23+ v31+ v33 + v34+ v12+ v22+ v32+ v42 + 4(1� y1) + 6(1� y2) + 8(1� y3) � 24; (15)

which is stronger than inequality (13) since variable v42 has been added and since the coe�cient
of (1� y3) has increased from four to eight.

Proof of necessity of Condition (1).

We will show that if all clients belonging to any intersection of sets Kq are removed, and the
simple inequality

P
j2M

P
k2K\ vjk � d(K\) is added, where K\ is the set of removed clients,

then a stronger inequality is obtained. Let

K\ =
[

q2Q

([j2Qnfqg(Kj \Kq));

Q\ = fj 2 Q : Kj \K\ 6= ;g;
K0 = K nK\;

K0
j = Kj nK\; j 2 J:

The values of the e�ective capacities, given the new sets K0; and K0
j for all j 2 J , are:

�m0
j = min(mj ; d(K

0)); j 2 J nQ;
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�m0
j = �mj ; j 2 Q nQ\;

�m0
j = �mj �

X

k2Kj\K\

dk; j 2 Q\;

giving a new value of the excess capacity, �0 =
P

j2J �m0
j � d(K 0).

Assume that
P

j2JnQmj > d(K n ([j2QKj)), in which case �0 > 0. If
P
j2JnQmj �

d(K n ([j2QKj)), no tight point with yj = 1 for all j 2 fj 2 J : �mj > �g exists.
We now show that the inequality

X

j2J

X

k2K0
j

vjk +
X

j2M

X

k2K\

vjk +
X

j2J

( �m0
j � �0)+(1� yj) � d(K0) + d(K\) (16)

is stronger than the e�ective capacity inequality based on the sets J; K and Kj :

Since �0 > 0, inequality (16) is valid. (In general, if the excess � is negative, then the
coe�cient ( �mj � �)+ will overestimate the amount of 
ow that is lost if depot j is closed, and
hence the inequality will not be valid.) The right-hand sides of both inequality (16) and the
e�ective capacity inequality based on sets J; K and Kj are equal, since d(K

0) + d(K\) = d(K).
All coe�cients of the variables vjk are equal in the two inequalities except the coe�cients of
vjk; j 2 Q n Q\; k 2 K\ and j 2 M n J; k 2 K\, which have value one in inequality (16) and
zero in the e�ective capacity inequality based on sets J; K and Kj ; j 2 J . Hence, what remains
to show is that ( �m0

j � �0)+ � ( �mj � �)+ for all j 2 J .

Case 1: j 2 J nQ
�m0
j � �0 = min(mj ; d(K

0))�Pl2J �m0
l + d(K0) = min(mj ; d(K

0))�
P
l2JnQmin(ml; d(K

0))�Pl2QnQ\ �ml �
P

l2Q\( �ml �
P

k2Kl\K\ dk) + d(K)� d(K\) =

�Pl2(JnQ)nfjgmin(ml; d(K
0))�Pl2QnQ\ �ml�Pl2Q\( �ml�Pk2Kl\K\ dk)+

P
l2J �ml���d(K\) =

�Pl2(JnQ)nfjgmin(ml; d(K0)) +
P

l2JnQ �ml +
P

l2Q\

P
k2Kl\K\ dk � �� d(K\) =

�mj � �+
P

l2(JnQ)nfjg( �ml �min(ml; d(K
0))) +

P
l2Q\

P
k2Kl\K\ dk � d(K\) � �mj � �;

where the inequality follows from the term
P

l2(JnQ)nfjg( �ml�min(ml; d(K
0))) being nonnegative,

and from
P

l2Q\

P
k2Kl\K\ dk � d(K\).

Case 2: j 2 Q nQ\

�m0
j � �0 = �mj �Pl2J �m0

l + d(K 0) =

�mj �
P

l2JnQmin(ml; d(K
0))�Pl2QnQ\ �ml �

P
l2Q\( �ml �

P
k2Kl\K\ dk) + d(K)� d(K\) =

�mj �Pl2JnQmin(ml; d(K
0))�Pl2QnQ\ �ml �Pl2Q\( �ml �Pk2Kl\K\ dk) +

P
l2J �ml�

�� d(K\) =

�mj � �+
P

l2JnQ( �ml �min(ml; d(K
0))) +

P
l2Q\

P
k2Kl\K\ dk � d(K\) � �mj � �:

Case 3: j 2 Q\

�m0
j � �0 = �mj �Pk2Kj\K\ dk �Pl2J �m0

l + d(K0) =

�mj�Pk2Kj\K\ dk�Pl2JnQmin(ml; d(K 0))�Pl2QnQ\ �ml�Pl2Q\( �ml�Pk2Kl\K\ dk)+d(K)�
d(K\) =
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�mj�Pk2Kj\K\ dk�Pl2JnQmin(ml; d(K0))�Pl2QnQ\ �ml�Pl2Q\( �ml�Pk2Kl\K\ dk)+
P
l2J �ml�

�� d(K\) =

�mj � �+
P

l2JnQ( �ml �min(ml; d(K
0)) +

P
j2Qnfjg

P
k2Kl\K\ dk � d(K\) � �mj � �:

Remark: Consider an e�ective capacity inequality based on sets J; K, and Kj for all j 2 J .
If only two client sets Kq1 and Kq2 ; q1; q2 2 Q have a nonempty intersection, and if Conditions
(2)-(5) of Theorem 4 hold, then the e�ective capacity inequality based on the depot set J , and
the client sets K0, and K 0

j for all j 2 J , as de�ned in the proof of necessity of Condition (1),
de�nes a facet. This is true since Condition (1) that was previously violated now holds, and
since the modi�cation of the client set does not cause other conditions to become violated. By
referring to Example 1, we see that inequality (14) de�nes a facet.

Outline of the proof that Condition (4) is necessary.

