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We study four well-known capacities of a two-parameter family of qubit Pauli channels. These are
the channels which are covariant under the SO(2) group and contain the depolarizing channel as a
special case. We find exact expressions for the classical capacity and entanglement assisted capaci-
ties, and analytically determine the regions where the quantum capacity of the channel vanishes. We
then use a flag extension to find upper bound for the quantum capacity and private capacity of these
channels in the entire region of parameter space and also obtain the lower bound for the quantum
capacity by calculating the single shot quantum capacity numerically. In conjunction with previous
results on depolarizing channels, our result is one step forward for determining the capacities of the
full Pauli channel.

I. INTRODUCTION

For a wide range of tasks related to storing, processing and communicating information, protection of the careers
of information from environmental noise is a central issue. Many efforts have been made to realize and implement the
techniques of this protection and also to understand the fundamental limits of our ability to prevent the information
from being ruined by the noises. In the quantum domain, where classical or quantum information are encoded into
quantum states, the effect of environmental noise is modeled by a Completely Positive Trace-Preserving (CPTP) map
or quantum channel for short. The capacity of a channel then determines the ultimate rate at which a sender can
reliably transmit information to a receiver over that channel, where it is taken into account that the sender and the
receiver can respectively use arbitrary encoding and decoding procedures.

In contrast to classical information theory where there is a unique definition of classical capacity [1], in the quantum
domain, depending on the auxiliary resources available (e.g. shared entanglement and classical communication),
allowed types of encoding and decoding (e.g separable or entangled encoding) and the types of information (e.g.
classical or quantum) which is to be transferred [2], we encounter different operational definitions of capacity. There
is usually a long route from these operational definitions to closed formulas for determination of these capacities.
Generally for a quantum channel Λ, the final expression of these capacities take the form

Cr(Λ) = lim
n−→∞

1

n
Ξr(Λ

⊗n) (1)

where the quantity Ξr depends on the type of capacity r which is to be calculated and Ξr(Λ) itself is obtained
by an optimization over an ensemble of states. In other words for each kind of capacity, the function Ξr takes
a specific form derived from the operational definition of that kind of capacity. Even then, calculation of these
closed formulas are not always tractable analytically, except in some special cases [3–14]. In fact the regularized
capacity should be denoted by C∞r to emphasize the necessity of the limiting procedure, however we follow the usual
nomenclature and denote it simply by Cr. The regularization, i.e. the limit n −→ ∞ is necessary since in the
encoding and decoding procedures at the beginning and end of the channel, one can in principle use infinitely long
sequences of entangled states and entangled measurements respectively. Needless to say, this regularization procedures
is extremely difficult if not impossible. The superadditivity problem refers to the situation where entangled input
states and entangled measurement can increase a specific type of capacity of a channel. When superadditivity holds,
it means that Ξr(Λ

⊗n) 6= nΞr(Λ) and hence there is no way to bypass the limiting procedure n −→∞. Investigation
of superadditivity and other properties like superactivation, and causal activation [15, 16], which have no classical
counterpart comprises an important chapter in the field of quantum information theory with many inter-related
contributions, a chapter which is still growing . The main question of additivity is whether or not a certain quantity
Ξ adds up when we take the tensor product of two quantum channels, i.e. whether or not

Ξr(Λ1 ⊗ Λ2)
?
= Ξr(Λ1) + Ξr(Λ2). (2)

The quantity Ξr can take different forms, depending on the context, i.e. it can be the minimum output entropy,
or it can be the Holevo quantity or it can be a generalization of Holevo quantity, where the Shannon entropy

S(ρ) := −Tr(ρ log ρ) is replaced [17] by the Renyi entropy Sp(ρ) := Trρp

1−p . In an extensive effort for the study of

additivity conjectures, it has been found that some of these conjectures are indeed equivalent to each other [18] and
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some others have been disproved by finding counter-examples [19–25]. The general result is that for a generic quantity
Ξ and a generic channel Λ, the additivity property does not hold and only in certain cases, one can benefit the addi-
tivity property to calculate certain capacities of certain channels [26–33]. For a review see ([34]). In most of the other
cases, one has to suffice to compute upper and lower bounds for the capacity. We will see examples of this in the sequel.

Even if one restricts oneself to calculation of single shot capacites, C1
r , one is still faced with an obstacle which

is the absence of concavity of Ξ(Λ) for certain functions. In this case there is no simple clue for finding the global
maximum and hence one should perform an optimization over a very large set of parameters [35] [36].

It is therefore no surprise that for a qubit channel as simple and as ubiquitous as the Pauli channel

Λ(ρ) = p0ρ+ p1XρX + p2Y ρY + p3ZρZ, (3)

nontrivial results exist only for special one-parameter classes, like the depolarizing channel [7] which has only one
parameter. It is therefore desirable to calculate these capacities for a wider class of channels, which due to their
symmetry properties allow exact calculations. One can then hope that these results, together with continuity property
of the capacity, will provide insight for the capacities of the full 3-parametric Pauli channel.

