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Abstract: The capacitor-placement problem consists of finding specific locations to install capacitor
banks in an electrical distribution network. Consequently, the losses are reduced due to the
compensation of the reactive component of power flow. This problem can be formulated as a
nonlinear mixed-integer optimisation model and its solution has represented a challenge for many
optimisation methods in the past decades. This work proposes a new method, based on
evolutionary algorithms, capable of solving large network instances that appear in real-world
settings. Our evolutionary approach makes use of a memetic algorithm that employs a hierarchical
organisation of the population in overlapping clusters. This structure leads to special selection and
reproduction schemes, which improve the algorithm’s overall performance. Computational tests
were executed with two small-sized instances, usually utilised as a test set in previous works, and
with two real large-sized distribution networks. Tests include a sensitivity analysis of the algorithm
to the optimisation’s critical parameters such as the energy cost, the maximum budget available to
acquire and install the capacitors, and the amortization term of the investment.

1 Introduction

Energy is continuously dissipated in electric power systems
owing to electrical resistance in transmission and distribu-
tion lines. The losses in the distribution system correspond
to 70% of the total losses [1]. Capacitors are widely used in
such networks to reduce reactive losses due to the inductive
reactive portion of the line loading. There are other
beneficial effects from the application of capacitors such
as power-factor correction, power-flow control and im-
provement of stability. However, the extent of these benefits
greatly depends on how the capacitors are located on the
feeder network and also their sizes. Mathematically, the
capacitor-placement problem (CPP) can be formulated as a
nonlinear mixed-integer optimisation problem where the
objective function consists of minimising the power losses
and investment costs. The main constraints comprise load
constraints at each bus and operational constraints as
voltage profile and current magnitudes at each node and
each feeder section during varying loading levels. The
nonlinear character is only due to the losses in the objective
function, while integrality must be enforced because of the
binary variables necessary to model the locations, the
quantities and the sizes of the capacitors to be installed. For
details about the mathematical model, see [2, 3].

It is well known that the CPP is a hard combinatorial-
optimisation problem, especially because real distribution
networks are commonly very large and the benefits of
installing capacitors in one part of the network are
propagated to other parts. Hence, effective location studies
should take into consideration the whole distribution
system.

In the past decades, many optimisation methods have
been proposed for solving the CPP. A literature survey
describing the main capacitor-allocation techniques can be
found in [4]. Among various approaches, the metaheuristics
play a relevant role, since exact optimisation methods are
not suitable for tackling real-world instances. Focusing only
on metaheuristic methods, [5] proposes a ‘simulated-
annealing’ approach. ‘Tabu search’ is also a possible
technique capable of dealing with large instances [6, 7].
However, the most frequently used technique is based on
evolutionary approaches [8–11].

This paper presents a new approach based on a genetic
algorithm (GA) for solving the PCC. Its main contributions
are the use of a memetic type of GA [12, 13], where a local
search phase is added to the GA, and in the use of a
hierarchical organisation of the population in overlapping
clusters leading to special selection and reproduction
schemes. The proposal also includes some practical
considerations such as yearly budget restrictions that limit
the amount of investment in new capacitor acquisitions.
The method is capable of performing capacitor placement
studies in large distribution systems, finding near-optimal
solutions in a short running time.

2 Memetic-algorithm approach

In this section, the implementation of the memetic
algorithm (MA) is discussed. MAs are population-based
methods that can be taken as an extension of genetic
algorithms (GA). The main difference between a GA and
the MA implemented in this paper is that the latter includes
a local search procedure, applied on the best individual at
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the end of every generation. Basically, an MA makes a
population of solutions to evolve through the application of
recombination, mutation and natural selection operators.
The fitter individuals will survive longer, thus perpetuating
their genetic information. After several generations, we
expect the population to be composed of high-quality
individuals, which represent good solutions for the CPP.
Next, a simplified local search-based MA diagram is shown
(Fig. 1).

