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Capacities of Time-Varying Multiple-Access
Channels With Side Information

Arnab Das and Prakash Narayan, Fellow, IEEE

Abstract—We determine the capacity regions for a class of time-
varying multiple-access channels (TVMACs), when the underlying
channel state evolves in time according to a probability lawwhich is
known to the transmitters and the receiver. Additionally, the trans-
mitters and the receiver have access to varying degrees of channel
state information (CSI) concerning the condition of the channel.
Discrete-time channels with finite input, output, and state alpha-
bets are considered first. The special case of a TVMAC, with the
channel state process being a time-invariant, indecomposable, ape-
riodicMarkov chain, shows a surprising anomaly in that imperfect
transmitter CSI can cause the capacity under some distributions
for the initial state to be strictly larger than that under a stationary
distribution for the initial state. We also study a time-varying mul-
tiple-access fading channel with additiveGaussian noise, when var-
ious amounts of CSI are provided to the transmitters and perfect
CSI is available to the receiver, and the fades are assumed to be
stationary and ergodic. Implications for transmitter power control
are discussed.

Index Terms—Capacity, channel state information (CSI), fading
channel, multiple access, power allocation, time-varying channel.

I. INTRODUCTION

T
HIS paper constitutes a systematic study of the capacity
problem for a class of time-varying multiple-access chan-

nels (TVMACs), when varying degrees of side information
concerning the condition of the channel are provided to the
transmitters and the receiver. In these models, the probability
law characterizing the channel between the transmitters and
the receiver can change with time. This time-varying behavior
of the channel probability law is typically described in terms
of the evolution of an underlying channel “state,” which is
a description of the salient parameters of the TVMAC; the
corresponding side information concerning the channel state is
referred to as channel state information (CSI). An example of
a TVMAC which has received much attention recently arises
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in mobile wireless communication; here, owing to the mobility
of the users, the degradation of the transmitted signals due to
multipath, shadowing, and propagation losses, is time-varying.

Different statistical assumptions concerning the evolution of

the state of a TVMAC lead to different channel models. For in-

stance, the channel state may be assumed to remain constant, al-

beit unknown, throughout the duration of a transmission, giving

rise to a compound channel model (cf., e.g., [1], [2]). If, on the

other hand, the channel state is assumed to evolve in an arbi-

trary manner, thereby requiring an analysis under a “worst” con-

catenation of state realizations, then the appropriate model is

referred to as an arbitrarily varying channel (cf., e.g., [3], [4]).

Yet another approach, which we adopt, assumes that the channel

state evolves autonomously in accordance with a (known) prob-

ability law which allows the state at each time to depend on all

the past states, but not on the previous inputs or outputs of the

channel. Reliable rates of communication are then characterized

with the probability of decoding error being assessed as an av-

erage with respect to the probability law of the state sequence.

The relevant literature concerning time-varying channels, in

general, can be broadly classified into three categories, in terms

of the channel models considered or the nature of the problems

investigated. For a survey of such channels, and, in particular,

mobile wireless channels, the reader is referred to [5] (see also

[4]).

The first category, comprising the (single-sender) finite-state

channel (FSC) model and its variants, assumes finite channel

input and output alphabets, and a finite state space (cf., e.g.,

[6]). The capacity of an FSC, under various conditions, has

been determined in [1], [2], [6], [7]. Of particular importance

is a special class of FSCs consisting of indecomposable FSCs

(cf., e.g., [6]). The capacity of an indecomposable FSC when no

CSI is available to the transmitter and receiver, has been deter-

mined by Blackwell, Breiman, and Thomasian [7] and Gallager

[6]; in particular, it admits a “product–space” characterization

which does not depend on the initial state of the channel [6],

[7]. When the underlying state process is a time-invariant, in-

decomposable,1 aperiodic Markov chain, and the state at each

time does not depend on the past channel inputs or outputs,

the resulting indecomposable FSC, which is known as a finite-

state Markov channel (FSMC) (cf., e.g., Jelinek [9]), serves as

a useful model for mobile wireless channels [10], [11]. The ca-

pacity of an FSMC when perfect CSI is available at the trans-

mitter or receiver is determined in [6], [9], [12]; here, “single-

letter” capacity formulas are available only in the situation when

1AMarkov chain is indecomposable if it contains at most one closed commu-
nicating set of states. This definition differs slightly from that used traditionally
(cf. e.g., [8]).
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perfect CSI is provided to the receiver. From a practical stand-

point, perfect or instantaneous CSI is seldom available to ei-

ther the transmitter or the receiver. Recent works which deal

with associated issues include [13], where the capacity of an

FSMC is determined when perfect but delayed CSI is avail-

able to the transmitter and receiver; and [14], where the capacity

for a class of single-sender time-varying channels is evaluated

when the state process is stationary and ergodic, and perfect

CSI is available to the receiver; the transmitter CSI, on the other

hand, is noisy, and is subject to certain technical assumptions.

Some of themodels in our paper constitute generalizations to the

multiple-access situation of single-sender time-varying channel

models studied by Caire and Shamai [14].

The second category deals with the time-varying multiple-ac-

cess fading channel (TVFC), which serves as a (discrete-time)

model for the uplink of a mobile wireless channel with multiple

senders transmitting to a single base station [15], and subject to

frequency nonselective fading (see Section II for a precise def-

inition of the TVFC). Here, the positive real-valued fades ex-

perienced by the senders at each time can be regarded as the

state of the channel. Two simplifying assumptions, used exten-

sively in studying the TVFC, are: the state process is stationary

and ergodic, and the state at each time is fully known to the

receiver. Given these assumptions, the capacity region of the

TVFC when no CSI or perfect CSI is available to the transmit-

ters has a single-letter characterization (cf., e.g., [11], [15]–[18],

and references therein). For the single-sender TVFC, situations

where delayed but perfect CSI is available to the transmitter, or

when the transmitter CSI is not perfect but is known to satisfy

certain technical conditions, have been studied in [13] and [14],

respectively.

In the final category, multiple-access and single-sender chan-

nels have been studied under very general statistical conditions

by Han [19] and Verdú and Han [20], and capacity formulas

obtained in terms of normalized (product–space) information

densities. Although the channels considered in [19], [20] do not

have the notion of an underlying channel state, some of our re-

sults rely on the approaches therein.

In this paper, we begin by considering a (discrete-time) two-

sender multiple-access channel, with finite input, output, and

state alphabets, where the CSI is specified in terms of deter-

ministic mappings of the channel state. Following the results

of Han [19], the capacity region of this channel can be charac-

terized in terms of information densities involving map-valued

random variables (rvs), also referred to as “strategies” (cf., e.g.,

[14]). When the encoder CSI is contained in that available to the

decoder, we indicate that the capacity region admits a simpler

and more tractable characterization involving familiar channel

input-valued rvs rather than abstract “strategies.”

We then consider the special case of a “memoryless”

TVMAC, with the state process being a time-invariant, inde-

composable, aperiodic Markov chain. This is a natural mul-

tiple-access counterpart of the (single-sender) FSMC [6], [9].

