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Capacitor Voltages Measurement and Balancing in

Flying Capacitor Multilevel Converters Utilizing a

Single Voltage Sensor
Glen Farivar, Student Member, IEEE, Amer M. Y. M. Ghias, Member, IEEE,

Branislav Hredzak, Senior Member, IEEE, Josep Pou, Fellow, IEEE, and Vassilios G. Agelidis, Fellow, IEEE

Abstract—This paper proposes a new method for measuring
capacitor voltages in multilevel flying capacitor (FC) converters
that requires only one voltage sensor per phase-leg. Multiple
dc voltage sensors traditionally used to measure the capacitor
voltages are replaced with a single voltage sensor at the ac-side
of the phase-leg. The proposed method is subsequently used to
balance the capacitor voltages using only the measured ac voltage.
The operation of the proposed measurement and balancing
method is independent of the number of the converter levels.
Experimental results presented for a five-level FC converter
verify effective operation of the proposed method.

I. INTRODUCTION

MULTILEVEL converters have attracted significant in-

terest for medium/high power applications [1]–[3].

Among various multilevel converter topologies [4], the flying

capacitor (FC) converter is one of the popular structures [5]–

[10]. The FC converter [11] offers some advantages over

the neutral-point-clamped (NPC) converter [12], such as that

capacitor voltage balance can be achieved without producing

low frequency voltage ripples in the FCs, even in converters

with a large number of levels.

Phase-shifted pulse-width modulation (PS-PWM) is a com-

mon technique applied to FC converters, as it provides natural

capacitor voltage balance [21]. However, the quality of line-

to-line voltages is not the best [13]. On the other hand,

phase-disposition PWM (PD-PWM) produces better line-to-

line voltages than PS-PWM, but it cannot be applied straight-

forward to the FC converter. Some solutions to produce PD-

PWM are based on modifying the shapes of the carriers [14],

[15]. However, each cell requires different carriers, which

complicates its practical implementation, especially for FC

converters with a large number of levels. The technique was

simplified in [16], and the number of carriers was reduced
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Fig. 1. Phase-leg of an n-level FLC Converter.

from (n−1)2 to (n−1), n being the number of voltage levels.

The main drawback is that it requires significant digital signal

power processing. A similar kind of technique was proposed

in [20] with the advantage of using only a single carrier.

The property of natural capacitor voltage balance in FC

converters can be boosted by the addition of RLC filters

connected to the output of the converter [17]–[20]. Closed-

loop voltage balancing methods have also been reported in the

technical literature [22]–[28]. However, the main disadvantage

in those techniques is the use of multiple voltage sensors (one

sensor per capacitor), which increases the system complexity

and reduces reliability.

This paper proposes a new capacitor voltage measuring

method that requires a single voltage sensor per phase-leg. The

proposed measuring method is used to improve the balancing

method discussed in [27] for multilevel FC converters. The

proposed balancing method is simpler than the conventional

one (based on using multiple voltage sensors) and requires

only one voltage sensor. As in [27], the proposed method is

able to maintain capacitor voltage balance and is very simple

to implement in a digital signal processor.

The paper is organized as follows. Section II describes

the operating principle of a FC converter and the PS-PWM

technique. Section III introduces the proposed capacitor volt-

ages measurement and balancing method based on a single

sensor. Section IV presents experimental results obtained from

a single-phase five-level FC converter. Finally, the conclusions

are summarized in Section V.

II. FC CONVERTER AND PS-PWM

A. Fundamentals

Fig. 1 shows a phase-leg of an n-level FC converter,

which integrates n-2 FCs. The switch pairs in the phase-leg

s1−s̄1, s2−s̄2,..., and sn−1−s̄n−1 operate in a complementary
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(a)

(b)

Fig. 2. PS-PWM technique for a five-level converter: (a) reference sinusoidal
signal with four triangular carriers and (b) switched phase voltage.

manner. During normal operation, the mean voltage values

of the FCs, C1, C2,..., and Cn−2, should be maintained

at Vdc/(n − 1), 2Vdc/(n − 1),..., and (n − 2)Vdc/(n − 1),
respectively, where Vdc is the dc-bus voltage. Consequently,

the voltage across each switch is only 1/(n − 1) of the

dc-bus voltage. Each converter’s phase-leg can generate n
output voltage levels, i.e., 0, Vdc/(n − 1), 2Vdc/(n − 1),...,
(n− 2)Vdc/(n− 1), and Vdc, with respect to the dc negative

rail “0”. Using Kirchhoff’s voltage and current laws, the line-

to-ground voltage, v, and the currents through the FCs can be

written as:

v = sn−1Vdc +
n−2∑

j=1

vcj(sj − s(j+1)) (1)

iCj = (sj+1 − sj)i, (2)

for j = {1, 2, ..., n− 2}.