In this paper, we analyse the classical, entangled assisted, quantum and private capacities of the covariant Pauli
channel. This is a subclass of Pauli channels defined as

Λ(ρ) = p0ρ+ p1(XρX + Y ρY ) + p3ZρZ, (4)

subject to the trace-preserving condition, p0 +2p1 +p3 = 1. In contrast to the depolarizing channel which is covariant
under the full SU(2) ∼ SO(3) rotations, this channel is covariant only under rotations around the third axis, i.e.

Λ(Uz(θ)ρU
†
z (θ)) = Uz(θ)Λ(ρ)U†z (θ), (5)

where Uz(θ) = eiθ
Z
2 is an arbitrary rotation around the z axis. Calculation of capacities of this channel will bring

us one step closer to the calculation of the general Pauli channel [37] and in fact every qubit channel. The latter
statement is the result of a theorem [38] according to which any qubit channel can be twirled to a Pauli channel with
no-higher quantum capacity.

The structure of this paper is as follows: In section (II), we review the concepts of complement of a general quantum
channel, and relate the covariance properties of a channel with that of its complementary channel. In section (III)
we restrict ourselves to the qubit Pauli channel and analyse in detail its U(1) ∼ SO(2) covariance properties. In
particular this study reveals some symmetries in the spectrum of the output states for both the channel and its
complement which will play a crucial role in determining exact expressions for the capacities. Finally, in section (IV)
we will investigate these capacities for the covariant Pauli channel. In particular, we exactly calculate the classical
and entanglement-assisted capacities and use flag extension to find upper and lower bounds for the quantum and
private capacity of this channel. The paper ends with a discussion.

II. THE COMPLEMENT OF A GENERAL QUANTUM CHANNEL

Calculation of many types of capacities reduces to optimization of quantities related to both the channel and its
complement. Therefore in this subsection we review the concept of the complement of a channel and investigate how
the covariance and symmetry properties of a channel are reflected in its complement.

For a Hilbert space H, we denote by L(H) the space of linear operators on H and by L+(H) the set of positive
operators on H. A quantum channel is a completely positive trace preserving map with input system S and output
system S

′
Λ : L+(HS) −→ L+(HS′ ). If we denote the environment of the input and output systems as E and E

′
as

in figure (1), we can write the channel’s expression in the Stinespring form:

Λ(ρ) = trE′(V ρV †) (6)

where V is an isometry from H+
S to H+

S′ ⊗H+
E′ . In this setup, the complementary channel Λc : L+(HS) −→ L+(HE′ )
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FIG. 1. (Color Online) Spaces of the input and output systems (S, S′) and environments (E,E′) and the channels transforming
their states (Λ,Λc) (eqs. (6) and (7)) .

is:

Λc(ρ) = trS′(V ρV †) (7)

which is a map from the input system to the output environment (figure 1). The complement of a quantum channel
is not unique, but they are connected to each other by isometries [39]. The Kraus operators of the channel Λ and its
complement Λc are related as follows [40]:

Λ(ρ) =
∑
α

KαρK
†
α

Λc(ρ) =
∑
i

RiρR
†
i

(Ri)α,j = (Kα)i,j

(8)

Degradable and Anti-degradable Channels: The channel Λ is called degradable if there exists another CPTP
map ε : L+(HS′) −→ L+(HE′) such that ε ◦ Λ = Λc. On the other hand, Λ is said to be anti-degradable if there
exists a CPTP map η : L(HE′) −→ L(HS′) such that η ◦ Λc = Λ. (figure 1). A natural question is that what type of
covariance is induced on the complement of a quantum channel, by the covariance of the channel itself. We present
the answer to this question in the following theorem.

Theorem 1. Let a general quantum channel Λ(ρ) =
∑
αKαρK

†
α be G− covariant in the sense that

Λ
[
U(g)ρU†(g)

]
= V (g)Λ(ρ)V †(g) ∀ g ∈ G, (9)

where U(g) and V (g) are two representations of the group element g in a group G. Then the complement channel is
covariant in the following form

Λc
[
U†(g)ρU(g)

]
= Ω†(g)Λc(ρ)Ω(g) ∀ g ∈ G, (10)

where Ω(g) is the representation defined in the following form

V †(g)KαU(g) =
∑
β

Ωα,β(g)Kβ . (11)

Proof. We start from (11) which is a consequence of the covariance of the channel Λ and use the relation (8) between
the Kraus operators of the channel and its complement:

(Ri)α,j ≡ (Kα)i,j =
∑
β

Ωα,β(V KβU
†)i,j . (12)
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Expanding the right hand side and once again using (8), we find

