
1 

 

Capacitated transit service network design with boundedly rational agents 

Jiangtao Liu 

School of Sustainable Engineering and the Built Environment, 

Arizona State University, Tempe, AZ, 85281, USA 

Email: jliu215@asu.edu 

 

Xuesong Zhou 

School of Sustainable Engineering and the Built Environment, 

Arizona State University, Tempe, AZ, 85281, USA 

Email: xzhou74@asu.edu 

Tel.: +1 480 9655827 

(Corresponding Author) 

 

Submitted for publication in Transportation Research Part B 

  

© 2016. This manuscript version is made available under the Elsevier user license  

http://www.elsevier.com/open-access/userlicense/1.0/ 

mailto:jliu215@asu.edu
mailto:xzhou74@asu.edu


2 

 

Abstract 

This paper proposes a new alternative modeling framework to systemically account for boundedly rational decision 

rules of travelers in a dynamic transit service network with tight capacity constraints. Within a time-discretized 

space-time network, the time-dependent transit services are characterized by traveling arcs and waiting arcs with 

constant travel times. Instead of using traditional flow-based formulations, an agent-based integer linear formulation 

is proposed to represent boundedly rational decisions under strictly imposed capacity constraints, due to vehicle 

carrying capacity and station storage capacity. Focusing on a viable and limited sets of space-time path alternatives, 

the proposed single-level optimization model can be effectively decomposed to a time-dependent routing sub-

problem for individual agents and a knapsack sub-problem for service arc selections through the Lagrangian 

decomposition. In addition, several practically important modeling issues are discussed, such as dynamic and 

personalized transit pricing, passenger inflow control as part of network restraint strategies, and penalty for 

early/late arrival. Finally, numerical experiments are performed to demonstrate the methodology and computational 

efficiency of our proposed model and algorithm. 

 

Keywords: Dynamic transit service network design; Boundedly rational agents; Tight capacity constraint; Agent-

based model  
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1. Introduction 

In general, the transportation network design problem aims to minimize the total transportation system 

disutility by optimizing the location of capacity enhancement strategies or various transportation service plans. 

Specifically, the aim of the transit service network design problem is to provide better service to users and to 

increase operating efficiency, involving key decisions such as constructing a new transit line, adding train or bus 

schedules, or dynamically selecting different types of vehicles to meet time-dependent transit demand.  

While a large number of existing studies have been devoted to network design problems with static origin-

destination (OD) demand input, this paper intends to study a class of practically important problems for designing 

discrete transit service networks with (i) individual traveler agents (corresponding to time-dependent demand 

matrices) and (ii) tight time-varying capacity constraints in terms of the number of passengers a transit vehicle or a 

station can carry. In addition, our study aims to address a number of theoretically challenging questions for 

realistically capturing and possibly affecting individual traveler’s behavior in an oversaturated transit system. Under 

possibly extremely heavy congested conditions in transit systems (e.g. in Beijing and Tokyo), for example, each 

traveler wants to minimize his/her disutility within his/her rational/tolerance bands and preferred arrival times, but 

finally they need to select a close-to-user-optimal path from a limited number of capacity-feasible routing options, 

which could have very different path travel times and path-dependent prices.  

 

1.1 Transportation network design problem 

The discrete transportation network design problem has been traditionally formulated as a bi-level 

programming model, where the upper-level problem decides where and how many links should be built, and the 

lower-level problem aims to predict travelers’ response to changes in the network conditions, by assuming certain 

user behavior rules such as Wardrop or Nash user equilibrium. A number of comprehensive reviews on the discrete 

traffic network design problem have been offered by the classical papers by Magnanti and Wong (1984), Yang and 

Bell (1998), as well as a recent study by Farahani et al. (2013). Typical solution algorithms in the discrete cases 

include branch and bound (Leblanc, 1974), support functions in bender decomposition (Gao et al., 2005), meta-

heuristics (e.g. Xiong and Schneider, 1992; Drezner and Wesolowsky, 2003; Poorzahedy and Rouhani, 2007).  

Another active research line for considering user equilibrium (UE) conditions is to construct a single-level 

programming model with constraints corresponding to the UE principle. The early work by Bard and Moore (1990) 

provided a reformulation based on the Karush–Kuhn–Tucker (KKT) conditions with a branch and bound solution 

scheme. Recently, Farvaresh and Sepehri (2011) presented a single-level mixed integer linear problem (MILP) by 

representing the UE condition as KKT constraints and linearized those non-linear terms by introducing binary 

auxiliary variables. In addition, Lou et al. (2009) studied a robust network design approach and formulated the 

problem as a mathematical program with complementarity constraints, where a cutting-plane scheme was proposed 

for solving this problem with demand uncertainties. Wang and Lo (2010) recast the lower-level model by 

complementarity constraints, and then introduced a set of binary variables to transform the ―if-then‖ conditions into 

an equivalent set of linear constraints, which can be further approximated with a MILP framework to search for 

global optimal solutions. Luathep et al. (2011) formulated the user equilibrium condition as a variational inequality 

problem, and also adopted the linear approximation technique to transform the original problem as an MILP model, 

which is solvable based on a cutting constraint method. Wang et al. (2013) developed two types of global 

optimization methods, and one of them involves using the system optimal (SO) traffic assignment principle to 

construct effective lower bounds. Recently, Wang et al. (2015) considered both which links should be built and how 

many capacities should be assigned to those built links simultaneously, and then proposed a global optimization 

method incorporating linearization, outer approximation and range reduction to solve this problem.  

Those previous studies, based on either bi-level programming or transformed single-level models, have made 

great contributions to a deep understanding and numerical efficient algorithm development for different classes of 

discrete traffic network design problems. To the best of our knowledge, still very few studies have completely 

considered the tight transportation capacity and (reasonable and realistic) user equilibrium in the context of bi-level 

or single-level network design framework, especially for time-dependent transit service networks.  

 

1.2 Transit service network design problem 

This study takes particular interests in the dynamic transit service network design, as a representative example 

of discrete transportation service network design in a space-time network. There are a wide range of studies on 

transit network design, represented by excellent survey papers such as Guihaire and Hao (2008), Kepaptsoglou and 

Karlaftis (2009), Farahani et al. (2013), and Ibarra-Rojas et al. (2015). Table 1 lists a number of studies closely 

related to the problem under consideration in this paper, with a special focus on topics such as travelers’ behavior in 
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terms of user equilibrium or Nash equilibrium, vehicle/seat capacity constraint, time-dependent travel demand, 

space-time network representation, and general transit assignment problem which is the lower level of the transit 

service network design problem. 

[Insert Table 1 here] 

As listed in Table 1, in some early studies (Nguyen and Pallottino, 1988; Spiess and Florian, 1989; De Cea and 

Fernandez, 1993; Nuzzolo et al., 2001; Gao et al., 2004), the tight capacity constraints are not considered for user 

equilibrium in transit assignment/network design problems; in some succeeding studies, the tight capacity 

constraints are generally addressed in the following two ways: (i) extend or modify existing link travel time 

functions to penalize the generalized cost values when the assigned flow is above the capacity (Lam et al., 1999; 

Nguyen et al., 2001; Cepeda et al., 2006; Tian et al., 2007; Tian et al., 2009; Szeto and Jiang, 2014a), (ii) explicitly 

consider strict capacity constraints through an inequality where the assigned flow is strictly equal to or less than the 

given capacity, implemented by simulation-typed network loading for equilibrium condition (Poon et al., 2004; 

Hamdouch et al., 2004; Hamdouch and Lawphongpanich, 2008; Nuzzolo et al., 2012; Hamdouch et al., 2014; 

Verbas and Mahmassani, 2015) or analytically mathematic models for system optimum (Niu and Zhou, 2013; Szeto 

and Jiang, 2014b; Niu et al., 2015).  

Further, to find one equilibrium condition in the schedule-based transit assignment problem with tight capacity 

constraints, most of previous studies adopted an iterative procedure with simulation-type network loading, where 

both the best path finding for dynamic travel demand and the network loading for path cost calculation are 

performed iteration by iteration until reaching convergence. Generally, there are three types of approaches to find 

the best paths, (i) the approach by Poon et al. (2004) finds the least-generalized cost path by the specific time-

dependent optimal path algorithm (Tong and Richardson, 1984); (ii) Hamdouch and Lawphongpanich (2008) 

proposed the optimal strategy (a set of paths with least expected travel cost) for different passenger groups by 

dynamic programming; (iii) Nuzzolo et al. (2012) selected a set of paths with assignment probability by a route 

choice model while considering the real-time transit information. In this paper, the path selection mechanism we 

adopt is based on the boundedly rational travel behavior that the path cost of each agent should be within the sum of 

the agent’s least path cost and indifference band. Since non-atomic game and atomic game belong to two different 

modeling frameworks, in order to avoid the confusion with the traditional BRUE with nonatomic players, the agent-

based transit assignment result in this paper can be treated as a kind of network equilibrium with boundedly rational 

agents. 