Before describing these steps, the representation of
individuals utilised in the MA should be illustrated. The
representation chosen for the CPP uses a chromosome
divided into two separated parts. The alleles of the first
part can only assume binary values, coding the candi-
date locations’ status (the sections of the feeder). If the
allele in position i equals 1, it means that a capacitor should
be placed in the ith feeder section, otherwise not.
The second part is composed of integer values, indexing
the capacitor size. Both parts of the chromosome have
n positions, where n is the number of sections of the
feeder. Fig. 2, shows an example of a solution for a feeder
with six sections.

Using the indexes defined in Table 1, Fig. 2 shows that
sections 2, 4 and 5 will receive capacitors with sizes 300, 150
and 600kVAr, respectively, and the investment cost would
be US$4925. The other sections will not receive any
capacitor because their correspondent alleles in the first
part of the chromosome are set to zero. In such cases, the
numbers in the second part of the chromosome should be
ignored when calculating the investment cost and the
electric power loss correspondent to this solution.

2.1 Creating the initial population
Initially, we describe a particular feature of the population
utilised in this work: the hierarchical structure. Our previous
experience in solving combinatorial optimisation problems
through genetic algorithms shows that the use of hierarchi-
cally structured populations leads to performance improve-
ments over nonstructured population approaches. The
hierarchy follows a ternary tree, as shown in Fig. 3. The
structure can be viewed as a set of four individual clusters,
each composed of a leader and three supporter individuals.
In each cluster, the leader is the fittest one. This hierarchy
makes the individuals at the upper levels fitter, in general,
than those in the lower parts of the tree. As a consequence,
the best solution is always placed at the upper cluster, at the
root node of the population tree. Extensive computational
tests indicated that the use of a complete three-level tree
with 13 individuals was the best choice. This value might
seem too low when compared with other evolutionary
approaches where nonstructured populations of hundreds
of individuals are usually utilised. However, the use of the
hierarchy improves the evolution dynamics, allowing a
major reduction in the number of individuals without loss
of performance. The reduction in terms of computational
complexity is overwhelming, since the algorithm will have to
deal with just a few individuals, instead of literally
hundreds.

The initial population is created according to the
following scheme: about 20% of the sections receive a
capacitor in the beginning and their sizes vary in the range
[150, 1200] kVAr, with a stronger concentration between
300 and 600kVAr. All initial individuals are randomly
generated. We decided not to submit the initial individuals
to an optimisation phase, as described in the MA diagram
in Fig. 1. Hence, no heuristic was used to create good initial
solutions by placing the capacitors in strategic locations.
The MA was able to improve the quality of the randomly
generated population very fast, and created good solutions
in a very short time.

optimise pop

evaluate pop

while not 
stop criterion do 

recombine parents - mutation

select parents from pop

optimise  best individual in pop

insert new individuals into pop 

return the best solution in pop 

initialise population pop

Fig. 1 Local search-based memetic algorithm

0 0 01 1 1 1 1 223 4

sections capacitor sizes

Fig. 2 The chromosome is divided into two parts
The first one defines whether or not a capacitor should be place at each
section. The second part defines the capacitor sizes

Table 1: Capacitor data

Index Size (kVAr) Cost (US$)

1 150 1,498

2 300 1,604

3 450 1,620

4 600 1,823

5 900 2,550

6 1200 2,955

supporters

cluster

leader

Fig. 3 The tree-structured population is composed of several
clusters, each one with four individuals
The hierarchy relation states that every leader must be better than its
supporters
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2.2 Selection of individuals for
recombination
In the selection of individuals for recombination, first we
select a leader uniformly at random. The next step is to
choose which one of the three supporters will take part in
the recombination. This choice is also uniformly at random.
Following this selection strategy, any pair of parents will
belong to the same cluster. That makes the population act
similarly to a multiple-population approach with a high
migration rate. Most likely, this is the cause of the
algorithm’s superior performance when compared to
nonstructured populations. Finally, it is worth mentioning
that there is no restriction to the number of times a given
individual takes part in a crossover in the same generation.

