
Capacitated Lotsizing and Scheduling with

Sequence-dependent, Period Overlapping and Non Triangular

Setups

António Aroso Menezesa,b

Alistair Clarkb Bernardo Almada-Loboa,∗

a Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal

b Bristol Institute of Technology, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, United Kingdom

May 3, 2010

Abstract

In production planning, sequence dependent setup times and costs are often incurred
for switchovers from one product to another. When setup times and costs do not respect
the triangular inequality, a situation may occur where the optimal solution includes more
than one batch of the same product in a single period — in other words, at least one
sub tour exists in the production sequence of that period. By allowing setup crossovers,
flexibility is increased and better solutions can be found. In tight capacity conditions, or
whenever setup times are significant, setup crossovers are needed to assure feasibility.
We present the first linear mixed integer programming extension for the capacitated
lotsizing and scheduling problem incorporating all the necessary features of sequence
sub tours and setup crossovers. This formulation is more efficient than other well known
lotsizing and scheduling models.

1 Introduction

In production planning problems, the timing and sizes of production orders of a given range
of products over a certain number of periods must be determined so that market demand is
fulfilled and associated costs are minimized. In a large number of cases, sequence dependent
setup times and costs are incurred for switchovers from one product to another. In addition,
tight machine capacity often necessitates product inventories from one period to another,
further increasing costs.

Usually, setups follow the so called triangular inequality, i.e., for any three products,
the cost and time required to directly set up the machine from one product to another is
always less than the sum of those required when setting up via an intermediate product.
However, several reasons may lead to the existence of non-triangular setup times or costs.
For example, in some industries (chemical, pharmaceutical, food, dyeing, etc.), unwanted

∗Corresponding author. E-mail address: almada.lobo@fe.up.pt; tel: +351225082133

1

contamination occurs between certain products. To avoid it, additional cleansing operations
must be performed during machine set ups, often requiring the use of expensive special
products. Alternatively, products that absorb the contaminating substances (or even lower
grade mixed products) can be produced in between, reducing setup times and costs. In
this situation, a minimum lot size is often required for the intermediate product, so as to
eliminate unacceptable contamination.

When the triangular inequality does not hold, it may be efficient to produce more than
one batch of the same product in a given period. Though this concept is quite simple, it is
also quite hard to model when considering sequence dependent setup times and costs, often
leading to incomplete or inaccurate MIP formulations, and subsequent infeasible or sub
optimal solutions. In this paper, a novel formulation that correctly handles this problem is
proposed.

Setup times play a double role in production planning problems, because not only do
they indirectly impact on the optimal solution’s value (by constraining the inventory levels),
but they also interfere with the solution’s feasibility. In tight machine capacity situations,
an effective distribution of setup times is required. Quite often, setup operations can be
interrupted at the end of a period and resumed at the beginning of the next one with no
additional prejudice, either due to the nature of the operations required or to the fact that
there is no physical separation between periods. When this happens, a setup cross over or
a period− overlapping setup is said to exist.

To the best of our knowledge, we are the first to exactly model these features as an
extension of the well known capacitated lotsizing problem (CLSP), considered to be a big-
bucket model as multiple products/setups may be produced/performed per planning period.
We show that such formulations are more efficient than standard small-bucket models.

In section 2 we introduce a previously existing model for lotsizing with sequence de-
pendent setup costs and times. We then expand this model so as to correctly handle
non-triangular setup costs and times, with the necessary feature of disconnected sub-tour
elimination and minimum lot size enforcement. Furthermore, we benchmark our new formu-
lation against the mixed small–bucket–big–bucket general lotsizing and scheduling model on
reported instances from the literature. In section 3 we present a new formulation extension
that allows setups to crossover between adjacent periods. Numerical examples and visual
representations are provided in sections 2 and 3 to demonstrate all features. Finally, we
summarize our main findings. We conclude this introduction with a literature review.

1.1 Literature Review

There is a vast amount of literature on lotsizing and scheduling models with setup times and
costs. However, to the best of our knowledge, none is able to correctly handle both sequence
dependent and non triangular setups for big-bucket models, let alone a combination of this
and period overlapping setups.

Several contributions from the academic community have greatly extended and improved
the quality of CLSP models. Gopalakrishnan et al. (1995) are among the first to address
the influence of significant setup times, proposing a model that handles setup carry overs for
identical times and costs. Later, in Gopalakrishnan (2000), product dependent setup times
and costs are considered. Haase (1996) is the first to propose in the literature the big-bucket

2

capacitated dynamic lot-sizing problem in which setup costs are sequence dependent, but
neglecting setup times (the so-called CLSD).

Sox and Gao (1999) propose a new model that only considers product dependent setup
costs, but at the same time greatly reduces the number of binary variables, increasing
the model’s efficiency. Porkka and Kuula (2000) show that proper accounting for setup
carryovers and setup times decrease the number of setups and frees a significant amount of
production capacity. Suerie and Stadtler (2003) suggest a new model, considering both setup
times and costs while keeping the number of binary variables low. Extensive computational
tests prove the model’s superiority with respect to previously existing models.