  

1.3 Wardrop’s user equilibrium and bounded rationality behavior 

A number of questions should be systematically addressed in order to analytically represent practically 

important modeling aspects, such as how to consider tight capacity constraints (e.g. vehicle carrying capacity and 

station spatial capacity) within UE-oriented behavioral assumptions. In an early study, Hearn (1980) stated that a 

real user equilibrium proposed by Wardrop may not exist in the traffic assignment problem with tight link capacity 

constraints. Adding the tight link capacity constraint to the Beckmann-McGuire-Winsten (BMW) model (Beckmann 

et al., 1956), Larsson and Patriksson (1995) proposed an augmented Lagrangean dual algorithm for a modified 

BMW model and showed that there exists a generalized UE where Lagrangean multipliers of link capacity 

constraints can be treated as link tolls. Further, Larsson and Patriksson (1995), Larsson and Patriksson (1998), Nie et 

al. (2004), and Marcotte et al. (2004) noted that those Lagrangian multipliers in generalized user equilibrium is not 

unique. In order to obtain a specific toll scheme (Lagrangian multipliers) for implementation, it usually requires 

modelers to consider a secondary goal (Larsson and Patriksson, 1998), such as, minimizing the total system tolling 

charges, minimizing the maximum toll on any individual arc, or minimizing the number of toll booths based on the 

tolling implementation conditions (Florian and Hearn, 1999). The other way to address tight capacity constraints is 

to use the marginal cost as link toll to achieve a generalized user equilibrium so that travelers can choose the routes 

(the solution) of system optimum (Florian and Hearn, 1999). In addition, the classical work by Correa et al. (2004) 

proves that the solution of the modified BMW model belongs to one of Nash equilibriums where no travelers can 

reduce their travel cost by unilaterally changing routes in a capacitated network. 

Typically, once both the tight capacity and self-disutility minimization behavior (Wardrop’s first principle) are 

considered, the problem can be modeled as a generalized Nash equilibrium problem (GNEP) (Facchinei and 

Kanzow, 2010). Each player has one disutility function and aims to choose a strategy that minimizes his/her 

disutility. Meanwhile, the player’s strategy also depends on the rival players’ strategies due to limited resources. 

However, it is still challenging to find a widely accepted solution approach to this complex problem, and more 

modeling details are systematically examined in the excellent survey paper by Facchinei and Kanzow (2010).  

A theoretically important study by Szeto (2003) points out that dynamic user equilibrium (DUE) may not exist 

when considering the physical queue in dynamic traffic systems. Han et al. (2015a) first presented a rigorous 
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continuity result for the path delay operator, which is the fundamental importance to the existence of DUE 

conditions, based on the Lighthill–Whitham–Richards (LWR) network model capable of capturing physical queues 

and spillback, by assuming that the network supply is bounded away from zero or is within desired boundedness. In 

addition, Han et al. (2015b) proposed a bi-level model for traffic network signal control problems where a 

continuum signal model is employed to ensure the existence of DUE in the lower level problem. As a remark, the 

dynamic user equilibrium studied in the last two decades is usually analytically expressed of Nash-like equilibrium 

condition (Han et al., 2015a).  

In order to address the non-existence issue of flow-based dynamic user equilibrium, Szeto (2003) developed a 

tolerance-based dynamic traffic assignment (DTA) model, where the tolerance can also be treated as an indifference 

band, which can be viewed as an extension or adaption from the boundedly rational behavioral model first 

introduced through the seminar work by Mahmassani and Chang (1987). In those metropolitan’s transit system 
under oversaturated conditions, the tight vehicle capacity constraints lead to possible discontinuity of path travel 

time and unfortunately force some travelers fail to board on the preferred line, which could result in travelers’ 
boundedly rational behavior based on their day-to-day (possibly stochastic) travel experiences. Meanwhile, many 

empirical studies using GPS trajectory data (e.g., Morikawa et al., 2005; Zhu, 2011) have shown that travelers do 

not always choose the shortest paths in reality. 

 

1.4 Potential contributions and structure of this paper 

Motivated by the need for realistically modeling behavioral responses of each traveler to a wide range of 

emerging active demand management strategies, such as, personalized incentives, this paper aims to enhance the 

behavioral realism in the context of dynamic transit service network design under very tight capacity constraints. 

Different from traditional Wardrop equilibrium conditions that assume non-atomic players (i.e. infinitesimal number 

of travelers), we are actually considering a special capacitated network equilibrium with boundedly rational agents 

(CNEBRA) through a single-level 0-1 integer linear programming formulation.  

Specifically, (1) Focusing on a dynamic transit service network with tight capacity, we utilize the property of 

constant travel times on space-time arcs to formulate the boundedly rational travel behavior of each traveler through 

a set of integer linear inequalities; (2) By exogenously listing a set of viable space-time path alternatives for each 

agent, we offer a single-level 0-1 integer linear programming model to study the complex discrete network design 

problem under a set of quite specific but realistic assumptions. With the aim of minimizing the total transit system 

travel time, this new reformulation avoids the use of possible non-convex flow-based models where its link travel 

time is usually represented by a kind of nonlinear functions.  (3) Although the proposed agent-based and time-

dependent formulation introduces additional dimensions and a large number of binary variables, it is further shown 

that, after dualizing hard constraints (i.e., capacity and rational decision constraints), the original problem can be 

decomposed into two sub-problems. These sub-problems have computationally efficient algorithms available on 

large scale networks, namely a time-dependent least cost path problem and a knapsack problem.  

The agent-based formulation and model decomposition scheme used in this paper can be viewed as further 

extensions of two recent papers (Tong et al., 2015; Li et al., 2015), which aim to maximize space-time accessibility 

and total system-wide utility. However, the main theme and contributions of this paper focus on how to theoretically 

model and reformulate the extremely critical user behavior under tight capacity restrictions on specific dynamic 

transit service network design problems. 

The remainder of the paper is organized in the following manner. The following section illustrates the major 

features of our proposed CNEBRA through a simple example. Section 3 formulates the static discrete network 

design problem with boundedly rational agents for the dynamic case presented in Section 4. Section 5 describes the 

Lagrangian relaxation framework for solving the proposed integer linear programming model. After discussing 

some practically important modelling features in Section 6, the performance of our proposed methodology is 

evaluated through several numerical experiments in Section 7. 

 

2. Conceptual illustration 

2.1 Notations 

Table 2 lists general indices, sets, parameters and variables in optimization models appeared in this paper.  

[Insert Table 2 here] 

2.2 Capacitated network equilibrium condition with boundedly rational agents 

Since Wardrop’s user equilibrium may not exist due to strict capacity constraints, the gap of route travel time 

among travelers with same origin, destination, and departure time could force travelers to accept an indifference 
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band through day-to-day travel experiences and finally form boundedly rational travel behavior. For each agent, 

his/her perceived travel cost on the selected route is constrained within the respective indifference bands given by: 

            ,    (1) 

It should be noted that, the traditional flow-based BRUE condition is described by the following ―if-then‖ 
condition: if       , then            (Lou et al., 2010; Guo and Liu, 2011; Di et al., 2013; Di et al., 2014; 

Han et al., 2015c; Di et al., 2016). In our proposed case, for any path selected by one or more agents, the 

corresponding path flow      is equal to or more than 1. As a result, the path cost should be constrained within the 

predefined bound       for an OD pair, or equivalently         which reflects an individual’s indifference 

band.  

For illustrative purposes, one simple network is created that was adapted from the paper by Correa et al.  (2004), 

with 4 nodes and 6 links along one OD pair       shown in Fig.1. The link cost and link capacity are sequentially 

displayed in parenthesis. The demand from node 1 to node 4 has 2 agents. 

[Insert Figure 1 here] 

The results are then examined under different traveling behavioral assumptions, including (i) generalized UE in 

the modified BMW model, (ii) system optimal, (iii) self-disutility minimization behavior (Wardrop’s first principle), 
and (iv) CNEBRA for our network design problem. 

(i) The modified BMW model: 

                            (2) 

Subject to, 

                   (3) 

                                         (4) 

                      (5) 

                    (6) 

The formulation is the standard BMW model with adding tight link capacity constraints. Eq. (3) is the path 

flow conversation constraint. In Eq. (4) the link flow is equal to the path flow multiplied by the path-link incidence 

value. Inequality (5) is the tight link capacity constraint, and inequality (6) defines the path flow as a nonnegative 

continuous variable. As mentioned in Section 1, the generalized UE (GUE) includes the Lagrangean multipliers      
of link capacity constraints (5), and the GUE condition is derived from the KKT conditions shown in Appendix A. 