The control functions s represent the states of the upper

switches, which take the values 0 or 1 when the corresponding

switch is off or on, respectively.

B. PS-PWM Technique

Fig. 2 shows the reference and carrier signals using a PS-

PWM scheme applied to a five-level converter. In this con-

verter, PS-PWM requires four carriers of the same amplitude

and frequency, with a 90◦ phase-shift between consecutive

carriers. A sinusoidal reference signal (v ref ) that ranges in

the interval [-1, 1] under the linear modulation mode, is

compared with all four triangular carriers to define the state

of the switches. With this technique, each carrier is usually

associated to a particular pair of switches. Using this method,

natural voltage balancing can be achieved. However, this

natural voltage balancing is usually slow and depends on the

loading conditions. Therefore, an active balancing method is

required to regulate the FC voltages at their desired levels with

Fig. 3. A section of the FC chain.

improved dynamics, especially under transient conditions and

nonlinear loads.

The active voltage balancing method developed in [27], is

based on the analysis of a generic cell section of the FC

converter, as shown in Fig. 3. According to (2), the current

through a capacitor is affected by the control signals asso-

ciated with the two adjacent switches. The locally-averaged

representation of the capacitor current in (2) calculated over a

switching period is:

iCj = (dj+1 − dj)i, (3)

where iCj and i are the locally-averaged currents of the

capacitor Cj and the output current, respectively, and dj+1 and

dj are the duty cycles of the switches sj+1 and sj , respectively.

Assuming positive output current (i> 0), (3) shows that

increasing the duty cycle dj+1 will increase the locally-

averaged current through the capacitor, whereas the opposite

effect will be produced if dj is increased. If the voltage of

the capacitor Cj is greater than its reference value, a negative

current should be imposed to this capacitor. Therefore, the

duty cycles dj and dj+1 should be increased and decreased,

respectively. On the other hand, if the output current is negative

(i<0), the duty cycles should be manipulated in the opposite

direction to help for voltage balance. Based on this analysis,

the voltage balancing method shown in Fig. 4(a) was proposed

in [27].

The voltage balancing dynamics of the capacitor Cj can be

analyzed based on:
dvCj

dt
=

iCj

Cj

. (4)

From (3) and (4), one can obtain:

dvCj

dt
=

i(dj+1 − dj)

Cj

, (5)

where,

dj+1 = dm +∆dj+1, (6)

dj = dm +∆dj , (7)

where dm ranges in the interval [0,1] and is derived as follows:

dm =
vref(p.u) + 1

2
, (8)
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Fig. 4. a) Active voltage balancing method for a general n-level FC converter proposed in [27], b) Voltage balancing method for a general n-level FC
converter proposed in this paper.

where, vref(p.u) is the normalized ac reference signal within

the interval [-1, 1].

Assuming small variations around the operating point, using

(6) and (7) in (5), one can obtain:

∆vCj

∆t
=

i(∆dj+1 −∆dj)

Cj

. (9)

The variations of the duty cycles are given by a proportional

controller, as follows:

∆dj+1 = sign(i)(εj − εj+1)P, (10)

∆dj = sign(i)(εj−1 − εj)P, (11)

where εj−1, εj , and εj+1 are the voltage errors in the

capacitors Cj−1, Cj , and Cj+1, respectively, and P is the

proportional control parameter. sign(i) is the sign of the

output current defined as 1 and -1 when i is positive and

negative, respectively. Substituting (10) and (11) into (9):

∆v
cj

∆t
=

|i|P (2εj − εj+1 − εj−1)

Cj

(12)

defines the balancing dynamic of the proposed voltage control

and can be used to tune the controller gain parameter (P ) to

achieve a satisfactory system performance. This technique is

very simple to implement on FC converters with any number

of levels, as it just requires a proportional controller. However,

the main drawback is the need for multiple dc voltage sensors.

III. PROPOSED METHOD FOR MEASURING CAPACITOR

VOLTAGES AND PERFORMING VOLTAGE BALANCING

In this section, a method for capacitor voltages measurement

and balancing in FC converters is described. The objective

of the method is to measure and regulate all the capacitor

voltages by only using the output voltage measurement, v.