Let Q� � Q be the set of depots in Q with �mj � �, and assume that Condition (1) of
Theorem 4 holds. Here we will show that by removing all depots in Q� and their respective
client sets Kj , and by adding the inequality

P
j2M

P
k2K� vjk � d(K�), where K� is the set

of removed clients, we obtain an inequality that is stronger than the original e�ective capacity
inequality based on sets J; K and Kj ; j 2 J . Let

J 0 = J nQ�;

K� = [j2Q�Kj;

K0 = K nK�;

K0
j = Kj nK�; j 2 J 0:

First, note that J 0 can be written as J 0 = (J nQ)[(QnQ�). The values of the e�ective capacities
�mj ; j 2 J 0, given the the new client sets K0 and K0

j for all j 2 J 0 are:

�m0
j = min(mj ; d(K

0)); j 2 J nQ;
�m0
j = �mj ; j 2 Q nQ�:

The second equation holds since we assume that Condition 1 is satis�ed, i.e., if we delete a
client set Kl, it only a�ects the e�ective capacity of depot l. The new excess capacity �0 =P
j2J 0 �m

0
j�d(K0). If min(mj ; d(K

0)) = mj for all j 2 JnQ, then �0 = � > 0. Let (JnQ)0 � (JnQ)
be the set of depots for which d(K 0) < mj . Then

�0 =
X

j2(JnQ)n(JnQ)0

mj + (j(J nQ)0j � 1)d(K0) +
X

j2QnQ�

�mj � 0:

We want to show that the inequality
X

j2J 0

X

k2K0
j

vjk +
X

j2M

X

k2K�

vjk +
X

j2J 0

( �m0
j � �0)+(1� yj) � d(K0) + d(K�) (17)

is stronger than the e�ective capacity inequality based on sets J; K and Kj .

Since �0 � 0, inequality (17) is valid, following the same argument as in the proof of necessity
of Condition(1). All coe�cients of the 
ow variables vjk are equal in the two inequalities except
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for the coe�cients for vjk ; j 2 Q n Q�; k 2 K� and j 2 M n J; k 2 K�, which have value
one in inequality (17) and zero in the e�ective capacity inequality. The right-hand sides of the
equalities are equal as d(K) = d(K0) + d(K�). It remains to show that ( �m0

j � �0)+ � ( �mj � �)+

for all j 2 J 0 (recall that ( �mj � �)+ = 0 for j 2 J n J 0), which is done in a similar way as in the
proof of necessity of Condition (1).

If �j(J n fjg) = ( �mj � �)+, it means that f(J n fjg) = min(
P
l2Jnfjg �ml; d(K)): The case

where �j(J n fjg) > ( �mj � �)+ is di�cult to analyze since, in general, we have no closed-form
expression for f(J n fjg). Consider a submodular inequality for which f(J) = d(K) and whose
support graph is connected. Aardal et al. (1993) observed that if �j(J n fjg) > ( �mj � �)+

for some j 2 J , then there exists a non-trivial partition of the clients ( �K;K n �K) and the
depots ( �J; J n �J) with j 2 �J , where the clients in �K are uniquely served by the depots in �J .
This observation led to the development of two classes of facet-de�ning submodular inequalities
having �j(J n fjg) > ( �mj � �)+ for at least one j 2 J . We describe one of these classes, the
single depot inequalities, below.

Lemma 5 (Aardal et al. (1993).) Let CEC be an e�ective capacity component with client
set KEC, depot set JEC , and arc set f(j; k) : j 2 JEC ; k 2 Kj � KECg, and such that
JEC ; KEC and fKjgj2JEC satisfy the conditions of Theorem 4. The set QEC � JEC is the

set of depots in JEC having �mj < mj. Let P = f1; :::; jP jg be a set of additional depots with
client set Kp = KEC [ �Kp; �Kp 6= ;; p 2 P , where the clients in �Kp are served uniquely by
depot p, and such that mp > d( �Kp) for all p 2 P . Let J = JEC [ P; K = KEC [p2P �Kp and
� =
P

j2J �mj � d(K).

Then �j(J n fjg) = ( �mj � �)+ for all j 2 JEC and �p(J n fpg) = d( �Kp) > ( �mp � �)+ for all
p 2 P .

In Figure 2 we show the structure of the support graph corresponding to a single depot inequality.

JEC p1 pjP j

KEC
�Kp1

�KpjP j

Figure 2: Single depot structure.
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Theorem 6 (Aardal et al. (1993).) Assume that f(J) = d(K) <
P

j2J �mj, and that
P

j2M mj >
d(N)+mr for all r 2 J. Then the submodular inequality (10) based on the single depot structure,
as de�ned in Lemma 5, de�nes a facet of conv(XCFL) if and only if

(1) �q(J n fqg) > 0 for all q 2 QEC ;

(2) if jQEC j � 1, then 9 j 2 JEC nQEC with �j(J n fjg) > 0:

3 The Combinatorial Inequalities

The family of combinatorial inequalities were developed by Cornu�ejols and Thizy (1982), and
Cho et al. (1983a) for the uncapacitated facility location problem. Given J � M; K � N

and Kj � K for all j 2 J , let � be the minimum number of depots in J needed to reach,
or cover, all clients in K. � is called the covering number. Let S be a zero-one jJ j � jKj
matrix with sjk = 1 if k 2 Kj and sjk = 0 otherwise. The matrix S is the adjacency matrix
corresponding to the bipartite graph GS = (V S ; US; ES) with V S = fj 2 Jg, US = fk 2 Kg,
and ES = f(j; k) : j 2 J; k 2 Kjg. Assume that (i) jJ j; jKj � 3, that (ii) the graph GS is
connected, and that (iii) each column of S has at least one 0 and one 1. Changing an element
sjk from zero to one corresponds to adding an edge (j; k) in GS . If no such change can take place
without decreasing �, S is said to be maximal. Let XUFL denote the set of feasible solutions to
the uncapacitate facaility location problem.

Theorem 7 (Cho et al. (1983a,b).) Let J � M; K � N; and let Kj � K for all j 2 J. Let
� be the minimum number of depots in J needed to cover all the clients in K, given the client
sets Kj ; j 2 J. The combinatorial inequality

X

j2J

X

k2Kj

1

dk
vjk �

X

j2J

yj � jKj � c; (18)

is valid for XUFL for all c � �. Inequality (18) de�nes facets of conv(XUFL) if and only if c = �,
and the adjacency matrix S corresponding to the support graph of the inequality is maximal and
satis�es conditions (i)-(iii) given above.

To provide some intuition behind the combinatorial inequalities we give an example below.

Example 2 Consider the structure given in Figure 3. Let K = f1; 2; 3g; J = f1; 2; 3g; and let
K1 = f2; 3g; K2 = f1; 3g; and K3 = f1; 2g.
Since we need at least two of the depots in J open to cover the clients in K, given the client
sets Kj ; j 2 J , the covering number � = 2. The inequality

v12 + v13 + v21 + v23 + v31 + v32 � y1 � y2 � y3 � 3� 2 = 1 (19)

is valid, and de�nes a facet since the adjacency matrix corresponding to the support graph is
maximal, and satis�es Conditions (i){(iii) given above. Inequality (19) belongs to the class of
so-called odd hole inequalities, which form a subclass of the combinatorial inequalities.