(Ri)α,j =
∑
β,m,n

Ωα,βVim(Kβ)m,nU
†
n,j

=
∑
β,m,n

Ωα,βVim(Rm)β,nU
†
n,j

=
∑
m

(ΩRmU
†)α,jVi,m. (13)

Inserting this in the Kraus representation of the complement channel, we find[
Λc(ρ)

]
α,β

=
∑
i

(Ri)α,jρjk(Ri)β,k =
∑
i,m,n

(ΩRmU
†)α,jVi,mρjk(ΩRnU†)β,kVi,n. (14)

Using the unitarity of V , the right hand side is simplified and we find[
Λc(ρ)

]
α,β

=
∑
m,n

(ΩRmU
†)α,jρjk(UR†mΩ†)k,β , (15)

which leads to the final result, namely

Λc(ρ) = ΩΛc(U†ρU)Ω†. (16)

This proves the theorem.

With the same type of calculation, one can prove the following theorem:

Theorem 2. Let a channel have the property that

Λ(ρ∗) = Λ(ρ)∗ (17)

where ∗ means complex conjugation. Then the complement of the channel has the following property

Λc(ρ∗) = STΛc(ρ)∗S∗ (18)

where S is a matrix which effects the following

K∗α =
∑
β

SαβKβ . (19)

Proof. Let the Kraus operators of the channel be as before. Property (17) means that∑
α

Kαρ
∗K†α =

∑
α

K∗αρ
∗KT

α , (20)

which is true only if the two sets of Kraus operators are related by a unitary transformation as in (19). The
correspondence (8) then imposes the following condition

(Ri)
∗
αj =

∑
β

S∗αβ(Ri)βj (21)

which after inserting into the definition of the complementary channel and straightforward calculations proves (18).

We now discuss the properties of the covariant Pauli channel and its complement.



5

III. THE COVARIANT PAULI CHANNEL AND ITS SYMMETRIES

Consider first the general Pauli channel, defined as

Λ(ρ) = p0ρ+ p1XρX + p2Y ρY + p3ZρZ, (22)

where X,Y and Z are the Pauli matrices and p0 +p1 +p2 +p3 = 1. This channel is covariant under the discrete Pauli
group, that is Λ(gρg†) = gΛ(ρ)g†, where g ∈ {±1,±i}×{I,X, Y, Z}. This covariance entails that the spectrum of the
output state of the channel and its complement are invariant under inversions with respect to all the three axes, that
is Spect(Λ(ρ(x, y, z)) = Spect(Λ(ρ(−x,−y, z)) and similary for the other two axes. Moreover, the channel has also
the symmetry (17), which is due to the property σ∗i = ±σi. The combination of these two symmetries entails that
the spectrum of the output state of the channel and its complement are invariant under the transformation r −→ −r.
When p1 = p2, which is the case under study in this work, the channel (22), has a larger covariance under a continuous
one-parameter group,

Λ(Uz(θ)ρUz(θ)
†) = Uz(θ)Λ(ρ)Uz(θ)

† ∀ Uz(θ) ∈ SO(2), (23)

where Uz(θ) = e
iθZ
2 . This extra covariance, then implies a further symmetry in the spectrum of the channel and its

complement, namely that for any input state with Bloch vector r = (x, y, z), the eigenvalues of the output state of Λ

and its complementary depend only on
√
x2 + y2 and z.

Furthermore if we temporarily denote this channel by Λp0,p3 , it is readily seen that it has the nice property that

Λp3,p0(ρ) = Z Λp0,p3(ρ) Z. (24)

These symmetries will be important in the optimization which is needed for the calculation of capacities. Furthermore,
the symmetry (24) implies that all the capacities of the channel are symmetric with respect to the exchange of p0

and p3. For future reference, here we state the explicit form of the output state of the channel for an input state

ρ = 1
2

(
1 + z x− iy
x+ iy 1− z

)
:

Λ(ρ) =
1

2

[
1 + (p0 + p3 − 2p1)z (p0 − p3)(x− iy)

(p0 − p3)(x+ iy) 1− (p0 + p3 − 2p1)z

]
. (25)

The eigenvalues of this output state will be needed in the calculation of capacities, and are given by

Spec(Λ(ρ)) =
1

2
(1±

√
(p0 − p3)2(x2 + y2) + (2p0 + 2p3 − 1)2z2). (26)

It is in order to find the complement of this channel and determine its symmetries. Using (8), we find the Kraus
operators of the complement of the covariant Pauli channel

R1 =


√
p0 0
0

√
p1

0 −i√p1√
p3 0

 , (27)

R2 =

 0
√
p0√

p1 0
i
√
p1 0

0 −√p3

 , (28)
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which maps the same input state onto

