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Abstract

We characterize the capacity-achieving input covariance for multi-antenna channels known

instantaneously at the receiver and in distribution at the transmitter. Our characterization,

valid for arbitrary numbers of antennas, encompasses both the eigenvectors and the eigen-

values. The eigenvectors are found for zero-mean channels with arbitrary fading profiles and

a wide range of correlation and keyhole structures. For the eigenvalues, in turn, we present

necessary and sufficient conditions as well as an iterative algorithm that exhibits remarkable

properties: universal applicability, robustness and rapid convergence. In addition, we iden-

tify channel structures for which an isotropic input achieves capacity.
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I Introduction

While, in most instances of wireless communication, the receiver can accurately track the

instantaneous state of the fading channel, the transmitter is often unable to perform such

tracking. This is prominently true in wide-area mobile systems, where the dominant form

of duplexing relies on frequency separation of uplink and downlink that renders their fad-

ing nonreciprocal. On account of this lack of reciprocity, the provision of CSI (channel state

information) to the transmitter hinges on the use of feedback, which consumes resources

and, more fundamentally, may incur round-trip delays nonnegligible with respect to the

coherence time of the CSI being reported.

Statistical information about the channel, on the other hand, is virtually always accessible

to the transmitter since the periods over which the fading process is basically stationary

are several orders of magnitude larger than the duration of the fades. Moreover, the up-

link and downlink statistics are usually reciprocal and thus statistical feedback is not only

affordable, but possibly dispensable.

Altogether, the most typical operating regime in mobile systems is that in which (i) the

receiver has instantaneous CSI,1 and (ii) the transmitter has only access to its distribution.

In such regime, which constitutes the focus of this paper, the input cannot be tailored to

the state of the channel, but only to its distribution.

In multi-antenna channels impaired by additive Gaussian noise and with perfect CSI at the

receiver, the unique capacity-achieving input is zero-mean Gaussian and thus its charac-

terization boils down to the determination of its spatial covariance.

Unlike in the case that the CSI can be instantaneously accessed also by the transmitter,

for which the capacity-achieving input covariance is well known [5, 6], for our regime of

interest the structure of the capacity-achieving input covariance is only known for certain

classes of channels. The earliest statement dates back to [6], where it was shown that,

for channel matrices with zero-mean IID (independent identically distributed) Gaussian

entries, the capacity-achieving input is isotropic. Posterior findings expanded this initial

1This holds for signal-to-noise ratios up to some (usually very high) level, beyond which the noise be-

comes commensurate with the uncertainly—unavoidable in fading conditions—in the knowledge of the

channel state and fully coherent reception becomes fundamentally unfeasible [1]–[4].
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result in several directions:

• For correlated multi-transmit single-receive channels with zero-mean Gaussian entries,

the eigenvectors of the capacity-achieving input covariance were established in [7]. This

result was then extended to multiple receive antennas in [8, 9, 10]. In every case, the

eigenvalues were left to numerical optimization.2

• For channels with IID Gaussian entries with arbitrary mean, the eigenvectors of the

input covariance were characterized in [7, 13, 14]. (Again, the result was first proved

for multi-transmit single-receive channels [7] and then extended to multiple receivers

[13, 14].) Some relationships between the eigenvalues were also uncovered, but the

need for a numerical optimization was not eliminated. A search procedure based on the

Blahut-Arimoto algorithm has recently been given in [15].

• For the region of low signal-to-noise ratio (SNR), a complete characterization of the lim-

iting covariance, valid for arbitrary channels, was provided in [16].

This paper unifies these various results on the eigenvectors of the input covariance and it

also addresses the characterization of the corresponding eigenvalues. The specific contri-

butions are:

• We identify the eigenvectors of the input covariance for a range of channels with ar-

bitrary numbers of antennas. The solutions in [6]–[14] are seen to be instances of this

result.

• We present necessary and sufficient conditions that implicitly characterize the eigenval-

ues of the input covariance. In a number of limiting scenarios, particularly at low- and

high-SNR, these conditions lead to explicit solutions.

• For arbitrary SNR, an iterative algorithm is unveiled to efficiently solve for the eigenval-

ues. In contrast with standard numerical procedures, this algorithm has strong opera-

tional significance.

2Asymptotically in the number of antennas, this optimization is approached analytically in [11]. For the

multi-transmit single-receive case, implicit necessary and sufficient conditions for the eigenvalues are given

in [12].
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• Finally, we determine channel structures for which the result in [6] holds, i.e., for which

an isotropic input achieves capacity.

The manuscript is organized as follows. Section II introduces the key quantities and mod-

els. Section III distills the engineering significance of the eigenvectors and eigenvalues of

the input covariance and reviews the various operational regimes in which their character-

ization is of interest. For the regime central to this paper, this characterization is addressed

in Section IV. In turn, Section V identifies some channel structures on which an isotropic

input achieves capacity. Sections VI and VII, finally, provide a sequence of examples and

concluding remarks.