The generalized link cost can be represented as 

                           (7) 

(ii) System optimal: 

                              (8) 

Subject to constraints (3)-(6). 

(iii) Self-disutility minimization behavior (Wardrop’s first principle): since it is a generalized Nash equilibrium 

problem and the model is difficult to solve, the solution is enumerated in this simple example. 

(iv) CNEBRA: the boundedly rational travel behavior has been formulated by inequality (1), and all possible 

solutions are also enumerated. 

Table 3 lists comparison results for all cases.  

[Insert Table 3 here] 

What we can observe from Table 3 is summarized as follows. 

(1) Since the cost of all links is constant, the modified BMW model is the same as the system optimal model. In 

addition, no agent can reduce his/her travel cost by unilaterally changing routes, due to link capacity constraints in 

case 1 and case 2. This means that the two solutions belong to Nash equilibriums. 

(2)  In case 3, all travelers are assumed to be inclined to minimize their own disutility when selecting routes, 

which is consistent with Wardrop’s first principle. Interestingly, one can identify the Braess paradox when building 

a new link. By enumeration, (i) if link     is not built, one agent will choose path 1 and the other will choose path 

2, so the total system cost is 9 (money units); (ii) if link     is built, one agent will choose the new shortest path, 

path 4, and the other has to accept the only one available path, path 3, due to tight link capacity constraints, so the 

total system cost is 10.  

(3) If link     is built, different solutions of cases 1, 2 and 3 satisfy the definition of Nash equilibrium, but 

the solution of case 3 is the only result obeying Wardrop’s first principle in a capacitated network, that is, 

representing travelers’ self-disutility minimization behavior with strict link capacity constraints. Further discussions 

along this line can be found in the paper by Correa et al.  (2004). It is observed that the shortest path (path 4) is not 

used in cases 1 and 2, even the solution of the two cases meets the Nash equilibrium condition. 
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(4) The gap function we consider is            . If link     is built, the gap for the first two cases is 3. 

With a larger gap value of 4, case 3 (applying Wardrop’s first principle) does not lead to a smaller gap value in a 

capacitated network. The reason is that the gap function assumes that all travelers should be at the minimum cost 

paths after assignment (Hearn, 1982), but the tight capacity constraints cause some travelers have to accept a longer 

path in the final solution. 

(5) Given the KKT condition (described in Appendix A) in case 1 with link    , the Lagrange multipliers of 

links       and link       are 0 because the link flow is less than its link capacity. For the remaining links, those 

multipliers are not unique as long as the generalized path travel cost of path 1 and path 2 is equal and not more than 

that of the longest path (path 3). To some extent, this behavior is related to the argument of Nie et al. (2004) and 

Marcotte et al. (2004) that it may be questionable to treat those multipliers as queuing delays because of the non-

uniqueness of the multiplier values.   

(6) Now consider different cases for CNEBRA with specific indifference bands for two individuals. In case 4, 

when the indifference band of two agents is 0, it is not surprising to see there is no solution for agents without 

tolerance. For a particular example where link     is not built, the specific set of inequalities for boundedly 

rational behavior can be listed as follows:  

For agent 1:        

For agent 2:        

As shown in Fig.1, the path cost of the shortest path (path  ) is 4, but its capacity is only 1, so it is impossible 

for two agents to use one feasible path at the same time. 

(7) In case 5, with the increased indifference band of 1 for the second agent, the feasible solution exists for the 

do-nothing case; but no CNEBRA solution can be found if link     is built. In reality, when facing the change of 

network conditions, travelers may need to change their own indifference band in order to adapt to the new situations. 

Interested readers are referred to a recent paper by Lo (2013), which interprets similar behavior by highlighting that 

bounds on rationality are determined by physiological and environmental constraints. However, how to quantify the 

changing bounds on rationality is still a very complex research topic in its own right and beyond the scope of this 

paper. 

(8) In case 6, (i) if link     is not built, there are two feasible solutions with different system cost values of 9 

and 11, which can be viewed as the best case vs worst case of CNEBRA solutions. (ii) if link     is built, there is 

only one feasible solution and the total cost is 10. As a result, if we consider the best case of CNEBRA as the 

selected solution for the before and after scenarios, it would lead to the Braess paradox. However, the Braess 

paradox can be avoided in this particular case if the worst case of CNEBRA is assumed. Therefore, selection of 

feasible solution(s) of CNEBRA would affect the final network design decision, as are also clearly identified by a 

recent important paper by Lou et al. (2010). Additionally, in case 7, there are multiple solutions whether or not link     is built, so it is difficult to select a single solution from the before or after solution set to support the network 

design decision.  

 

3. Modelling on a discrete network design problem with boundedly rational agents 
In order to clearly illustrate the forthcoming dynamic transit service network design problem in Section 4, this 

section will focus on the static case as a starting point. 

Consider a transportation network as a directed graph with   as the set of nodes and   as the set of links. Let   

denote the set of OD pairs connected by the set of feasible paths,   . Each agent   is defined based on its origin      and destination      and has its own indifference value     . Each link       has its travel cost      and 

capacity       . In order to improve the total transportation system efficiency, a total financial budget   is planned 

and the construction cost of new line       is     . 
The static discrete transportation network design with boundedly rational agents can be formulated as follows:  

Objective function: 

                           (9)  

Subject to: 

Budget constraint: 

                                                  (10) 

Capacity constraint: 

                                                  (11) 

Flow balance constraint: 
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                                                                 (12)  

Boundedly rational travel decision rule: 

                                ,     (13) 

Definition of the shortest path: 

                                                  (14) 

Binary variables:             and             
The objective function of this network design problem is to minimize the total transportation system travel cost 

of all agents. Inequality (10) represents the budget constraint, where the construction cost of existing links is 0. 

Inequality (11) is the link capacity constraint, where        for existing links. Eq. (12) is the standard agent-based 

flow balance constraint. Inequality (13) and Eq. (14) represent boundedly rational travel decision rule and the 

shortest path discussed above, respectively. They can be combined into the following set of inequalities (15): 

    
                                                                                                      

     (15) 

Meanwhile, the path cost of feasible path   of OD pair    can be formulated as Eq. (16), where an auxiliary 

large value   is introduced to represent link cost as                . If link (   ) is built, its cost is     ; 

otherwise, its large cost value prevents any agent from selecting that link. 

                                         (16) 

Therefore, the boundedly rational travel decision rule can be reformulated as follows: 

                                                          ,                (17) 

A simple study case is created for illustrating the transformation above in Fig. 2. One agent (agent  ) departs 

from origin node 1 to destination 5 with indifference band of 1 time unit. Link       and link       are potentially 

built.  

[Insert Figure 2 here] 

The boundedly rational travel decision rule can be represented as 

                                       (17.a) 

                                                    (17.b) 

                                                    (17.c) 

The possible chosen path set of agent   is listed in Table 4. The different assumed network design decisions 

could lead to different shortest paths for one specific OD pair, so the tightest and active constraint of boundedly 

rational travel decision rule could be different, which bounds the feasible path set to each agent.  

[Insert Table 4 here] 

As a result, the critical variable    for the boundedly rational travel decision rule does not appear in the model 

and it is implicitly defined through a set of path cost inequalities (17). This requires to exogenously enumerate a 

number of paths for the OD pair of each agent, including the shortest path in the existing network and those paths 

that have potential built links and are shorter that the shortest path in the existing network.  Typical route set 

generation algorithms can be found in the dissertation by Ramming (2002) for large-scale networks. For simplicity, 

the K-shortest path algorithm (Yen, 1971; Xu, et al., 2012) can also be adopted to seek the potential shortest path    

for each OD pair. 

In the typical bi-level programming structure, the lower level UE problem only considers the links to be built 

decided from the upper level problem (and existing links). In our proposed single-level model, the boundedly 

rational travel decision rule is represented by considering the complete set of all possible paths that embed the 

decision variable      covering two cases: to be built or not to be built in the final optimal solution. More specifically, 

if         for the link not to be built, the right-hand-side path cost is infinity, allowing inequality (17) to hold in any 

case. If        for the link to be built in the final solution, (i) capacity inequality (11) allows the corresponding link 

flow to be positive; (ii) a feasible path in the final solution will have a  path cost         . Furthermore, if there is 

a feasible solution for all agents’ boundedly rational behavior with           , then each agent must be able to 

select a capacity-feasible path   from the path set         satisfying                . 
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The non-uniqueness of traditional BRUE solutions has been studied or discussed in several papers (Lou et al., 

2010; Guo and Liu, 2011; Di et al., 2013; Di et al., 2014; Han et al., 2015c; Di et al., 2016). More specifically, most 

researchers focus on the best case (risk-averse), the worst case (risk-prone), and the neutral case (risk-neutral) for the 

unique solution of BRUE. In this paper, since the objective function of our proposed single-level programming 

model (presented herein),                , is to minimize the total travel time, it indicates that the best case of the 

CNEBRA solution is assumed as travelers’ responses. Usually,                   is one representation for the 

objective function of network design problems with the best case of traditional BRUE conditions (Di et al., 2016) 

from the bi-level programming perspective. In order to handle a very complex relationship between   and   

represented through the lower level optimization problem in the bi-level formulation, the most straightforward way 

to find the optimal solution is to enumerate all feasible  , solve the corresponding lower level model              , 
and then compare all               to find the minimum of              , which is                  . It is 

important to note that, within the same solution space of   and  , in our proposed single-level programming model, 

the relation among   and   has been clearly defined in constraints, and the objective function                 can 

also be viewed to find the minimum of               based on all possible  . Therefore, we can state that only the 

best case is considered in our model. In the future, we will conduct further studies to examine different assumptions 

about travelers’ boundedly rational decision behavior in our agent-based framework. 