Since the uncapacitated facility location problem is a relaxation of CFL, the inequalities (18)
are also valid for conv(XCFL). Aardal et al. (1993) showed that inequalities (18) de�ne facets
of conv(XCFL) if, in addition to S being maximal and c = �, the part of the instance that
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dk

1 2 3

1 2 3

1 1 1

Figure 3: Example of a support graph corresponding to a combinatorial inequality.

is de�ned by the sets J; K and Kj has enough slack capacity. For details see Aardal et al.,
Theorem 20.

The class of combinatorial inequalities is very general, and subsumes all classes of valid in-
equalities developed so far for the uncapacitated facilty location problem. The previously known
special cases, see Padberg (1973), Cornu�ejols et al. (1977), Guignard (1980) and Cornu�ejols and
Thizy (1982), all have the property that the adjacency matrix corresponding to the bipartite
support graph of the inequality is cyclic. A cyclic adjacency matrix has the same number of
ones in every row, and it is possible to permute the rows and the columns such that in every
row all ones appear in sequence and are shifted one position to the right for every new row.
This implies that all depots serve equally many clients and that all clients are served by equally
many depots.

4 Separation Heuristics

The separation problem based on a certain family F of valid inequalities can be formulated as
follows.

Given a fractional solution (v�; y�), show that (v�; y�) satis�es all valid inequalities in F , or �nd
an inequality belonging to F that is violated by (v�; y�).

The separation problem based on the submodular inequalities (10) is hard as we need to
choose a depot set, a client set, and an arc set simultaneously. Before we describe a heuristic
for �nding violated, more general, submodular inequalities we consider the 
ow cover case.

Given a client set K � N , let zj = 1 if j 2 J , and zj = 0 otherwise, and let v0j =
P

k2K vjk
for j 2 M . The separation problem based on the set of 
ow cover inequalities (11) for �xed
client set K, can be formulated as follows.

max
X

j2M

[v0�j + (mj � �)+(1� y�j )]zj � d(K) (20)

s.t.
X

j2M

mjzj = d(K) + �;

� > 0;

10



zj 2 f0; 1g:

For a given value of � problem (20) is an equality constrained knapsack problem and hence NP-
hard. A heuristic for solving (20) is given by Van Roy and Wolsey (1987). A similar heuristic is
implemented in MINTO (Savelsbergh et al. (1994)). If we consider the case where all capacities
are equal, i.e. mj = m for all j 2 J , then the 
ow cover inequality can be written as

X

j2S

vj �
X

j2S

(m� �)yj � d(K)� (m� �)l; (21)

where l = dd(K)=me is the size of a minimal cover, � = ml � d(K), and S is any cover,
i.e., jSj � l. Such inequalities were used by Leung and Magnanti (1989) for CFL with equal
capacities.

Theorem 8 If mj = m for all j 2 M , and if the client set K is �xed, then the separation
problem based on the 
ow cover inequalities can be solved in polynomial time.

Proof. Assume that d(K) is not an integer multiple of m. Let r = d(K)�m(l� 1); i.e., r is the
remaining demand that the last depot in the minimal cover must satisfy if all clients in K are
to be served, and if (l � 1) depots in the minimal cover send 
ow to K corresponding to their
full capacity. Note that r = (m� �), and that 1 � r < m. We now need to �nd the set S. Let
zj = 1 if j 2 S and zj = 0 otherwise. If mj = m for all j 2 J , and if the client set K is �xed ,
then the separation problem based on 
ow cover inequalities can be formulated as:

max � =
X

j2M

[v0�j � ry�j ]zj + rl� d(K) (22)

s.t.
X

j2M

zj � l;

zj 2 f0; 1g:

Next, we show that if � > 0; then
P

j2M zj � l, i.e. all solutions z 2 f0; 1gm giving � > 0 are
feasible in (22). For given z 2 f0; 1gm we get

� =
P

j2M [v0�j � ry�j ]zj + rl � d(K) � m
P
j2M y�j zj � r

P
j2M y�j zj + rl� d(K) �

(m�r)
P
j2M zj +rl�d(K) = (m�r)

P
j2M zj+rl�r�m(l�1) = (m�r)(

P
j2M zj� (l�1));

where the �rst inequality follows from v�j � my�j , and where the second inequality follows from
y�j � 1. It now follows that if � > 0, then

P
j2M zj � (l � 1) > 0, i.e.

P
j2M zj � l, since

(m� r) > 0, and since l is integral. Solving the separation problem (22) can now be reduced to
letting zj = 1 if (v0�j � ry�) > 0 and zj = 0 otherwise, and then checking if the resulting value of
� is positive.

For �xed client set K � N , the coe�cients ( �mj � �)+ and �j(J n fjg) of the yj -variables in
the e�ective capacity and the general submodular inequalities respectively, depend on the arc
set. Moreover, in order to determine the value of each coe�cient �j(J n fjg), we need to apply
a maximum 
ow algorithm. All these di�culties make the separation problem based on the
e�ective capacity and the general submodular inequalities hard to analyze, and it is not possible
to solve any of these problems as a single integer program. We have therefore developed a

11



heuristic for identifying violated e�ective capacity inequalities, and to further extend the e�ective
capacity inequalities to single depot inequalities. The heuristic consists of two parts; the �rst
part, presented in the next subsection, aims at identifying good candidate sets J and K, and the
second part, described in Section 3.2, determines an appropriate arc set and possible P -depots
(for the de�nition of P -depots, see Lemma 5).

4.1 A General Heuristic for Identifying Sets J and K

For all three subclasses of the submodular inequalities presented in the previous section we need
to identify an e�ective capacity component, i.e. a client set K, a cover J and an arc set where at
least one depot in J serves all clients in K. To get a single depot structure we also need to �nd a
set P of depots and client sets �Kp for all p 2 P , see Lemma 5. The following heuristic produces
sets J and K, with J de�ning a cover with respect to K. Depending on the structure of the
graph induced by J; K and the active arcs in the fractional solution, and on the characteristics
of the instance, we then try to identify violated 
ow cover, EC, and single depot inequalities.
The heuristic is based on three observations regarding the e�ective capacity inequalities

X

j2J

X

k2Kj

vjk +
X

j2J

( �mj � �)+(1� yj) � d(K): (12)

Let (v�; y�) denote the current fractional solution.