2.3 Recombination
After the parents were selected following the criterion
described before, they are utilised as input parameters in the
recombination operator. The recombination returns a new
individualFthe offspring. Since the chromosome is com-
posed of two distinct parts, they should be treated
separately during the recombination process. There are, in
fact, two recombination strategies: one for the chromo-
some’s binary part and another for the integer part. In the
binary part, we adopted the uniform crossover (UX), where
the offspring’s allele is determined by randomly choosing
the value present in one of the parents. If the parents share
the same allele in a given position, the offspring will inherit
this value. If the values are distinct, the offspring might
inherit values zero or one with the same probability. In the
integer part, we calculate the average of the values found in
the parents. That is, the values in the same position of the
parents are added and divided by two. This will be the value
inherited by the offspring. If the sum is odd, the division
results in a noninteger value, which must be rounded up, or
down, at random.

Figure 4 illustrates the recombination operator. In the
first part of the chromosome, the offspring’s positions 2 and
4 inherit the value 1, while the other positions are decided at
random. In the second part, the values are calculated as
averages, rounded up or down if necessary. In position 5,
for instance, the parents’ values are 4 and 3. The average of
3.5 was rounded up by a random decision.

Note that the most important characteristic of this
operator is the maintenance of the common features of
the parents. Conflicting features are resolved randomly
in the binary part, and through an averaging procedure in
the integer part.

The crossover rate was decided after several tests with
many values, ranging from 0.5 up to 2. At the end we
decided on the creation of 20 individuals per generation,
corresponding to a crossover rate of 1.5. This value might
seem exaggerated but, as we utilise a very strict insertion
policy, many of those 20 new individuals are discarded,
balancing the algorithm’s dynamic. The insertion policy will
be described later.

2.4 Mutation
The mutation operator aims to add diversity to the
population of individuals. Similarly to the crossover,
the mutation is divided into two parts. The first modifies
the binary portion of the chromosome by choosing a
position of the individual at random and changing the
allele’s value (bit-swap). The second part acts on the
integer values by adding or subtracting a unity from its
value. The choice of whether to add or subtract is also
decided at random. Mutation is applied to 10% of the
offspring. In general, higher mutation rates should be
avoided because they add noise to the evolutionary
process, eliminating good features already present at the
chromosomes.

2.5 Local-search optimisation
After recombination and mutation, an MA submits all or
some of the new individuals to a local search procedure for
the purpose of improving their fitness function, as shown in
Fig. 1. Many previous experiments have demonstrated the
effectiveness of an MA when compared with pure GAs (i.e.
without the local search phase). Our computational tests
also corroborated these findings, and we are certain that the
local search is a crucial step in the algorithm. Our results
proved that the pure GA performs much worse than the
MA, especially for large-sized problems.

In this work, we utilised three different local searches:
two for the binary part for the chromosome and one for the
integer part. They are applied sequentially just to the
population’s best individual. Next, we describe the local
search policies.

2.5.1 Add/drop local search: This local search
acts at the first part of the chromosome, i.e., trying to
improve capacitor location. Each position of the chromo-
some is sequentially changed to its opposite value, and
then it is verified if the fitness has improved. If a specific
location already has a capacitor, the local search tests the
possibility of dropping that capacitor (‘drop’). Analogously,
it tries to put capacitors at every location without
one (‘add’). In the case of deterioration of the solution,
the position returns to the original value and the local
search proceeds to the next one. This procedure works well
when the capacitors present in the solution have not
exceeded the budget limit. If the budget is already
being completely utilised, no more capacitors can be added,
and removing a capacitor will probably make the power
loss worse.

2.5.2 Capacitors size local search: This local
search acts on the second part of the chromosome. It
adjusts the sizes of the capacitors already present in the
solution, trying to find the best size for each location. Only
the sizes immediately above and below the present
capacitor’s size are tested. For instance, if a 600 kVAr
capacitor is installed in a given position, the procedure tries
the capacitors with sizes 450 and 900kVAr, looking for any
improvement. Such tries are executed in a similar manner to
the add/drop procedure, in one capacitor at a time;
accepting any change that improves the fitness.

