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Abstract

In this report, we incorporate activated carbon (AC) onto aluminum substrate via doctor blade method to produce an 

all-solid-state supercapacitor. The electrochemical properties of the all-solid-state supercapacitor were characterized by 

cyclic voltammetry and electrochemical impedance spectroscopy. Galvanostatic charge/discharge tests also were carried 

out to exhibit stability of the AC-based supercapacitor. The impedance and charge/discharge curves of the all-solid-state 

supercapacitor showed good capacitive behavior after functionalized AC. The highest specific capacitance obtained for the 

AC-based supercapacitor was 106 F g−1. About 160% of specific capacitance increased after functionalization of the AC, 

which indicated that modification of the AC by nitric acid was able to introduce functional groups on the AC and improve 

its electrochemical performances.
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1 Introduction

The development of energy storage devices is of great sig-

nificance for applications in variable electronics [1]. Among 

the various energy storage devices available, electrochemi-

cal supercapacitors (ESCs) are promising candidates due 

to their high power density, long cycle life, durability and 

stability [2]. In addition, these types of ESCs are also desired 

for various applications, including portable devices, elec-

tric vehicles and energy storage system [3]. These applica-

tions require not only high capacitance for operation but 

also cycle stability. There are two types of ESCs depending 

on the charging mechanism. The first is the electrochemi-

cal double-layer capacitor (EDLC) which is based on the 

electric double layer that is formed at the interface between 

electrode and electrolyte [4]. The second type is pseudoca-

pacitor based on Faradaic reaction that stores ions by induc-

ing electron charge transfer at the bulk near surface of the 

electrode materials [4, 5].

To develop technologies such as portable devices, next-

generation displays and electric vehicles also demand the 

continued development of carbon-based active materials 

including, activated carbon (AC), graphene and carbon 

nanotube. AC is a suitable material for preparation of high-

performance electrochemical supercapacitors due to their 

large surface area (1000–3000 m2 g−1) and low cost [6]. 

AC can be fabricated by physical/chemistry processes with 

common materials such as coconut [7], walnut shells [8], 

waste coffee beans [9], and bamboo [10]. On the other hand, 

the hydrophobic property of AC prevents the absorbing of 

electrolyte ions to the electrode interface. The surface modi-

fication method is one of the roots to overcome this issue to 

impart hydrophilic properties to activated carbon [11]. Lee 

et al. have reported that AC modified by oxyfluorination and 

showed maximum specific capacitance of 189 F g−1 at the 

scan rate of 50 mV s−1 [12]. Ji et al. doped multi-heteroatom 

on the AC surface through modification of AC by phos-

phoric acid. They also demonstrated a high-energy density 

of 35 W h kg−1 and high-operating voltage window of 1.9 V 

in  Na2SO4 [13].

Polymer-based electrolytes are used in various energy 

storage devices such as lithium ion batteries and supercapaci-

tors due to their characteristics including leakage prevention, 

mechanical stability, and flexibility [14]. There are two types 

of electrolyte called solid polymer electrolytes (SPEs) and gel 
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polymer electrolytes (GPEs). SPEs have low ionic conductiv-

ity and poor interfacial contacts at electrode/electrolyte inter-

face [14]. On the other hand, GPEs have wide potential range, 

high ionic conductivity of  10–4 to  10–2 S cm−1 is appropriate 

for flexible supercapacitor design due to the flexibility and 

role as a separator [15, 16]. Lei et al. have prepared a flexible 

supercapacitor using PVA-KOH-K3[Fe(CN)6] as a gel poly-

mer electrolyte and separator as well which indicate the high 

specific capacitance of 430.95 F  g−1 [17]. Ionic liquids have 

also attracted attention to substitute the organic solvents [18]. 

There are many reports on ionic liquid gel polymer electrolytes 

such as BMIMI [16],  [PMpyr][NTf2] [19], EMImFAP [20] 

and  BMIBF4 [21]. H. Su et al. constructed an supercapacitor 

with  EMIMBF4-based gel polymer electrolyte and achieved 

high specific capacitance of 337 F  g−1 at high operating volt-

age of 2.5 V [22].