Haase and Kimms (2000) take a different approach, considering a CLSP-like model that
handles sequence dependent setup times and costs, but by pre-defining efficient production
sequences, sub-optimal solutions may be found. The authors also assume no inventory may
exist at the beginning of the period in which a production lot of that same product is to be
produced.

Clark and Clark (2000) model the CLSD with sequence-dependent setup times using
a new mixed-integer programming formulation. They assume that up to a given number
of setups occur in the time period between any two given products, independently of their
demand patterns.

Almada-Lobo et al. (2007) propose two models that correctly handle sequence-dependent
setup times and costs for large-bucket problems (several products/setups may be pro-
duced/performed per period), but do not allow setup cross overs, and may result in sub
optimal solutions when non triangular setup times and costs exist.

CLSP partitions the planning horizon into a small number of lengthy time periods,
allowing for the set up of several products within the same bucket. Small-bucket models
divide the planning horizon into many short periods (such as days, shifts or hours), in which
at most one setup may be performed. Such models may potentially take into account more
“fine-grained” details.

In Toso and Morabito (2005), periods are divided in subperiods, enabling the original
big-bucket problem to be treated as a small-bucket one, where at most one setup may be
performed per subperiod. This way, sequence dependent setup times (either respecting or
not the triangular inequality) are correctly accounted for. However, the subdivision requires
an a priori definition of the maximum allowed number of setup operations per period, thus
heavily increasing the model size, or even demanding multiple tweaking experiments before
obtaining the optimal solution. While minimum lot sizes are imposed, they only relate
to the first subperiod after the machine has been set up, leading to potential sub-optimal
solutions. Moreover, setup cross overs are not allowed, having to start and finish in the
same period.

Suerie (2006) proposes a model that correctly handles setup cross overs, but only for
small-bucket problems. A set of variables are introduced in relation to the standard model,
keeping track of how much time each setup operation is performed in each period, the
cumulative time a setup operation has been performed in any given period since the last time
it started, and the availability of the machine at the beginning of every period (the machine
is available for production if the entire setup operation has finished). Sung and Maravelias
(2008) propose a similar model for large-bucket problems, with sequence independent setup
times and costs.

3

The reader is referred to Zhu and Wilhelm (2006) for an extensive literature review
related to lotsizing and scheduling problems with sequence-dependent setups.

2 New Model for CLSP with Non Triangular Setup Costs
and Times

2.1 Standard CLSD model with sequence dependent setup costs and
times

Consider the following standard model for the CLSD with sequence-dependent setup costs
and times, suggested by Almada-Lobo et al. (2007). This problem is essentially modeled
in much the same way as the prize collecting salesman (see (Balas (1989)) or the vehicle
routing problem (Laporte (1992b)) with additional sub tour elimination constraints. Here,
t denotes time periods ranging from 1 to T , while i and j index the products, which are
labeled from 1 to N . Furthermore, the set {1, 2, ...,M} is denoted by [M]. A general single-
stage model is considered, involving multiple items to be scheduled on a single machine
with the following data:

hi cost of carrying one unit of stock of product i from one period to the next,
pi processing time of one unit of product i,
dit demand for product i at the end of period t,
Ct capacity of the machine in period t (measured in time units),
sij time needed to set up the machine from product i to product j,
cij cost incurred to set up the machine from product i to product j,
Mit upper bound on the production quantity of product i in period t.

Binary variable Tijt indicates whether or not a setup occurs on the machine configuration
state from product i to j in period t. Continuous variable αit keeps track of the machine
state — if it is set up for product i (value 1) or not (value 0) — at the beginning of period
t. Variable Xit represents the amount of product i to produce in period t, and Iit the stock
of product i at the end of period t. Finally, auxiliary continuous variable Vit schedules
production lot of product i in period t. The larger Vit, the later the product i is scheduled
in period t, assuring that the machine is only set up for one product on any given time.

Lastly, v denotes optimal values of underlying optimization problems. This formulation,
F1, will be used as a starting point for the extensions presented later in this paper:

v (F1) = min
∑

i

∑
j

∑
t

cij · Tijt +
∑

i

∑
t

hi · Iit (1)

4

Administrator
Highlight

Administrator
Highlight

Iit =Ii(t−1) +Xit − dit i ∈ [N], t ∈ [T] (2)∑
i

pi ·Xit +
∑

i

∑
j

sij · Tijt ≤Ct t ∈ [T] (3)

Xit ≤Mit ·

∑
j

Tjit + αit

 i ∈ [N], t ∈ [T] (4)

∑
i

αit =1 t ∈ [T] (5)

αit +
∑

j

Tjit =αi(t+1) +
∑

j

Tijt i ∈ [N], t ∈ [T] (6)

Vit +N · Tijt − (N − 1)−N · αit ≤Vjt
i ∈ [N], j ∈ [N] \ {i},
t ∈ [T]

(7)

(Xit, Iit, αit, Vit) ≥ 0, Tijt ∈ {0, 1}. (8)

The objective function (1) minimizes the sum of sequence-dependent setup costs and
the holding cost. Constraints (2) represent the inventory balances and (3) ensure that
production and setup operations do not exceed available capacity. Constraints (4) guarantee
that a product is produced only if the machine has been set up for it. Constraints (5)-(7)
determine the sequence of products on the machine in each period and keep track of the
machine configuration state at the beginning of each period, by recording the product that
a machine is ready to process at the end of the previous one (setup carryover information is
thereby tracked). Now we have a more detailed look into constraints (7). Such constraints
are based on the Miller-Tucker-Zemlin sub tour elimination constraints proposed for the
Traveling Salesman Problem (Laporte (1992a)).