2.5.3 Swap local search: This scheme is comple-
mentary to the add/drop scheme. It acts in the first part of
the chromosome, removing a capacitor from one position
and installing it in another. Since it preserves the number of
capacitors, it is well suited for the occasion where the budget
is almost exhausted. It also acts like a fine-tuning procedure,

0 0 01 1 1

1 0 11 1 0

1 1 11 1 0

1 1 223 4

3 2 214 4

5 3 215 3

parent A

parent B

offspring

Fig. 4 Recombination operator
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verifying whether the already installed capacitors are placed
in their best positions.

2.6 Insertion of new individuals
Each new individual created has two chances of being
inserted. It may replace one of its parentsFthe leader of the
cluster and the supporterFdepending on whether or not it
is better than they are. If the new individual is worse than
both parents, it is discarded. This is a very strict insertion
policy, which results in a high infant-mortality rate.
However, together with a good mutation scheme, it allows
the maintenance of diversity for longer, concurrently with a
faster population’s convergence rate.

Once all new individuals are created, and inserted
or discarded, the algorithm starts the population-structure
update. As the ternary tree must maintain the hierarchy
between leaders and supporters, we verify whether
any individual has become better than the leader of its
cluster. In this case, they swap places. Another feature
commonly adopted in MAs is elitism, which forces the
presence of the incumbent solution in the population. In
our implementation, this feature comes naturally from
the population hierarchy, together with the policy of
inserting the offspring only if it improves the population’s
average fitness.

2.7 Fitness function
The fitness function quantifies the quality of the individual.
Therefore, it will keep a close relation with the objective
function of the problem. The first factor to be observed is
the cost of the power losses, which takes into account the
maximum voltage deviation observed in the distribution
network’s nodes for a given solution. Calculation of the
power losses requires the execution of a load-flow algorithm
[2]. The power losses before and after the installation of
capacitors are calculated and the energy gain (Dgain) is
summed and then expressed as an annual gain (AnnualGain).
For this, the transformation

AnnualGain ¼ 8:76 � CostMWhDgain ð1Þ

is used, where CostMWh is the cost, in US dollars, of the
MWh at the energy market. The value 8.76 is a constant
that transforms kilowatts into megawatt hours per year. It
represents the number of hours in a year, divided by 1000,
since Dgain is given in kilowatts and the energy cost in US
dollars per megawatt hours.

Proceeding with the calculus of the fitness of the solution,
the cost corresponding to the capacitor acquisitions must be
subtracted from the annual gain. This cost is calculated as
the sum of the costs of all capacitors to be installed. This
value is also transformed into an equivalent annual cost
AnnualCost. For this it is necessary to define the amortisation
term k for the equipment and an annual interest rate i. The
recovery period usually corresponds to the life for
computing the equipment depreciation. To do so, we utilise
the classical engineering-economy transformation that,
given the initial investment of the equipment CapCost,
calculates the annual payment necessary to recover the
capital cost in k years with an interest rate i. Therefore the
annualised cost is

AnnualCost ¼ ðiCapCostÞ=½1� f1=ð1þ iÞkg� ð2Þ

We also included an option to restrict the annual budget
available for investment in the capacitor installation, since
budget constraints are usual in real situations. This

constraint is controlled in the fitness function by the
equation

DevA ¼ ðmax½0;AnnualCost � Budget�Þ2 ð3Þ

where Budget is the maximum annual budget available to
install the capacitors. The square penalisation had an
excellent behaviour, creating feasible individuals in the
MA’s first generations.