In this work, we report on the preparation of an all-solid-

state supercapacitor using a simple and inexpensive doctor 

blade method, which is potentially applicable at an industrial 

scale. AC was introduced and functionalized to increase its 

electrochemical property and coated onto aluminum foil to 

create an electrode. This is demonstrated through characteri-

zation of their electrochemical properties such as changes in 

specific capacitance after functionalization of the activated 

carbon. Polymer-based solid-state electrolyte also conducted 

to produce the all-solid-state supercapacitor. We also describe 

the surface morphology of functionalized activated carbon on 

the substrate.

2  Experimental

2.1  Materials

Polyvinyl alcohol (PVA) and 1-ethyl-3-methylimidazolium 

tetrafluoroborate  (EMIBF4) was obtained from Sigma Aldrich, 

Phosphoric acid  (H3PO4) was sourced from Duksan Pure 

Chemical to prepare gel polymer electrolyte. AC was pur-

chased from Kansai Coke and Chemicals Co. Ltd and to use as 

an active material to prepare electrode. Carbon black (Super-P) 

was obtained from Imerys Graphite and Carbon and used to 

conducting additive for electrode slurry. Carboxymethyl cellu-

lose (CMC) and BM-400B was sourced from Tokyo Chemical 

Industry Co., Ltd, and ZEON corporation to use as the bind-

ing materials. Nitric acid was purchased from Duksan pure 

chemical and D.I water was prepared from water purification 

system (pure power I +) with a resistivity up to 18.3 mΩ cm, 

Human Corp., Korea.

2.2  Preparation of activated carbon (AC) ‑based 
supercapacitor

2.2.1  Preparation of polymer-based solid-state electrolyte

PVA (1 g) was added to D.I. water (10 mL) to create PVA 

solution with vigorous stirring at 80 °C for 2 h.  EMIBF4 

(ionic liquid (IL), 1 g) was added into the PVA solution 

and stirred at 80 °C for 2 h. Then,  H3PO4 (1.6 g) was 

poured into the PVA/IL solution, and stirred at 50 ℃ for 

24 h. Finally, the prepared PVA/IL/  H3PO4 solution was 

placed in desiccator to secure from moisture.

2.2.2  Purification and functionalization of activated carbon 

(AC)

Purification and functionalization of the AC were car-

ried out to introduce functional groups such as hydroxyl 

group and carboxylic group by nitric acid treatment, which 

was able to improve electrochemical performance of the 

AC-based supercapacitor. Approximately 2 g of AC was 

refluxed in 60 mL 6 M nitric acid for 12 h, then filtered 

through a PTFE-coated polypropylene filter (0.2 µm) and 

rinsed with deionized water. The final sample was dried 

for 1 day at 120 °C.

2.2.3  Preparation of AC electrode slurry

To prepare the electrode slurry, all materials including 

AC, Super-p, CMC and BM-400 were mixed by thinky 

mixer with ratio of 96.5 (AC):1.5 (Super-p):1 (CMC):1 

(BM-400) at 2000 rpm. First, AC was dispersed in dis-

tilled water for 10 min. Then, CMC was added into the 

AC solution and mixed for 5 min. After that, super-P was 

added into the AC/CMC mixture solution and dispersed 

for 5 min. Finally, BM-400B was added into the AC/CMC/

super-p solution and dispersed for 5 min. The acid-treated 

AC-based slurry also prepared through the same process.

2.2.4  Fabrication of the electrode and activated 

carbon-based supercapacitor

Figure 1 illustrates the procedure used to prepare AC and 

acid-treated AC-based supercapacitor. The prepared alu-

minum foil was washed with ethanol and flattened (step 1), 

then electrode slurry was coated on the aluminum foil by 

doctor blade-coating method (step 2). Coated aluminum 

foil was cut into 1 cm width with 4 cm length (step 3). 

The electrode was soaked in the gel polymer electrolyte 

by deep-coating method for 30 min and placed in room 

temperature until electrolyte dried (step 4). Finally, two 
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electrodes were assembled in sandwich configuration to 

produce all-solid-state supercapacitor.

3  Characterization

3.1  Morphology measurement of the activated 
carbon (AC) ‑based electrodes

Surface morphology of the samples was obtained using a 

scanning electron microscopy with energy-dispersive X-ray 

spectrometry (XL30-SFEG & Falco CDU). The accelerat-

ing voltage was 20.0 kV and the emission current was 88 

µA. Fourier Transform Infrared Spectroscopy (FT-IR) were 

detected by FT-IR 460 plus. The spectra were obtained in 

the range of 1000–4000 cm−1. Due to high absorbance of the 

AC and acid-treated AC, KBr pellets have been fabricated to 

the mass ratio of 500:1.