For the interested reader, results on the optimization of the input covariance under various

criteria other than the capacity, a process sometimes referred to as precoding, can be found

in [17]–[23].

II Definitions and Models

Given nT transmit and nR receive antennas and frequency-flat fading,3 the baseband com-

plex model we consider is

y =
√

g Hx + n

where x and y are the input and output vectors while n is white Gaussian noise. The

channel is represented by the (nR×nT) random matrix
√

g H such that

E[Tr{HH†}] = nRnT.

The j-th column of H is noted as hj . Furthermore, to facilitate the handling of nonzero-

mean channels we define H̄,E[H].

The covariance of the input, conveniently normalized, is denoted by

Φ ,
E[xx†]

1
nT

E[‖x‖2]

3If the fading process is frequency selective, the channel can be decomposed into a number of parallel

noninteracting subchannels, each experiencing approximately frequency-flat fading and having the same

ergodic capacity as the aggregate channel.
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where the normalization ensures that Tr{Φ}=nT. The input is isotropic when Φ=I. The

ergodic capacity (in bits/s/Hz) is

C = max
Φ:Tr{Φ}=nT

E
[

log2 det
(

I + SNR
nT

HΦH†
)]

(1)

with

SNR , g
E[‖x‖2]
1

nR

E[‖n‖2]

which corresponds to the average signal-to-noise ratio per receive antenna when either the

input is isotropic or the channel entries are zero-mean IID.4

Indicating by (·)i,j the (i,j)-th entry of a matrix, the correlation between the (i,j)-th and

(i′,j ′)-th entries of H is

RH(i, j; i′, j′) , E
[

(H − H̄)i,j(H − H̄)∗i′,j′

]

.

Much of the multi-antenna literature, however, deals only with separable (also termed kro-

necker or product) correlations [24], constrained as follows:

Definition 1 The correlation of H is said to be separable if

RH(i, j; i′, j′) = (ΘR)i,i′(ΘT)j,j′

where ΘR and ΘT are (nR×nR) and (nT×nT) correlation matrices whose entries indicate the cor-

relation between receive antennas and between transmit antennas, respectively.

While simple and analytically friendly, the separable correlation model has clear limita-

tions. It usually suffices to represent the correlation that arises with spatial diversity, due

to antenna proximity, but it cannot accommodate other diversity mechanisms such as those

that rely on polarization or radiation pattern differences [25, 26].

In this paper, we consider more general channel structures. Specifically, our analysis em-

braces the following representation:

Definition 2 The channel model used primarily throughout the paper is

H = H̄ + URH̃U
†
T (2)

4In general, the receive signal-to-noise is E[‖√gHx‖2]

E[‖n‖2] =Tr{E[H†
H]Φ}

nRnT

SNR, which depends on Φ.
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where H̄ is a (nR×nT) deterministic matrix, UR and UT are (nR×nR) and (nT×nT) deterministic

unitary matrices and H̃ is a (nR×nT) random matrix with independent columns the distribution of

whose entries is jointly symmetric with respect to zero, i.e., zero-mean and arbitrary in amplitude.

The variances of the entries of H̃ can be assembled into another (nR×nT) matrix, G̃, such that

(G̃)i,j = E[|(H̃)i,j|2]. (3)

While not universal, this representation encompasses most channels of interest. If the chan-

nel is zero-mean (H̄=0) and the entries of H̃ are independent and Gaussian, then it partic-

ularizes to the model proposed in [27] and [28] and experimentally validated in the latter.

Under these conditions, (2) is the Karhunen-Loève expansion of H, i.e., the columns of UR

and UT contain the eigenfunctions of RH while the variances of the entries of H̃ are [29]

(G̃)i,j = λi,j(RH).

where λi,j(·) denotes the (i, j)-th eigenvalue.5 Moreover, the columns of UR and UT also

correspond respectively with the eigenvectors of E[HH†] and E[H†H]. Relevant special

cases of (2) with H̄=0 and H̃ having independent Gaussian entries include:

• If UR and UT are constrained to be Fourier matrices, then (2) yields the virtual represen-

tation proposed in [30].6 In this case, the columns of UR and UT can be interpreted as

steering vectors launching and receiving energy on specific spatial directions.

• Separable correlations (cf. Definition 1) are modelled if (G̃)i,j=λi(ΘR)λj(ΘT) while UR

and UT correspond, respectively, with the eigenvectors of ΘR and ΘT.

For H̄ 6=0, special cases worth highlighting are:

5The eigenfunctions of RH, denoted uk(i) v`(j), constitute a set of complete orthonormal discrete basis

functions satisfying
∑

i′

∑

j′

RH(i, j; i′, j′)uk(i)v`(j) = λk,`(RH)uk(i)v`(j)

which are mapped onto UR and UT via (UR)i,k=uk(i) and (UT)`,j=v∗
j (`).