Typically, the discussions on the existence and uniqueness of traditional flow-BRUE are built on nonlinear and 

convex programming techniques, while the proposed CNEBRA formulation in this paper is an integer linear 

programming model in nature. In many cases, there might be multiple path solutions even for the simplest single OD 

pair shortest path problem in a grid network. Thus, the properties (solution existence and uniqueness) of our 

proposed model will be dependent on one specific integer linear programming model on different time-discretized 

networks, and the further discussions of those solution properties are beyond the scope of this paper. 

 

4. Dynamic discrete transit service network design with boundedly rational agents 

4.1 Construct the transit service space-time network 

In order to represent (i) the transit service network based on the given train/bus schedule, (ii) transit vehicle 

capacity, and (iii) transit station/platform storage capacity, we extend the physical transit network into a space-time 

network from the given timetable. Consider a physical transit network with a set of nodes (stations)   and a set of 

links  . Each link can be denoted as a directed link       from upstream node   to downstream node  , with one 

deterministic scheduled travel time. We then construct a space-time network, where   is the set of vertices and   is 

the set of edges/arcs. Node   is extended to a set of vertices       at each time interval   in the study horizon,          . Each agent  , where    , is assumed to have a planned departure time     at origin node      to 

its destination node     . At each destination node, there is one assumed large arrival time   for all agents. 

Meanwhile, set the travel cost of waiting arcs on the destination node as 0 in the space-time network to represent the 

end-to-end trip time. There are two following types of arcs.  

(1) Link traveling arcs are extended from a link       and each arc traverses from vertex       to vertex       
based on the given timetable, where        is the scheduled link travel time and should be integer multipliers of 

one time interval and capacity is defined as the transit vehicle capacity. 

(2) Waiting arcs from       to         at any node   have waiting time as one time interval and capacity is 

defined as the station/platform storage capacity. The waiting cost is set as 0 for the destination stations. 

In addition, to address the common line issue in transit systems that there are multiple same schedules 

(travelling arcs) directly joining two vertexes in the space-time network, we can separate one vertex as multiple 

vertexes, each of which corresponds to one transit schedule. That method is similar to the approach used by Poon et 

al. (2004) and Hamdouch and Lawphongpanich (2008). 

In order to find what impacts travelers’ route choice most, one very interesting travel survey was performed in 

the Chicago Metropolitan area in 2010 (Nie et al., 2010), which reveals that over 80% of the responders choose 

travel time as their most important concern in their route choice. The remaining factors sorted by importance are 

reliability, cost, comfort and convenience, safety, and emission and energy conversation, respectively. Therefore, 

our first modeling priority regarding the general travel cost is still on travel time, including in-vehicle travel time, at-

station/stop waiting time and transfer time. Nuzzolo et al. (2001) and Nuzzolo et al. (2012) considered a flow-based 

path travel cost composed of travel time (in-vehicle time, waiting time and transfer time), number of transfers, and 

in-vehicle discomfort cost. Hamdouch and Lawphongpanich (2008) considered travel time, transit fare, penalty for 

early/late arrival and early departure, and in-vehicle discomfort cost. In those papers, discomfort cost is represented 

by a flow-based link cost function, and all other factors are weighted by different given parameters. With our 



10 

 

proposed space-time network structure, one can further incorporate various weights of in-vehicle travel time, 

waiting time, and arc-based transit fare as constant costs of different types of arcs. The modelling issue related to 

OD-based dynamic transit fare and penalty for early/late arrival, as part of general path cost, will be discussed in 

section 6.1 and 6.3, respectively.  

For the illustrative purposes, Fig. 3(a) depicts a simple transit physical network with three nodes and two links. 

The demand has three agents departing at time 0 from node 1 to node 3, whose tolerance values/indifference bands 

are 0, 2, and 2, respectively. The station capacity at each node is assumed to be 2. A potential open new line is from 

node 1 to node 3. Table 5 lists the vehicle capacity parameters and scheduled travel time, corresponding to the 

space-time network presented in Fig. 3(b). 

[Insert Table 5 here] 

[Insert Figure 3 here] 

In the space-time network, the origin becomes the vertex       and the destination is the vertex      , which is 

a single origin to single destination problem (one-to-one network). Based on the indifference values of each agent 

and boundedly rational travel decision rule,            , the set of inequalities for each agent can be written as:     ,       ,       ,       , so       ,       ,       . If new transit line (1,3) is not built, 

the single solution satisfying the set of inequalities is shown in Fig. 3(c). Agent 1 will choose path                  . Due to the vehicle capacity constraint, both agent 2 and agent 3 have to wait at station 1 for the next available 

vehicle at time 2, so the selected path will be                               with a total system-wide 

travel time of 13. After the new transit line is open, the best case solution is that agents 1 and 3 still choose the 

previous path and agent 2 will choose path                        , shown in Fig. 3(d) with the total 

system-wide travel time as 12. Table 6 provides a more systematic comparison between different scenarios and it 

should be noted that the agent number is only used for representing one traveler. It doesn’t mean that agent 1 has the 
priority to choose a shorter path compared with other agents. 

[Insert Table 6 here] 
When addressing the many-origin-to-many-destination networks, dummy node is required as the centroid for 

those destination nodes. More specific details about the extended space-time network with dummy nodes can be 

found in a major early paper by Drissi-Ka  touni and Hameda-Benchekroun (1992). 

 

4.2 Proposed integer linear programming model 
Prior to introducing the proposed model, the following key assumptions are presented as careful response to 

many potential modeling issues discussed in the aforementioned illustrative examples.  

(1) The travel cost of each agent just considers the travel time on travelling arcs and waiting arcs on the 

extended space-time network.  

(2) The time-dependent transit demand is given and deterministic. 

(3) The indifference value of each agent is given and does not change with respect to changes in the transit 

service network. 

(4) Regarding the possible multiple solutions of CNEBRA, the best case is chosen as the selected solution. 

(5) For simplicity, the first-in-first-out (FIFO) rule is not considered in these dynamic transit systems, because 

the non-FIFO phenomenon still exists under certain conditions. For example, when travelers are waiting at a 

platform for the next desirable transit vehicle, it may not actually be the next available vehicle. Also, when travelers 

transfer to another station or board a transit vehicle, it is possible for them not to entirely obey the FIFO rule in 

reality. 

The following presents the objective function and constraints applied in the proposed model. 

Objective function: 

                                       (18)  

Subject to, 

Budget constraint: 

                                                  (19) 

Capacity constraint: 

                                                          (20) 

Flow balance constraint: 

                                                                                               (21)  

Boundedly rational travel decision rule: 
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                                                                              ,                 

  (22) 

Binary variables: 

                 (23) 

            (24) 

Similar to the objective function and side constraints of the static case presented in Section 3, this formulation 

is extended for the dynamic case in the space-time network based on the given schedule of existing transit lines and 

potential built or open service lines. Each agent chooses a set of arcs in the space-time network, so the decision 

variable           is a binary variable. We need to recognize that once those binary variables on each arc are required to 

be aggregated for flow-based arc/link attributes, such as, for in-vehicle discomfort cost function, it will be a 

challenge to solve this problem. This is because the objective function (18) becomes a nonlinear function with 

binary variables. However, if the agent is treated as a group of passengers with the same attributes (such as, same 

indifference band) and the variable           is further relaxed as a continuous variable rather than an integer variable, 

the problem will become a solvable flow-based BRUE network design problem capable of considering different link 

cost functions. In addition,      in constraints (19), (20) and (24) could also be extended as          when considering 

whether or not to add or close specific service arcs defined by the time-dependent schedule in the space-time 

network. In short, after problem decomposition in Section 5, the unique feature of our agent-based formulation with 

constant arc costs allows us to handle much simpler time-dependent shortest path subproblems, compared to general 

multi-commodity flow-based formulations. 