3.2  Electrochemical properties of the activated 
carbon (AC) ‑based supercapacitor

3.2.1  Cyclic voltammetry (CV)

Cyclic Voltammetry (CV) measurements of AC full device 

and acid-treated AC full device were performed at room 

temperature with two-electrode system using an ZIVE SP2 

electrochemical workstation (ZIVE LAB). All the CV meas-

urements were recorded by scan rate range of 5–100 mV s−1 

with potential range 0–1 V. The specific capacitance was 

calculated on the basis of the following equation [23]:

where Csp is the specific capacitance of the supercapacitor, 

I is the instantaneous current, ΔV is the potential window 

width, m is the mass of active material, ν is the potential 

scan rate and ∫ IdV is the total voltammetric charge obtained 

by integration of the positive and negative sweep in cyclic 

voltammograms. Energy density and power density are 

derived from the following equations [24]:

3.2.2  Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) was 

used to probe the resistance at the electrode/electro-

lyte interface and diffusion of ions in electrolyte. EIS 

(1)Csp =
∫ IdV

2 × v × m × ΔV

(2)E =

1

2
CV

2

(3)P =

E

v
.

Fig. 1  Preparation of the activated carbon (AC) -based all-solid-state supercapacitor via doctor blade method
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measurements were performed at room temperature using 

a ZIVE SP2 electrochemical workstation (ZIVE LAB) 

where the frequency range spanned 100 kHz to 0.01 Hz 

with an amplitude of 1 mV (rms) at open circuit potential.

3.2.3  Charge and discharge measurement

A pair of each AC and acid-treated AC-based supercapacitor 

was performed using a ZIVE SP2 electrochemical worksta-

tion (ZIVE LAB) between 0 and 1 V voltage with current 

density 0.5–5 A g−1. The cycle stability was measured by 

3000 charge/discharge cycle in room temperature.

Fig. 2  Photograph of a activated carbon (AC) and b functionalized activated carbon (AC) dispersion with sonication for 1 h. FT-IR spectrum of 

c the pristine AC and d functionalized AC
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4  Results and discussion

The introduction of functional groups on the AC was con-

firmed by FT-IR spectroscopy (Fig. 2). In Fig. 2d, the car-

bonyl group stretch of the carboxylate anions appears at 

1581 cm−1 for the acid-treated AC. The peaks at 3428 cm−1 

and 1736 cm−1 were also from the O–HCO stretch of the 

carboxylic acid groups, which indicated that the functional 

groups on the AC was introduced by acid treatment. On 

the other hand, the peaks on the acid-treated AC were not 

observed in the graph of pristine AC (Fig. 2c).

Fig. 3  Comparison of the electrochemical performances with pristine 

activated carbon (AC) and functionalized AC-based supercapacitor; a 

cyclic voltammetry (CV), b electrochemical impedance spectroscopy 

(EIS), c charge/discharge test, d specific capacitance, e energy and 

power density, and f cycle stability
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Figure 3 represents the electrochemical performances of 

AC and acid-treated AC-based supercapacitor through CV 

and EIS measurements. The CV curve of the acid-treated 

AC-based supercapacitor showed quasi-rectangular shape 

and large current area rather than AC-based supercapacitor 

(Fig. 3a). This means that acid-treated AC-based superca-

pacitor showed enhanced electroactive area which attrib-

uted to the improvement of charge storage capability, for the 

acid-treated AC-based supercapacitor [25]. Figure 3b shows 

the Nyquist plot of AC and acid-treated AC-based super-

capacitor. Acid-treated AC-based supercapacitor exhibited 

not only a small semi-circle region but also low internal 

resistance compared to AC-based supercapacitor. It might 

be expected that the electrochemical properties of AC have 

been improved through surface modification and function-

alization of the AC [11, 25]. Figure 3c illustrates the GCD 

measurement of acid-treated AC-based supercapacitor. As 

a result, the acid-treated AC-based supercapacitor showed 

symmetric charge/discharge graph and enhanced charge/dis-

charge time, which indicated the improved electrochemical 

properties of the acid-treated-based supercapacitor even for 

small IR drop on the graph. This result also corresponded to 

the CV and EIS graphs.