The relationship between the output voltage and the capacitor

voltages is governed by the switching function shown in (1).

There are two general strategies proposed in the literature

to reconstruct the capacitor voltages of multilevel converters

by sensing the ac output voltage. In the first strategy, the

capacitor voltages are measured directly when there is only

one capacitor conducting. The shortcoming of this approach is

that it fails to provide measurement for the switching instances

where several capacitors contribute to build the output voltage.

Therefore, the chance of measuring the capacitor voltages is

limited, especially in converters with high number of levels.

For the switching instances in which multiple capacitors are

conducting, an estimation mechanism needs to be implemented

to provide the voltage feedback signal for the controller [29].

The second strategy, on the other hand, does not rely on the

direct measurement. It monitors the voltage steps on the output

voltage and therefore, measures the voltage of the capacitor

that produced the step. This strategy provides a measurement

at each switching instance for modular converters with equal

capacitor voltages such as cascaded H-bridge (CHB) converter

[30], [31]. However, the shortcoming of this strategy is that

it does not provide a measurement when several capacitors

switch at the same time to generate the voltage step. This

situation happens most of the times in the FC converter as the

voltage steps are generated by simultaneous switching of two

adjacent capacitors, as it can be seen from (1). Therefore, in

this strategy only vC1, and if Vdc is known, vn−2 as well can

be measured, and the rest of the capacitor voltages need to be

estimated or measured individually.

Therefore, none of the abovementioned strategies are suit-

able for the FC converter. The objective is to provide the

converter controller with capacitor voltages measured at a

constant sampling frequency. In order to achieve this goal,

(1) is rewritten as:

v =
n−1∑

j=1

(vCj − vCj−1)sj (13)

with vC0 = 0 and vC(n−1) = Vdc.
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Fig. 5. (a) Carrier waveforms and reference signals for all possible voltage regions, (b) synthesized output voltage and number of conducting capacitors for
each switching instance, (c) voltages sampling instances using the direct capacitor voltage measurement strategy, (d) voltages sampling instances using the
indirect capacitor voltage measurement strategy, and (e) voltages sampling instances using the proposed measurement strategy.

From (13), it can be seen that after each switching instance

when sj changes, vCj − vCj−1 can be measured indirectly

from:

vCj − vCj−1 = |
v′ − v′′

s′j − s′′j
|, (14)

where, v′ and s′ are the quantities before the transition (output

voltage step) and v′′ and s′′ are values after the transition.

This is equivalent to measuring capacitor voltages in a CHB

converter using the second strategy.

In this strategy the voltages on the rest of the conducting

capacitors are assumed to remain constant during the time

interval in between the two measurements. This assumption is

generally acceptable because the elapsed time in between the

two measurements is 1/(2Nfs) (fs being the carrier frequency

and N the number of carriers), which remains very small in

practice. Nevertheless, the effect of these voltage changes can

be included in (14) to make the proposed measurement method

more accurate, but at the expense of added complexity.

The active capacitors voltage balancing method discussed in

Section II-B and shown in Fig. 4(a) uses the capacitor voltages

as direct feedback. Using the new variables, the control system

can be redrawn in a much simpler form as shown in Fig. 4(b).

Fig. 5 shows an example for a five-level converter. In this

case, there are four regions where the reference signal can be

located in: 0 < vref < 0.25Vdc, 0.25Vdc < vref < 0.5Vdc,

0.5Vdc < vref < 0.75Vdc, and 0.75Vdc < vref < Vdc. Four

different examples are shown that correspond to operation in

each of these voltage regions.

The triangular carriers and the reference waveform are

shown in Fig. 5(a). The synthesized output voltage and the

sampling instances are shown in Fig. 5(b). The inserted ca-

pacitors that generate each pulse are also indicated. The mea-

surement instances need to be synchronised with the carriers to

ensure that voltage measurements happen at the centre of each

PWM pulse. Therefore, when a triangular carrier reaches its

maximum (minimum) a measurement should take place. The

next sampling will happen when the adjacent carrier reaches

its minimum (maximum) if the number of carries is odd or at

the crossing point of the two adjacent carries if the number of

carriers is even.