5. Lagrangian decomposition based solution procedure 

5.1 Problem decomposition 

Within a commonly used Lagrangian relaxation framework, a set of nonnegative capacity constraint multipliers          and boundedly rational behavior constraint multipliers     are defined to dualize capacity constraints (20) and 

boundedly rational travel decision rule (22), respectively, onto the objective function (18) presented in Section 4 to 

generate lower bounds. The objective function is now transformed to 

                                                                                                                                                                                    (25)  

Subject to constraints (19), (21), (23), and (24). 

Based on the decision variables           and     , the dualized problem above can be decomposed into two sub-

problems    and   . 

Subproblem    for finding time-dependent shortest path for each agent: 

                                                               (26) 

Subject to (21) and (23). 

Subproblem    as a binary knapsack problem for service arc selections: 

                                                                                                
  (27) 

Subject to (19) and (24). 

 

5.2 Lagrangian relaxation based algorithm design 

The general procedure of the Lagrangian relaxation-based algorithm is designed as shown in Fig. 4, and one 

can apply dynamic transit simulation to find upper bound feasible solutions based on the network design decisions 

from the lower bound model (i.e. the relaxed problem). 

[Insert Figure 4 here] 

The specific procedure is described as follows: 

Step 1: Initialization 

Initialize iteration number    ; 

Construct the space-time network based on the given transit physical network and time schedule; 

Initialize the set of Lagrangian multipliers          and     as positive values. 

Step 2: Solve subproblem    for          . 

Step 3: Solve subproblem    for     . 
Step 4: Update Lagrangian multipliers: 

4.1 Calculate the subgradients:  
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Subgradient of capacity constraint:                                        

Subgradient of indifference bound constraint:                                                                                     

4.2 Update Lagrangian multipliers: 

Multiplier of capacity constraint:                                             
Multiplier of boundedly rational behavior constraint:                                  
Where,    is the step size, and           . 

Step 5: Termination condition test 

If   is equal to the predetermined maximum iteration number  , terminate the algorithm; otherwise,       and go back to Step 2 with updated          and     values. 

At step 2, all arcs have constant travel time in the space-time network, and the Lagrangian multipliers are given 

as constant values at each iteration. The subproblem    becomes a standard time-dependent least cost path problem. 

At step 3, the arc travel time, arc capacity, Lagrangian multipliers, big  , and indifference value of each agent are 

given and constant. The subproblem    becomes a standard 0-1 knapsack problem. Ziliaskopoulos and Mahmassani 

(1993) and Pallottino and Scutellà (1998) provided more details about the space-time network construction and 

time-dependent least cost path finding algorithms, which does not require the addition of a dummy node for the 

corresponding destination node in many-origin-to-many-destination networks. For the 0-1 knapsack problem, there 

are several available computationally efficient algorithms based on dynamic programming, branch and bound, or the 

hybridizations of the both (Martello and Toth, 1990).  

 

6. Discussions 

6.1 Transit pricing  

Transit pricing is one important factor affecting final decisions on the transit service network design. To 

consider time-dependent and personalized agent-based or OD based (given) pricing parameters, one can extend the 

space time arc cost          to          , and add dummy starting arcs to represent OD-specific or agent-specific price for 

related travel distance or/and traveling time periods. That is, for each OD or agent, there is one dummy link with a 

specific cost value. Considering the price or incentive as part of the decision variables in the network design 

problem, different pricing/incentive strategies can be listed using different dummy arcs. Then add a restriction that 

only one of the dummy arc sets for each time-dependent OD pair or agents can be selected for the final strategy to 

be used in the final solution. 

 

6.2 Passenger inflow rate control to transit stations 

One approach for addressing the safety concern in a totally oversaturated condition is to limit the number of 

passengers in the station. This practice was implemented in actual subway operations during peak hours in Beijing 

(Xu et al., 2014). To model this inflow passenger volume gating strategy, a virtual node needs to be added to the 

related origin node in the physical network. A simple network with two nodes and one link is used to illustrate our 

method as shown in Fig. 5(a). There are two vehicles with capacity of 5 and scheduled travel time of 3, departing at 

time 1 and 3, respectively. The station/platform capacity of node 1 and 2 is 10. Now assume that the permitted 

inflow rate is 7. The change in the physical network is shown in Fig. 5(a). Link       is treated as the entry point to 

the station and its capacity represents the permitted passenger inflow rate. The corresponding space-time network is 

shown in Fig. 5(b). If the number of agents at node    at time 0 is more than 7 at first, some agents will need to wait 

at node    until time 2 to enter the station for the second vehicle. 

[Insert Figure 5 here] 

6.3 Model the penalty for early/late arrival  

In addition to the indifferent/tolerance value, each traveler may have one specific preferred arrival time for his 

or her trip within the bound. The penalty for early and later arrival had been considered in some traffic and transit 

studies (such as, Zhou et al., 2008; Hamdouch and Lawphongpanich, 2008). In this section, the issue is considered 

through updating the space-time network, where each destination node will be correspondingly given a virtual node 

as a super destination. The travelling arcs from the real destination node to the virtual node can be viewed as penalty 

arcs, the cost of which is defined in advance for each agent as part of his or her own path travel cost. 

The network without walk arcs in the paper (Hamdouch and Lawphongpanich, 2008) is chosen as our 

illustrative example. Based on the given schedule of three lines, the corresponding space-time network is built in Fig. 

6. Assume that agent 1 departs from node   to node   at time 1 with preferred arrival time of 5 and agent 2 has the 
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same OD pair of agent 1 with different departure time and preferred arrival time, which are time 3 and time 7, 

respectively. The penalties           for the early and late arrival of agent 1 is predefined as              ,              ,              ,               and                . Also, the early or late arrival penalties of agent 2 can be defined in 

advance in the space-time network. As a result, the arc cost in the space-time network should be represented by           instead of          in the objective function and the boundedly rational travel decision rule. Except for those 

penalty arcs, the remaining arc cost of each agent           is still equal to         . Also, it is applicable by changing 

every arc cost if users impose different weights or parameters on different types of arcs, such as, in-vehicle travel 

arcs, waiting and transfer arcs, and penalty arcs for early and late arrival. 

[Insert Figure 6 here] 

6.4 Adding travel time budget to simplify path enumeration on large-scale transit networks 
The model proposed in section 4.2 requires to enumerate all possible paths for each agent. For a large-scale 

transit network, it will be extremely burdensome to perform the space-time path enumeration task. For simplification, 

the acceptable bound for each agent shown in inequality (22) can be assumed to be a constant travel time budget         based on each OD pair at different departure times. In this approach, only a limited number of paths 

satisfying the following constraint are required.   

                                          (28) 

Usually, the travel time budget can be obtained through a travel survey. A real-world survey including travel 

time budget was performed in Chicago Metropolitan area (Nie et al., 2010). The detailed discussion can be found in 

this review paper (Mokhtarian and Chen, 2004), which states that individuals’ travel time expenditures do show 
patterns and are strongly related to individual and household characteristics, attributes of activities at the destination, 

and characteristics of residential areas. 

In addition, constraint (28) can be further modeled as virtual arcs to represent possible inaccessibility for this 

OD pair under congested condition. As a result, inequality (28) will be eliminated in our model and is simply coded 

in the space-time network as an approximation. The related application can be found at accessibility-based network 

design problem (Tong et al., 2015). Meanwhile, this virtual arc-based network modeling method could greatly 

reduce the computational complexity for large-scale applications, because it does not need to consider a set of 

constraints (constraint 28) in the primal problem or a set of dualized constraints in the Lagrangian relaxation 

procedure. 

 

7. Numerical examples 

This section examines different aspects in a dynamic discrete transit service network design problem, where (i) 

the scheduled travel time is constant and (ii) the capacity on travelling arcs and waiting arcs can represent the 

vehicle capacity and the station/platform capacity, respectively. The integer linear programming model and the 

proposed Lagrangian relaxation procedure are demonstrated by the general purpose optimization package GAMS 

(Rosenthal, 2015) in two small transit networks, and further be tested by our time-dependent shortest path algorithm 

in C++, by enhancing an open-source mesoscopic dynamic traffic assignment model namely DTALite (Zhou and 

Taylor, 2014), for large-scale applications on one workstation with 20 CPU cores (40 threads) with 192GB RAM. 

The related source codes can be downloaded at the website: 

https://www.researchgate.net/publication/295968354_Case_1_Transit_network_design_LR  

and https://www.researchgate.net/publication/295968184_Case_2_Demand_Level_1_Transit_network_design_LR 

 

7.1. A simple case 
This case examines the simple transit network in section 4.1 with an opening cost of 10 units and a total budget 

of 15 units for the potential open line. All Lagrangian multipliers are initially assumed to be 0.1, and the big     

is sufficient because the time horizon is just 5. In order to not enumerate all possible paths of OD pair      , at first, 

the shortest path is found in the existing space-time network and then all possible paths that contain the potential 

open lines are compared. As a result,     for OD pair      . Path 1 is                                         and path 2 is                              . 
Based on the procedure of Lagrangian relaxation proposed in section 5.2, the objective values of   ,   , and the 

lower bound are obtained and listed in Table 7 after 10 iterations. 