The specific capacitance is derived from Eq. (1). The spe-

cific capacitance of the acid-treated AC-based supercapaci-

tor was 106  Fg−1 while the AC-based supercapacitor showed 

66 F  g−1 (Fig. 4d). The maximum power density of the acid-

treated AC-based supercapacitor was 2.5 kW kg−1 at scan 

rate of 100 mV s−1. On the other hand, the AC-based super-

capacitor was only 0.9 kW kg−1 (Fig. 4e). The cycle stability 

of functionalized AC was 95%, while the pristine AC was 

90% (Fig. 4f). This results indicated that acid-treated AC-

based supercapacitor showed excellent cycle stability in the 

charge/discharge process due to its large surface area and 

hydrophilic properties which decreased resistance between 

electrode/electrolyte interface [26].

Fig. 4  Electrochemical properties of the functionalized activated carbon (AC) -based supercapacitor at varying condition. a Cyclic voltammetry 

(CV), b electrochemical impedance spectroscopy (EIS), c charge/discharge test, and d specific capacitance at different scan rate
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We have also investigated CV, EIS, GCD and  Csp of the 

acid-treated AC-based supercapacitor. All the CV curves 

of the acid-treated AC-based supercapacitor showed quasi-

rectangular shape (Fig. 4a), which indicated that the acid-

treated AC had an ideal electrochemical performance and 

excellent reversibility [27]. Figure 4b shows a low resist-

ance value of 0.4 Ω with small semi-circle in the high fre-

quency. At a low frequency, the line slope was increased 

which indicated low diffusivity resistance [28]. Figure 4c 

displays the charge/discharge curves of the acid-treated 

AC-based supercapacitor within the potential range 0–1 V 

at different current density from 0.5 to 5 A  g−1. All lines 

showed symmetric charge/discharge graph, indicating the 

enhanced capacitive behavior of the acid-treated AC-based 

supercapacitor [29]. The specific capacitance was increased 

with respect to increase scan rate (106 F g−1, 95 F g−1, 

85 F g−1, 69 F g−1, and 51 F g−1 at the scan rate of 5 mV s−1, 

10 mV s−1, 20 mV s−1, 50 mV s−1, and 100 mV s−1), which 

might be due to the lack of charge/discharge time at high 

scan rate [30].

The SEM–EDS images of pristine AC and acid-treated 

AC are shown in Fig. 5. The SEM images showed that  HNO3 

had an effect on the surface corrosion of activated carbon 

(Fig. 5a, b). The EDS data indicated that the oxygen content 

of acid-treated AC increased after functionalization while 

the carbon content decreased (Fig. 5c, d). The increased oxy-

gen content indicated that a strong interaction between the 

active material and the electrolyte is imparted by introducing 

a hydrophilic group to the AC [11].

5  Conclusion

The physical properties of the pristine and acid-treated 

AC were characterized by FT-IR, and SEM. Particle size 

of the AC was measured by field emission scanning elec-

tron microscopy before and after functionalization of the 

AC. Three peaks were seen at 1581 cm−1, 1736 cm−1, and 

3428 cm−1 by FT-IR spectroscopy which represented the 

carbonyl groups stretch of the carboxylate anions and car-

boxylic acid, respectively. In addition, acid-treated AC-

based supercapacitor was successfully fabricated using a 

doctor blade-coating method. The acid-treated AC-based 

supercapacitor showed capacitive current in cyclic vol-

tammograms, indicating typical capacitive behavior under 

various scan rate. The highest capacitance value obtained 

for acid-treated AC-based supercapacitor was 106 F g−1 in 

PVA/H3PO4/EMIBF4 electrolyte at 5 mV s−1. Acid-treated 

Fig. 5  SEM–EDS images of the a activated carbon (AC), b functionalized activated carbon (AC), c EDS of AC, and d EDS of functionalized 

AC
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AC-based supercapacitor showed a high cycle stability of 

95% after 3000 charge/discharge cycle. We demonstrated 

that the modification of activated carbon with nitric acid 

showed better electrochemical performance.
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