In practice, a situation may occur where more than one lot of the same product is
produced in a single period. In other words, at least one sub tour – a production sequence
that starts and ends in the same setup state – may exist in that period.

Two special sub tour cases are referred to throughout the article: alpha sub tours
(sub tours that start and end in the same setup state as the first setup state of each
period’s production sequence) and disconnected sub tours (sub tours that are not part of
the period’s main sequence). Disconnected sub tours are further classified according to
their complexity: simple disconnected sub tours (sub tours that form a perfect loop) and
complex disconnected sub tours (sub tours that in turn are formed by multiple sub tours).

Consider a digraph G where nodes represent production lots of product i, solid arcs (i, j)
represent setups from product i to product j, and dashed arcs represent the setup states
inherited from or passed to neighboring periods, thus producing a visual representation
of the production sequence of a given period. Figure 1 shows some sub tour examples,
including the aforementioned special cases.

It is evident that disconnected sub-tours cannot be part of a feasible solution, as it is
impossible to define a finite chronological sequence that represents them correctly. The
following reasoning shows that constraints (7) eliminate all but alpha sub tours.

Let C ⊆ [N]2 represent a non-empty subset of product pairs (i, j), with cardinality |C|.
If Tijt = 1, ∀(i, j) ∈ C in a given period t, then we say C represents a sub tour (or a group of

5

Administrator
Highlight

(a) Main sequence with regular sub tour (b) Main sequence with alpha sub tour

(c) Main sequence and simple disconnected
sub tour

(d) Main sequence and complex discon-
nected sub tour

Figure 1: Sub tour examples

sub tours). By summing constraints (7) up for all (i, j) ∈ C, we get
∑

C Vit +N ·
∑

C Tijt−∑
C(N − 1)−N ·

∑
C αit ≤

∑
C Vjt. Considering a non-alpha sub tour, we get

∑
C αit = 0.

Because
∑

C Vit =
∑

C Vjt, N ·
∑

C Tijt = N · |C| and
∑

C(N − 1) = N · |C| − |C|. Thus, we
get N · |C| −N · |C|+ |C| − 0 ≤ 0, which is clearly impossible for |C| > 0. This guarantees
no sub tour occurs.

Now we show that (7) allow alpha sub tours. Let C1 denote a sub tour, such that the
machine is set up for one product belonging to that sub tour, i.e. ∃i, j : αit = 1∧(i, j) ∈ C1.
It is easy to see that such a cycle C1 is not cut off by constraints (5)-(7).

2.2 Allowing sub tours in the main sequence

The following changes must be made to F1 to correctly account for non-triangular setup
costs and times:

Firstly, since non-triangular setup costs and times may result in a given setup being
performed more than once, variables Tijt must be allowed to take any non-negative integer
values.

Secondly, constraints (7) must be replaced, as they only allow alpha sub tours. Let
M represent a very large number, S ⊆ [N] be a non-empty, non-unitary subset of the
entire products set, and Yit be a binary variable taking the value of 1 when the machine is
configured for product i at least once in period t, and 0 otherwise:

Yit =

{
1 if

∑
j Tjit + αit ≥ 1,

0 otherwise.

The following constraints are valid for any feasible solution (with or without sub tours),

6

Administrator
Highlight

and cut off disconnected sub-tours:∑
j 6∈S

∑
i∈S

Tjit +
∑
i∈S

αit +M ·
∑
i∈S

(1− Yit) ≥1 t ∈ [T], S ⊆ [N], |S| ≥ 2 (9)

These constraints are non-active whenever the machine is not configured to produce at
least one product i in S in period t. If this is not the case (Yit = 1 for every i ∈ S), then
(9) reduces to

∑
j 6∈S

∑
i∈S Tjit +

∑
i∈S αit ≥ 1. Clearly, this expression assures that the

number of inward links (setups from another production lot, or the period’s beginning)
to a given set of production lots is always greater than or equal to one, as exemplified in
Figure 2). If S represents a productive sub tour, it forces S’s cycle to be connected to
the production sequence of the previous period (through α’s) or to the main sequence of
that period (through T ’s), therefore it cuts disconnected sub tours off. In other words, this
requirement eliminates a disconnected multigraph on the node set S. Note that all regular
sub tours (even non-alpha ones, such as S1 on Figure 2) are allowed by (9).

Figure 2: Examples of S: regular sub tour (S1), part of the main sequence (no sub tour
exists, S2), simple disconnected sub tour (S3) and complex disconnected sub tour (S4)

The set (9) results in T · 2N constraints, making full implementation impracticable. As
such, individual constraints (9) will be dynamically added, as opposed to including them
directly in the initial model. This can be done in a number of ways. In this article, we pro-
pose adding such constraints during the branch-and-cut process, whenever a disconnected
sub tour is identified, thus removing it and preventing it thereafter. Two algorithms are
used to achieve this end.