Observation 1 Inequality (12) can be violated only if at least one of the yj -variables has a
fractional value.

To guarantee that J contains at least one fractional depot, we choose as initial depot set
J1 = fj1g where 0 < y�

j1
< 1.

Observation 2 The value of the 
ow
P

j2J

P
k2Kj

v�jk should be as close as possible to d(K).

At iteration t, given the current client set Kt�1 and the depot set J t = fj1; :::; jtg, let Kt�1

be augmented by the set of clients served by jt that are not already in Kt�1, giving set Kt.
Moreover, we regard as candidates for J t+1, all depots, apart from the depots already in J t, that
serve clients in Kt. The choice of depot to include in J t+1 is based on the following observation.

Observation 3 Inequality (12) is more easily violated if depots having a small value of sj =
�mjy

�
j �
P

k2Kj
v�jk are included in J.

To see that this is true, replace
P

k2Kj
v�jk by �mjy

�
j �sj and ( �mj��)+ by ( �mj��) in the e�ective

capacity inequality (12), and use d(K) =
P

j2J �mj ��: Replacing ( �mj ��)+ by ( �mj ��) makes
(12) weaker. This weaker form of (12) can now be written as

�� �
X

j2J

(1� y�j ) �
X

j2J

sj :

In practice it will often be the case, especially if the problem instance has little slack capacity,
i.e., if

P
j2Mmj=

P
k2N dk is relatively close to one, that sj = 0 for several depots considered

as candidates for set J . To break ties, we choose as depot jt+1, i.e. as the depot by which J t

should be augmented, the depot with largest 
ow contribution
P
k2Kt v�jk among the candidate
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depots having minimum value of sj . This is to avoid including a depot that only marginally
contributes to the 
ow whereas the e�ective capacity is fully counted for.

The algorithm consists of two major loops. At every iteration of the outer loop, we choose
a depot with fractional value as the �rst depot j1 in the set J . The outer loop is repeated until
all depots with fractional value have been considered. The inner loop is initialized with the sets
J1 = fj1g and K0 = ;. The sets Kt and J t are then iteratively augmented according to the
second and third observations. If at a certain iteration t, J t de�nes a cover with respect to
M and Kt, we check whether a 
ow cover, EC, or single depot inequality based on (J t; Kt) is
violated. If the set of candidate depots, that can be used to augment J t, is empty, the inner loop
is terminated. We also stop augmenting J t and Kt if we fail to generate a violated inequality
after having generated a cover n times using the same initial depot set J1. In our experiments
we use n = 2.

4.2 Identifying Violated Flow Cover, E�ective Capacity and Single Depot
Inequalities

Given sets J and K we temporarily de�ne Kj as Kj = fk 2 K : v�jk > 0g, �mj = min(mj ; d(Kj))
for all j 2 J , and Q = fj 2 J : �mj < mjg. We distinguish between the following three cases.

Case 1: Q = ; and jJ j = 2

We rede�ne Kj as Kj = K for all j 2 J , giving a 
ow cover inequality (11).

Case 2: Q = ; and jJ j > 2

We try to identify P -depots as described below.

Case 3: 0 < jQj � jJ j
We �rst check if any of the depots in Q have intersecting client sets, i.e. if Kq1 \Kq2 6= ; for any
q1; q2 2 Q. If that is the case, we remove all clients belonging to any such intersection. This rule
is based on the proof that Condition (1) of Theorem 4 is necessary for (12) to be facet de�ning.
Given the resulting sets J 0; Q0; K0 and K0

j for all j 2 J 0, we update the e�ective capacities
�mj and check whether there are any depots in Q0 with �mj � �. These depots and their client
sets K0

j are removed form J 0 and K0, which is a rule based on the proof that Condition (4)
of Theorem 4 is necessary for the e�ective capacity inequalities to be facet de�ning. We again
update the e�ective capacities and obtain sets J 00; Q00; K 00 and K00

j for all j 2 J 00. Let Kr denote
the set of removed clients and let for simplicity J = J 00; Q = Q00; K = K00 and Kj = K00

j .

If jJ j > 2, we try to identify depots that could be considered as P -depots, see Lemma 5. As
candidates for P we consider depots p that at the current fractional solution uniquely serve a
subset �Kp � K of the clients, and for which d( �Kp) < mp < d(K). For a single depot structure
we require the depots that constitute the e�ective capacity component to de�ne a cover with
respect to the clients in the e�ective capacity component. Therefore, after choosing appropriate
depots as candidates for P , denoted cand(P ), we check whether (i) the resulting set J ncand(P )
de�nes a cover with respect to K n ([

p2cand(P )
�Kp) and if (ii) (J n cand(P )) nQ 6= ;. If this is

the case we have generated a single depot structure with P = cand(P ), otherwise we need to
remove depots from cand(P ) and include them in J n cand(P ) until conditions (i) and (ii) are
satis�ed. Depots are removed from cand(P ) in order of increasing values of d( �Kp). This is done
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in order to keep depots with high values of �j(J n fjg) = d( �Kp) in the set P if possible.
When the algorithm terminates, we have the �nal depot and client sets J and K, which

can be partitioned into the sets (Q;P; J n (Q [ P )) and ([p2P �Kp; K n ([p2P �Kp)) respectively.
Moreover we have the set Kr of clients that in Case 3 were removed from the initial client set. If
the inequality based on the above mentioned sets is violated, the following variables are stored.

vjk; j 2 Q; k 2 Kj ;

j 2 P; k 2 K n [p2Pnfjg �Kp;

j 2 J n (Q [ P ); k 2 K n [p2P �Kp;

j 2M; k 2 Kr;

yj ; j 2 J:

All variables vjk have coe�cient 1, and the coe�cient of yj is ��j(J n fjg) = �( �mj � �)+ for
j 2 J n P , and ��j(J n fjg) = �d( �Kp) for j 2 P . The right-hand side of the inequality is
d(K) + d(Kr)�Pj2J �j(J n fjg).

4.3 Identifying Violated Combinatorial Inequalities

Recall the combinatorial inequalities

X

j2J

X

k2Kj

1

dk
vjk �

X

j2J

yj � jKj � c; (23)

where c � �, and � is the covering number, i.e., the minimum number of depots needed to cover
all clients in K, given the client sets Kj � K; j 2 J .