A surprising result is that unlike existing results concerning

the FSMC in [6], [9], the capacity region—when the encoder

CSI is not perfect—will depend, in general, on the probability

mass function (pmf) of the initial state; indeed, it can be strictly

larger than the capacity region under a stationary pmf for

the initial state. In fact, this is shown by considering the case

of a single-sender FSMC. This result does not rely on the

general and elaborate formulation in Section II which is used

throughout the paper, and can be understood in isolation. Suf-

ficient conditions are also presented under which this capacity

region does not depend on the pmf of the initial state. Next, in

order to reduce transmitter complexity, we restrict the encoders

at each time instant to depend only on a limited “time window”

of CSI. The corresponding capacity regions are determined for

two specific cases: a TVMAC with a Markov state process as

above, and a TVMAC with the state process being stationary

and ergodic (but not necessarily Markov), with perfect decoder

CSI. Also, under certain technical conditions, the capacity

regions of these TVMACs without any such restriction are

shown to result from those with encoder restrictions.

Our final concern is with a TVFC. The capacity region of the

TVFC, when various degrees of CSI are available to the trans-

mitters and perfect CSI is available to the receiver, is obtained

under the assumption that the state process is stationary and er-

godic. A simple encoding strategy for achieving rate pairs in the

capacity region is also presented.

It is not surprising that some of our results for the capacity re-

gions of TVMACs with varying extents of CSI at the transmit-

ters and receiver, are characterized in terms of product–space

formulas. This is already true for certain known special cases

involving a single sender. Furthermore, our results enable us to

draw new conclusions even for the single-sender TVC, in ad-

dition to affording alternative proofs for known results in [13],

[14] (cf. Corollary 2 and Corollary 3).

The remainder of this paper is organized as follows. The var-

ious channel models are described in Section II, which also con-

tains the definitions relevant to our analysis. In Section III, we

state our capacity results, the proofs of which are presented in

Section IV. We conclude with a discussion of our results, in-

cluding transmitter power control for the TVFC, in Section V.

II. PRELIMINARIES

Our focus will be on the multiple-access channel consisting

of two senders transmitting information to a single receiver. As

usual, an extension to situations with more than two senders

is conceptually straightforward although cumbersome. Partic-

ularizations to situations involving a single sender will also be

treated when they are of special interest.

Consider first a discrete-time two-sender time-varying mul-

tiple-access channel (TVMAC) with (finite) input alphabets

, (finite) output alphabet , and (finite) “state space”

. Each use of the channel is governed by a state . The

-valued state process evolves in time according to a

(known) probability law which allows the state at any time

to depend on the previous states, but not on the previous inputs

and outputs of the channel. The state process is not

restricted to be stationary or ergodic. The probability law of the

channel is specified by a sequence of (known) pmfs

(1)

where denotes the joint pmf of the channel output

sequence for uses of the channel corresponding to a given
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Fig. 1. The TVMAC.

channel input sequence and a prevailing sequence of states.Our

main results concern a restricted situation in which the pmfs

in (1) satisfy a “memorylessness” property (cf. (23)). For no-

tational convenience, we shall hereafter suppress the subscript

and use instead of .

Random variables will be denoted by upper case letters, and

their realizations by the corresponding lower case letters.

As a special case, the probability law of a single-sender time-

varying channel (TVC) is specified by a sequence of (known)

pmfs

(2)

Let and be finite sets and

and (3)

be mappings which are used to describe the CSI available to the

two senders and the decoder, respectively. Thus, at each time

instant , the encoder for sender-1 (resp., sender-2) is provided

with the instantaneousCSI (resp., )

while the decoder is provided with CSI , all in a

causal manner (see Fig. 1). In general, the CSI available to the

senders and the decoder can be all different.2 Here, and in the

sequel, when referring to channel inputs or encoder CSI, the

first subscript will denote the sender and the second subscript,

if any, will denote the beginning time instant; the superscript

will denote the ending time instant. Also, in this shorthand

notation for a sequence, a beginning time instant will not

be explicitly displayed, and will correspond to the absence of a

second subscript. For example, denotes the length- channel

input sequence of sender- , while

denotes the sequence .

Further, with an abuse of notation, we shall use and

to denote the encoder CSI and

, respectively, for sender- , .

Finally, for any sequence of rvs , we shall use

the following notation when the usage is clear from the context:

and

(4)

where are positive integers.

2Although at first blush, this manner of description of the CSI might seem
restrictive, it can, in fact, accommodate CSI with delays or noisy CSI (cf. Sec-
tion V for the latter).

For the channel in (1), a length- block code with message

sets , , is a triple ;

the encoder for sender- is given by a sequence of mappings

, with

(5)

while the decoder is given by

(6)

Note that while each code symbol is allowed to depend only

on the past and current CSI, the decoder is allowed to use the

entire length- CSI in producing its output. The rate of the code

is the pair , and the average probability

of error of the code is

(7)

where

Given , a pair of nonnegative numbers

is an -achievable rate pair if for every and for all

sufficiently large there exists a length- block code

with message sets , , such that

and . A pair constitutes an achiev-

able rate pair if it is -achievable for every . The set of

all achievable rate pairs is the capacity region of the TVMAC in

(1), and will be denoted by . Note that the capacity region is a

closed set by definition.

Next, in order to reduce the complexity of the encoder it

may often be desirable to restrict the encoder for sender- ,

, to depend only on the limited CSI

at time , for some fixed integer . Precisely, the encoder

, , of a length- block code for the
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TVMAC in (1), is now given by a sequence of mappings

, while the decoder

is given by (6). We shall call this restriction an “encoder

restriction of window- .” The capacity region under an encoder

restriction of window- will be denoted by . The situations

in which the two encoders are restricted by different window

sizes (including when one of the encoders is not restricted at

all) can be analyzed as special cases.

In addition to the previous communication situations in which

the channel input, output, and state alphabets are all finite, we

shall also study themultiple-access time-varying fading channel

(TVFC) which serves as a (discrete-time) model for the uplink

of a wireless channel with two senders transmitting to a single

base station [15]. Specifically, the received -valued signal is

given by3

(8)

where and are the -valued transmitted

signal and -valued fade of sender- , , respectively,

and is independent and identically distributed (i.i.d.)

Gaussian noise with mean zero and variance . The fading

processes are assumed to be jointly sta-

tionary and ergodic, though not necessarily independent of each

other. We further assume that the fading processes are inde-

pendent of the additive noise process . Using the no-

tation for the fade rvs at time , a realization

pair , representing the fades experi-

enced by the two senders at time , will be called the state of the

channel at time . The CSI available to sender- is given

by a mapping , where can be an arbitrary

subset of which is not necessarily finite. The decoder is

assumed to possess perfect CSI, i.e., . Sender-

is typically constrained in terms of its average power. Precisely,

we shall say that sender- is subject to an input power constraint

if the codewords of sender- satisfy

(9)

where denotes expectation with respect to the distribution of

the state process , and denotes the Euclidean norm.

As a special case, the single-sender TVFC is specified by

(10)

III. STATEMENT OF RESULTS

We begin this section with some additional definitions which

will be needed to state our results. First, we note that for the

TVMAC in (1), given any length- block code , the

encoder , , at time , maps message and the CSI

available to it into a channel input symbol .