Algorithm 1, FindST , identifies a set of disconnected production lots S (which either
form a disconnected sub tour or a group of disconnected sub tours).

7

for t← 1 to T do
for i← 1 to N do

if αit = 1 then
Connectedit ← 1;
Validate(i,t);
break out of i loop;

end
end
for i← 1 to N do

if Connectedit = 0 and Yit = 1 then a non-validated production lot exists
Disconnectedit ← 1;

end
end

end
AddConstraints(Disconnected);

Algorithm 1: The sub tour identification (FindST) algorithm

The sub tour identification algorithm is called at every feasible node during the branch-
and-cut process. If any disconnected sub tour is found, a global cut will be added, elimi-
nating and preventing it from happening again. In order to find production lots not linked
to the main sequence, FindST algorithm calls recursive V alidate algorithm several times
(see Algorithm 2)

Input: Connected product i to explore
Input: Period t
for j ← 1 to N do

if Connectedjt =0 then
if Tijt ≥ 1 then

Connectedjt ← 1;
Validate(j,t);

end
end

end

Algorithm 2: The recursive product validation (V alidate) algorithm

The recursive product validation algorithm works like this: Given a product i that is
known to be part of the main sequence, setups from i to every other product j are checked.
For each j, if at least one setup occurs from i to j (Tijt ≥ 1), and j is so far not known to be
part of the main sequence, then j is validated as being part of the main sequence, and the
product validation algorithm is called again, with j as argument. The product validation
algorithm is initialized in every period with the first product in sequence as argument (given
by argi(αit = 1))

At the end of the process, production lots that are not validated as being part of the
period’s main sequence, St = {argsi(Disconnectedit = 1)}, are known to be disconnected,
and the corresponding constraint is added.

Note that this approach intends to identify and remove any disconnected sub tour en-

8

countered. However, it is also possible to use additional a priori polynomial sized constraints
that prevent simple disconnected sub tours (thus reducing the number of dynamically added
constraints) as follows:

Let a new binary variable Qijt be 1 if at least one setup operation Tijt is performed, and
0 otherwise:

Qijt =

{
1 if Tijt ≥ 1,
0 otherwise.

The following modification of constraint (7) allows connected sub tours, while removing
simple disconnected ones:

Vit +M · (Qijt − 1) +M ·

(
Qijt − αit −

∑
l

Tlit

)
≤Vjt − 1 i ∈ [N], j ∈ [N], t ∈ [T] (10)

Constraints (10) works as follows:
Consider a general cycle C ∈ [N]2 of size |C|, with Tijt ≥ 1, ∀(i, j) ∈ C, which may be

composed of single or multiple sub tours, and let S be the node set of C. Summing all
the constraints (10) up for every arc (setup) belonging to cycle C, we obtain the following
requirement:

|C| ≤M ·
∑

(i,j)∈C

(
αit +

∑
l

Tlit − 1

)
(11)

If cycle C corresponds to a simple disconnected sub tour, it is evident that
∑

l Tlit = 1
and αit = 0, ∀i ∈ S, which violates constraints (11). In any other case, αit +

∑
l Tlit ≥ 2

for the sub tour joint (the product that starts and ends a regular (product i2 in Figure 1a)
or alpha (product i1 in Figure 1b) sub tour, or bridges multiple sub tours into a complex
disconnected sub tour (product i3 in Figure 1d)), thus fulfilling the imposed requirements.

2.3 Enforcing minimum lot sizes

In cases where non-triangular inequalities exist due to the possibility to produce inter-
mediate lower-grade or cleansing products, minimum lot sizes must be imposed, so as to
guarantee an effective machine cleansing. Data representing the minimum lot sizes of each
product should be added to the model:

mi minimum size of each production lot of product i.

Additionally, a new binary variable Rt that equals to one if at least one setup is per-
formed during period t is required:

Rt =

{
1 if

∑
i

∑
j Tijt ≥ 1,

0 otherwise.

The following constraints are added:

9

Xit =X−1
it +X0

it i ∈ [N], t ∈ [T] (12)

X−1
it ≤M · αit i ∈ [N], t ∈ [T] (13)

X0
it ≥mi ·

∑
j

Tjit − αi(t+1)

 i ∈ [N], t ∈ [T] (14)

X0
it +

s∑
k=t+1

X−1
ik ≥mi ·

∑
j

Tjit −M ·

(
s−1∑

k=t+1

Rk + 1−Rs

)
i ∈ [N], t ∈ [T], s ∈ [T]\[t]

(15)

Expressions (12) split production Xit into the amount X0
it of product i produced in period t

after setups are performed in that period, and the amount X−1
it produced at the beginning

of the period, after a setup carry-over. If the setup state of product i is not carried over
into period t (αit = 0), then clearly X−1

it = 0, as imposed by (13). Constraints (14) assure
production lots that start and end within period t fulfil the minimum lot size requirement.
Constraints (15) enforce a minimum production size proportional to the number of setups
to product i in period t, allowing that same production size to be split into subsequent
periods. Note that this will only be enforced if there is at least one setup occurring in
period s (i.e., the cross over production lot ends), and there are no setups between t+1 and
s − 1 (i.e., a unique cross over production lot is being considered). This can be simplified
if production lots never span for more than one entire period (i.e., s = t + 1 instead of
s ∈ [T]\[t]).