Although a fair amount of attention has been given to the various subclasses of combinatorial
inequalities, very little work has been done on the separation problem based on the general class,
and no computational experience with any of the subclasses is reported in the literature. Here
we present a heuristic for generating violated combinatorial inequalities that uses the sets J and
K, produced by the general heuristic described in Section 4.1, as input.

Due to the way that the sets J and K are generated, the bipartite graph G = (V; U; E)
where V = fj 2 Jg; U = fk 2 Kg and E = f(j; k) : v�jk > 0; j 2 J; k 2 Kg is connected.
Moreover,

P
j2J mj > d(K): Determining �, which is equivalent to determining the minimum

number of rows of the adjacency matrix corresponding to G, such that there is at least one
1 in every column, is an NP-hard problem. We therefore start by approximating � by the
cardinality of a minimum subset I � J such that

P
j2I d(Kj) > d(K), where Kj initially is

de�ned as Kj = fk 2 K : v�jk > 0g. It is clear that jI j � �. Assuming that the right-hand
side of the inequality is jKj � jI j, and that all depots serve equally many clients, as in the case
of cyclic adjacency matrices, it is possible to calculate the maximal outdegree t of each depot
by using jI j = djKj=te. For each depot we sort the values v�jk; k 2 K, in nondecreasing order
and we rede�ne Kj to be the set of clients corresponding to the t highest values of v�jk . If the
corresponding inequality is violated, we store variables vjk ; j 2 J; k 2 Kj , with coe�cient 1=dk
and variables yj ; j 2 J with coe�cient �1. The right-hand side of the inequality is jKj � jI j.
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5 Computational Experience

We solve 60 capacitated facility location problems of four di�erent sizes and three di�erent
capacity levels. Each test problem is represented by the notation v-xxxyyz, where v is the
capacity level, xxx the number of clients, yy the number of depots, and z the number of the
instance in the series of test problems having equal values of v; xxx and yy. The di�erent
capacity levels we consider are v = 1; 2; 3 corresponding to ratios

P
j2M mj=d(N) = 1:5; 2

and 3 respectively. The test problems of sizes 50 � 16, 50 � 33, and 50 � 50 were kindly
made available to us by J.-M. Thizy, and were generated by Cornu�ejols et al. (1991), to provide
more di�cult and general test problems than the classical Kuhn-Hamburger instances. To test
on more challenging instances we generated three sets of instances of size 100 � 75, using the
same formulae as in Cornu�ejols et al. In particular, the values of the capacities are generated
from U [10; 160], and then scaled so as to match the capacity level v. To re
ect the economies
of scale, the �xed costs are generated using the formula fj = U [0; 90] + U [100; 110]

p
mj . For

the instances having v = 1, and v = 2 we multiply fj by two. For more details concerning the
test problems we refer to Cornu�ejols et al. The number of variables, constraints and nonzeros
corresponding to the di�erent problem sizes are reported in Table 1.

problem # variables # constraints # nonzeros
type

50 � 16 832 883 3,264
50 � 33 1,716 1,767 6,732
50 � 50 2,600 2,651 10,200
100� 75 7,650 7,751 30,300

Table 1: Problem characteristics.

For the computational experiments we use MINTO 1.6a (Savelsbergh et al. (1994)) with the
CPLEX 2.1 callable library, implemented on a SUN Sparc ELC. We refer to the knapsack cover
inequalities and the 
ow cover inequalities with K = N , which are automatically generated by
MINTO from the substructures (7) and (8), as MINTO inequalities. The user inequalities are
the EC, single depot and combinatorial inequalities. We consider the 
ow cover inequalities
with K � N as a special case of the e�ective capacity inequalities. Three solution strategies are
used, all starting from the LP-relaxation of CFL.

I. Branch-and-bound.

II. Branch-and-cut using knapsack cover inequalities generated by MINTO.

III. Branch-and-cut using MINTO inequalities and user inequalities.

Strategy I was chosen in order to obtain a reference point to which we can compare the
results obtained after adding the various classes of valid inequalities. By experimenting with
the di�erent families of inequalities we could conclude that the knapsack cover inequalities
were the single most e�ective class. This was rather surprising since the surrogate knapsack
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polytope seems like a quite drastic relaxation of CFL. The knapsack cover inequalities only
involve the yj -variables of the depots, and do not consider the 
ow variables at all. To illustrate
these observations we decided to report on them separately as Strategy II. In Strategy III we
investigate the e�ect of adding inequalities from all classes discussed in Section 2 and 3. The user
inequalities were generated in the root node only, since the main purpose was to test how much
e�ect the reduction of the duality gap in the root node has on the size of the branch-and-bound
tree and thereby on the total time needed to solve the problems, and since the user inequalities
had slightly less e�ect deeper in the branch-and-bound tree.

The results from using Strategy I{III are reported in Tables 2-4 below. The duality gap
is calculated as (zIP � zLP )=zIP , where zIP and zLP denote the optimal solution to CFL and
the LP-relaxation of CFL respectively. The percentage duality gap closed by the inequalities is
determined by (zCUT � zLP )=(zIP � zLP ), where zCUT is the optimal value of the LP-relaxation
with all inequalities generated at the root node added to the formulation. In Tables 3 and 4,
% time reduction refers to the percentage reduction in total time of Strategy II and III re-
spectively, compared to Strategy I, whereas average % time reduction is the average percentage
reduction over the instances in the same set. The user time is the time needed to generate user
inequalities. Both user time and total time are given in seconds after being rounded down. All
results are summarized in Table 5.

From the results in Table 3, we note that the knapsack cover inequalities are quite e�ective
in reducing the total time required to solve the problems. The average time reduction over all
instances is 32.0%, and forty-six of the sixty instances are solved at least as fast using Strategy
II as by Strategy I. It is worth noticing here that the loosely capacitated problems do not seem
easier to solve, something that is often claimed to be the case. For the instances of size 100� 75
with v = 2 and 3, the results are mixed. For problem 2-100754 we only close 5.9% of the duality
gap by adding the knapsack cover inequalities, but the total time decreases by 96.8%. For
problem 2-100751, 35.0% of the gap is closed whereas the time increases by more than a factor
two. We can see, however, that, seemingly by coincidence, the reduction of 35% of the duality
gap for 2-100751 only yields a small reduction in the number of branch-and-bound nodes. Since
each branch-and-bound node is expensive for the large instances, we get this net negative e�ect.
For problem 2-100754 the number of branch-and-bound nodes, however, decreases substantially
(98.8%). In Table 6, we report for each problem size on the average time spent per branch-and-
bound node in the di�erent strategies.