[Insert Table 7 here] 

Fig. 7 demonstrates a comparison between the lower bound and the optimal value with a final solution gap of 

0.83%.  

https://www.researchgate.net/publication/295968354_Case_1_Transit_network_design_LR
https://www.researchgate.net/publication/295968184_Case_2_Demand_Level_1_Transit_network_design_LR
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[Insert Figure 7 here] 

7.2. Transit service network design based on the simplified Sioux-Fall physical network 

The proposed algorithm will be also tested in the following network with four hypothetic transit lines, shown in 

Fig. 8.  

[Insert Figure 8 here] 

Table 8 lists the existing transit service arcs based on given the timetable of the four transit lines. The potential 

service arcs to be opened and related station storage capacity are listed in Table 9 and Table 10, respectively. All 

serviced arcs are displayed in the space-time network shown in Fig. 9, where the virtual waiting cost at the 

destination 8 and 9 is 0. 

[Insert Table 8 here] 

[Insert Table 9 here] 

[Insert Table 10 here] 

[Insert Figure 9 here] 

7.2.1 Different levels of time-dependent transit OD demand 

The time-dependent OD demand for all OD pairs is listed in Table 11. Initially, three levels of demand are 

provided to observe its impact on the final service network design result. In addition, all vehicles’ capacity is 
assumed to be 20. For simplicity, the indifference value of all agents is assumed to be same as 15 (min or any time 

unit).  

[Insert Table 11 here] 

For each demand level, three cases are compared: (i) based on the existing transit service network, solved by 

the dynamic transit assignment problem with bounded rational user equilibrium conditions by GAMS; (ii) 

considering with potential new service arcs, optimal solution directly solved by GAMS for our proposed model in 

section 4.2; (iii) with potential new service arcs, solved using the proposed Lagrangian relaxation method 

implemented in GAMS. Comparison of the three cases under three demand levels are shown in Fig. 10(a), Fig. 10(b) 

and Fig. 10(c), respectively. 

[Insert Figure 10 here] 

Result presented in Fig.10 indicates that the total system-wide travel time gets reduced after transit service 

network optimization and our proposed Lagrangian relaxation procedure is able to achieve a quick convergence to 

the optimal solution.  

In addition, in order to check the computation efficiency of GAMS solver and the proposed Lagrangain 

relaxation method, two high level OD demand inputs (demand level 4 and 5) are designed and presented in Table 12. 

[Insert Table 12 here] 

The comparison result on computation efficiency under five different levels of OD demand is displayed in Fig. 

11. The total number of agents of demand level 1 to 5 is 150, 180, 200, 800, and 1000, respectively. It is obvious 

that the computation CPU time of the GAMS solver for optimal solutions is significantly increased under demand 

level 4 and 5, up to more than 40 mins. In comparison, the computation CPU time of the proposed Lagrangian 

relaxation method always remains low for all 5 demand levels considered. Even under demand level 5, its 

computation CPU time is less than 3 mins through 50 iterations, about only 6% of that required by the GAMS solver. 

[Insert Figure 11 here] 

7.2.2 Considering different levels of transit vehicle capacity 

In order to perform the sensitivity analysis on the vehicle capacity, demand level 2 is adopted as the time-

dependent OD demand input. The different vehicle capacities considered are 18, 19, 20, 21, and 22, respectively. 

The optimal system-wide travel time under different cases are shown in Fig. 12. It shows that based on the optimal 

solutions in the network design problem, the transit system efficiency improves with increased capacity of all 

vehicles. That is rational in that the larger vehicle capacity increase the service capacity of the whole network, 

including the shortest paths among OD pairs. 

[Insert Figure 12 here] 

7.2.3 Different levels of agents’ indifference value 

The agent’s indifference value can also influence the final optimal solutions, so this section examines six 

scenarios to observe their impacts on the transit service network design. Scenario 1 to 4 have the same indifference 

value for all agents, which is 7, 8, 9, and 10, respectively. For scenario 5, different agents could have different 

specific indifference values as shown in Table 13. For example, for OD pair (1→8), there are 5 agents departing at 

time 0 with indifference value of 0, 5 agents with indifference value of 5, and 5 agents with indifference value of 10. 

[Insert Table 13 here] 



15 

 

For scenario 6, the boundedly rational travel decision rule is ignored to obtain one system optimal solution for 

the transit service network design problem. The system performance results directly solved in GAMS are listed in 

Table 14. 

[Insert Table 14 here] 

The results yield the following observations: 

(1) If all agents’ indifference value is 7, no feasible solution exists, which means that some agents will cancel 

their trips or the indifference value is not accurate and needs further calibration 

(2) As the indifference values of all agents increase, the system cost is closer to the system optimal value, 

because more agents can indifference a longer path to allow some agents to select a shorter path 

(3) When the specific indifference value of each agent is different, the transit system will have a more 

complicated route choice set.  

 

7.3 Large-scale experiments 

In order to demonstrate the computational efficiency of our proposed Lagrangian relaxation framework, this 

section tests our proposed algorithm on two regional transit networks, Salt Lake City regional transit network and 

Phoenix regional transit network, respectively. The transit network data are based on the public GTFS (General 

Transit Feed Specification) feed. Through extracting the transit stop information in stops.txt and stop sequences of 

each trip in stop_times.txt, the two transit networks are created and then are visualized in Google Earth as shown in 

Fig. 13. It can be observed that there are some unrealistically long straight transit links in the two networks. The 

reason is that the geographical shape information of each transit line in shapes.txt is not read. We just utilize the 

longitude and latitude coordinates of each stop of each transit line in stops.txt, and then one straight link is 

correspondingly created to connect the two joint stops.  

[Insert Figure 13 here] 

In order to obtain the dynamic transit travel OD demand data, two scenarios are assumed for the tests, (i) 10% 

of regional traffic demands as the transit OD demand input and (ii) 5% of regional traffic demands as the transit OD 

demand input. The details are listed in Table 15. 

[Insert Table 15 here] 

In addition, the activity location of each zone in the regional traffic network is matched with the nearest transit 

stop, so the final transit network information is listed in Table 16. 

[Insert Table 16 here] 

Based on the simplification method in section 6.4 and the Lagrangian relaxation framework in Section 5, the 

relaxed problem can be decomposed as two subproblems at each iteration: one is time-dependent least cost path 

problem for each agent, which is the most time-consuming part in computation, and the other is the knapsack 

problem for service arc selection. In our proposed algorithm implemented in C++ code, Open Multi-Processing 

(OpenMP) is used as the application programming interface (API) for parallel computing. The tasks of path finding 

for each agent on the transit network are assigned into different available CPU threads and performed in parallel. 

The two regional transit networks under two different scenarios are tested on our Dell Precision T7610 Workstation 

with 20 CPU cores and 192G RAM. The general CPU computation time of each iteration in the Lagrangian 

relaxation approach are listed in Table 17. 

[Insert Table 17 here] 

The CPU computation time could be affected by the number of optimized agents, the number of zones, the 

optimized time period, the topology of transit networks, the time budget value, etc. Looking back upon the study 

cases solved in GAMS in section 7.2, our proposed algorithm coded by C++ with the parallel computing method has 

an obvious advantage at computational efficiency. In future, based on the service arc selection decisions from the 

lower bound, the dynamic transit simulation with bounded rational agents will be developed for the upper bound. 

Finally, the gap between the lower bound and the upper bound can be used to check the quality of our solutions. 

 

8. Conclusions and future research 

The developments presented in this paper provide a unified framework for solving a dynamic transit service 

network design problem in congested networks where the service capacity and travelers’ bounded rationality are 

highly respected. Within a space-time network, the time-dependent transit schedules and station services are 

represented by travelling arcs and waiting arcs with constant travel times. A single-level integer linear programming 

model is proposed that considers tight capacity constraints and the boundedly rational traveler behavior assumption 

to better capture the essential characteristics of transit dynamics. Computation efficiency is further enhanced by 

using Lagrangian relaxation approach which decomposes the primal problem as two sub-problems, namely, a time-
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dependent least cost path problem and a 0-1 knapsack problem. The numerical experiments described herein 

demonstrate the benefits of the proposed methodology and analyze the impacts of different transit demand levels, 

agent’s tolerance value/indifference band, and transit vehicle capacity on the final service network decisions. 