The sampling instances at which a capacitor voltage can

be measured using the first method (direct measurement)

are depicted in Fig. 5(c). Similarly, the capacitor voltages

measurable using the second method (indirect measurement)

for each sampling instance are shown in Fig. 5(d). As it can

be seen, none of these methods can provide measurement with

constant sampling frequency and the chance of measuring a

capacitor voltage is limited to specific instances.

Conversely, using the proposed measurement strategy, mea-

surements take place at each sampling instance as shown in

Fig. 5(e). Here, as it can be seen for each carrier period,

all the control variables are updated twice per carrier period,

which provides the controller with a high resolution constant

frequency feedback signal.

The generated ac voltage undergoes a short transient after

each voltage step due to parasitic capacitances and induc-
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TABLE I
PARAMETERS OF THE EXPERIMENTAL PROTOTYPE

Circuit Parameter Value

Dc Bus Voltage, Vdc 200 V

FCs (C1, C2, C3) 260 µF

Linear Load, RL R=10 Ω, L= 6 mH

Carrier Frequency, fs 500 Hz

Fundamental Frequency, f 50 Hz

tances. In the proposed measurement strategy the measurement

happens at the center of pulse which allows sufficient time

for the decay of transient oscillation. Hence, the measurement

remains immune to these switching transients. However, when

the pulse width is too narrow, there is not enough time

for the output voltage to reach steady state before measure-

ment. In this case, the measurement is not reliable and the

measurement unit disregards it. When, no measurement is

performed at a particular sampling instance, the previously

measured capacitor voltages values are used in the control

system. Similarly, in the over modulation region in which no

pulse occurs in the output voltage, the previously measured

capacitor voltages values are used. Since the resolution of the

proposed capacitor voltages reconstruction method is high and

the capacitor voltages cannot change abruptly, the assumption

of using previously measured capacitor voltages does not

deteriorate the performance of the system.

The chance of having a narrow pulse increases as the switch-

ing frequency increases. Similarly, if the number of converter

levels increases the pulses become narrower. Therefore, even

though the proposed method is, in theory, independent of

the switching frequency and number of converter levels, in

practice they will be limiting factors to achieve satisfactory

performance.

It is worthwhile mentioning this limitation does not de-

valuate the proposed measurement strategy compared to the

previously discussed methods as they suffer from the same

limitation.

IV. EXPERIMENTAL RESULTS

Experimental tests were performed on a low-power five-

level FC converter. The circuit diagram of the converter

prototype is shown in Fig. 6. The converter was controlled

by a DSPACE 1006 with integrated DS 5203 FPGA board.

The parameters of the converter are given in Table I.

The following three experiments were performed to com-

pare the performance of the proposed single voltage sensor

control system with the conventional one that uses as many

voltage sensors as capacitors.

In the first experiment, initially, the capacitor voltage bal-

ancing method was deactivated and the voltages were regulated

using natural PS-PWM. At time t0, the proposed balancing

method was activated to compensate the steady state error

of the natural balancing and push the voltages towards the

required reference values. The performance of the proposed

single voltage sensor measurement method during this tran-

sient is shown in Fig. 7. As it can be seen, the proposed

measurement method was able to track the actual values with

Fig. 6. Circuit diagram of the experimental system.

high accuracy. In this figure, the actual values of the signals

were calculated using the measured capacitor voltages. The

capacitor voltages were measured using individual voltage

sensors at much higher frequency (10 kHz) to capture vari-

ations due to switching. As it can be seen from this figure,

the reconstructed feedback signals using the proposed method

remain within the tolerable error margin of the actual values.

Similar to the actual values, the measured signals using the

proposed method at twice the switching frequency, i.e. 1 kHz,

contain higher order harmonics which need to go through

a low pass filter before entering the voltage balancing loop.

The 1 kHz sampling frequency using the proposed method is

already twice the operating frequency of the discrete control

system, which shows no estimation mechanism is needed and

online measurement takes place at each step. The same test

was performed using the conventional balancing method [27]

in order to compare it with the proposed method. The capacitor

voltages before and after activation of the voltage balancing are

shown for the conventional and proposed balancing methods

in Figs. 8(a) and (b), respectively. From these results, it can

be concluded that with the proposed method the performance

of the system does not deteriorate and remains comparable

to the conventional method despite having a simpler structure

and lower sensor count.