Λc(ρ) =

 p0
√
p0p1x

√
p0p1y

√
p0p3z√

p0p1x p1 −ip1z i
√
p1p3y√

p0p1y ip1z p1 −i√p1p3x√
p0p3z −i

√
p1p3y i

√
p1p3x p3

 . (29)

Relation (10) now indicates that this channel has the covariance

Λc(ρx′,y′,z) = Ω†Λc(ρx,y,z)Ω, (30)

where (x′, y′) = (x cos θ + y sin θ,−x sin θ + y cos θ) and

Ω =

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (31)

IV. CAPACITIES OF THE COVARIANT PAULI CHANNEL

For a quantum channel, one can define at least four different capacities [41]. These are the ultimate rates at which
classical or quantum information can be transferred from a sender to a receiver per use of the channel by using different
kinds of resources. There is a long route for converting these operational definitions to concrete and closed formulas
for the capacities. Here we do not start from the operational definition for which the reader can refer to many good
reviews [41–43], rather we start from the closed formulae which have been obtained for the calculation of capacity
in each case [35, 44–46]. Even after having these closed formulas, it is in general very difficult to find explicit values
for the capacities in terms of the parameters of the channel. Besides super-additivity, the important property whose
presence (or absence), simplifies(or not) the calculation of some of these capacities is the concavity of the relevant
quantity which is to be maximized. We will see this in the following subsections, where we discuss the four capacities
of the covariant Pauli channel.

A. Classical capacity

This is the ultimate rate that classical messages, when encoded into quantum states, can be transmitted reliably
over a channel. It is given by [44]:

Ccl(Λ) = lim
n−→∞

1

n
χ∗(Λ⊗n), (32)

where χ∗(Λ) = maxpi,ρi χ{pi,Λ(ρi)} [42] and χ{pi, ρi} is the Holevo quantity of the output ensemble of states {pi, ρi}
which is defined as

χ({pi, (ρi)}) := S(
∑
i

piρi)−
∑
i

piS(ρi). (33)

Here S(ρ) = −Tr(ρ log ρ) is the von-Neumann entropy [47]. In general χ∗ is superadditive, meaning that nχ∗(Λ) ≤
χ∗(Λ⊗n), which makes the regularization in equation (32) necessary for the calculation of the capacity [36]. However
for unital qubit channels, which is the case at hand, it has been shown [30] that χ∗(Λ) is additive, and hence
Ccl(Λ) = χ∗(Λ). It has been shown in [42] that one can only maximize χ{pi,Λ(ρi)} over ensembles of pure input
states. To find this ensemble, we proceed as follows. Let |φ〉 be a state which minimizes the output entropy, i.e.
S(Λ(φ)) ≤ S(Λ(ρ)) ∀ ρ. Then in view of the explicit form of Λ(ρ) in (25) (or the invariance of its spectrum under
r −→ −r), it is clear that |φ⊥〉 is also a minimum output entropy with exactly the same value. Therefore we take the
ensemble to be an equal mixture of |φ〉 and |φ⊥〉. For this ensemble the first term of the expression of χ{pi,Λ(ρi)} is
maximized, since 1

2 |φ〉〈φ|+
1
2 |φ
⊥〉〈φ⊥| = I

2 and Λ being a unital channel maps this state to I
2 . Therefore the problem

reduces to finding the single state |φ〉 which minimizes the output entropy. In view of the SO(2) covariance of the
channel, we take the Bloch vector of this state to lie in the xz plane, i.e. r = (sin θ, 0, cos θ), then from (26) we find
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the eigenvalues of the output state

λ1,2 =
1

2
(1±

√
(p0 − p3)2sin2θ + (2p0 + 2p3 − 1)2cos2θ). (34)

Minimization of the output entropy is equivalent to maximizing the expression under the square root or the function

f(θ) = (2p0 + 2p3 − 1)2 + sin2 θ
[
(p0 − p3)2 − (2p0 + 2p3 − 1)2

]
. (35)

This gives the optimum value of θ as

θopt =

{
π
2 , if (p0 − p3)2 ≥ (2p0 + 2p3 − 1)2

0, π, otherwise.
(36)

which leads to the expression of the capacity as

Ccl(Λ) = 1− h(ξ), (37)

where h(ξ) = −ξ log ξ − (1− ξ) log(1− ξ) is the binary entropy and

ξ =

{
1+p0−p3

2 if (p0 − p3)2 ≥ (2p0 + 2p3 − 1)2

p0 + p3 otherwise.
(38)

The two regions are shown in figure (2).