6In this representation, the independence of the entries of H̃ is only approximate except for nT, nR→∞.

When UR and UT are obtained through the Karhunen-Loève expansion, in contrast, the independence is

always exact for any number of antennas.
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• If the entries of H̃ are IID Gaussian, UR and UT become immaterial because of the uni-

tary invariance of the central IID Gaussian law and we obtain a standard Ricean channel

with arbitrary mean H̄. The Ricean factor is given by

E[‖H̃‖2
F ]

‖H̄‖2
F

=
nRnT σ2

Tr{H̄H̄†}

where ‖ · ‖F denotes the Fronebius norm and σ2 is the variance of the entries of H̃.

• If UR and UT are identities and the entries of H̃ are independent, then (2) can model

the use of antennas with different polarizations and/or radiation patterns, whereby

the channel coefficients exhibit little correlation but possibly large disparities in their

strength and distribution. In this case, H̄ and G̃ can accommodate the crosspolar and

pattern discrimination factors that determine the relative strength of the signals trans-

mitted and received via antennas with different characteristics.

A notable exception that falls outside the representation in (2) is that of the keyhole (or

pinhole) channel [31, 32]:

Definition 3 A keyhole channel is modelled as H=cRc
†
T where cR and cT are column vectors each

having independent random entries whose distribution is symmetric with respect to zero, i.e., zero-

mean and arbitrary in amplitude.

We shall also analyze this channel, a generalization of the original keyhole channel where

the entries of cR and cT were zero-mean IID Gaussian [31, 32].

III Input Covariance: Eigenvectors and Eigenvalues

Let us decompose the normalized input covariance as Φ=VPV† identifying the eigenvec-

tors of Φ with the columns of the unitary matrix V and its eigenvalues with the diagonal

entries of P=diag{p1, p2, . . . , pnT
}. Both the eigenvectors and the eigenvalues have imme-

diate engineering meaning: the former indicate the directions (in vector space) on which

signalling takes place while the latter signify the transmit powers allocated onto each such
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eigenvector.7 This is illustrated in Fig. 1, which depicts a transmit architecture that gener-

ates a signal with arbitrary covariance. For each use of the channel, a space-time encoder

outputs a set of independent unit-variance Gaussian symbols, s1, . . . , snT
, each of which is

assigned a certain transmit power (which may be zero) and rotated into a certain direction

before being simultaneously radiated out of the nT transmit antennas.

Before embarking on the study of Φ for our regime of interest, it is worth reviewing its

capacity-achieving forms for other relevant regimes, always under the premise of knowl-

edge of H at the receiver:

• If the transmitter has also access to H instantaneously, then the columns of V must equal

the eigenvectors of H†H whereas the transmit powers in P can be found via waterfill on

the eigenvalues of H†H [5, 6]. This would be the regime of interest for channels that

either vary slowly over time and/or where uplink and downlink are reciprocal.

• If the transmitter has access to neither H nor its distribution, then the best strategy in a

max-min sense is usually Φ=I [33, 34].

In the remainder we focus exclusively in the regime where the transmitter has access to

the distribution of H, but not to H itself. Clearly, the corresponding capacity is upper- and

lower-bounded, respectively, by those of the above limiting regimes. As we shall see, the

solutions for Φ also exhibit interesting relationships as well as some marked differences

with the ones above.

IV Characterization of Φ

A Eigenvectors

We start our analysis of Φ by focusing on its eigenvectors. For zero-mean fading channels,

we present the following result.

7More precisely, given the normalization imposed on Φ, each pj indicates the fraction of the total power

per transmit antenna allocated to each eigenvector.
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Theorem 1 Consider the channel H=URH̃U
†
T with UR, UT and H̃ as per Definition 2. The

eigenvectors of the capacity-achieving input covariance are given by the columns of UT.

Proof: See Appendix A.

It is worth specializing this result to the most common zero-mean channels:

• In the case of Rayleigh-faded channels with separable correlations, the columns of UT

revert to the eigenvectors of the transmit correlation matrix, ΘT, as claimed in [8, 9, 10].8

• If UR and UT are identities, then Φ is diagonal and its (j, j)-th entry indicates the nor-

malized power allocated to the j-th transmit antenna while (G̃Φ)i,j , with G̃ as defined

in (3), represents the normalized power received by the i-th receive antenna from the

j-th transmit antenna.

• If UR and UT are Fourier matrices and the entries of H̃ are independent and zero-mean

Gaussian, Theorem 1 mirrors the result independently derived in [36] for the virtual

representation [30].

For nonzero-mean channels, in turn, we recall the result presented in [13, 14].