Finally, variable domains must be specified:

(Xit, X
0
it, X

−1
it , Iit, αit, Vit) ≥ 0, Tijt ∈ N0, (Yit, Rt) ∈ {0, 1} (16)

The new formulation, F2, consists of objective function (1) subject to constraints (2)-
(6), (9) and (12)-(16). We prove in the following lemma that F1 is a special case of F2, and,
as such, the optimal solution of F2 is at least as good as F1’s:

Lemma 1. v(F1) ≥ v(F2)

Proof. F2 can be seen as a generalization of F1, since the latter can be derived from the
former by adding additional constraints. If minimum lot sizes are not enforced, by setting
mi = 0, ∀i ∈ [N], then constraints (12)-(15) become redundant and can be dropped. In
addition, let the set

∑
(i,j)∈C

αit ≥
|C| · (1−N)

N
+
∑

(i,j)∈C

Tijt (17)

be added to F2, obtained by all the constraints (7) listed for every arc (i, j) of a general
cycle C. As

∑
(i,j)∈C Tijt ≥ |C|, |C|N > 0 and αit can only take on integer values, then (17)

reduces to
∑

(i,j)∈C αit ≥ 1. If S contains the node set of cycle C, then (9) is equivalent to∑
i∈S αit ≥ 1−

∑
j 6∈S

∑
i∈S Tjit. Clearly, (17) makes this constraint redundant as

∑
i∈S αit =

10

1 if
∑

(i,j)∈C αit ≥ 1. In the presence of sub tours, (17) dominates (9), making the feasible
solutions of F2 with (17) coincident with those of F1. Therefore, the set of feasible solutions
of F1 is a subset of the set of feasible solutions of F2. Consequently, for the same data set,
v(F1) ≥ v(F2), completing the proof.

The following example demonstrates the previous statement by showing the optimal
solutions of the same instance to F1 and F2

Example 1. A production plan of five different products, i = {1, 2, 3, 4, 5}, over the next
three periods must be devised. A certain component of product 5 contaminates product
1, and an expensive disinfectant product is required to clean the machine, thus increasing
c51. Product 3 has a component that absorbs the contaminating component from product 5,
hence the triangular inequality will not hold for the setup costs of sequence 5−3−1. Table 1
shows the relevant data for this problem. Additionally, consider cij = 10sij , ∀(i, j)\(5, 1),
c51 = 250, and Ct = 100, ∀t.

Table 1: Data for the five product, three period problem

dit sij

t = 1 t = 2 t = 3 j = 1 j = 2 j = 3 j = 4 j = 5 hi

i = 1 90 0 110 - 20 100 100 100 10
i = 2 0 10 0 100 - 5 100 100 10
i = 3 0 10 0 10 100 - 10 100 10
i = 4 0 10 0 100 100 100 - 10 10
i = 5 0 10 0 10 100 5 100 - 10

Tables 2 and 3 show the most relevant non-zero solution values given by F1 and F2,
respectively. Those same solutions are graphically represented by figures 3 and 4. Here,
white blocks represent production that is to be consumed in that period, light grey blocks
represent production that is to be stocked, middle grey represents idle time and dark grey
represents setups.

Table 2: F1’s optimal solution

t = 1 t = 2 t = 3

α11 = 1 α12 = 1 α13 = 1
X11 = 95 X12 = 5, T122 = 1 X13 = 100

X22 = 10, T232 = 1
X32 = 10, T342 = 1
X42 = 10, T452 = 1
X52 = 10, T512 = 1

I11 = 5 I12 = 10

11

Figure 3: Graphical representation of F1’s optimal solution

Note that in F1’s optimal solution, 5 units of product 1 must be added to stock in
periods 1 and 2 to fulfill demand in period 3, with a holding cost of 150 monetary units.
Setup costs account for 700 monetary units, resulting in an objective function value of 850
monetary units.

Table 3: F2’s optimal solution

t = 1 t = 2 t = 3

α11 = 1 α12 = 1 α13 = 1
X11 = 100 T122 = 1 X13 = 100

X22 = 10, T232 = 1
X32 = 10, T342 = 1, T312 = 1
X42 = 10, T452 = 1
X52 = 10, T532 = 1

I11 = 10 I12 = 10

Figure 4: Graphical representation of F2’s optimal solution

In F2’s optimal solution, an extra setup exists. However, due to the non triangular
inequality of sequence 5− 3− 1, total setup costs are reduced by 100 monetary units, to a
total cost of 600. The increase in setup times forces production of product 1 in period 2 (see
Figure 3) to be moved to period 1, increasing holding costs by 50 monetary units, to a total
of 200. This results in an objective function value of 800 monetary units, which is 50 less
than F1’s. Note that our solution does not include the size of each individual production lot,
but instead the total amount of each product to be produced in each period. The example
depicted in Figure 4 represents one of the many possible ways to split X32 = 10 units of
product 3 between the two corresponding production lots in period 2. These variations have
no impact in the objective function value.