Therefore, using to denote the space of all mappings4

and to denote the product space

3The model in (8) considers only frequency nonselective fading effects [21].
4Although is defined in terms of all past and present CSI

, it may depend only on a subset of these CSI symbols.

each encoder , , can be represented in terms of map-

pings in ; namely, there exist equivalent length- block en-

coders , where

and (11)

Consequently, it will be convenient to deal with a derived

TVMAC , whose probability law is

well-defined and is given by

where

and (12)

For the special case of the single-sender TVC in (2), the analo-

gous derived TVC conforms to the probability

law

where

(13)

For let us denote by a sequence of finite-

dimensional rvs , where

each component , , takes values in the fi-

nite set . Unless otherwise mentioned, will denote an

-valued rv and a realization of it. We do not require

that the distribution of satisfy any consistency conditions.

In addition to denoting by the sequence of rvs as above, we

shall often denote by the corresponding sequence of pmfs

when the usage is clear from the context; here, represents

an input sequence of finite-dimensional pmfs ,

, for the TVMAC in (12). The corresponding output se-

quence of finite-dimensional pmfs induced by through

the channel in (12) will be denoted by . Similarly,

(resp., ) is a sequence of rvs with

(resp., ), where

each component (resp., ) takes

values in the set (resp., ); (resp., ) will also be used

to denote the corresponding sequences of pmfs.

The following notion of “ in probability,” is needed in

order to state our results. This notion, along with its operational

significance, originated in the work of Han and Verdú [20]. Pre-

cisely, given a sequence of -valued rvs , its liminf in

probability, - , is defined [20] as

- (14)

where denotes . In the context of the TVMAC in

(1), consider a sequence of rvs (with

taking values in , respectively) gen-

erated according to a given sequence of joint pmfs

. Denote by the rv

The corresponding - will be written

as . The quantities ,

, and ,

are similarly defined.

The following proposition provides the capacity region of

the TVMAC in (11) with CSI at the encoders and decoder. This

result can be obtained by a straightforward modification of the
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relevant treatment in Han [19].5 It will prove useful in estab-

lishing Theorems 2 and 3 below.

Proposition 1: The capacity region of the TVMAC in (1)

with CSI at the encoders and decoder is given by

(15)

where the joint pmf of the rvs , , is given

by

(16)

with as in (12), whence the joint pmf

of the rvs is given by

(17)

where denotes the indicator function.

Remarks:

A1. The region on the right-hand side of (15) is closed but

need not be convex in general [19].

A2. It readily follows that the capacity of the single-sender

TVC in (2) with CSI at the encoder and decoder is

(18)

where the joint pmf of the rvs , , is

given by

(19)

where is given by (13).

In Proposition 1, finding a “good” input distribution in (15)

entails a search over the (abstract) space of map-valued rvs or

“strategies.” On the other hand, we see below that if the CSI

available to the encoder is contained in that available to the de-

coder, such a search is reduced to that over distributions of (fa-

miliar) channel input-valued rvs. From a practical standpoint,

the latter situation—in contrast with the former—may provide

useful insights concerning the correlation properties of “good”

codes and CSI.

Proposition 2: For the TVMAC in (1) with CSI at the en-

coders and decoder, if there exist mappings such that

5Formally, the situation in which encoder CSI is additionally present, dif-
fers slightly from that in [19]. Now, each code “symbol” in a codeword can
be regarded as a mapping from the available encoder CSI to the channel input
alphabet. Note that the space of these mappings grows exponentially with avail-
able encoder CSI.

, , , the capacity region is

given by

(20)

where the joint pmf of the rvs , , is

given by

(21)

with the union in (20) being taken over all sequences of condi-

tional pmfs of given , , , satisfying

(22)

Remarks:

B1. Remark A1 following Proposition 1 applies here as

well.

B2. A specialization of Proposition 1 to the single-sender

TVC in (2) is obvious.

B3. The heuristics behind Proposition 2, as a consequence

of Proposition 1, are as follows. For each ,

determines , so that and together determine

, . It is then to be expected that the condi-

tional pmf of given (resp., )

coincides, with probability , with the conditional pmf

of given (resp., ). This re-

sults in the reduction of (15) to (20).

Further simplifications of the capacity region of the TVMAC

in (1) with CSI at the encoders and decoder obtain under the

following two assumptions. First, we assume that the channel

law (1) satisfies the “memorylessness” property

(23)

Now, the TVMAC can be described in terms of a family

of channels , together

with the probability law of the state process ; the

state can be interpreted as an index identifying a partic-

ular . Second, assume that the state process

is a time-invariant, indecomposable, aperiodic Markov chain

(TIAMC), with initial pmf denoted by (i.e., the pmf of the

rv ), transition probability matrix , and stationary pmf .

Thus, denotes the (one-step) conditional probability of

a state transition from to , . Under these two as-

sumptions, the TVMAC in (23) is tantamount to a “finite-state”

multiple-access channel (cf., e.g., [6]). It should be noted that
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the channel between the encoders and the receiver will, in gen-

eral, possess “memory” which is induced by the state process;

the assumed “memorylessness” property in (23) involves condi-

tioning on the prevailing state sequence. Its capacity region, in

general, depends on the initial pmf , and will be denoted by

. In some special situations, however, the capacity region

is invariant with respect to . In order to describe one such

situation we introduce the following.

Definition: Given nonempty subsets , we say that

connects to , denoted , if for every there exists

such that .

For convenience, we denote

(24)

Further, for any pmf on denote by the support of , i.e.,

.

Theorem 1: Consider the memoryless TVMAC in (23) with

CSI at the encoders and decoder, when the state process

is a TIAMC.

1) For every , it holds that

(25)

where the inclusion can be strict.

2) The capacity region is the same for all initial pmfs

which are restricted to be point masses on .

3) If there exists satisfying the condition

(26)

then, for every .

Corollary 1: Under the hypothesis of Theorem 1 the fol-

lowing are true.

1) The assertion in Theorem 1 part 3 also holds if (26) is

replaced by the following condition. There exist

and sets , for some ,

, and , for some finite integer ,

such that

(27)

2) If the initial state is known to both transmitters, the ca-

pacity region is the same for all initial pmfs whose

support is contained in .

Remarks:

C1. That the inclusion in (25) can be strict is illustrated by

Example 1 below.

C2. The hypothesis in (27) is weaker than that in (26).

In Theorem 1 part 1, the inclusion in (25) is not a surprising

result. Loosely speaking, the proof entails showing that a code

which achieves any rate pair can also be used to achieve

the same rate pair for any initial pmf simply by waiting

(finitely) long enough for the behavior of the state process to

approach stationarity. What is, however, surprising is that the

inclusion in (25) can be strict for certain initial pmfs ; see

Example 1 below. This behavior is in contrast with that of a sim-

ilar single-sender (indecomposable) FSC with no CSI at the en-

coder or decoder [6], [7], with perfect CSI at the encoder alone

[9], or with perfect CSI at the encoder and decoder [6], [15].

Fig. 2. Transition diagram for the state process in Example 1.