Theorem 2 [13, 14] Consider the channel

H = H̄ + URH̃U
†
T (4)

where H̄, UR and UT are as per Definition 2 and the entries of H̃ are zero-mean IID Gaussian.9

The eigenvectors of the capacity-achieving input covariance equal those of H̄†H̄.

If UR and UT coincide respectively with the left and right singular vectors of H̄, then the

IID Gaussian condition on H̃ can be relaxed to that of independent entries with symmetric

distribution with respect to zero.

Next, we turn our attention to the keyhole channel.

8This same set of eigenvectors is shown to maximize the outage capacity [35] and to to minimize the

pairwise error probability [17].
9Although, in this case, UR and UT are immaterial because the distribution of H̃ is unitarily invariant,

they are retained to render (4) cohesive with the primary model.
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Theorem 3 Consider the channel

H = cRc
†
T

where cR and cT are as per Definition 3. The capacity-achieving input covariance is diagonal.

Proof: See Appendix A.

It can be inferred from their respective proofs that the scope of Theorems 1–3 is somewhat

broader than their claims in the following sense: the corresponding capacity-achieving

eigenvectors ensure the highest achievable rate regardless of the choice of eigenvalues.

This is not necessarily true for other channels.

In the low-SNR asymptote, it is possible to transcend the channel models used in Theo-

rems 1–3 and find universal expressions for the eigenvectors of Φ. Given an arbitrary

channel H, for SNR→0 signalling should take place exclusively on the maximal-eigenvalue

eigenspace of E[H†H] for first- and second-order optimality [16, Theorem 12].

Relating the solutions conveyed by Theorems 1–3 it becomes clear that, in every case, the

eigenvectors of Φ coincide with those of E[H†H]. Furthermore, as has just been pointed

out, this set of eigenvectors always enables the appropriate covariance at low SNR. We

therefore see that, for a wide range of channels with symmetrically distributed entries,

the eigenvectors of its capacity-achieving input covariance equal those of E[H†H].10 This

covariance structure is particularly gratifying when contrasted with its counterpart for the

regime where H is known by the transmitter, in which case Φ must diagonalize H†H. For

those channels to which this structure applies, when only the distribution is known then Φ

should on average diagonalize H†H.

B Eigenvalues

Having analyzed the eigenvectors of Φ, we now shift our focus towards its eigenvalues,

i.e., the transmit powers on each of those eigenvectors. Recall the decomposition Φ=VPV†

where V contains the capacity-achieving eigenvectors while P=diag{p1, p2, . . . , pnT
}, nor-

malized such that Tr{P}=nT, holds the corresponding transmit powers. The characteriza-

10This solution is nonetheless not universal: counter-examples can be found if, for instance, the distribution

of the entries is not symmetric [37].
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tion of P provided in this section is valid for any arbitrary channel distribution for which

V is known.

Define a rotated version of the channel, Ĥ=HV, whose j-th column is denoted by ĥj . As

shown in Appendix B, the capacity-achieving P must satisfy the following set of necessary

and sufficient conditions:

1
nR

E

[

Tr

{

(

I + SNR ĥjĥ
†
j

)(

I + SNR
nT

ĤPĤ†
)−1
}]

= 1 if pj > 0

≤ 1 if pj = 0
(5)

A unique set of transmit powers exists that satisfies (5). Since the corresponding paral-

lel channels are not orthogonal,11 this solution does not correspond to a waterfill on any

statistical measure of the channel. The following observations can be made:

• The inequality in (5) indicates that, below a certain SNR, some of the transmit powers

may be zero.

• For SNR→0, in fact, first-order optimality requires that transmit power be allocated only

to the diagonal entry of P that corresponds with the maximal diagonal value of E[Ĥ†Ĥ].

If the multiplicity of such maximal value is plural, equal-power allocation to the corre-

sponding entries of P ensures also second-order optimality [16, Theorem 12].

• For SNR→∞, if Ĥ†Ĥ is nonsingular with probability 1 then zero-order optimality [38]

requires that the power allocation be uniform (see Appendix B). In many channels of

interest, such as Ricean and Rayleigh-faded with nonsingular correlations, this is the

case whenever nT≤nR. If nT>nR or in other classes of channels, the power allocation at

high SNR need not be uniform [15, 38].

Beyond these asymptotes, the transmit powers satisfying (5) cannot, in general, be found

explicitly. In the remainder of this section we derive—directly from (5)—an iterative power

allocation algorithm.