If we consider Strategy III, all instances but one are solved at least as fast as by Strategy I.
Seven problems were solved to optimality at the root node and for twenty-one of the problems
the percentage time reduction was more than 75%. For the instances of size 50�50 and 100�75
with capacity level v = 3, the percentage duality gap closed by the inequalities added at the root
node is smaller, and the time required to solve them remains longer than for the more tightly
capacitated instances of the same size. This is not unexpected since all inequalities used in
this study, except the combinatorial, make use of the capacities. For a relatively uncapacitated
instance, a typical fractional solution after adding only knapsack and 
ow cover inequalities,
has very few depots with positive yj -values and only one with a fractional value. This fractional
value is usually very small. The fractional depot serves a small portion of the 
ow to a set of
clients almost completely served by one other depot that is just slightly short of capacity. The
structure of such a solution leaves little freedom to generate inequalities of the types we have
discussed. If the inequalities generated at that point are not able to cut o� the remaining duality
gap, the 
ow tends to spread drastically in the sense that every depot with a positive yj -value
will serve almost every client, and almost all yj -variables get fractional values, which makes
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it very hard to identify an isolated substructure on which an inequality that is substantially
violated can be based. The consequence is then that quite a large number of inequalities with
a small violation are generated and the solution value hardly increases.

Very few violated combinatorial inequalities were generated, and they were all generated for
the problems with v = 3 as could be expected. The heuristic we applied for these inequalities,
however, uses the sets J and K from the general heuristic that was developed for the submodular
inequalities. Given a set K, the set J that we generate is likely to be a good choice of depot set,
but given the di�erent character of the combinatorial inequalities compared to the submodular
inequalities, we may use the wrong client set. Moreover, given the active arcs, we do not
compute the exact covering number. As an additional experiment we chose some instances
of size 25 � 8 with v = 3 from the test set of Cornu�ejols et al. (1991) and generated all
violated odd hole inequalities based on three depots and three clients, c.f. Figure 3, to see if this
subclass of inequalities would help for these relatively uncapacitated instances. No improvement
was obtained, however, neither in terms of reduction of the duality gap nor in time. The
reason why we chose the small odd hole inequalities was that they are facet de�ning for the
uncapacitated problems, and straightforward to generate. As soon as we base an odd hole
inequalities on a larger set of depots and clients the inequality needs to be lifted to become a
facet. In order to solve loosely capacitated problems it will therefore be important to develop
a good heuristic based on the general class of combinatorial problems, and also to develop new
classes of inequalities that use the capacities in a less restrictive way.
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problem duality gap (%) # B&B nodes time

1-050161 2.2 61 59
1-050162 0.4 19 17
1-050163 2.3 143 129
1-050164 2.1 141 173
1-050165 0.9 43 43
1-050331 1.5 1,361 1,813
1-050332 1.2 797 860
1-050333 0.2 31 66
1-050334 1.0 1,349 2,606
1-050335 1.6 1,617 2,050
1-050501 0.3 143 278
1-050502 0.1 67 116
1-050503 0.4 361 681
1-050504 0.2 123 283
1-050505 0.0 1 75
1-100751 0.7 4,077 22,977
1-100752 0.6 15,419 74,351
1-100753 0.1 183 761
1-100754 0.3 6,687 40,604
1-100755 0.1 117 621

2-050161 3.7 129 145
2-050162 2.6 95 103
2-050163 0.5 19 30
2-050164 2.5 345 512
2-050165 0.0 1 15
2-050331 1.5 399 686
2-050332 1.2 691 1,560
2-050333 1.5 259 556
2-050334 0.7 239 493
2-050335 1.3 685 1,232
2-050501 0.2 143 296
2-050502 1.0 1,625 4,050
2-050503 0.1 45 164
2-050504 0.1 33 129
2-050505 0.02 3 67
2-100751 0.1 59 413
2-100752 0.3 429 2,540
2-100753 0.3 541 5,312
2-100754 0.3 7,817 69,326
2-100755 0.6 5,049 46,111

3-050161 4.1 127 160
3-050162 5.4 109 189
3-050163 1.3 17 38
3-050164 2.0 31 104
3-050165 2.1 7 23
3-050331 2.5 187 1,727
3-050332 2.9 766 5,188
3-050333 1.6 249 626
3-050334 0.8 57 194
3-050335 2.1 193 844
3-050501 1.4 299 1,479
3-050502 1.1 443 1,949
3-050503 0.9 1,003 3,162
3-050504 0.5 273 666
3-050505 0.7 199 686
3-100751 0.6 477 4,057
3-100752 0.9 1,289 12,834
3-100753 1.0 545 8,808
3-100754 0.6 235 2,250
3-100755 1.1 6,135 117,058

Table 2: Results from using Strategy I.
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# cover % gap # B&B % time average % time
problem inequalities closed nodes time reduction reduction

1-050161 31 68.1 17 51 13.6
1-050162 2 48.0 13 20 �17.6
1-050163 16 82.0 13 48 62.8 22.9
1-050164 33 33.7 35 109 37.0
1-050165 24 52.3 15 35 18.6
1-050331 34 81.8 41 173 90.5
1-050332 118 65.7 129 476 44.7
1-050333 0 0.0 31 66 0.0 57.1
1-050334 130 10.8 175 975 62.6
1-050335 46 78.4 49 255 87.6
1-050501 3 100.0 1 54 80.6
1-050502 9 37.2 7 93 19.8
1-050503 10 32.4 7 107 84.3 39.7
1-050504 43 38.9 47 356 �25.8
1-050505 LP optimal { { { {
1-100751 295 40.9 611 10,560 54.0
1-100752 648 55.4 1,423 20,055 73.0
1-100753 48 12.5 59 844 �10.9 44.7
1-100754 228 9.1 537 11,076 72.7
1-100755 9 34.6 23 406 34.6

2-050161 16 77.6 19 58 60.0
2-050162 20 30.3 13 64 37.9
2-050163 4 51.5 9 36 �20.0 41.5
2-050164 12 62.0 23 68 86.7
2-050165 LP optimal { { { {
2-050331 13 86.0 31 125 81.8
2-050332 58 54.3 51 450 71.2
2-050333 122 54.1 89 769 �38.3 50.3
2-050334 42 76.6 23 213 56.8
2-050335 25 78.3 49 248 79.9
2-050501 8 82.5 7 76 74.3
2-050502 158 59.4 225 1,551 61.7
2-050503 6 0.0 31 170 �3.7 22.7
2-050504 5 0.0 31 153 �18.6
2-050505 0 0.0 3 67 0.0
2-100751 25 35.0 45 882 �113.6
2-100752 192 15.8 239 6,835 �169.1
2-100753 77 25.0 73 1,792 66.3 �4.7
2-100754 73 5.9 95 2,235 96.8
2-100755 67 66.4 105 1,803 96.1