12

2.4 General Lotsizing and Scheduling Problem

The class of small-bucket lot-sizing and scheduling problems tries to capture both lot-sizing
and scheduling decisions, Drexl and Kimms (1997). Wolsey (2002) provides a comprehensive
study and classifications scheme for different small-bucket and big-bucket models. His
analysis shows that the LP-relaxation of small-bucket models usually delivers very weak
lower bounds. Only with customized reformulations and valid inequalities added to the
problem is an improvement of the lower bound possible. In contrast most big-bucket models
provide much better lower bounds.

Fleischmann and Meyr (1997) develop a model based on a mixed small–bucket-big–
bucket general lotsizing and scheduling model (GLSP), where each period of the planning
horizon is divided into a fixed number |St| of micro-periods of variable length, representing
the maximum number of lots that can be scheduled in (macro-)period t. Here the production
sequence within each period is explicitly obtained by assigning an item to each micro-period.
Let the new variable Zijs indicate whether or not a changeover occurs on the machine
configuration state from product i to j in micro-period s. The GLSP is formulated as:

v (FGLSP) = min
∑

i

∑
j

∑
s

cij · Zijs +
∑

i

∑
t

hi · Iit (18)

Iit =Ii(t−1) +
∑
s∈St

Xis − dit i ∈ [N], t ∈ [T] (19)

∑
i

∑
s∈St

pi ·Xis +
∑

i

∑
j

sij · Zijs ≤Ct t ∈ [T] (20)

Xis ≤
Ct

pi
· Yis i ∈ [N], s ∈ [S] (21)

Xis ≥mi ·
(
Yis − Yi(s−1)

)
i ∈ [N], s ∈ [S] (22)∑

i

Yis =1 s ∈ [S] (23)

Zijs ≥Yi(s−1) + Yjs − 1 i, j ∈ [N], s ∈ [S] (24)

(Xis, Iit, Zijs) ≥ 0, Yis ∈ {0, 1}. (25)

(18) expresses the inventory holding costs and setup costs. Demand is met without backlog-
ging by (19). Capacity constraints are given in (20). Note that the length of micro-period s
is not constant but rather is determined by the capacity consumption of the (only) product
that is setup and produced within it. Constraint (21) links production and setup variables.
Minimum lot-sizes are ensured by requirements (22). Furthermore, at most one product can
be produced per micro-period (23). Constraint (24) forces a changeover to be performed if
two different products are set up in two consecutive micro-periods.

In case the triangular inequality does not hold, GLSP enables an item to be produced
several times in the same macro-period. Despite allowing for a very accurate modeling
of the situation, this model is computationally very hard to solve, whereas the big-bucket
model introduced in Section 2.2 is much easier to tackle, as shown below.

13

Administrator
Highlight

2.5 Comparison of CLSD-like model with GLSP

Here our aim is to compare the efficiency of the CLSD-like model and GLSP when solved
by a search engine. Both formulations have been tested on well known instances reported
in Fleischmann (1994) with eight products and eight periods. Problems TV11, TV13 and
TV14 differ only in the capacity of the macro-periods and have a capacity utilization (defined
as
∑

i dit/Ct) per period of 97%, 76% and 64%, respectively. Fleischmann (1994) relies on
various setup cost matrices (cij). We present results for S1, S2, S3 and S4. The values of
S1 and S3 are generated at random from the intervals [0,600] and [0,300], respectively. The
entries of S2 are taken at random from the values 0,100,200,...,600. The S4 matrix represents
a typical situation in practice with only two kind of setups, a major setup cost (cost 500
between product families) and a minor setup cost (cost 100 within the same family). We note
that matrix S4 satisfies the triangle inequality, while all the other matrices do not. These
instances are available online in Instances (2009). Each macro-period has been subdivided
into 8 and 10 GLSP micro-periods.

All the computational results reported have been obtained by running the commercial
solver CPLEX 12.1 from ILOG, on a Pentium T7700 CPU running at 2.4 GHz with 4GB
of random access memory. The maximum time for the search overall was set at one hour.
The algorithms 1 and 2 to solve F2 were coded in C++ using Concert 2.7.

In presenting the results in Table 4, we list the problem type, the optimal values provided
by formulations F1 and F2, as well as the respective solution times (in seconds), and the
percentage improvement gap() of v (F2) over v (F1). The last columns of the table report
the upper (UB) and lower (LB) bounds to FGLSP , considering eight and ten micro-periods,
for one hour-time limit.