Finally, we also introduced an option to limit the number
of installed capacitors. This constraint comes from opera-
tional restrictions related to the maintenance team. The
equation to control the maximum number of capacitors is

DevB ¼ ðmax½0;NumberCap �MaxNumberCap�Þ2 ð4Þ

where MaxNumberCap is the maximum number of capaci-
tors to be installed in the distribution network and
NumberCap is the number of capacitors present in the
solution. Finally, the fitness of the individual is then
calculated as

fitness ¼ AnnualGain � AnnualCost � DevA � DevB ð5Þ

2.8 Special characteristics of the
implementation
The inclusion of the budget limit to be spent in capacitor
acquisitions created a series of undesired disturbances
caused by the local search’s dynamics. An explanation for
this local search behaviour follows. Suppose the method is
attempting to improve an individual by using the add/drop
heuristic. Since the capacitors are allocated feeder by feeder,
the order is very important in this case. Suppose that the
first feeder to be optimised is small and already well
balanced, with a low total reactive power. The heuristic
procedure will start by putting capacitors in this feeder,
trying to reduce even further its reactive power. If the
budget is low, there is the risk of using most of it in this
initial feeder. The larger feeders, with larger power factors
and that could yield better results, eventually receive fewer
capacitors than they should.

This effect was partially reduced by first ordering the
feeders according to their reactive/active-power ratio. This
allows the optimisation to be carried out from the most
reactive to the less reactive feeder, increasing the total loss
reduction. Although the improvement was considerable, we
noticed that the problem was to spend to the limit of the
budget, no matter the feeder being optimised. The solution
was to divide the budget into several parts and use it one
part at a time. The strategy adopted can be described as:
divide the budget into equal partsFin our case the number
of parts is twice the number of feeders. The budget is thus
liberated part by part, always to the feeder with the worst
reactive/active-power ratio at the moment.

The next problem showed up when we examined the
allocation dynamics. The sequence of positions testing was
following the real network structure. It created an undesired
behaviour: since the positions were indexed starting at the
substations, the result was a very high concentration of
capacitors close to these substations. Although this
behaviour is not wrong from the theoretical point of view,
it created an overall performance deterioration simply
because it was too exaggerated. The solution was to
examine the positions in a random sequence, which was
changed every time we applied a local search. The result was
a better balanced distribution of the capacitors along the
network.
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3 Computational tests

This section presents some numerical results obtained from
computational experiments performed with the proposed
method. Initially, we applied the algorithm to two small
distribution networks presented in [7]. Some characteristics
of these two networks are shown in Table 2. In that work,
the authors use a Tabu Search technique to find the best
configuration of location/size for the capacitors. The results
are presented in Table 3. The column Cost represents the
yearly power-loss cost plus the capacitor costs (in US$) and
column Time stands for the CPU time to run the instances.
This test was necessary in order to compare the MA with
the best previous method available in the literature. The
objective function utilised for these two instances is the
same as is used in [7], which is slightly different from that
presented in Section 2.7. The objective function in [7] also
considers a factor that penalises the peak-load level. The
results in Table 2 indicate that the MA improved the
previously available results for both problems. Although the
cost difference is minimal, an intriguing characteristic was
unveiled. The MA tended to place the largest capacitors
closer to the substation, while the TS approach did the
opposite. Our result is in accord with the traditional
assumption that capacitors should be always placed close to
the substations. With regard to CPU time, the MA largely
outperformed the Tabu Search. Fig. 5 shows the size and
location of the capacitors placed by both methods in the
9-bus instance.

The next logic step was to increase dimension of the
instances. To verify the potential of the method in dealing
with large real-world networks, we have chosen two
medium-sized Brazilian cities as case studies. The network
data are shown in Table 3.