An explanation for a strict inclusion in (25) is as follows. As

will be seen in Example 1 below, for certain initial pmfs, the

transmitters and receiver can infer, in conjunction with the CSI,

additional detailed information concerning the evolution of the

state process, than when the initial pmf is the stationary one. For

instance, Example 1 considers an extreme case where for a spe-

cific choice of , the CSI leads to a perfect knowledge of the

state process.

However, the sufficient “mixing” condition (26) limits, in ef-

fect, the amount of additional inferred information concerning

the state process beyond that provided by ; consequently,

under (26), for every .

Example 1: Consider the single-sender memoryless TVC in

(2) characterized by

(28)

with , , and

Let the state process be a TIAMC with transition dia-

gram given in Fig. 2 and

The encoder and decoder CSI are given in terms of

In specializing Theorem 1 part 1 to this case, we show that it

can hold, for some , that . Consider first the

situation when the initial pmf places a point mass at

state , i.e., . Clearly, knowledge of the initial state and

(resp., ) provides the encoder (resp., decoder) with perfect

CSI. The corresponding capacity is well known (cf., e.g.,

[14, p. 2011]), and is given by

which is seen to equal bit per channel use. Next, observe

that when the initial pmf , the capacity does not

exceed the capacity for the situation where and,

additionally, , , i.e., with perfectCSI at the decoder.



10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 1, JANUARY 2002

In the latter situation, the hypothesis of [14, Proposition 2] is

met, and by [14]

bit per channel use

so that

The capacity region of the TVMAC in (23), when the state

process is a TIAMC, is, of course, given by Propo-

sition 1. However, this region has a simpler characterization

when encoder restrictions are imposed, or when the initial pmf

, and is stated in the following.

Theorem 2: Consider the memoryless TVMAC in (23) with

CSI at the encoders and decoder, when the state process

is a TIAMC with initial pmf .

1) Assume an encoder restriction of window- for each

sender, where is a fixed positive integer. Then, the

capacity region does not depend on , and is

given by

(29)

where is a -valued rv for , , and

the joint pmf of is given by (16) and

(17), with (12) now replaced by

where

and (30)

2) If, however, no such restriction is imposed on the en-

coders, the capacity region satisfies the inclusion6

(31)

for every . In particular, when , the capacity

region is given by

(32)

(33)

6Clearly, and .

where the joint pmf of the rvs is given

by (16) and (17) with .7

Remarks:

D1. The proof of Theorem 2 part 1 will show that the ca-

pacity region in (29) can, in fact, be achieved by

input sequences of mappings which constitute suitable

hidden Markov processes (cf. [7]).

D2. The inclusion in (13) can be strict. This is seen from

(32) and Theorem 1.

D3. Under the additional conditions (26) or (27), it follows

from Theorem 1 part 3 that is the same for all

initial pmfs , and is given by (32) or (33), the latter

evaluated with .

D4. By Theorem 2 part 1, the capacity region does

not depend on . Hence, upon taking ,

without loss of generality, the state process

is rendered stationary. Consequently, by time sharing

for the TVMAC in (23), convex combinations of given

achievable rate pairs are also achievable. Hence the ca-

pacity region is a closed, convex set. Further,

since , is also closed and

convex. Thus, by (32), is a closed and convex set.

D5. While is closed, it is not clear if it is convex.

D6. The capacity regions in (29) and (33) simplify if the

CSI available to each encoder is contained in that avail-

able to the decoder, in a manner akin to Proposition 2.

For example, under the hypothesis of Theorem 2 part 1,

suppose further that there exist mappings , such

that and , . The ca-

pacity region in (29) then simplifies as

(34)

where the joint pmf of the rvs is

given by (21), and the union in (34) is taken over all

sequences of conditional pmfs of given ,

, satisfying

(35)

for each . Furthermore, the counterpart of The-

orem 2 part 2 is now obvious, and will not be repeated

here.

7Although the expressions in (29) and (33) appear to be identical at first blush,
they do differ in general since is -valued for in (29), and

-valued in (33).
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For the single-sender memoryless TVC in (28) with CSI at

the encoder and decoder, when is a TIAMCwith initial

pmf , the specializations of Theorems 1 and 2, along with

those of the associated remarks, are obvious.

We next turn to another special case of Proposition 1, in

which by allowing the receiver to fully observe the state

process, we obtain a simpler expression for the capacity region

of the TVMAC than in Proposition 1 or Theorem 2. Specifi-

cally, consider the memoryless TVMAC in (23) with limited

CSI available to each encoder and perfect CSI available to the

decoder, i.e., , . We present below the capacity

region of the TVMAC in (23) with and without an encoder

restriction of window- , when the state process is

additionally assumed to be stationary and ergodic (but is not

necessarily a TIAMC).

Theorem 3: Assume an encoder restriction of window- for

each sender, where is a fixed positive integer, and assume that

the decoder has perfect CSI. Then, the capacity region

of the memoryless TVMAC in (23), when the state process

is stationary and ergodic, is the convex closure of the

region

(36)

where the joint pmf of is given by

(37)

If, however, no such restriction is imposed on the encoders, i.e.,

encoder , , at time is allowed to depend on the entire

CSI available to it, the capacity region of the TVMAC in

(23) is given by

(38)

Remarks:

E1. The assertions of Theorem 3 clearly hold in the special

case when is a TIAMC.

E2. The specialization of Theorem 3 to the single-sender

memoryless TVC in (28) is immediate.

An interesting consequence of Theorem 3 for the single-

sender memoryless TVC in (28), observed earlier in [14], and

proved below in a different manner, is the following.

Corollary 2: Let the state process be stationary and

ergodic. Assume that and the mapping is

such that

(39)

for a fixed integer . Then the capacity of the single-sender

memoryless TVC in (28) is given by

(40)

where the joint pmf of is given by

(41)

Remarks:

F1. The condition in (39) is satisfied, for instance, when

is a Markov process and the encoder is pro-

vided a delayed but perfect estimate of the channel state

(cf. [13]).

F2. The analog of Corollary 2 holds for the TVMAC in (23)

under the seemingly excessive (sufficient) conditions:

for

(42)

Our final concern is with the multiple-access fading channel

(TVFC) model in (8). While a capacity result akin to Proposi-

tion 1 can, in general, be obtained, its usefulness is limited since

the expressions therein do not lend themselves to any significant

simplification, and, hence, do not lead to any useful insights.

In fact, this is already true in the case of the single-sender ver-

sion of the fading channel in (8), for which the capacity result

is analogous to (18). Therefore, two useful simplifying assump-

tions will hereafter be made for the TVFC in (8). First, we shall

assume that the state process(es) are jointly stationary and er-

godic. Secondly, we shall assume that perfect CSI is available

to the decoder; however, the encoders need not have the same

benefits.8

Our main result for the TVFC in (8) is presented below.

An analogous result for the single-sender TVFC in (10)—but

with different assumptions concerning the encoder and decoder

CSI—has appeared recently in [14]. It will be convenient to set

(43)

Theorem 4: Consider the TVFC in (8), and let the state

process

be stationary and ergodic. Further, assume that sender- is sub-

ject to an input power constraint , , as in (9).