3-050161 15 52.3 13 76 52.5
3-050162 20 53.6 15 98 48.1
3-050163 9 21.0 9 55 �44.7 9.8
3-050164 22 82.4 15 80 23.1
3-050165 5 39.7 5 30 �30.4
3-050331 119 64.4 107 1,076 37.7
3-050332 78 66.2 83 495 90.5
3-050333 108 0.2 77 591 5.6 48.2
3-050334 9 27.8 25 120 38.1
3-050335 45 42.2 45 260 69.2
3-050501 57 66.0 37 352 76.2
3-050502 79 17.4 125 987 49.3
3-050503 105 6.3 125 997 68.5 46.4
3-050504 56 0.0 79 693 �4.1
3-050505 31 12.0 73 396 42.3
3-100751 133 0.4 379 8,653 �113.3
3-100752 90 15.8 213 6,923 56.3
3-100753 47 19.4 87 2,553 71.0 5.6
3-100754 80 12.1 137 3,925 �74.4
3-100755 198 18.7 461 13,529 88.4

Table 3: Results from using Strategy II.
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# MINTO
inequalities # User inequalities

combi- time %gap # B&B total % time average %
problem cover FC EC SD natorial user closed nodes time reduct. time reduct.

1-050161 15 23 9 13 0 0 86.5 9 49 16.9
1-050162 2 4 3 1 0 0 100.0 1 10 41.2
1-050163 11 19 8 9 0 0 85.0 11 35 72.9 47.7
1-050164 13 20 13 17 0 0 47.1 19 76 56.1
1-050165 4 5 5 8 0 1 92.2 3 21 51.2
1-050331 10 31 5 18 0 1 89.3 19 125 93.1
1-050332 52 65 4 11 0 0 70.1 35 208 75.8
1-050333 0 2 1 0 0 0 100.0 1 23 65.2 81.9
1-050334 75 97 3 14 0 1 53.8 69 488 81.3
1-050335 22 39 1 6 0 0 81.8 25 124 94.0
1-050501 3 5 1 35 0 1 100.0 1 56 79.9
1-050502 2 4 5 12 0 0 96.8 3 52 55.2
1-050503 10 11 0 0 0 0 32.4 7 79 88.4 72.4
1-050504 6 8 1 20 0 1 54.1 7 96 66.1
1-050505 LP opt. { { { { { { { {
1-100751 107 183 12 19 0 9 44.2 251 6,851 70.2
1-100752 381 591 13 22 0 11 56.7 1,253 33,186 55.4
1-100753 15 23 15 26 0 10 43.1 17 712 6.4 52.7
1-100754 125 124 15 7 0 8 11.0 195 5,514 86.7
1-100755 11 16 5 3 0 5 62.9 5 345 44.6

2-050161 15 30 11 8 0 1 80.1 13 69 52.4
2-050162 11 20 4 1 0 0 30.3 13 72 30.1
2-050163 1 2 2 5 0 0 86.0 3 15 50.0 54.6
2-050164 12 16 7 20 0 0 66.7 15 72 85.9
2-050165 LP opt. { { { { { { { {
2-050331 13 24 8 8 0 0 92.1 11 115 83.2
2-050332 33 36 4 29 0 1 67.2 27 290 81.4
2-050333 32 43 8 23 0 1 62.1 25 177 68.1 62.6
2-050334 17 25 7 14 0 0 81.9 11 97 80.3
2-050335 17 23 8 10 0 1 88.0 14 124 89.9
2-050501 5 5 4 14 0 0 85.1 5 71 76.0
2-050502 56 71 2 3 0 0 60.6 77 734 81.9
2-050503 8 9 6 9 0 1 94.3 5 97 40.9 52.0
2-050504 2 3 3 21 0 0 100.0 1 60 53.5
2-050505 0 1 2 8 0 0 95.6 3 62 7.5
2-100751 4 8 24 15 0 7 58.4 9 234 43.3
2-100752 46 62 15 31 0 11 32.2 49 1,590 37.4
2-100753 34 53 15 21 0 12 48.1 43 1,225 76.9 70.3
2-100754 43 53 18 13 0 9 28.2 77 2,240 96.8
2-100755 33 26 17 21 0 15 72.8 43 1,407 96.9

3-050161 7 14 6 2 0 1 64.2 9 58 63.8
3-050162 15 15 7 3 1 0 60.9 11 69 63.5
3-050163 4 6 12 1 0 0 99.7 3 26 31.6 53.6
3-050164 5 9 9 5 2 1 91.3 3 31 70.2
3-050165 1 2 1 0 0 0 100.0 1 14 39.1
3-050331 48 66 14 3 0 0 67.6 47 474 72.6
3-050332 56 82 20 8 0 1 73.4 49 521 90.0
3-050333 37 47 10 2 0 0 47.4 39 394 37.1 62.8
3-050334 9 12 7 4 1 1 45.8 11 108 44.3
3-050335 23 34 7 4 2 1 53.3 23 254 69.9
3-050501 10 11 11 25 1 0 85.6 9 212 85.7
3-050502 68 97 6 8 0 0 21.7 71 1,317 32.4
3-050503 55 47 7 1 0 0 29.1 67 674 78.7 45.8
3-050504 36 46 9 9 0 0 25.5 55 800 �20.1
3-050505 30 19 10 17 0 1 54.0 31 326 52.5
3-100751 90 108 32 12 0 12 46.1 207 5,869 �44:7
3-100752 78 112 30 13 2 8 36.7 127 5,249 66.8
3-100753 60 66 27 2 3 11 39.5 53 2,888 67.2 27.7
3-100754 43 60 28 11 0 9 23.9 79 2,988 �32:8
3-100755 211 339 39 23 5 15 25.2 387 21,318 81.8