The transportation network design problem is usually modeled as a bi-level programming problem. The 

proposed framework from modelling to algorithm design is also helpful to problems requiring the similar bi-level 

programming structure, such as, dynamic tolling design problem, signal optimization problem, and dynamic OD 

demand matrix estimation problem. Future work includes (i) analyzing the properties of the CNEBRA, especially in 

a general case where the arc cost in the space-time network could be linear or nonlinear functions, and calibrate the 

boundedly rational behavior by taking additional data collection efforts , (ii) considering the limited number of 

transfers through adding one more transfer state dimension, which can be referred to the time-dependent state-

dependent dynamic programming algorithm for the pickup and delivery problem with time windows (PDPTW) by 

Mahmoudi and Zhou (2016), (iii) possible extension to dynamic discrete traffic network design on freeway networks 

through cumulative arrival and departure flow counts to incorporate Newell’s simplified Kinematic wave model 
(Newell, 1993). (iv) In order to implement more deployable service network design systems, the future study needs 

to incorporate realistic transit route/mode/departure choice models, e.g., by specifically taking into account of 

parking availability (Ruan et al., 2016), stochastic transfer activities (Yang et al., 2016), and uncertain time-

dependent passenger demand (Yin et al., 2016).  

In addition, the three path selection methods discussed in section 1.2 (by Poon et al., 2004; Hamdouch and 

Lawphongpanich, 2008; Nuzzolo et al., 2012) and our proposed CNEBRA-based method has not been compared in 

this paper, as there is a potential inconsistency of input data and traveler behavior assumptions. For example, the 

travel behavior on route choice in different models has different characteristics. To name a few, the experienced 

least-cost path selection in method (i), optimal strategy for expected least-cost path set selection involving 

probabilistic behavior assumption in method (ii), path selection with perceived random errors in method (iii) and 

path selection with bounded rationality for each agent in our proposed method. Future research will be extremely 

important if one could use a rich set of real world data (with impacts from tight transit capacities) to more carefully 

examine, calibrate and validate the above models. 

 

Appendix A: the KKT condition of the modified BMW model  

                                                  (A.1) 

                 (A.2) 

                   (A.3) 

                    (A.4) 

                                           (A.5) 

                                                      (A.6) 

                                                    (A.7) 
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Table 1. Related studies on equilibrium, capacity constraint, or time-dependent travel demand in transit systems 

Paper Problem type 
User equilibrium vs. System 

Optimal  

Capacity 

constraint 
Demand 

Space-time 

network 
Solution method 

Nguyen and 

Pallottino 

(1988) 

Transit assignment 
Strategy-based UE represented 

by variational inequality 
No Static  No 

Shortest hyperpath 

algorithm 

Spiess and 

Florian (1989) 
Transit assignment 

Strategy-based UE represented 

by one convex cost differentiable 

problem  

No Static  No 

Linear 

approximation based 

algorithm 

De Cea and 

Fernandez 

(1993) 

Transit assignment 

Volume-delay function-based 

UE represented by variational 

inequality 

No Static  No 
Diagonalization 

algorithm 

Lam et al. 

(1999) 
Transit assignment Generalized Stochastic UE 

Modified 

link cost 

function 

Static No 
Lagrangian 

algorithm 

Nguyen et al. 

(2001) 
Transit assignment 

Nash equilibrium represented by 

variational inequality 

Modified 

link cost 

function 

Time-

dependent 
No 

Column generation 

scheme 

Nuzzolo et al. 

(2001) 
Transit assignment 

Dynamic Stochastic user 

equilibrium 
No 

Responsive 

time-

dependent 

Yes 

Iterative algorithm 

with network 

loading 

Gao et al. 

(2004) 

Transit network 

design 

Volume-delay function-based 

UE represented by variational 

inequality 

No Static  No 

Heuristic algorithm 

based on sensitivity 

analysis 

Poon et al. 

(2004) 
Transit assignment Dynamic user equilibrium Tight 

Time-

dependent 
No 

Iterative algorithm 

with network 

loading 

Hamdouch et 

al. (2004) 
Transit assignment 

Strategy–based UE represented 

by variational inequality 
Tight Static No 

Iterative algorithm 

with network 

loading 

Cepeda et al. 

(2006) 
Transit assignment 

Strategy–based UE represented 

by gap function 

Modified 

link cost 

function 

Static No 

Method of 

successive average 

(MSA)  

Tian et al. 

(2007, 2009) 
Transit assignment 

Dynamic generalized user 

equilibrium 

Modified 

link cost 

function 

Time-

dependent 
No Optimization solvers 

Hamdouch 

and 

Lawphongpan

ich (2008) 

Transit assignment 

Strategy–based Dynamic UE 

represented by variational 

inequality 

Tight 
Time-

dependent 
Yes 

Method of 

successive average 

(MSA) with network 

loading 

Nuzzolo et al. 

(2012) 
Transit assignment 

Dynamic Stochastic user 

equilibrium 
Tight 

Responsive 

time-

dependent 

Yes 

Iterative algorithm 

with network 

loading 

Niu and Zhou 

(2013) 

Transit service 

network design 

(Timetable 

optimization) 

System-optimal Tight 
Time-

dependent 
Yes Genetic algorithm 

Hamdouch et 

al. (2014) 
Transit assginment Strategy–based Stochastic UE Tight 

Time-

dependent 
Yes 

Iterative algorithm 

with network 

loading 

Szeto and 

Jiang (2014a) 
Transit assignment 

Approach-based UE represented 

by variational inequality 

Modified 

link cost 

function 

Static No 
Extragradient 

method 

Szeto and 

Jiang (2014b) 

Transit network 

design 
System-optimal, Bi-level model Tight Static No 

Hybrid artificial bee 

colony algorithm 

Niu et al. 

(2015) 

Transit service 

network design 

(Timetable 

optimization) 

System-optimal Tight 
Time-

dependent 
Yes Optimization solvers 

Verbas and 

Mahmassani 

(2015)  

Transit service 

network design 

(Frequency 

allocation) 

Dynamic user equilibrium Tight 

Responsive 

time-

dependent  

No 

Heuristic method 

and simulation via 

bi-level 

programming 

Liu and Zhou 

(2016) 

Transit service 

network design 

Capacitated network equilibrium 

with boundedly rational agents  
Tight 

Time-

dependent 
Yes 

Lagrangian 

decomposition 
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Table 2. Indices, sets, parameters and variables 

Indices Definition    ,    Index of nodes,                Index of physical link between two adjacent nodes,           Index of agents,    , defined based on each (time-dependent) OD pair   Index of OD pairs,       Index of path set      Index of a path       Index of origin node of agent        Index of destination node of agent       Index of time intervals in the space-time network 

Sets    Set of nodes in the physical transportation network    Set of links in the physical transportation network   Set of Origin-Destination (OD) pairs   Set of agents    Set of paths of OD pair      Set of current links in the physical transportation network    Set of potential built links in the physical transportation network           Set of links in the     path of OD pair      of agent           Set of possible paths of OD pair      of agent     Set of  vertices in the space-time network   Set of  edges/arcs in the space-time network 

Parameters     Travel demand of OD pair            
 Path-link incidence index of route   of OD pair   on link              Capacity of link                  Capacity of traveling arc           in the space-time network      The indifference band or tolerance value of agent      The indifference band of OD pair        Construction cost of link         Total financial budget   An assumed large value as an auxiliary parameter     The departure time of agent       The assumed arrival time of agent            Travel cost of traveling arc           in the space-time network   The time horizon in the space-time network        Budget time of all agents of OD pair   at departure time         Path flow of path p of OD pair   

Variables       Travel cost of link              Generalized travel cost of link           Path cost of agent   which departs from OD pair      The minimal path travel cost of OD pair           Path cost of path   of OD pair   of agent            if agent   is assigned on link      ;    otherwise      Traveler flow on link               if physical link (     is decided to be constructed in the physical transportation network;    otherwise             , if Agent   is assigned on traveling/waiting arc           in the space-time network;    

otherwise             if service arc (         is decided to be operated;    otherwise 
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Table 3. Comparison results of different cases for the network design problem 

Cases 1

2

3

4

(3,1)

(1,1)

(1,1)

(4,1)

(Link Cost =7, Link Capacity =1)

(link cost, link capacity)

 
Without link     

(link cost, link capacity)

1

2

3

4

(3,1)

(1,1)

(1,1)

(1,1)

(4,1)

(Link Cost =7, Link Capacity =1)

 
With link     

Path 1

 

Path 2 

 

Path 3

 

Total Cost   Gap 

Path 1

 

Path 2 

 

Path 3

 

Path 4

 