1) Assume an encoder restriction of window- for each

sender and perfect CSI at the decoder. Then, the capacity

region is given by the closure of the

8For communication on the uplink of a wireless channel, the receiver at the
base station commands measurement and computational resources superior to
those of the (mobile) transmitters.
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region shown in (44) at the bottom of the page, where

denotes a power allocation policy for

sender- subject to the constraint

(45)

2) If no such restriction is imposed on the encoders, i.e.,

encoder , , is allowed to depend at time

on the entire CSI available to it, the capacity region

is given by

(46)

Remarks:

G1. The capacity regions and

given by (44) and (46), respectively, are convex by dint

of the assumed stationarity and ergodicity of the state

process . The reason is akin to that in Remark

D4 following Theorem 2.

G2. A specialization of Theorem 4 to the case of a single-

sender TVFC in (10) is immediate.

The following consequence of Theorem 4 is analogous to

Corollary 2 above (cf. also Remark F2 following Corollary 2).

Corollary 3: Consider the single-sender TVFC in (10), with

an input power constraint as in (9). Let the state process

be stationary and ergodic. Assume further that

(47)

for some fixed integer . Then the capacity is given by

(48)

where denotes a power allocation policy subject to

the constraint

(49)

IV. PROOFS OF RESULTS

Our first concern is with the TVMAC in (1) for whichwe shall

prove the capacity results in Proposition 1, 2, and Theorems 1

through 3.

The proof of Proposition 1, as indicated in Section III, fol-

lows from Han [19]. Specifically, the forward part is based on

a random coding argument a la [19]. Similarly, the proof of the

converse part relies on Lemma 1 below, obtained as a simple

modification of [19, Lemma 3], and stated next without proof.

Given a length- block code for the TVMAC in (1)

with CSI at the encoders and decoder, the output of encoder ,

, corresponding to message at time is ,

where is the CSI available to encoder ; as noted earlier,

an equivalent representation of the codeword corresponding to

message is obtained in terms of mappings in . Let

and denote independent message rvs which are uniformly

distributed on themessage sets and

of sender-1 and sender-2, respectively. Also, as-

sume that and are independent of the state process

. The corresponding pmf on places probability

mass on each of the codewords , where

is the codeword corresponding to message ,

, of sender- , .

Lemma 1: Let be a length- block code with

message sets , for the TVMAC in (1) with CSI at

the encoders and decoder, and (average) probability of error

, . Then, for every

(50)

where places probability mass on each of the code-

words for sender- , and the joint pmf of is

given by (16) and (17).

Before proceeding to the proof of Proposition 2, we present

a technical lemma which will be used in the proof.

Lemma 2: For rvs , , , ,

where , , and with joint pmf determined

by (16), (17), and (12), the following Markov relationships

hold:

(51)

(52)

Proof: See Appendix A.

Proof of Proposition 2: The proof entails a reduction of

(15) and (16) to (20)–(22). It will be convenient to paraphrase

the hypothesis, with an abuse of notation, by writing

(53)

(44)
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We first show the equality of the expressions in (15) and (20)

involving liminf in probability. Observe that (51) and (52), by

virtue of (53), yield the following Markov relationships:

(54)

(55)

On the other hand, since , , the

following Markov relationships hold trivially:

(56)

(57)

From (54), (55) and (56), (57), we see that the following hold

with probability :

(58)

(59)

By virtue of (58) and (59), the definition of liminf in probability

yields

(60)

(61)

(62)

Next, we show that (16) and (17), combined with the hypoth-

esis, lead to (21) and (22). Observe that

(63)

From (12) and (15), it readily follows that

(64)

which, since , leads to

(65)

so that the first factor in the sum in (63) is

(66)

Further, the second factor in the sum in (63) is

(67)

Since , the second probability in the

right-hand side of (67) equals

and the first probability, by (16) and (35), equals

so that (67) now becomes

(68)

Upon substituting (66) and (68) in (63), and noting that for

(69)

we obtain (21).

Finally, observe that for and

by (16)

(70)

where the last equality is by (69). A straightforward calculation

using (70) now shows that the conditional pmf of given

, satisfies (22), thereby completing the proof of

Proposition 2.

We next state, as Lemma 3, a weaker converse than that which

follows from Proposition 1 above for the capacity region of the

TVMAC in (1). The significance of the lemma will be clear in

the sequel. We add that Lemma 3 can also be obtained directly

from Fano’s inequality in a standard manner.

Lemma 3: The capacity region of the TVMAC (1) with

CSI at the encoders and decoder satisfies the inclusion

(71)

where the joint pmf of the rvs is given by (16)

and (17).

Remark: The region on the right-hand side of (71) need not

be closed in general.

Proof: Given a sequence of joint pmfs , the

inequalities below follow directly from the definition of liminf

in probability (see also [20, Theorem 8(h)])
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and

(72)

Lemma 3 is now immediate from (15) and (72).

Turning next to the proof of Theorem 1, we prove first parts 1

and 3, followed by part 2. Recall that per the hypothesis, the

state process is now a TIAMC with initial pmf .

Proof of Theorem 1:

Part 1) In order to establish (25), it suffices to show that if

a rate pair is achievable when , it is also

achievable for any arbitrary but fixed initial pmf . By

definition, if is an achievable rate pair when

, for each , there exists a sequence of length- block

codes with message set of cardinality

for sender- , , where

and

(73)

where the second subscript in makes explicit its depen-

dence on .

Next, when the state process is a TIAMC with

, for each , there exists a positive integer

, such that

(74)

Consider now a sequence of length- block codes

obtained, in effect, by translating to the right

by (symbol) time units. Precisely

and

(75)

where is an arbitrary but fixed element of . It then follows

that

by (75)

(76)

where the last equality is a consequence of the memorylessness

property in (23). Next, by virtue of the following elementary

bound: for each

(77)

we obtain from (73), (74), and (76) that

(78)

Since , it is clear from (78) that is, for

instance, a -achievable rate pair when . Since can

be chosen arbitrarily, the proof of (25) is complete.

That the inclusion in (25) can be strict is illustrated by Ex-

ample 1 above.

Part 3) We rely on the following two propositions, whose

proofs are relegated to Appendix B.

Proposition 3: Under the hypothesis of Theorem 1, let

be an achievable rate pair when . Then

is also achievable for every initial pmf ,

with .

Proposition 4: Under the hypothesis of Theorem 1, let

be an achievable rate pair for the initial pmf

, where is such that , , are constants

almost surely (a.s.), and . Then is also

an achievable rate pair for every initial pmf with

.

Let be an achievable rate pair for initial pmf

, for some arbitrary pmf on . Then, by Proposition 3, it

is also an achievable rate pair when is a point mass on any

fixed . Next, since is indecomposable, there

exists a finite integer such that

(79)

In particular, thismeans that there exist , such

that

(80)

By Proposition 4, is, therefore, also an achievable rate

pair when is a point mass on . Finally, by the hypothesis

(26) and Proposition 4, is also an achievable rate pair

for . Consequently, , which in conjunc-

tion with (25), yields the desired assertion.

Part 2) Let be distinct states in . Then, (resp.,

) is connected to (resp., ) in the sense of (79), (80). This,

combined with Proposition 4, yields the desired assertion.
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Proof of Corollary 1 Part 1: The proof of the corollary

is similar to that of Theorem 1 part 3, and entails a repeated

application of Propositions 3 and 4.