Networks A and B represent two cities with 200 000 and
500 000 inhabitants, respectively, and both are located in

the state of S*ao Paulo, Brazil. In both cities, the sections are
separated by feeders: three for city A and six for city B. This
separation allows the algorithm to deal with one feeder at a
time, independently, thus reducing the overall computa-
tional complexity, especially in the local-search phase. To
complement the study, we conducted a sensibility analysis,
to test how the method would adapt itself to different
scenarios of energy prices, budget limitations and amortisa-
tion terms. For each parameter, we tested four configura-
tions, maintaining the other two at fixed values. The results
are presented in Tables 4–9 in the following form:

Table 2: Distribution-network characteristics

Network Number of
sections

Number
of feeders

Initial
losses

A 2,274 3 699.2kW

B 6,865 6 901.8kW

1500

1200

600

600

300

300300

300 300

1 2 3 4 5 6 7 8 9

memetic algorithm

Gallego et al. (2001)

substation

Fig. 5 Final solutions provided by Gallego et al. (2000) and the
MA for the 9-bus instance

Table 3: Results for small distribution networks

Instance Gallego et al. (2001) Memetic algorithm

Cost (US$) Time (s) Cost (US$) Time (s)

9-bus 308,909 60 307,158 2

135-bus 192,339 300 190,446 5

Table 4: Network A: energy-price-sensitivity analysis

Energy
price

Total capacity (no.
of capacitors)

Losses
(kW)

Annual
profit (US $)

21 5850 (11) 626.5 7712

41 11250 (33) 595.0 23 274

83 17850 (41) 579.6 68 201

125 20250 (51) 576.1 111 109

Table 5: Network B: energy-price-sensitivity analysis

Energy
price

Total capacity (no.
of capacitors)

Losses
(kW)

Annual
profit (US $)

21 10950 (18) 834.3 2973

41 22200 (39) 794.9 19250

83 31350 (56) 780.4 60374

125 33000 (75) 779.5 99064

Table 6: Network A: annual-budget-sensitivity analysis

Annual
budget

Total capacity (no.
of capacitors)

Losses
(kW)

Annual profit
(US$)

2,083 1500 (4) 667.1 9821

4,166 3600 (9) 638.6 17 942

8,333 6600 (18) 618.2 21 465

12,500 8100 (22) 608.9 23 065

Table 7: Network B: annual-budget-sensitivity analysis

Annual
budget

Total capacity (no.
of capacitors)

Losses
(kW)

Annual
profit (US$)

2,083 2100 (4) 881.7 5288

4,166 4650 (8) 866.5 8739

8,333 8400 (17) 846.4 11 918

12,500 13 950 (24) 820.5 17 158

Table 8: Network A: amortisation-term-sensitivity analysis

Amortisation
terms

Total capacity (no.
of capacitors)

Losses
(kW)

Annual
profit (US$)

1 3300 (7) 640.8 7926

2 7950 (18) 608.1 15 618

5 11 250 (33) 595.0 23 274

10 16 500 (35) 582.1 31 856
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(a) Total capacity: sum of the sizes of the capacitors
installed; the number of capacitors is shown in parentheses;

(b) Losses in kW: corresponds to the technical losses after
the installation of the capacitors. This value should be
compared with the initial power losses in Table 3, which
represent the losses without the use of any capacitors;

(c) Annual profit: the total annual gain resulting from the
reduction of losses after the capacitors were installed, minus
the investment costs (in US dollars).

3.1 Energy-price-sensitivity analysis
The aim is to observe the behaviour of the annual profit
when the price of energy varies. The parameters were set as
follows: energy price (US$/MWh) from US$21 up to
US$125; unlimited maximum number of capacitors;
unlimited annual budget; capital recovery period of five
years with an interest rate of 12% per year. This interest
might seem too high at a first glance, but Brazilian
companies are usually subject to such rates when financing
investments in their networks’ infrastructure.

In Tables 4 and 5, note that, as the energy price
increases, it becomes advantageous to install more capaci-
tors in the network. In this case, the savings resulting
from the power-loss reduction more than compensates for
their cost.

When the energy price reaches US$125/MWh, the
method suggests the installation of 51 and 75 capacitors.
These are quite large numbers, even for medium-sized cities.
The inclusion in the algorithm of a constraint limiting the
number of capacitors avoids this kind of outcome.
Solutions with too many capacitors may create additional
difficulties, since they would increase substantially the
maintenance cost, not included as a cost component in
our model. This maintenance cost can also be translated as
a dramatic growth in human-resource requirement,
since the only way to verify whether the capacitors are
working nominally or not is by sending a team to test each
one of them.