Total Cost   Gap 

1. Modified 

BMW             4                 3   

2. System 

Optimal             4                 3   

3. Self-disutility 

minimization             4                  3   

4. CNEBRA 
(0,0) 

          4                 3     

5. CNEBRA 
(0,1) 

            4               3     

6. CNEBRA 
(0,4) 

            4                  3         
       

4   

7. CNEBRA 
(2,4) 

            4                 3         
       

4                  3         
       

4   
               3                  3   

CNEBRA (0,1): one agent’s indifference band value is 0, and the other one’s is 1;    One agent will choose the corresponding path;     No agent will choose the corresponding path;    : Not applicable. There is no feasible solution  
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Table 4. Possible chosen path set of agent   under different network design decisions 

Network design 

decision 

The least path 

cost   

Rational bound        The tightest constraint 

of boundedly rational 

travel decision rule 

Feasible path set of 

agent         ,        5 6 Inequality (17.a)  Path 1       ,        3 4 Inequality (17.b) Path 2       ,        4 5 Inequality (17.c) Path 3 and path 1       ,        3 4 Inequality (17.b) Path 2 and path 3 
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Table 5. Vehicle capacity and its scheduled travel time 

Transit line with its vehicle 
Departure 

Time 

Vehicle 

Capacity 

Schedule Travel Time 

Link (1,2) Link (2,3) Link (1,3) 

Existing 

Line(     ) 

Vehicle 1   0 1 1 2   

Vehicle 2 2 2 1 2   

Potential 

Line      Vehicle 3 1 1     3 
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Table 6. Assignment result comparison of scenarios with and without adding new line 

Scenarios 
Agent ID Agent 1 Agent 2 Agent 3 

Indifference band 0 2 2 

No new 

line 

Inequality of boundedly 

rational travel decision rule 
                     

Path node sequence 
(1,0)→(2,1) 

→(3,3) 
(1,0)→(1,1) →(1,2) 

→(2,3) →(3,5) 
(1,0)→(1,1) →(1,2) 

→(2,3) →(3,5) 
Total cost 13 

Adding 

new line 

Inequality of boundedly 

rational travel decision rule 
                     

Path node sequence 
(1,0)→(2,1) 

→(3,3) 
(1,0)→(1,1) →(3,4) 

→(3,5) 
(1,0)→(1,1) →(1,2) 

→(2,3) →(3,5) 
Total cost 12 
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Table 7. The objective values of   ,   , and the lower bound during 10 iterations 

Iterations 1 2 3 4 5 6 7 8 9 10    12 15.5 18.5 21.93 21.45 22.07 21.95 22.36 22.04 22.35    7.7 8.9 10.9 10.47 9.72 10.32 10.08 10.51 10.14 10.47     4.3 6.6 7.6 11.47 11.73 11.75 11.87 11.85 11.90 11.88 
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Table 8. Hypothetic existing transit service arcs 

Service Arc Start Time End Time Service Arc Start Time End Time 

(1,6) 0 4 (4,8) 16 25 

(6,9) 4 11 (2,3) 15 28 

(1,6) 15 19 (3,4) 28 31 

(6,9) 19 26 (4,8) 31 40 

(1,6) 30 34 (2,3) 30 43 

(6,9) 34 41 (3,4) 43 46 

(1,5) 0 15 (4,8) 46 55 

(5,8) 15 30 (2,7) 0 13 

(1,5) 15 30 (7,9) 13 20 

(5,8) 30 45 (2,7) 15 28 

(1,5) 30 45 (7,9) 28 35 

(5,8) 45 60 (2,7) 30 43 

(2,3) 0 13 (7,9) 43 50 

(3,4) 13 16 
   

 

  



29 

 

Table 9. Potential open transit service arcs 

Service 

Arc 

Start 

Time 

End 

Time 

Service 

Arc 

Start 

Time 

End 

Time 

Service 

Arc 

Start 

Time 

End 

Time 

(6,5) 4 10 (5,4) 10 16 (7,8) 13 18 

(6,5) 19 25 (5,4) 25 31 (7,8) 28 33 

(6,5) 34 40 (5,4) 40 46 (7,8) 43 48 
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Table 10. Station storage capacity 

Station 1 2 3 4 5 6 7 8 9 

storage capacity 40 40 30 30 30 30 30 M M 
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Table 11. Time-dependent OD demand 

OD 
Departure 

Time 1 

Demand (agents) Departure 

Time 2 

Demand(agents) Departure 

Time 3 

Demand(agents) 

L1 L2 L3 L1 L2 L3 L1 L2 L3 

1→8 0 10 15 15 15 10 10 10 30 10 10 10 

1→9 0 10 15 20 15 10 10 15 30 10 10 10 

5→8 15 5 10 10 30 5 5 5 45 5 5 5 

2→8 0 10 15 15 15 10 10 10 30 10 10 10 

2→9 0 10 15 20 15 10 10 15 30 10 10 10 

3→8 13 5 10 10 28 5 5 5 43 5 5 5 
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Table 12. Two high level time-dependent OD demand 

OD 
Departure 

time 1 

Demand(agents) Departure 

time 2 

Demand(agents) Departure 

time 3 

Demand(agents) 

L4 L5 L4 L5 L4 L5 

1→8 0 60 75 15 40 50 30 40 50 

1→9 0 80 100 15 60 75 30 40 50 

5→8 15 40 50 30 20 25 45 20 25 

2→8 0 60 75 15 40 50 30 40 50 

2→9 0 80 100 15 60 75 30 40 50 

3→8 13 40 50 28 20 25 43 20 25 
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Table 13. Number of agents with a specific indifference value for scenario 5 

OD 
Departure 

time 1 

Indifference value Departure 

time 2 

Indifference value Departure 

time 3 

Indifference value 

0 5 10 0 5 10 0 5 10 

1→8 0 5 5 5 15 5 0 5 30 5 0 5 

1→9 0 5 5 5 15 5 0 5 30 5 0 5 

5→8 15 5 0 5 30 0 0 5 45 0 0 5 

2→8 0 5 5 5 15 5 0 5 30 5 0 5 

2→9 0 5 5 5 15 5 0 5 30 5 0 5 

3→8 13 5 0 5 28 0 0 5 43 0 0 5 
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Table 14. System performance of different scenarios 

Scenario No. Indifference value Total system travel time 

1 7 Infeasible 

2 8 3500 

3 9 3500 

4 10 3325 

5 Specified 3400 

6 System Optimal 3325 
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Table 15. Transit travel OD demand input of two scenarios 

Networks Demand time period Total traffic demand Transit demand (10%) Transit demand (5%) 

Salt Lake City 15pm-18pm 1.35 million agents 135,000 agents 67,500 agents 

Phoenix all day (24 hours) 10.5 million agents 1.05 million agents 525,000 agents 
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Table 16. Transit network information 

Transit networks Number of stops 
Number of links connecting two joint stops  

at each transit line 
Number of zones 

Salt Lake City 6393 7219 2302 

Phoenix 6788 7015 3022 
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Table 17. CPU computation time of one iteration in the Lagrangian relaxation approach 

Transit networks Scenario 1: Transit demand (10%) Scenario 2: Transit demand (5%) 

Salt Lake City 2 m 11 s 1 m 22 s 

Phoenix 12 m 30 s 6 m 45 s 
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Fig. 1 One simple illustrative network modified from Correa et al.  (2004) 
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Fig. 3 Illustration of physical transit network, corresponding space-time network and assignment results 
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Fig. 4 Flowchart of solving the relaxed problem under Lagrangian relaxation framework 

  



43 

 

[station storage capacity]

(travel time, vehicle capacity)

1

2

1'

(3, 5)

[10]

[10]

[∞]

(1, 7)

1

2

(3, 5)

[10]

[10]

2

1'
Time2 3 4 510

(travel cost, capacity)

(0, 10)(0, 10)

6

(1, ∞)(1, ∞)

1

(1, 7) (1, 7)

(3, 5)

(1, 10) (1, 10)

(3, 5)

 (a) physical transit lines (b) corresponding space-time network
 

Fig. 5 original and modified space-time networks for modeling  
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Fig. 6 Modified space-time network with early and later arrival penalty arcs  
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Fig. 7 The comparison between the lower bound and the optimal 
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Fig. 8 Hypothetic Sioux-Fall transit network 

  



47 

 

1

5

6

8

9

7

4

3

2

50 1510 2520 3530 4540 5550 60

Activity location Service arc of line 1 Service arc of line 2 Service arc of line 3

Service arc of line 4 Potential open service arc Virtual waiting arc

Station

Time

 
Fig. 9 The corresponding space-time transit service network 
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(a) Demand level 1 (b) Demand level 2

(c) Demand level 3

( case i )

( case ii )

( case iii )

Fig. 

10 Comparison of the system-wide travel time of the three cases under three demand levels 
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Fig. 11 Comparison on CPU computation time under different demand levels 
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Fig. 12 Comparison on system-wide travel time under different vehicle capacities 
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Fig. 13 Salt Lake City and Phoenix regional transit feed data visualized in Google Earth, respectively 

 