B. Entanglement-assisted capacity

This is the ultimate rate for transmitting classical information over a quantum channel when the sender and receiver
share an unlimited source of entanglement. Fortunately, it has been proved that finding this type of capacity does
not need a regularization and only needs a finite and convex optimization [45]:

CE(Λ) = max
ρ

I(ρ,Λ), (39)

where

I(ρ,Λ) = S(ρ) + S(Λ(ρ))− S(Λc(ρ)), (40)

is the quantum mutual information. The eigevalues of ρ, Λ(ρ) and Λc(ρ) are all invariant under the transformation Co-
variance and symmetries of the channel, leads to symmetries of the spectrum of output states under the transformation
r −→ −r. In conjunction with the concavity of the mutual information λ1I(ρ1,Λ) + λ2I(ρ2,Λ) ≤ I(λ1ρ1 + λ2ρ2,Λ),
this implies that the optimal state is nothing but the completely mixed state. In fact from the symmetry it is evident
that if a state ρ(r) maximizes the mutual information, then the state ρ(−r) also does, and from concavity one finds
that the maximally mixed state 1

2 (ρ(r) + ρ(−r)) = I
2 , is the global maximum of the mutual information. This gives

CE(Λ) = I(
I

2
,Λ) = 2 + p0log p0 + (1− p0 − p3)log

1− p0 − p3

2
+ p3log p3. (41)

C. Quantum capacity

This is the ultimate rate for transmitting quantum information and preserving the entanglement between the
channel’s input and a reference quantum state over a quantum channel. This quantity is described in terms of
coherent information [35]:

Cq(Λ) = lim
n→∞

1

n
J(Λ⊗n), (42)
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p0

p3

1
3

1
3

1

1

ξ = p0 + p3

ξ = p0 + p3
ξ = 1 + p0 − p3

2

ξ
=

1+
p 0

−p
3

2

FIG. 2. (Color Online) Two different regions for the Classical Capacity (??, 37). In each region, the classical capacity is given
Ccl = 1 − h(ξ) where h(ξ) is the binary entropy function.

where J(Λ) = maxρ J(ρ,Λ) and J(ρ,Λ) := S(Λ(ρ))−S(Λc(ρ)). It is known that J is superadditive, i.e. J(Λ1⊗Λ2) ≥
J(Λ1) + J(Λ2), rendering an exact calculation of the quantum capacity extremely difficult and at the same time

providing a lower bound in the form C
(1)
q (Λ) ≤ Cq(Λ) where C

(1)
q := J(Λ) is the single shot capacity. However if

the channel is degradable, then the additivity property is restored Cq(Λ) = C
(1)
q (Λ) [46], and the calculation of the

quantum capacity becomes a convex optimization problem.

For a channel like the covariant Pauli channel in (22), where we know that is not degradable [48], we have to be
content with partial results. In what follows we proceed to find partial and yet important information on the quantum
capacity. First we determine the regions where the channel has zero capacity and then in the complement of this
region, we find lower and upper bounds for the quantum capacity.

1. The zero capacity region

It is known that Entanglement breaking channels cannot preserve quantum correlations and thus their quantum
capacity is equal to zero [49]. We remind the reader that an Entanglement Breaking channel (EB) is one which
when acting on a state, breaks its entanglement with any other state. It is known that a channel Λ is entanglement
breaking if its Choi matrix defined as JΛ = 2(Λ ⊗ I)|φ+〉〈φ+| is a separable state for |φ+〉 a maximally entangled
state |φ+〉 = 1√

2
(|00〉+ |11〉). For checking this property, we use the Peres criteria [50] to determine the region where
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the following state is separable:

JΛ = 2Λ⊗ I(|φ+〉〈φ+|) =

p0 + p3 0 0 p0 − p3

0 2p1 0 0
0 0 2p1 0

p0 − p3 0 0 p0 + p3

 . (43)

The partial transpose of this matrix is

(I ⊗ T )JΛ =

p0 + p3 0 0 0
0 2p1 p0 − p3 0
0 p0 − p3 2p1 0
0 0 0 p0 + p3

 . (44)

whose eigenvalues (in view of the normalization p0 + 2p1 + p3 = 1) are given by

{p0 + p3, p0 + p3, 1− 2p3, 1− 2p0}. (45)

This shows that in the region

(p0 ≤
1

2
) ∧ (p3 ≤

1

2
),

the capacity of the channel is zero. This region is shown in figure (3). It turns out however that the zero-capacity
region is slightly larger than this. To this end we use another theorem [51] according to which any channel which is
anti-degradable, has zero capacity[51]. To check the anti-degradability of Λ, we use a criterion first proposed in [52].
According to this criterion, a channel is anti-degradable, if

tr(JΛ)2 − 4
√
det(JΛ) ≤ tr(Λ(I)2), (46)

where JΛ = d(Λ⊗ I)|φ〉〈φ| is the choi matrix. In our case:

JΛ =

p0 + p3 0 0 p0 − p3

0 2p1 0 0
0 0 2p1 0

p0 − p3 0 0 p0 + p3

 , (47)

whose trace and determinant are respectively given by tr(J 2
Λ) = 4p2

0 + 4p2
3 + 8p2

1, and det(JΛ) = 16 p0p3p
2
1. Using

(46), the anti-degradability condition becomes:

2(p2
0 + p2

3) + (1− p0 − p3)2 − 4(1− p0 − p3)
√
p0p3 ≤ 1. (48)

The region where this inequality holds is shown in figure (3) which includes the Entanglement-Breaking region.