Proof of Corollary 1 Part 2: This is a consequence of The-

orem 1 part 2, and the following observation. The transmitters

employ “good” codes corresponding to the (known) initial state.

Since the state space is finite and fixed, the encoders can inform

the decoder of the initial state by adding short suffixes to the

original codewords; the overall rate pair of the code is, of course,

only negligibly affected by the addition of the suffixes.

Proof of Theorem 2:

Part 1) Forward Part: Fix a positive integer . First,

observe that due to the encoder restriction of window- , each

codeword for sender- , , is a sequence of mappings

, where

Next, from the forward part of Proposition 1, and Lemma 4 in

Appendix B, it follows that the set of rate pairs given by

-

-

-

(81)

is achievable, where the joint pmf of the rvs

obtains from (16) and (17), with , , being -

valued for .

Let , , be an indecomposable Markov

source (cf., e.g., [7]) consisting of a time-invariant, indecom-

posable Markov chain9 (TIMC) with state space

, “initial” pmf , and a -transition

matrix ; and amapping with domain and range .

We remark that the resulting process is

often referred to as a hidden Markov process. Further, assume

that the processes , , and the state process

are mutually independent. The memorylessness

property in (23) then implies that

is a TIMC. Precisely, for each

(82)

Since

9We do not insist that the process be aperiodic, and hence it is not
necessarily a TIAMC.

is obtained as a function of this TIMC, [7, Theorem 2 ] asserts

that the following hold a.s.:

and

(83)

Hence, the terms involving - in (81) are equal to the

corresponding limits of mutual information quantities which

appear on the right-hand side of (83). Furthermore, the quan-

tities on the right-hand side of (83) do not depend on the

initial pmfs and . Also, the joint pmf of

, which can be easily obtained from (82),

is seen to be consistent with (16) and (17), whence, from (81)

and (83), we conclude that the closure of the region

(84)

is achievable, where the union is over all independent, indecom-

posable Markov sources as above. We denote this achievable re-

gion by .

Converse Part: Recall first that is a -valued rv for

, by virtue of the encoder restriction of window- . The

following proposition, which is established in Appendix C, will

be used in our proof.

Proposition 5: Consider the memoryless TVMAC in (23)

under the hypothesis of Theorem 2. Then, for any fixed posi-

tive integer , and any sequence of pmfs , such that

is a -valued rv for ,

and

do not depend on , where the joint pmf of

is as specified in (16) and (17).

Denote by the region on the right-hand side of (29).

From Proposition 1 and Lemma 3 above, we know that

. We complete the proof of Theorem 2 part 1 by showing

that . Recall that does not depend on the
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initial pmf of the state process . Since Proposition 5

gives that the region also does not depend on , we are

free to assume hereafter in this proof that , i.e., the

state process is stationary.

In order to show that , for each sequence

of pmfs , with the corresponding joint pmf of

as in (16) and (17), and every , we

must exhibit Markov sources and , with the

processes , , and being mutually

independent, and satisfying

and

(85)

where

and

(86)

and where , , , is a -valued

rv. The joint pmf of the rvs obtains

from (82). Observe that the existence of the limits on the left-

hand side of (85), as also their lack of dependence on

, is guaranteed by [7, Theorem 2].

Since the alphabets and are

finite, for each , there exists a positive integer

such that for every , it holds that

(87)

Fix . Let , , be the support of the rv

, and set . Clearly, and are finite.

Let , , be an (arbitrary) ordering of

the elements of the set . DefineMarkov sources

and as follows. Set . For convenience,

the ordered pair shall denote the state ,

, and . Define an associated tran-

sition matrix by

and

(88)

with the remaining elements of set to . The “initial” pmf

of the process is chosen to be

if

otherwise.
(89)

Finally, define the mapping as

and (90)

where denotes the th symbol of the sequence . It

is clear that the processes , , are TIMCs. The

joint pmf of the rvs can be easily seen to

exhibit the following properties.

1) Block Memorylessness: For each positive integer , we

have

(91)

2) Block Stationarity: The stationarity of the state process

, the memorylessness property (23), and

(91), imply that for each positive integer , the rvs

, , ,

and , , , , are iden-

tically distributed.

Next, observe that for every positive integer

by block memorylessness

by block stationarity

(92)

Likewise,

and

(93)
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The existence of the limits on the left-hand sides of (92) and (93)

completes the proof of (85), whereby it follows that

.

Part 2) Denoting by the region on the right-hand side

of (33), it follows from Lemma 3, and the definition of ,

that

whence it suffices to show that

(94)

In order to establish (94), we show that for each se-

quence of pmfs , with the corresponding joint pmf of

as in (16) and (17), and , there exists a

positive integer , and a sequence of pmfs , such that

and

(95)

where and are, respectively, the terms appearing

on the right-hand side of (33), and is a -valued rv for

. The joint pmf of the rvs corresponds

to that in (16), (17) and (30) with being replaced by ,

. Choose a positive integer such that

and

(96)

and, for each positive integer , define

(97)

Due to the stationarity of the state process , it follows

from (96) and (97) that

and

Since our choice of was arbitrary, it is now evident from The-

orem 2 part 1 that .

Proof of Theorem 3: Fix a value of . For the converse,

we apply Proposition 2 and [20, Theorem 8(h)] to obtain the

inclusion

(98)

where the joint pmf of the rvs is given by

and the union in (98) is taken over all sequences of conditional

pmfs of given , , satisfying (35). Since the al-

phabets are finite, it follows that

Furthermore, the memorylessness property of the TVMAC in

(23) implies that

Proceeding likewise, it is now evident from a standard argument

(cf., e.g., [3, p. 277]) that is contained in the convex closure

of the region in (36), where the joint pmf of

is given by (37).

For the forward part, fix conditional pmfs of

given , , and for each , define

(99)

The joint pmfs of the rvs for is

given by

(100)

and is seen to be consistent with (21). Combining (99) and (100),

it follows from the stationarity of the state process and

the memorylessness of the TVMAC in (23) that

-

-
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Proceeding likewise, we conclude from Proposition 1 that the

region in (36) is achievable (cf. Lemma 4). Finally, since the

state process is stationary, by time-sharing for the

TVMAC in (23), the convex combination of given achievable

rate pairs is also achievable, thereby concluding the proof.

It remains to show that in the absence of any encoder restric-

tions

The idea behind the proof is the same as that used to establish an

analogous result in Theorem 2 part 2, and is not repeated here.

Proof of Corollary 2: First, observe that as an immediate

specialization of Theorem 3, we get that the capacity of the

single-sender memoryless TVC in (28), without any encoder re-

striction, under the remaining hypothesis of Theorem 3, is

(101)

where

(102)

with the joint pmf of , , being given by (41)

upon replacing by . Then this joint pmf implies, for each

, that

(103)

whence it follows that

(104)

Now, fix a value of . Then by the memorylessness property

of the TVC in (28), we get that

(105)

Next, the Markov condition appearing in the domain of maxi-

mization in (104), viz.

(106)

together with the hypothesis (39), imply that

(107)

This is easily seen, since

where the previous equality is by (39) and (106).