In order to formulate this algorithm, it is useful to introduce the MMSE (minimum mean-

square error) on the linear estimation of the signal, sj , transmitted along the j-th signalling

11This is in contrast with the regime where H is known by the transmitter, in which case parallel orthogonal

channels can be created and the power allocation does reduce to a waterfill [6].
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eigenvector. Defining

Bj ,

(

I + SNR
nT

ĤjPjĤ
†
j

)−1

(6)

where Ĥj indicates the matrix obtained by removing from Ĥ the j-th column whereas Pj

indicates the diagonal matrix obtained by removing from P the j-th row and j-th column,

such MMSE is [39]

MMSEj =
1

1 + pj
SNR
nT

ĥ
†
jBjĥj

(7)

which, because of the unit variance of sj , is restricted to the interval [0, 1]. The useful signal

recovered along the j-th eigenvector is given by 1−MMSEj and thus the corresponding SINR

(signal-to-interference-and-noise ratio) equals 1
MMSEj

−1. The expectation of (7) with respect

to Ĥ, in turn, is denoted by

MMSEj , E[MMSEj]. (8)

In addition, it can be verified that

Tr

{

(

I + SNR
nT

ĤPĤ†
)−1
}

=

nT
∑

`=1

MMSE` + nR − nT. (9)

Using (6)–(9), the conditions in (5) can be rewritten as

pj = 0 SNR
nT

E
[

ĥ
†
jBjĥj

]

≤ 1
nT

nT
∑

`=1

(1 − MMSE`) (10)

pj =
1 − MMSEj

1
nT

∑nT

`=1 (1 − MMSE`)
otherwise (11)

The term
SNR
nT

E
[

ĥ
†
jBjĥj

]

(12)

in (10) can be interpreted as the expected SINR per unit power exhibited by the signal on

the j-th eigenvector with the other powers, p` for ` 6= j, at their optimal values. This is

a measure of the average signalling level achievable on the j-th eigenvector. When such

average signalling level is below some threshold, no power should be allocated to that

eigenvector. On the other hand, the fraction of the available power allocated to each sig-

nalling eigenvector whose average level is above threshold should equal the fraction of

average signal recovered from that eigenvector by an MMSE receiver. Hence, those sig-

nalling eigenvectors from which a stronger average signal level can be recovered should

be allocated a larger share of the power budget.
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The conditions in (11) constitute a set of coupled equations that begets an iterative ap-

proach. In order to accommodate the iterative nature of the resulting algorithm, we use

(·)(k) to index the succession of values taken by each of the quantities involved.

Algorithm 1 Initialize P(0) to best guess with Tr{P(0)}>0. (If no prior information, set P(0)=I).

Follow the steps:

1. Iterate until solution settles:

p
(k+1)
j =

1 − MMSE
(k)
j

1
nT

∑nT

`=1(1 − MMSE
(k)
` )

j = 1, . . . , nT

2. If (10) is satisfied for every j such that pj has converged to zero, allocation is completed. Other-

wise, set pj = 0 for j corresponding to the lowest value of (12) and repeat steps 1 and 2.

Note that Step 1 adjusts Tr{P(k)}=nT for k>0 even if Tr{P(0)}6=nT. Hence, the total trans-

mitted power is held at the correct value throughout the iterations as long as the initial

powers are not identically zero. Notice also that, if a particular power is initialized to zero,

it remains at zero indefinitely. Thus, except for those that are known to be zero, the powers

within P(0) should be strictly positive on the first pass.

As will be illustrated in Section VI through a sequence of examples, the iterations converge

rapidly to the sought fixed-point set of powers.

V When does an Isotropic Input Achieve Capacity ?

There are relevant channel structures—beyond the IID zero-mean Gaussian case reported

in [6]—for which an isotropic input achieves capacity. To characterize some of these chan-

nels, we shall make use of the following:

Definition 4 [40] A (nR×nT) matrix B taking values in B ⊂ <+ is column-regular if the entries

of every column exhibit the same empirical distribution, i.e.,

1
nR

nR
∑

i=1

1{(B)i,j < ξ}

does not depend on j, with 1{·} the indicator function.
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A broad characterization is encapsulated in the following result:

Proposition 1 Consider an arbitrary channel H whose capacity-achieving input covariance is

Φ=VPV†. If the joint distribution of the entries of Ĥ=HV is invariant to a cyclic shift of its

columns, then Φ=I achieves capacity.

Proof: See Appendix C.

Application of this result to the channels in Theorems 1–3 yields physical insight:

• Consider first the zero-mean channel H=URH̃U
†
T with the columns of H̃ required only

to be zero-mean and independent. An isotropic input achieves capacity if the columns

of H̃ are marginally identically distributed. If the channel entries are jointly Gaussian,

then it suffices that the variance matrix, G̃, be column-regular as per Definition 4. If,

further, the correlation is separable, the result holds if only the transmit antennas are

uncorrelated (ΘT=I) regardless of the receive correlations, ΘR, as observed in [9].

• In the case of a standard Ricean channel, H=H̄+URH̃U
†
T with H̃ having IID Gaussian

entries, a sufficient condition is that the singular values of H̄ be identical.12

• Finally, in a keyhole channel, H=cRc
†
T, an isotropic input attains capacity whenever the

entries of cT are identically distributed.