2. Flag extension and upper bounding the quantum capacity

Outside the zero-capacity region, the quantum capacity can only be upper bounded. A novel technique for upper
bounding the quantum capacity is flag extension which has been successfully used for investigating various channel’s
quantum capacities [7][5][6]. For any channel written as the convex combination of other channels,

Λ(ρ) =
∑
i

piΛi(ρ), (49)

we can construct a new channel with a higher dimensional output Hilbert space:

Λf (ρ) =
∑
i

piΛi(ρ)⊗ σi, (50)
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p3

p0

EB

FIG. 3. (Color Online) Zero capacity regions: the entanglement breaking (EB) and anti-degradable (AD) regions are shown
in the parameters space. The curved dotted line indicates the solution of inequality (48).

where σi ∈ L+(HF ) are the flag states, HF is called the flag space, and Λf is called the flagged channel. Since
trFΛf = Λ, one has:

Cq(Λ) ≤ Cq(Λf ). (51)

Therefore by constructing a flag extension for the channel which is degradable, one can find the quantum capacity
of the flagged channel and upper bound the capacity of the original channel. In this regard, the following theorem is
notable [8]:

Theorem 3. [8] Suppose we have the channel

Λ(ρ) =
∑
i

piΛi(ρ), (52)

where all the Λi’s are degradable channels. Then the flag extension

Λf (ρ) =
∑
i

piΛi(ρ)⊗ |i〉〈i|, (53)

is a degradable channel and:

Cq(Λ) ≤ Cq(Λf ) =
∑

piCq(Λi). (54)

To use this theorem we need an appropriate convex decomposition of the covariant Pauli channel. One possible
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decomposition is:

Λ = (p0 + p3)Λ0 + 2p1Λ1, (55)

where

Λ0(ρ) =
1

p0 + p3
(p0ρ+ p3ZρZ), (56)

and

Λ1(ρ) =
1

2
(XρX + Y ρY ). (57)

First, we prove that these channels are degradable and then we use theorem (3) to obtain an upper bound for
the quantum capacity. We can analyse the degradability of Λ0 indirectly by checking the anti-degradability of
it’s complementary channel. The output state of the channel and its complementary and the Choi matrix of the
complementary channel are respectively:

Λ0(ρ) =
1

2

[
1 + z p0−p3

p0+p3
(x− iy)

p0−p3
p0+p3

(x+ iy) 1− z

]
, (58)

Λc0(ρ) =

[
p0

p0+p3

√
p0p3

p0+p3
z

√
p0p3

p0+p3
z p3

p0+p3

]
, (59)

JΛc0
=

α
2 αβ 0 0

αβ β2 0 0
0 0 α2 −αβ
0 0 −αβ β2

 , (60)

where α =
√

p0
p0+p3

and β =
√

p3
p0+p3

. One can easily see that tr(Λc0(I)2) = 4
p20+p23

(p0+p3)2 , tr(J 2
Λc0

) = 2 and det(JΛc0
) = 0.

The condition (46), reduces to the valid inequality (p0−p3)2 ≥ 0. This shows that Λc0 is anti-degradable which implies
that Λ0 is degradable. Also, since the channel Λ1 is unitarily equivalent to Λ0(p0 = p3), (i.e. Λ1 = XΛ0(p0 = p3)X,
this channel is also degradable. Therefore the flag extension

Λf = (p0 + p3)Λ0 ⊗ |0〉〈0|+ 2p1Λ1 ⊗ |1〉〈1|, (61)

is a degradable extension and eq. (54) applies to our channel. The single-shot quantum capacity of Λ0 is found from

Cq(Λ0) = max
ρ

[
S(Λ0(ρ))− S(Λc0(ρ))

]
. (62)

The explicit form of Λ0(ρ) and Λc0(ρ) in (58) and (59) now show that the output states of these channels are invariant
under the transformation (x, y, z) −→ (−x,−y,−z) which implies that the output state is ρopt = I

2 , leading to

Cq(Λ0) = S(Λ0(I/2))− S(Λc0(I/2)) = 1− h(
p0

p0 + p3
), (63)

where h(x) = −xlog(x)−(1−x)log(1−x) is the binary entropy. Also, this calculation directly shows that Cq(Λ1) = 0.
So, using (54), an analytic upper bound is derived for the covariant Pauli channel:

Cq(Λ) ≤ (p0 + p3)Cq(Λ0) = (p0 + p3)(1− h(
p0

p0 + p3
)) =: A. (64)