Consequently, by (104), (105), and (107)

(108)

where the previous equality follows by the assumed stationarity

of and the expression for from (104). Combining

(108) with the fact that is nondecreasing in , yields

that for all . Hence, by (101), .

Proof of Theorem 4:

Part 1) Converse Part: Let be an achievable rate

pair, so that for any , there exist length- block codes

with

and

(109)

for all sufficiently large . Assume that the message rvs and

are uniformly distributed on the message sets and ,

respectively; and that , the state process , and

the noise process are mutually independent. Then, it

readily follows from (8) that

(110)

Next, Fano’s inequality yields

and

(111)

Considering the first upper bound in (111), observe that

by (110)

(112)

where is the differential entropy function. The last

equality follows from (8) and the encoder restriction of

window- . Let , , be the

“average (input) power at time ” when the CSI at encoder- is

, i.e.,
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Since the noise process , the state process , and

the message rv are mutually independent, we obtain

Consequently,

Continuing with the chain of inequalities in (111) and (112)

since is stationary

by Jensen's inequality

(113)

where is defined in (43), and we have set

The power constraint on the codewords for sender-1 (9) im-

plies that

Clearly, is a valid power-allocation policy in the sense of

(45). Since and are arbitrary, it follows that

(114)

Proceeding similarly, we conclude that all achievable rate pairs

are contained in the closure of the region in (44) sub-

ject to the constraints in (45).

Forward Part: The forward part is a straightforward conse-

quence of known results [14]–[16], combined with a simple ob-

servation. Specifically, fix power allocation policies

for sender- , satisfying (45). Now consider a

channel defined by

(115)

where the -valued transmitted sequences satisfy a

“unity” power constraint, viz.

(116)

and where , , and are as in the hy-

pothesis. Assume now that the encoder has no CSI while the

decoder has CSI at each time instant , . Note that for

the channel model in (115), the fade experienced by sender- is

of which the decoder has perfect knowledge. Then the capacity

region of the channel in (115) under these circumstances,

denoted by , is the closure of the region [14]–[16],

as shown in (117) at the bottom of the page. We observe

now that any achievable rate pair for the channel in

(115) is surely contained in , whereby we get

that . It is then evident that the

closure of the region in (44) is also contained in ,

establishing the forward part.

We remark that the previous argument suggests that the trans-

mitted signals of sender- , can be designed in the

following manner. First, fix a suitable power-allocation policy

for sender- as above, satisfying (45). Then, generate in-

dependent sets of -valued sequences ,

, in terms of such independent and identically dis-

tributed (i.i.d.) realizations of a Gaussian rv with mean zero and

unit variance, as satisfy with denoting Eu-

clidean norm. The transmitted signal for sender- corresponding

to message is then the product of and

, .

Part 2) Clearly,

(118)

(117)
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In order to show the reverse inequality

(119)

while we could proceed, in principle, along the lines of the proof

of Theorem 2 part 2, a simpler proof obtains here. Specifically,

let be an achievable rate pair in the absence of any

encoder restriction. Then, it follows as in the proof of part 1 that

there exist length- block codes satisfying (109),

and, furthermore, satisfying, for instance (cf. (114))

(120)

where

and

Analogous bounds hold for and . Recalling that

can be chosen arbitrarily small (with a resulting choice of ),

and upon comparing said bounds with (44) for , it is clear

that . This establishes (119).

The idea behind the proof of Corollary 3 is the same as that

of Corollary 2, and is not repeated here.

V. DISCUSSION

We have undertaken a systematic study of the capacity

problem for a class of TVMACs when varying degrees of

CSI are provided to the transmitters and the receiver. The first

result, in Proposition 1, which provides a general formula for

the capacity region, is based largely on the techniques and

results of [19], [20]. Unlike in [19], [20], where no CSI is

involved, our general formula is in terms of random sequences

of mappings rather than channel input symbols. These map-

pings can be dispensed with when the CSI available to the

transmitters is embedded in that provided to the receiver, as

shown in Proposition 2. We then consider special cases where

this general formula admits simpler forms from which some

useful insights can often be drawn.

Of particular interest is the case when the TVMAC satisfies

the “memorylessness” property, and the state process

is a TIAMC. As follows from Example 1, the capacity region

can, in general, depend on the initial pmf of the state process

. A sufficient—but by no means necessary—condition

is provided in Theorem 1 under which the capacity region does

not depend on the initial pmf. The problem of determining a

less stringent and more “natural” condition than ours, and in-

deed, a necessary and sufficient condition on the state process

and CSI under which the effect on capacity of the ini-

tial pmf vanishes, remains unresolved. When window restric-

tions are imposed on the encoders, the capacity region, which

is shown in Theorem 2 to be achieved by hidden Markov pro-

cesses, does not depend on the initial state pmf.

When window restrictions are imposed on the encoders, and

the decoder is provided with perfect CSI, and, furthermore, the

state process is assumed to be stationary and ergodic,

the capacity region can be expressed in a simple and useful form.

Fig. 3. Transition diagram for the state process in Example 2.

This is seen for channels with finite input, state, and output al-

phabets in Theorem 3, and for the TVFC model with -valued

alphabets in Theorem 4.

In all our models, we describe the CSI at the transmitters and

receiver at each time instant in terms of deterministic mappings

of the state rv at that time instant (cf. (3)). Perhaps a more real-

istic situation arises when the encoder and decoder CSI at each

time instant are noisy versions of the current state . This

is illustrated by the following example.

Example 2 (Gilbert–Elliott channel [22]–[24]): Consider

the single-sender memoryless TVC in (28) with

(121)

Let the state process be a TIAMC with transition dia-

gram given in Fig. 3, and . Assume that

the encoder receives no CSI, while the decoder CSI is given by

(122)

where is a -valued i.i.d. process, which is inde-

pendent of the state process , with ,

. Clearly,

Furthermore, we assume that for each , does not de-

pend on the previous inputs and outputs of the channel. Then

the augmented state process , defined by

(123)

is also such that does not depend on the previous in-

puts and outputs of the channel. Define a new channel

by

(124)

where . Observe that the decoder CSI can be

described in terms of a deterministic mapping , where

. Clearly, the capacity of the memoryless TVC

in (124) with decoder CSI given by (122) equals that of the

TVC in (121) with the same decoder CSI. It can be seen as a

consequence of Theorem 2 that

where the joint pmf of the rvs is given by

Fig. 4 shows a plot of as a function of , .
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Fig. 4. Capacity of the Gilbert–Elliott channel in (121), when the decoder CSI is given by (122), as a function of .

In general, the situation where the CSI at the encoders and de-

coder at time , viz. , , and are noisy versions of

, , can be accommodated by our models. To this end, we

can consider an augmented state and

the corresponding channel defined by

where . Clearly, , , and

are now deterministic mappings of , , in conformity

with our models. However, we note that if the noises corrupting

transmitter and receiver CSI are different, then the encoder CSI

will, in general, not be contained in the decoder CSI.

We conclude by examining a few implications of our results

for the TVFC model in (8) with Rayleigh fading noise, when

varying degrees of CSI are provided to the transmitters. (Re-

call that for this model, the receiver has access to perfect CSI.)