VI Examples

In this section, we illustrate the convergence Algorithm 1 through a sequence of exam-

ples. In every case, the expectations in (8) are computed as averages of 10000 independent

channel realizations.

Let us start with a Rayleigh-faded channel with separable correlations:

Example 1 Consider a 3-antenna transmit array, linear with 1-wavelength antenna spacing, and a

broadside (truncated) Gaussian power azimuth spectrum with 2◦ root-mean-square spread. The cor-

responding transmit correlation is (ΘT)i,j≈e−0.05 (i−j)2 [41]. Further consider nR=4 uncorrelated

12For arbitrary standard Ricean channels, the badness of an isotropic input is bounded in [15].

14



receive antennas, i.e., ΘR=I. Signalling over the eigenvectors of ΘT, as dictated by Theorem 1, the

convergence at SNR=−3 dB and SNR=5 dB is depicted in Fig. 2.

Observe the anticipated low-SNR behavior being manifest at −3 dB, where an individual

eigenvector is allocated the entire transmit power. Furthermore, because of the strong

transmit correlation, one of the eigenvectors remains inactive even at SNR=5 dB.

Next, we evaluate a standard Ricean channel:

Example 2 Let nT=3 and nR=2 with

H = 1√
2
H̄ + 1√

2
H̃

where (H̄)i,j=1 while the entries of H̃ are zero-mean IID Gaussian with unit variance. The Ricean

factor is thus 0 dB. As per Theorem 2, the signalling eigenvectors are taken to be those of H̄†H̄. The

convergence at SNR=5 dB is portrayed in Fig. 3.

It is shown in [7, 13] that, in a standard Ricean channel, the powers transmitted on the

eigenvectors corresponding to the zero-eigenvalue eigenspace of H̄†H̄ (in this example, p2

and p3) ought to be equal. This is corroborated in Fig. 3, where not only are their final

values equal, but their convergence is simultaneous.

Finally, we home in on a polarization diversity channel conforming to Proposition 1.

Example 3 Consider nT=4, with two such antennas vertically polarized and the other two hori-

zontally polarized, and nR=2 where one the antennas is vertically polarized and the other one hori-

zontally polarized. Let the cross-polar discrimination (ratio of the power gain between co-polarized

and cross-polarized antennas) be 7 dB. Given the low correlation between orthogonal polarizations,

the entries of the channel matrix are modelled as independent and Rayleigh-faded with variances

G̃ = 1
3

(

5 1 5 1

1 5 1 5

)

Since G̃ is column-regular, capacity is achieved with Φ=I. The performance of Algorithm 1 at

SNR=3 dB, depicted in Fig. 4, shows rapid convergence to this solution. For emphasis, the algorithm

is initialized with P(0)=diag{2.8, 0.6, 0.4, 0.2}, a strongly nonuniform allocation.
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VII Conclusions

A broad characterization of the capacity-achieving input covariance for multi-antenna chan-

nels known instantaneously at the receiver while only in distribution at the transmitter has

been presented. Unlike most previous contributions, our analysis has comprised both the

eigenvectors (signalling directions) and the eigenvalues (transmission powers).

In terms of the eigenvectors, our analysis has expanded and unified previous results stating

that, for a wide class of channel structures, the capacity-achieving eigenvectors should

diagonalize the channel (or, more precisely, the matrix H†H) in an average manner. This

finding is particularly appealing for it mirrors, in a statistical sense, the solution in the

regime where the channel is known instantaneously by the transmitter, where the channel

is instantaneously diagonalized.

Regarding the transmit powers, in contrast, the solution is not—despite several such claims

in the literature—a statistical extension of the waterfill encountered when the transmitter

has CSI. Because of the lack of orthogonality between the corresponding parallel channels,

part of the power transmitted on each eigenvector spills as interference onto the other ones

and thus the powers are mutually coupled beyond their sum constraint. What we have

shown is that, rather than obtained via waterfill, the fraction of available transmit power

allocated to each signalling eigenvector should equal the fraction of average signal power

recovered, by an MMSE receiver, from that eigenvector.13 Although this solution does yield

some behaviors that are reminiscent of a waterfill, it is in general quite distinct. Particularly

noteworthy are the limiting power allocations at low and high SNR:

• At low SNR, concentrating power on the strongest eigenvector(s) is the capacity-achieving

policy.

• At high SNR, where a MMSE receiver behaves in zero-forcing mode, the allocation is

sensitive to the ratio between the number of transmit and receive antennas. When the

number of receivers equals or exceeds the number of transmitters, a zero-forcer can

extract the signal from each eigenvector while completely removing the interference

13This adds to the body of connections between channel capacity and MMSE estimation (see, e.g., [42, 43]).

A fundamental relationship underlying these connections has been recently uncovered [44].
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arising from the other ones. The powers thus decouple and the resulting policy is a

uniform power allocation. With more transmitters than receivers, however, this is not

the case.