Table 4: Computational Results

Prob. set. cost v (F1) time(s) v (F2) time(s) gap() GLSP N = 8 GLSP N = 10
matrix UB LB time(s) UB LB time(s)

TV11 S1 2640 31 2412 17 9.5% 3122 47 3600 2849 2.7 3600
TV11 S2 1285 33 1239 43 3.7% 1285 107 3600 1239 31.4 3600
TV11 S3 1413 45 1308 21 8.0% 1816 11 3600 1566 1.6 3600
TV11 S4 6417 2 6417 1 0.0% 8060 72 3600 7636 0.2 3600
TV13 S1 2291 10 2180 4 5.1% 2461 19 3600 2574 0.1 3600
TV13 S2 1150 51 1140 188 0.9% 1170 11 3600 1183 0.0 3600
TV13 S3 1317 10 1259 20 4.6% 1546 9 3600 1409 0.1 3600
TV13 S4 4960 4 4960 3 0.0% 6090 19 3600 5783 0.0 3600
TV14 S1 2188 3 2180 7 0.4% 2475 33 3600 2485 0.1 3600
TV14 S2 1150 53 1140 256 0.9% 1360 6 3600 1150 0.3 3600
TV14 S3 1307 10 1259 21 3.8% 1337 12 3600 1364 0.1 3600
TV14 S4 4920 5 4920 8 0.0% 5430 13 3600 5470 0.4 3600

In all instances except those with setup cost matrix S4, the formulation that allows
for subtours in the main sequence (F2) has computed a solution that is less costly (with
a statistically significant p-value of 0.02) than the corresponding F1 solution, which only

14

Administrator
Highlight

incorporates alpha-subtours. The solutions have the same cost in the case of setup cost ma-
trix S4. The difference increases with increasing capacity utilization (e.g. compare instance
TV11/S1 to TV13/S1 and TV14/S1). The respective solution times are not significantly
different (p-value = 0.19). Since S4 obeys the triangular inequality, there is no advantage
in having non-alpha subtours in the production sequence.

Compared to the solutions given by small-bucket models, it is clear that F2 is always
more efficient than FGLSP . Model FGLSP is not able to solve to optimality within one hour
any instance type, except for instance TV11/S2 with 10 micro-periods, but CPLEX does
not prove optimality due to very weak lower bound. Considering this time limit, it cannot
be stated that the quality of the UB increases with the number of micro-periods, whereas
the LB clearly decreases.

3 New Model for CLSD with Sequence-dependent and Pe-
riod Overlapping Setup Costs and Times

Both F1 and F2 only take into account solutions that entail setups performed entirely within
a time period. We now consider lotsizing and scheduling problems where setups are allowed
to overlap period’s boundaries. Such feature is of upmost importance to tackle tight capacity
scenarios.

Our model uses two new types of variables (one of them binary) in addition to the
variables from model F2. Continuous variables St contain the amount of time still needed
to finish the last setup operation at the end of period t (cross over time). Binary variables
Bijt indicate whether or not the cross over setup from period t to period t + 1 is from
product i to j.

Due to setup cross overs, setup times St that are delayed to the following periods (as
well as setup times St−1 that are inherited from previous ones) must be taken into account.
Thus, capacity constraints (3) must be extended in the following way:∑

i

pi ·Xit +
∑

i

∑
j

sij · Tijt − St + St−1 ≤Ct t ∈ [T] (26)

To ensure setup cross overs St only occur if a given setup Tijt is performed and that they
do not exceed the corresponding setup time sij we add:

St ≤
∑

i

∑
j

sij ·Bijt t ∈ [T] (27)

Bijt ≤Qijt i ∈ [N], j ∈ [N], t ∈ [T] (28)

To ensure only the last setup performed may cross over, we add:∑
j

Bjit ≤αi(t+1) i ∈ [N], t ∈ [T] (29)

Note that since
∑

i αit = 1, we have
∑

i

∑
j Bijt ≤ 1, which prevents multiple setups

from crossing over.

15

Constraints (4) must be extended so that production of product i in period t may only
occur if at least one full setup operation for that product ends in that period.

Xit ≤Mit ·

∑
j

(Tjit −Bjit) + αit

 i ∈ [N], t ∈ [T] (30)

Note that this constraint may become very loose, but capacity constraints and inventory
costs will always prevent Xit from getting too big.

Minimum lot sizes must be enforced when a setup crosses over:

s∑
k=t+1

X−1
ik ≥mi ·

∑
j

Bjit −M ·

(
s−1∑

k=t+1

Rk + 1−Rs

)
i ∈ [N], t ∈ [T], s ∈ [T], s > t (31)

Finally, we assure St is non-negative, and Qijt and Bijt are binary:

St ≥ 0, (Qijt, Bijt) ∈ {0, 1}. (32)

The new formulation, F3, consists of objective function (1) subject to constraints (2),
(5), (6), (9), and (12)–(32).

Let S2 and S3 be the sets of feasible solutions to F2 and F3, respectively. We prove in
the following lemma that F2 is a special case of F3.

Lemma 2. S2 ⊆ S3.

Proof. Let us assume another model and its feasible solution set, F3∗ and S3∗, respectively,
similar to F3 with the following additional requirement:∑

i

∑
j

∑
t

Bijt = 0 (33)

This constraint ensures no setup cross over occurs. Constraints (27) make variables St

all equal to 0. It becomes obvious that F3∗ is equivalent to F2, and therefore S2 = S3∗.
Since F3∗ is a restricted version of F3, we can conclude that F3 admits all of F3∗’s feasible
solutions, i.e., S3∗ ⊆ S3, which is equivalent to S2 ⊆ S3.

The following example demonstrates that F3 can achieve a better optimal solution than
F2:

Example 2. Consider the same data set of Example 1. Figure 5 shows the optimal solutions
to F3.