Table 4: Results from using Strategy III.
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Strategy I Strategy II Strategy III
duality # B& B % gap # B& B % gap # B& B

problem gap nodes time closed nodes time closed nodes time

1-050161 2.2 61 59 68.1 17 51 86.5 9 49
1-050162 0.4 19 17 48.0 13 20 100.0 1 10
1-050163 2.3 143 129 82.0 13 48 85.0 11 35
1-050164 2.1 141 173 33.7 35 109 47.1 19 76
1-050165 0.9 43 43 52.3 15 35 92.2 3 21
1-050331 1.5 1,361 1,813 81.8 41 173 89.3 19 125
1-050332 1.2 797 860 65.7 129 476 70.1 35 208
1-050333 0.2 31 66 0.0 31 66 100.0 1 23
1-050334 1.0 1,349 2,606 10.8 175 975 53.8 69 488
1-050335 1.6 1,617 2,050 78.4 49 255 81.8 25 124
1-050501 0.3 143 278 100.0 1 54 100.0 1 56
1-050502 0.1 67 116 37.2 7 93 96.8 3 52
1-050503 0.4 361 681 32.4 7 107 32.4 7 79
1-050504 0.2 123 283 38.9 47 356 54.1 7 96
1-050505 0.0 1 75 { { { { { {
1-100751 0.7 4,077 22,977 40.9 611 10,560 44.2 251 6,851
1-100752 0.6 15,419 74,351 55.4 1,243 20,055 56.7 1,253 33,186
1-100753 0.1 183 761 12.5 59 844 43.1 17 712
1-100754 0.3 6,687 40,604 9.1 537 11,076 11.0 195 5,514
1-100755 0.1 117 621 34.6 23 406 62.9 5 345

2-050161 3.7 129 145 77.6 19 58 80.1 13 69
2-050162 2.6 95 103 30.3 13 64 30.3 13 72
2-050163 0.5 19 30 51.5 9 36 86.0 3 15
2-050164 2.5 345 512 62.0 23 68 66.7 15 72
2-050165 0.0 1 15 { { { { { {
2-050331 1.5 399 686 86.0 31 125 92.1 11 115
2-050332 1.2 691 1,560 54.3 51 450 67.2 27 290
2-050333 1.5 259 556 54.1 89 769 62.1 25 177
2-050334 0.7 239 493 76.6 23 213 81.9 11 97
2-050335 1.3 685 1,232 78.3 49 248 88.0 14 124
2-050501 0.2 143 296 82.5 7 76 85.1 5 71
2-050502 1.0 1,625 4,050 59.4 225 1,551 60.6 77 734
2-050503 0.1 45 164 0.0 31 170 94.3 5 97
2-050504 0.1 33 129 0.0 31 153 100.0 1 60
2-050505 0.02 3 67 0.0 3 67 95.6 3 62
2-100751 0.1 59 413 35.0 45 882 58.4 9 234
2-100752 0.3 429 2,540 15.8 239 6,835 32.2 49 1,590
2-100753 0.3 541 5,312 25.0 73 1,792 48.1 43 1,225
2-100754 0.3 7,817 69,326 5.9 95 2,235 28.2 77 2,240
2-100755 0.6 5,049 46,111 66.4 105 1,803 72.8 43 1,407

3-050161 4.1 127 160 52.3 13 76 64.2 9 58
3-050162 5.4 109 189 53.6 15 98 60.9 11 69
3-050163 1.3 17 38 21.0 9 55 99.7 3 26
3-050164 2.0 31 104 82.4 15 80 91.3 3 31
3-050165 2.1 7 23 39.7 5 30 100.0 1 14
3-050331 2.5 187 1,727 64.4 107 1,076 67.6 47 474
3-050332 2.9 766 5,188 66.2 83 495 73.4 49 521
3-050333 1.6 249 626 0.2 77 591 47.4 39 394
3-050334 0.8 57 194 27.8 25 120 45.8 11 108
3-050335 2.1 193 844 42.2 45 260 53.3 23 254
3-050501 1.4 299 1,479 66.0 37 352 85.6 9 212
3-050502 1.1 443 1,949 17.4 125 987 21.7 71 1,317
3-050503 0.9 1,003 3,162 6.3 125 997 29.1 67 674
3-050504 0.5 273 666 0.0 79 693 25.5 55 800
3-050505 0.7 199 686 12.0 73 396 54.0 31 326
3-100751 0.6 477 4,057 0.4 379 8,653 46.1 207 5,869
3-100752 0.9 1,289 12,834 15.8 213 6,923 36.7 127 5,249
3-100753 1.0 545 8,808 19.4 87 2,553 39.5 53 2,888
3-100754 0.6 235 2,250 12.1 137 3,925 23.9 79 2,988
3-100755 1.1 6,135 117,058 18.7 461 13,529 25.2 387 21,318

Table 5: Summary of the results.
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Strategy I Stategy II Strategy III

problem average average factor average factor
type time/node time/node increase time/node increase

50� 16 1.5 4.1 2.7 5.3 3.5
50� 33 3.0 6.0 2.0 8.5 2.8
50� 50 3.0 7.1 2.4 12.5 4.2
100� 75 8.7 22.7 2.6 32.8 3.8

Table 6: Average time spent per branch-and-bound node, and the factor of increase relative to
Strategy I.

6 Concluding Remarks

We have studied the cutting plane approach to solving CFL. The computational experience
shows the importance of adding violated inequalities to the linear relaxation of CFL. By adding
aggregate variables and constraints to the standard formulation of CFL, general purpose mixed
integer optimizers such as MINTO and MPSARX (Van Roy and Wolsey (1987)) will recognize
the surrogate knapsack and single-node 
ow polytopes (7) and (8), and generate knapsack
cover and 
ow cover inequalities as part of the system procedures. Therefore, even if we used
redundant variables and constraints, we almost always gained in reduction of the duality gap, and
thereby in the total time needed to solve the problem. This supports the choice of formulation
(1){(6). Experience showed that the class of knapsack cover inequalities is the single most
important one for closing the duality gap. However, we conclude that in most cases more
problem speci�c inequalities are needed to tighten the duality gap su�ciently. The heuristic
suggested in Section 4 for identifying violated submodular inequalities appears e�ective, in
particular for the more tightly capacitated instances. The results were less satisfactory for the
larger, relatively uncapacitated instances. Hence, it seems useful to improve the heuristic based
on the class of combinatorial inequalities, as well as to develop new classes of strong inequalities.
The new classes of inequalities should, ideally, rely less on capacities than the e�ective capacity
or single depot inequalities, and have a support graph that to a greater extent corresponds
to the structure of a typical fractional solution than the support graph corresponding to the
combinatorial inequalities.
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