One can write this in a more informative way by redefining ε := p0−p3
p0+p3

which indicates the amount of asymmetry of
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A

A

cl

cl

FIG. 4. (Color Online) Two different regions for the best upper bound. In one region the best upper bound is given by A as
in equation (64) or (65) and in the other region, the classical capacity Ccl(Λ) = 1 − h(ξ), with ξ = 1+p0−p3

2
is the best upper

bound. The curved dotted boundaries depicts the solution of equation (75).

the channel. This leads to the following expression

Cq(Λ) ≤ (p0 + p3)Cq(Λ0) := (p0 + p3)(1− h(
1 + ε

2
)). (65)

Incidentally we note that for ε = 0, the upper bound is 0, which shows that the symmetric Pauli channel Λ(ρ) =
p0(ρ+ ZρZ) + p1(XρX + Y ρY ) has zero capacity. This is in accord with our previous result on zero-capacity region
shown in figure (3).
Note however that (55) is not the only convex decomposition of the channel. The channel has indeed another
decomposition, the other one being:

Λ = (p0 + p1)Λ2 + (p1 + p3)Λ3, (66)

where:

Λ2(ρ) =
1

p0 + p1
(p0ρ+ p1XρX), (67)

Λ3(ρ) =
1

p1 + p3
(p1Y ρY + p3ZρZ). (68)

The output of Λ2 and its complementary channel are respectively:

Λ2(ρ) =
1

2(p0 + p1)

[
1 + (p0 − p1)z (p0 + p1)x− i(p0 − p1)y

(p0 + p1)x+ i(p0 − p1)y 1− (p0 − p1)z

]
. (69)

Λc2(ρ) =
1

p0 + p1

[
p0

√
p0p1x√

p0p1x p1

]
, (70)
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By the same procedure followed for Λ0, the degradability condition of Λ2 reduces to the condition (p0−p1)2 ≥ 0 which
shows that Λ2 and thus its equivalent channel Λ3 (Λ3 = Y Λ2(p0 = p1, p1 = p3)Y ) are both degradable. According
to the invariance of the spectrum of (69) and (70) with respect to (x, y, z) −→ (−x,−y,−z) the optimal state is the
completely mixed state and:

Cq(Λ2) = (1− h(
p1

p0 + p1
)), (71)

Cq(Λ3) = (1− h(
p1

p3 + p1
)). (72)

This leads to the upper bound:

Cq(Λ) ≤ (p0 + p1)Cq(Λ2) + (p1 + P3)Cq(Λ3)

= (p0 + p1)(1− h(
p1

p0 + p1
)) + (p1 + p3)(1− h(

p1

p3 + p1
)) =: B. (73)

Before comparing A and B, we note that the classical capacity Ccl is also an upper bound on the quantum capacity,
so the upper bound for the quantum capacity is the following:

Cq(Λ) ≤ min{A,B,Ccl}, (74)

where A,B and Ccl are given respectively in (64), (73) and (37). Figure (4) shows the region where one of these
capacities is the upper bound. It is seen that B is never lower than the other two capacities and hence the comparison
is between A and Ccl. The regions are almost similar but not identical to those of exact classical capacity. The curved
boundary is the solution of the equation Ccl = A or more explicitly the following equation:

(p0 + p3)(1− h(
p0

p0 + p3
)) = 1 + (p0 + p3)log (p0 + p3) + (1− p0 − p3)log (1− p0 − p3), (75)

3. Lower bounding the Quantum capacity

A natural lower bound for the quantum capacity is the single shot capacity

C(1)
q (Λ) = max

ρ
J(ρ,Λ), (76)

where J(ρ,Λ) = S(Λ(ρ))−S(Λc(ρ)). Due to the superadditivity of the coherent information of the channel, we know

that C
(1)
q (Λ) ≤ Cq(Λ). The problem however is that for Λ, which is non-degradable, the coherent information is

not concave and the covariance of the channel does not entail a simple form for the optimal state, as it did for the
degradable channels Λ0 and Λ1. Therefore we have to resort to numerical calculations.

The eigenvalues of the channel’s output are given in (26) which due to the covariance, depend only on r =
√
x2 + y2.