In the second experiment, the performance of the proposed

method was tested against a sudden load transient. Initially,

the converter was operated with the RL load given in Table I,

then, at time t0, the load was changed from R = 10Ω to

R = 20Ω. Fig. 9 shows the effectiveness of the proposed
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Fig. 7. Measured controllers’ feedback signals using the proposed single
voltage sensor method and using multiple voltage sensors (actual values)
during a sudden balancing method activation test on the proposed control
system.

single voltage sensor measurment method for this case. The

dynamic performance of the proposed and conventional bal-

ancing method [27] is compared in Fig. 10(b). It can be seen

that the proposed single voltage sensor method was able to

regulate the capacitor voltages without any deterioration in the

performance when compared with the conventional method.

In the last experiment, a step change in the amplitude of the

ac voltage reference of the inverter from 0.9 p.u to 0.5 p.u was

tested (base voltage, Vb=100 V). The converter was operating

with the RL load given in Table I. At time t0, the modulation

index m was changed from 0.9 to 0.5. Fig. 11 shows that

the proposed measurement method can follow the actual

voltages during this transient. The dynamic performance of the

proposed and conventional balancing method [27] is compared

in Fig. 12(a) and (b), respectively. No deterioration in perfor-

mance can be observed when the proposed method based on a

single voltage sensor was used. The experiments showed that

the proposed single voltage sensor measurement and balancing

method has equivalent performance in regulating the capacitor

voltages as the conventional one. Additional results in Fig. 13

show that the load current quality remains unaffected as well.

Fig. 13(a) shows the harmonic content of the load current

when the conventional method is used. Comparing this figure

with Fig. 13(b), which shows the harmonic content of the load

current using the proposed method, it can be seen that the

total harmonic distortion and the location and amplitude of

the significant harmonics remain almost the same.

V. CONCLUSION

This paper has proposed a new capacitor voltage measure-

ment and balancing method for the FC converter, which allows

effective operation when the capacitor voltage sensors are

replaced with a single voltage sensor at the ac side. Effective-

ness of the proposed method has been verified experimentally

in a five-level FC converter prototype. The method is very

simple to implement and can be applied to FC converters with

different number of levels.

CH1: 50V/div CH2: 50V/div CH3: 50V/div CH4: 5A/div TB: 50ms/div

CH1: vCa1

CH2: vCa2

CH3: vCa3

CH4: ig t0

(a)

CH1: 50V/div CH2: 50V/div CH3: 50V/div CH4: 5A/div TB: 50ms/div

CH4: ig

CH2: vCa2

CH3: vCa3

CH1: vCa1

t0

(b)

Fig. 8. Comparison of capacitor voltages when the voltage balancing is
activated at t0. (a) Conventional balancing method [27] and (b) proposed
single voltage sensor balancing method.

Fig. 9. Measured controllers’ feedback signals using the proposed single
voltage sensor measurement method and with multiple voltage sensors (actual
values) during a step load change test on the proposed control system (load
resistor suddenly changes from R = 10Ω to R = 20Ω at t0).
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CH1: 50V/div CH2: 50V/div CH3: 50V/div CH4: 5A/div TB: 50ms/div

CH4: ig

CH2: vCa2

CH3: vCa3

CH1: vCa1

t0

(a)

CH1: 50V/div CH2: 50V/div CH3: 50V/div CH4: 5A/div TB: 50ms/div

CH4: ig

CH2: vCa2

CH3: vCa3

CH1: vCa1

t0

(b)

Fig. 10. Comparison of capacitor voltages during a step load change at t0:
(a) the conventional balancing method in [27] and (b) the proposed balancing
method.

Fig. 11. Measured controllers’ feedback signals using the proposed single
voltage sensor measurement method and using multiple voltage sensors (actual
values) during a step ac reference voltage change test on the proposed control
system (modulation index suddenly changes from m = 0.9 to m = 0.5 at
t0).

CH1: 50V/div CH2: 50V/div CH3: 50V/div

CH5: 5A/div

TB: 50ms/div

CH5: ig

CH2: vCa2

CH3: vCa3

CH1: vCa1

t0

CH4: vo

CH4: 50V/div

(a)

CH1: 50V/div CH2: 50V/div CH3: 50V/div

CH5: 5A/div

TB: 50ms/div

CH5: ig

CH2: vCa2

CH3: vCa3

CH1: vCa1

t0

CH4: vo

CH4: 50V/div

(b)

Fig. 12. Comparison of capacitor voltages during a step change in the ac
reference voltage at t0: (a) the conventional balancing method [27] and (b)
the proposed balancing method.
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