Although in general not explicit, our solution for the transmit powers leads rather straight-

forwardly to an iterative algorithm, far more alluring than a standard numerical procedure,

whose main features are:

• It has immediate operational significance. The iterative computation of the powers re-

quires only average mean-square errors, which in many receiver implementations are

readily available as a by-product.

• It is universally applicable. Given an arbitrary channel and a set of signalling eigen-

vectors, it finds the power allocation that maximizes the rate attained by a Gaussian

input signalling thereon. Applied to the capacity-achieving eigenvectors, it finds the

capacity-achieving power allocation.

• It requires no step-size or parameter adjustments.

• It is very robust in terms of initial conditions, which are only required to be nonzero.

• It exhibits very rapid convergence. This might render it suitable for implementation

and use in time-varying environments, where the channel distribution itself is subject to

slow large-scale variations that require tracking.

Besides fast convergence, real-time tracking would demand robustness concerning the cal-

culation of the required averages. The coherence distance of the channel distribution typ-

ically ranges between a few meters and a few tens of meters [45]. At frequencies of 2−5

GHz, where the fade duration is on the order of a few cm, this coherence distance may

expose no more than a few hundred independent channel realizations whereby those av-

erages must be extracted. In order to assess the performance of Algorithm 1 in such condi-

tions, we revisit Example 1 with the expectations computed, this time, as averages of 100

(instead of 10000) independent channel realizations. The convergence, displayed in Fig. 5

for both SNR=−3 dB and SNR=5 dB, is almost undistinguishable from that in Fig. 1.

To finalize, some additional design lessons emerging from our analysis:
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• Isotropic inputs are adequate if the columns of the channel matrix, or of any rotated

version thereof, are independent and balanced in terms of power.

• In the widely used separable correlation model, this requirement reverts simply to lack

of correlation at the transmitter, irrespective of the receive correlation. Moreover, even

in the presence of transmit correlation, the receive correlation has little (if any) influence

on the capacity-achieving input: it has no impact on the signalling eigenvectors and it

plays no role on the low- and high-SNR transmit power allocation.14

• A proper structuring of the input usually increases the supported rates markedly at

low SNR. The advantage tends to be more modest at moderate and high SNR, where an

isotropic input can often attain a hefty fraction of the capacity.
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Appendix

A Proof of Theorems 1 and 3

We start by proving Theorem 1 using a technique similar to the one introduced in [14].

Recall that Φ=VPV†. In order to prove that achieving capacity requires V=UT, we need

to show that the capacity-achieving covariance for the rotated channel HUT is diagonal. In

terms of this rotated channel, the mutual information (in bits/s/Hz) is

I(SNR,P) = E
[

log2 det
(

I + SNR
nT

H̃PH̃†
)]

(13)

where UR turns out to be immaterial. We want to show that nonzero off-diagonal entries

in P can only reduce I(SNR,P). To that end, define Π` as a diagonal matrix all of whose

14Its lack of influence on the capacity-achieving input notwithstanding, receive correlation may strongly

affect the ensuing capacity.
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diagonal entries are 1 except for the (`,`)-th entry, which is −1. The entries of Π`PΠ
†
` equal

those of P except for the off-diagonals in the `-th row and `-th column, whose sign is

reversed. Then, Tr{Π`PΠ
†
`}=Tr{P} and

I(SNR,Π`PΠ
†
`) = E

[

log2 det
(

I + SNR
nT

(H̃Π`)P(H̃Π`)
†
)]

= E
[

log2 det
(

I + SNR
nT

H̃PH̃†
)]

(14)

= I(SNR,P)

where (14) follows from the fact that, since the columns of H̃ are independent and their

distribution symmetric, reversing the sign of the `-th column does not alter the distribution.

The matrix 1
2
(P+Π`PΠ

†
`) has entries equal to those of P except for the off-diagonals in the

`-th row and `-th column, which are zero. Invoking Jensen’s inequality,

I
(

SNR, 1
2
(P + Π`PΠ

†
`)
)

≥ I(SNR,P) + I(SNR,Π`PΠ
†
`)

2
= I(SNR,P)

Hence, nulling the off-diagonal entries of any column and corresponding row of P can only

increase I(SNR,P). Repeating the same process nT times, we find that (13) is maximized

when P is indeed diagonal.

Theorem 3 can be proved analogously. In this case, we need to show that maximizing

I(SNR,P) = E
[

log2 det
(

I + SNR
nT

cRc
†
TPcTc

†
R

)]

(15)

requires that P be diagonal. Since the distribution of the vector cT is not altered by the sign

reversal of its `-th entry,

I(SNR,P) = I(SNR,Π`PΠ
†
`)

and, from Jensen’s inequality,

I
(

SNR, 1
2
(P + Π`PΠ

†
`)
)

≥ I(SNR,P)

confirming that nulling the off-diagonal entries of any column and row of P increases

I(SNR,P). Repeating the process nT times, we find that P must be diagonal.
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B Derivation of Eq. (5)

Let P be the diagonal matrix that maximizes the strictly concave function (expressed, for

convenience, in nats/s/Hz)

I(Pd) = E
[

loge det
(

I + SNR
nT

ĤPdĤ
†
)]

(16)

over the convex set of diagonal positive semidefinite matrices Pd such that Tr{Pd}=nT.