Assume that the fading processes and in

(8) are independent of each other, and that , , is a

Rayleigh-distributed rv with pdf given by

(125)

Also, assume that each sender is subject to the same input

power constraint . We first consider the case where the CSI

for sender- is given in terms of

(126)

where are fixed

constants. Here, the range of values of the fade of sender- at

time is partitioned into contiguous intervals. The CSI pro-

vided to sender- at time , which can be represented using

bits, specifies the interval containing the value of . Denoting

by a fixed set of constants as above, and

by , the corresponding capacity region under an

encoder restriction of window-1, the “throughput” of the system

is defined as (cf., for instance, [25], for the definition of an anal-

ogous “capacity”)

and

(127)

We are interested in determining the maximum value of

throughput as a function of , denoted , i.e.,

(128)

Next, consider the casewhere the CSI available to each sender

is given in terms of

(129)

Thus, identify the sender whose transmitted signal

experiences a “deeper” fade at each time . The corresponding

“throughput,” denoted , can be seen to be achieved

by a power-allocation policy given by

(130)

upon using the fact that , . In other

words, the sender experiencing the deeper fade remains silent,

while the other sender transmits at power . This strategy is a

variant of conventional time division multiple access (TDMA),

where the senders take turns to transmit.10

In Fig. 5, we present a comparison, based on numerical com-

putations, of , , , , ,

and where is the “throughput” when

no CSI is available to the senders, while is the

“throughput” when each sender has perfect CSI [26]. Since

the TVFC in (8) is interference-limited, it is not surprising

that . Further, it is interesting to note

10Note that the conventional TDMA “throughput” , where each
sender has perfect CSI, i.e., , equals half the
capacity of a single-sender TVFC with (input) power constraint . Clearly,

.
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Fig. 5. The “throughput” of the two-sender TVFC in (8), as defined in (128), when various degrees of CSI are available to each sender.

that is comparable to . While,

is achieved by a policy which lets the “better” sender alone

transmit at each time instant, is achieved, as shown

in [26], by a similar policy combined with a step involving

power adaptation based on fade values. That the latter step

does not afford a significant improvement in “throughput” can

be explained as follows. Loosely speaking, in both cases, the

multiple-access channel at each time instant is tantamount to

a single-sender channel, by virtue of said transmission policy.

Power adaptation by the single transmitting sender does not

lead to a significant increase in coding rate, which is redolent

of the corresponding result in [11] for the single-sender TVFC

in (10).

APPENDIX A

PROOF OF LEMMA 2

For convenience, let denote the collection of rvs

and a realization of . For each with positive probability,

we have

(131)

Since has positive probability, the numerator on the

right-hand side of (131), upon using (65), (66), and proceeding

as in (67), (68), is seen to equal

while the denominator likewise equals

Substitution into (131) followed by cancellation of terms in-

volving then shows that the left-hand side of (131) does

not depend on . This establishes (51).

In order to prove (52), we proceed in a similar manner as

above. Specifically, for each collection with

positive probability, we can express

in terms of the ratio on the right-hand side of (131) with the

summations in the numerator and denominator now being with

respect to , , . A cancellation

of terms involving then indicates that

does not depend on , thereby establishing (52).



DAS AND NARAYAN: CAPACITIES OF TIME-VARYING MULTIPLE-ACCESS CHANNELS 23

APPENDIX B

PROOFS OF PROPOSITIONS 3 AND 4

Proof of Proposition 3: Let be a length-

code with

where the second subscript in makes explicit its depen-

dence on . From the following straightforward inequality: for

each

it follows that when , with

leading to the desired assertion.

Before we turn to the proof of Proposition 4, we first present

the following simple and relevant technical result.

Lemma 4: For every sequence of pmfs , with

the joint pmfs of , given by (16) and (17), it

holds that for every (finite) integer

-

-

-

(132)

Proof: The following inequalities from [20] will be

used in our proof. Consider a sequence of -valued rvs

. Then

- - -

- - (133)

where - , the “ in probability,” of the -valued

sequence of rvs , is defined [20] as

- (134)

We shall only prove the last equality in (132); the proof of

the remainder of the lemma is similar. Furthermore, it suffices

to prove the last equality in (132) for . To this end, first

observe that the joint pmf of in (16) and (17)

implies that

(135)

-

- (136)

Next, for every , the decomposition

leads, by (133), to

- -

(137)

- -

- -

-

by (133). (138)

The second term on the right-hand side of (137) can be further

bounded above as

-

-

-

- (139)

where the first inequality above follows from (133), and the last

equality follows from the finiteness of the sets and . Pro-

ceeding similarly to bound the third term on the right-hand side

of (137) as

- (140)

we then obtain from (137), (139), and (140) that

-

The reverse inequality, viz.

-
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is also true by [20, Theorem 8]. Combined with the observations

in (135) and (136), the proof of the last equality in (132) is now

complete.

Proof of Proposition 4: The proof is based on the simple idea

that since and are constants a.s., loosely speaking,

reliable communication can also be assured “beginning” at

time , without any loss of rate. Precisely, for the initial

pmf , by Proposition 1 and Lemma 4, the capacity

region is given by (141), shown at the bottom of the page,

where the joint pmf of the rvs obtains

from (16) and (17) with . Now, since is such that

and are constants a.s., the union in (141) is, in effect,

over rvs , , where , , is an

-valued rv, . This observation, in conjunction

with the memorylessness property of the TVMAC in (23),

yields that the right-hand side of (141) can be expressed as

(142)

where the joint pmf of the rvs is given by

(16) and (17) with . By Proposition 1, the region

in (142) equals , therefore, . The assertion in

Proposition 4 now readily follows upon noting that

and by a use of Proposition 3.

APPENDIX C

PROOF OF PROPOSITION 5

The main idea behind the proof of Proposition 5 is already

contained in its specialization to the case of a single-sender

memoryless TVC in (28). We shall, therefore, restrict ourselves

to this special case as its treatment is less cumbersome nota-

tionally. Specifically, considering the single-sender memoryless

TVC in (28) under the hypothesis of Theorem 2 on , for

any fixed positive integer , and any sequence of pmfs such

that is a -valued rv for , we shall show that

does not depend on , where the joint pmf of is

as specified in (19).

To that end, note first that the joint pmf of in

(19) implies that

From [6, Ch. 4, Lemma 1], we also have

and it follows that

(143)

Consequently, it suffices to show that

is the same for every .

Since the state process is a TIAMC, given ,

there exists a positive integer , such that for every

, and

hence it also holds that

(144)

Fix . Let be a positive integer, and set .

For notational convenience, denote and by and ,

respectively; similarly, define , , , and . Then, from

the chain rule for mutual information we get

(145)

The second and third terms on the right-hand side of (145) are

bounded above by and , respectively,

while the first term can be bounded as

whence, it follows that

-

-

-

(141)
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(146)

The equality above results from the memorylessness property of

the TVC in (28), and the assumption that is an -valued

rv for . Proceeding similarly, we obtain the lower bound

(147)

Combining (146) and (147), we obtain

(148)

for all sufficiently large , where we have used (144) and the

bound

to arrive at the second inequality. Since is arbitrary, it is im-

mediate that for every .
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