The same is also true for the eigenvalues of the complementary channel (29), due to the induced covariance (30).
Denoting the eigenvalues of Λc(ρ) by µi, we can search for the optimum state among all Bloch vectors which have the

same value of r =
√
x2 + y2. The expression that we shall maximize is

J = −
2∑
i=1

λilog λi +

4∑
i=1

µilog µi, (77)

and the maximization needs to be done over r and z:

C(1)
q (Λ) = max

r,z
J(p0, p3, r, z). (78)

By doing this optimization numerically, we obtain a lower bound for the quantum capacity of the channel. Figure (5)
shows this the upper and lower bound for various values of ε as functions of p0 + p3.
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Cq(p0, p3)

Cq(p0, p3) Cq(p0, p3)

Cq(p0, p3)

p0 + p3 p0 + p3

p0 + p3 p0 + p3

ϵ = 0.4 ϵ = 0.6

ϵ = 0.8 ϵ = 0.95

FIG. 5. (Color Online) In all the figures, the upper curves show the best upper bound (eq.74) and the lower curves show the
best lower bounds (eq.78) of quantum capacity vs. p0 + p3 for fixed values of ε := p0−p3

p0+p3

D. Private capacity

This is the ultimate rate for transmitting classical information encoded in quantum states without leaking infor-
mation to the environment [35]:

Cp = lim
n−→∞

1

n
P (Λ⊗n), (79)

with P (Λ) = maxpi,ρi(χ{pi,Λ(ρi)} − χ{pi,Λc(ρi)}). As proved in [53], this quantity is super-additive and can not be
obtained explicitly. In comparison with quantum capacity, Cp(Λ) ≥ Cq(Λ) but for degradable channels we know that
Cp(Λ) = Cq(Λ) [46]. So, the upper bound for the quantum capacity of the channel (65)is also a valid upper bound
for the private capacity.

V. DISCUSSION

The theory of quantum communication is much richer than that of classical communication, due to the possibility
of entangled input states, entangled measurements and shared entanglement between the sender and the receiver.
This opens up completely new phenomena, like superadditivity, superactivation and causal activation which have no
counterpart in the classical world [15, 16]. In the present paper, our aim has been very limited. We have tried to
study the four conventional capacities of a specific class of quantum channels which are of great interest. This is the
family of of Pauli channels, defined by

Λ(ρ) = p0ρ+ p1(XρX + Y ρY ) + p3ZρZ, p0 + 2p1 + p3 = 1, (80)
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which we call the Covariant Pauli channel, due to its covariance with respect to the group of rotations around the z−
axis, Eq.(5) and its Z2 symmetry, Eq.(24). These family of channels include the depolarizing channel as a subset for
which similar studies have been carried out in [7]. This study therefore is an intermediate step toward the study of
the full Pauli channel.

We were interested in four conventional types of capacities of this channel which needed entropic optimizations.
These are the classical capacity C(Λ), entanglement assisted capacity CE(Λ), quantum capacity Q(Λ) and private
capacity Cp(Λ). As the complementary channel’s output entropy appears in most of these optimizations, we proved
a general theorem, theorem 1, on the connection between the covariance properties of a channel and its complement.
This theorem may find applications in other similar studies, even in contexts other than calculation of capacities.
Using this theorem and invoking the properties of unitality, covariance and symmetry of the channel, we could

a-calculate exact expressions for Ccl(Λ), Eq. (37),

b-calculate an exact expression of CE(Λ), Eq. (41),

c-find lower and upper bound for the Cq(Λ) and Cp(Λ), Figs. (5),

d-determine large regions in the parameter space, where Cq(Λ) is exactly zero, Fig. (4).

Usually it is extremely difficult or impossible to calculate capacities of quantum channels due to the super-additivity
problem, However in certain cases, the super-additivity obstacle is alleviated. This is the case for the classical
capacity of unital channels and the entanglement assisted capacity, which we invoked for (a) and (b). The important
quantum capacity Cq(Λ) however lies beyond exact calculation due to the super-additivty issue. Therefore for the
quantum capacity, we used flag-extension technique ([5]) and invoked the covariance of the channel and its complement,
combined with a brute force search to obtain upper and lower bounds, shown in figure (5). Finally we used a theorem
in ([51]) to find the regions where the channel is anti-degradable and hence its quantum capacity is exactly zero. It
will be interesting to extend these results to the general Pauli channel in higher dimensions. Also, one can slightly
deform the Landau-Streater channel

ΛLS(ρ) =
1

j(j + 1)
(JxρJx + JyρJy + JzρJz)

where Ja, a = x, y, z are the spin j rotation operators [54]. The quantum informational properties, including degradi-
bility and two types of capacities of this channel, which has full SU(2) covariance, has already been studied in ([12]).
One can slightly deform this channel and retain its covariance with respect to a subgroup of SU(2), and make similar
studies as in the present work. Furthermore, as figure (4) shows, the covariant Pauli channel is degradable on the
line p0 + p3 = 1. This means that near this line, the channel may be approximately degradable,[55], implying that
there exists a degrading channel Φ which upon composition with the channel Λ is ε-close in the diamond norm to the
complementary channel Λc, i.e. ‖Λc − Φ ◦ Λ‖♦ ≤ ε. Therefore, it may be possible to obtain slightly better bounds for
the quantum capacity near the line p0 + p3 = 1. We leave these investigations to a future publication.
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