16

Table 5: F3’s optimal solution

t = 1 t = 2 t = 3

α11 = 1 α22 = 1 α13 = 1
X11 = 90, T121 = 1 X12 = 10 X13 = 100
B121 = 1, S1 = 10 X22 = 10, T232 = 1

X32 = 10, T342 = 1, T312 = 1
X42 = 10, T452 = 1
X52 = 10, T532 = 1
I12 = 10

Figure 5: Graphical representation of F3’s optimal solution

By allowing the first setup to cross over, it is possible that the extra 10 (inventory)
units of product 1 that are being produced in period 1 in F2’s optimal solution are pushed
into period 2, reducing holding costs by 100 monetary units, while keeping the same setup
costs. This results in an objective function value of 700 monetary units, which is 100 less
than F2’s.

4 Concluding remarks

In this paper, we have presented a novel formulation for the capacitated lotsizing and
scheduling problem which correctly handles non-triangular setup costs and times while
enforcing the necessary feature of minimum lot size, and allows setup cross overs between
adjacent periods. These extensions open ways for solutions not being considered so far,
which may lead to improvements in overall production planning efficiency, and reduce the
total cost of production plans.

Additionally, we have developed a method for dynamically identifying and removing
disconnected sub tours. Such a method is required for large problems, since the direct im-
plementation of our model would require the use of an exponential number of constraints.
The simplicity of this method makes it easy to implement in most programming languages
usually combined with optimization engines. We prove that our big-bucket approach per-
forms computationally much better than other small-bucket treatments. Nevertheless, an
important future research question is to find a polynomial sized set of constraints that cut
disconnected sub tours off, while enabling all types of connected cycles.

17

Administrator
Highlight

Extensions to this model considering multiple machines, shortages, backlogging costs
and maximum lot sizes are straightforward, making it a good starting point for models
reflecting a wide range of real life situations.

Acknowledgments

This research was partially funded by FP7-PEOPLE-2009-IRSES project, no. 246881.

References

B. Almada-Lobo, D. Klabjan, J. F. Oliveira, and M. A. Carravilla. Single machine multi-
product capacitated lot sizing with sequence-dependent setups. International Journal of
Production Research, 45(20):4873–4894, 2007.

E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.

A. R. Clark and S. J. Clark. Rolling-horizon lot-sizing when set-up times are sequence-
dependent. International Journal of Production Research, 38(10):2287–2307, 2000.

A. Drexl and A. Kimms. Lot sizing and scheduling - survey and extensions. European
Journal of Operational Research, 99(2):221–235, 1997.

B. Fleischmann. The discrete lot-sizing and scheduling problem with sequence-dependent
setup costs. European Journal of Operational Research, 75(2):395–404, 1994.

B. Fleischmann and H. Meyr. The general lotsizing and scheduling problem. OR Spektrum,
19:11–21, 1997.

M. Gopalakrishnan. A modified framework for modelling set-up carryover in the capacitated
lotsizing problem. International Journal of Production Research, 38(14):3421–3424, 2000.

M. Gopalakrishnan, D. M. Miller, and C. P. Schmidt. A framework for modelling setup
carryover in the capacitated lot sizing problem. International Journal of Production
Research, 33(7):1973–1988, 1995.

K. Haase. Capacitated lot-sizing with sequence dependent setup costs. OR Spektrum, 18:
51–59, 1996.

K. Haase and A. Kimms. Lot sizing and scheduling with sequence dependent setup costs
and times and efficient rescheduling opportunities. International Journal of Production
Economics, (66):159–169, 2000.

Instances, 2009. URL http://paginas.fe.up.pt/ balobo/NonTriangularSetups.

G. Laporte. The travelling salesman problem: An overview of exact and approximated
algorithms. European Journal of Operational Research, 59(2):231–248, 1992a.

G. Laporte. The vehicle routing problem: An overview of exact and approximated algo-
rithms. European Journal of Operational Research, 59(2):345–358, 1992b.

18

Administrator
Highlight

P. Porkka and A. P. J. V. M. Kuula. A modified framework for modelling set-up carryover
in the capacitated lotsizing problem. International Journal of Production Research, 38
(14):3421–3424, 2000.

C. R. Sox and Y. Gao. The capacitated lot sizing problem with setup carry-over. IIE
Transactions, 31(2):173–181, 1999.

C. Suerie. Modeling of period overlapping setup times. European Journal of Operational
Research, 174(2):874–886, 2006.

C. Suerie and H. Stadtler. The capacitated lot-sizing problem with linked lot sizes. Man-
agement Science, 49(8):1039–1054, 2003.

C. Sung and C. T. Maravelias. A mixed-integer programming formulation for the general
capacitated lot-sizing problem. Computers & Chemical Engineering, 32:244–259, 2008.

E. A. V. Toso and R. Morabito. Otimização no dimensionamento e seqenciamento de lotes
de produção: Estudo de caso numa fábrica de rações. Gestão e Produção, 12(2):203–217,
2005.

L. Wolsey. Solving multi-item lot-sizing problems with an mip solver using classification
and reformulation. Management Science, 48(12):1587–1602, 2002.

X. Y. Zhu and W. E. Wilhelm. Scheduling and lot sizing with sequence-dependent setup:
A literature review. IIE Transactions, 38(11):987–1007, 2006.

19