This maximum is characterized by a set of Kuhn-Tucker conditions, which we derive from

first principles [46, Section 15.2]. Specifically, we impose that the derivative of (16) in the

direction from P to any alternative matrix Pd be negative. Letting

Pµ = (1 − µ)P + µPd

for 0≤µ≤1, the one-side derivative of (16) with respect to µ at µ=0+ is

d

dµ
I(Pµ) = E

[

Tr

{

(

I + SNR
nT

ĤPdĤ
†
)(

I + SNR
nT

ĤPĤ†
)−1

− I

}]

and, therefore, we impose that

E

[

Tr

{

(

I + SNR
nT

ĤPdĤ
†
)(

I + SNR
nT

ĤPĤ†
)−1

− I

}]

≤ 0 (17)

for every Pd in the set. Since the left-hand side of (17) is affine on Pd, it suffices to impose

it on the extreme points of the set. Moreover, the line connecting the j-th extreme point

(pj=nT, p`=0 for `6=j) with P can be extended beyond P if and only if the optimum pj

is strictly positive, in which case the derivative at P vanishes and (17) is a strict equality.

Otherwise, if the optimum pj is zero, (17) remains an inequality. With these considerations,

the necessary and sufficient conditions in (5) are readily obtained from (17).

Let us now restrict our attention to nT≤nR over channels such that pj>0 ∀j. Under these

conditions, Ĥ†Ĥ and P are nonsingular with probability 1. (If some of the powers are zero,

the same consideration can be made for the nonzero powers by removing the correspond-

ing rows and columns within the various matrices involved.) Letting SNR→∞ in (17), the

equality is satisfied if P=I. This can also be seen directly from the capacity itself since

lim
SNR→∞

(

E
[

log det
(

I + SNR
nT

Ĥ†ĤP
)]

− nT log SNR

)

= E
[

log det
(

1
nT

Ĥ†Ĥ
)]

+ log detP

which, because of the concavity of the log det(·) function and the constraint on the trace of

P, is maximized for P=I.
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C Proof of Proposition 1

For Ĥ=HV, the capacity-achieving input covariance is P=diag{p1, . . . , pnT
}. Denote by

P{m} a cyclic shift of P by m positions, i.e., another diagonal matrix such that

p
{m}
j = pj′

with j ′=(j−m)mod nT
. Clearly, Tr{P{m}}=nT for any shift m=1,. . .,nT and

1
nT

nT
∑

m=1

P{m} = I

Invoking Jensen’s inequality, the mutual information satisfies

E
[

log2 det
(

I + SNR
nT

ĤĤ†
)]

≥ 1
nT

nT
∑

m=1

E
[

log2 det
(

I + SNR
nT

ĤP{m}Ĥ†
)]

= E
[

log2 det
(

I + SNR
nT

ĤP{m}Ĥ†
)]

(18)

where (18) holds if the joint distribution of the entries of Ĥ is invariant to a cyclic shift of

its columns by m positions.
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[38] A. Lozano, A. M. Tulino, and S. Verdú, “High-SNR power offset in multi-antenna communi-
cation,” Proc. of Intern. Symp. on Inform. Theory (ISIT’04), Chicago, IL, July 2004.
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Figure 1: Transmit architecture generating a signal with spatial covariance Φ=VPV† where
V is unitary and P=diag{p1, p2, . . . , pnT

}.
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Figure 2: With nT=3 and nR=4 as per Example 1, values taken by P(k) for k=1, . . . , 7
at SNR=−3 dB and SNR=5 dB given P(0)=I. Also shown are the corresponding rates
per unit bandwidth. The capacity-achieving powers are P=diag{3, 0, 0} at −3 dB and
P=diag{2.4, 0.6, 0} at 5 dB.
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Figure 3: With nT=3 and nR=2 as per Example 2, values taken by P(k) for k=1, . . . , 7 at
SNR=5 dB given P(0)=I. Also shown are the corresponding rates per unit bandwidth. The
capacity-achieving powers are P=diag{2.2, 0.4, 0.4}.
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Figure 4: With nT=4 and nR=2 as per Example 3, values taken by P(k) for k=1, . . . , 7 at
SNR=3 dB with initialization P(0)=diag{2.8, 0.6, 0.4, 0.2}. Also shown are the corresponding
rates per unit bandwidth. The capacity-achieving solution is P=I (given by Proposition 1).
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