3.2 Maximum-budget-sensitivity analysis
The parameters were set as follows: energy price¼US$41/
MWh; unlimited maximum number of capacitors; annual
budget ranging between US$2083 and US$12500; the
capital recovery period was set to five years (interest rate is
12% per year).

Tables 6 and 7 show how the algorithm adapts itself to
the budget variation. As the budget is increased, more
capacitors are installed, improving the profit. It is worth
emphasising that the budget limitation can also be used as a
mean to reduce the number of capacitors installed. In
network B, for example, the MA with unlimited budget
suggests the placement of 39 capacitors when the price is
US$41/MWh. When the budget is limited to US$12500,
theMA suggests the use of only 24 capacitors. Although the

total capacity, in kVAr, decreases nearly 37%, the annual
profit is reduced in barely 11%. Another interesting
characteristic is the rate of return of the invested capital.
In network A, the annual profit ranges from two to five
times the investment. In network B, this ratio drops
considerably. In fact, although network B is much larger
than network A, it seems to be less unbalanced. The
addition of new capacitors yields lower percentage ratios in
terms of electric losses reduction.

3.3 Amortisation term sensitivity analysis
The parameters were set as follows: the energy price is
US$41/MWh; unlimited maximum number of capacitors;
unlimited annual budget; amortisation term ranges from
one to ten years, with an annual interest rate of 12%.
Tables 8 and 9 show the results obtained.

The investment amortisation strongly influences the
capacitors’ costs. Since the annualised capacitor cost is
reduced when the amortisation term is increased, the
algorithm suggests acquiring more equipment in this
situation. The longer the amortisation term, the more
capacitors are installed. The number of capacitors jumped
from 7 to 35 and from none to 49 capacitors in networks A
and B, respectively, when the amortisation term climbed
from one to ten years. The increasing is very fast, and since
capacitors have a long lifetime, usually several years, real-
world simulations should consider amortisation terms of
five years, at least.

The memetic algorithm was programmed in C++ and a
Pentium III-800MHz was utilised. The CPU times required
to solve the 9-bus and 135-bus networks were approxi-
mately 2 and 5 seconds, respectively. Networks A and B
took approximately 4min and 30min of CPU time,
respectively, for each configuration of parameters.

4 Conclusion

This paper proposes a new methodology based on genetic
algorithms to deal with the capacitor-placement problem in
radial-distribution electric networks. Our evolutionary
approach makes use of a memetic algorithm that employs
a hierarchical organisation of the population in overlapping
clusters leading to special selection and reproduction
schemes. Moreover, there is an intensive use of local search
operators, which helped to improve the algorithm’s
performance.

Computational tests involved two small-sized networks.
These networks were utilised as benchmarks to check the
performance of the memetic algorithm against previous
approaches. The newmethod obtained better results in both
networks within less computational time.

The next step was to scale up the example size. For that,
we utilised two large real-world examples. These examples
represent medium-sized Brazilian cities, with over 2000 and
5000 sections where capacitors can be placed. The tests
indicated that the method is a powerful and fast tool for
helping planners to find out the best places to install
capacitors. We also included a sensitivity analysis for some
critical planning parameters such as the energy cost, the
available annual budget and the amortisation term of the
investment.

The results show that the new approach is able to provide
expressive annual cost savings even in the presence of
different parameter settings. The method is also stable,
smoothly adapting itself to the different parameters, as they
are changed.

Table 9: Network B: amortisation-term-sensitivity analysis

Amortisation
term

Total capacity (no.
of capacitors)

Losses
(kW)

Annual profit
(US$)

1 0 (0) 901.8 0

2 9750 (12) 837.7 7248

5 22 200 (39) 794.9 19 250

10 28 800 (49) 784.0 26 845
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