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Capacity-Achieving MIMO-NOMA: Iterative

LMMSE Detection
Lei Liu , Member, IEEE, Yuhao Chi , Chau Yuen , Senior Member, IEEE,

Yong Liang Guan , Senior Member, IEEE, and Ying Li , Member, IEEE

Abstract—This paper considers a low-complexity iterative linear
minimum mean square error (LMMSE) multiuser detector for the
multiple-input and multiple-output system with nonorthogonal mul-
tiple access (MIMO-NOMA), where multiple single-antenna users
simultaneously communicate with a multiple-antenna base station
(BS). While LMMSE being a linear detector has a low complexity,
it has suboptimal performance in multiuser detection scenario due
to the mismatch between LMMSE detection and multiuser decod-
ing. Therefore, in this paper, we provide the matching conditions
between the detector and decoders for MIMO-NOMA, which are
then used to derive the achievable rate of the iterative detection. We
prove that a matched iterative LMMSE detector can achieve the
optimal capacity of symmetric MIMO-NOMA with any number
of users, the optimal sum capacity of asymmetric MIMO-NOMA
with any number of users, all the maximal extreme points in the
capacity region of asymmetric MIMO-NOMA with any number of
users, and all points in the capacity region of two-user and three-
user asymmetric MIMO-NOMA systems. In addition, a kind of
practical low-complexity error-correcting multiuser code, called ir-
regular repeat-accumulate code, is designed to match the LMMSE
detector. Numerical results shows that the bit error rate perfor-
mance of the proposed iterative LMMSE detection outperforms
the state-of-art methods and is within 0.8 dB from the associated
capacity limit.

Index Terms—MIMO-NOMA, iterative LMMSE, capacity
achieving, low-complexity multi-user detection, multi-user code.

I. INTRODUCTION

R
ECENT investigations have shown that Multi-user

Multiple-Input Multiple-Output (MU-MIMO), where
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multiple single-antenna users communicate with a multi-

antenna Base Station (BS), has become increasing important

due to their potential applications in 5G cellular systems and be-

yond [1]–[6]. In particular, massive MU-MIMO has been shown

to be able to bring significant improvement in throughput and

energy efficiency [3], [4].

Multiple access schemes, the fundamental techniques of co-

ordinated multi-user communication in the physical layer, play

the most important role in each cellular generation. Frequency

Division Multiple Access (FDMA), Time Division Multiple Ac-

cess (TDMA), Code Division Multiple Access (CDMA), and

Orthogonal Frequency-Division Multiple Access (OFDMA) are

the conventional Orthogonal Multiple Access (OMA) schemes,

which orthogonalize users in time/frequency/code domain to

avoid multi-user interference [7], [8]. Due to the orthogonal-

ity of OMA, no inter-user interference exists at the receiver

side. Hence, simple single-user signal processing in the con-

ventional point-to-point communication can be directly used

for OMA. However, there is no free lunch. First, OMA is not

able to achieve all points in the capacity region of multiuser

access channel (MAC). Besides, massive connectivity will be

the key scenario in the future wireless communication, and thus

the limited radio resources cannot support the massive orthogo-

nal access devices in the OMA any more. Apart from that, user

scheduling such as resource allocation is required for orthog-

onal users in OMA, which leads to heavy additional overhead

and results in large latency and high processing complexity in

massive connectivity system.

Recently, Non-Orthogonal Multiple Access (NOMA), where

all the users can be served con-currently in the same

time/frequency/code domain, has been identified as one of the

key radio access technologies to increase the spectral efficiency

and reduce latency in 5G mobile networks [8]–[17]. As opposed

to OMA, the key concepts behind NOMA are summarized as

follows [16]–[20].
� All the users are allowed to be superimposed at the receiver

in the same time/code/frequency domain.
� All points in the capacity region of MAC are achievable.
� Interference cancellation is performed at receiver, either

Successive Interference Cancellation (SIC) or Parallel In-

terference Cancellation (PIC).

More recently, to enhance spectral efficiency and re-

duce latency, MIMO-NOMA that employs NOMA techniques

over MU-MIMO is considered as a key air interface tech-

nology in the fifth-generation (5G) communication system

[17]–[23]. Therefore, we focus on MIMO-NOMA in this

paper.
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A. Challenge of Multi-User Detection in MIMO-NOMA

Unlike the MIMO-OMA, signal processing in MIMO-

NOMA will cost higher complexity and higher energy consump-

tion at BS [2], [3]. Low-complexity uplink detection for MIMO-

NOMA is a challenging problem due to the non-orthogonal

interference between the users [3], [11]–[13], especially when

the number of users and the number of BS antennas are large.

The optimal multiuser detector (MUD) for the MIMO-NOMA,

such as the maximum a-posteriori probability (MAP) detec-

tor or maximum likelihood (ML) detector, was proven to be an

NP-hard and non-deterministic polynomial-time complete (NP-

complete) problem [24], [25]. Furthermore, the complexity of

optimal MUD grows exponentially with the number of users or

the number of BS antennas, and polynomially with the size of

signal constellation [25], [26].

B. Background of Low-Complexity Multi-User Detector

Several low-complexity multi-user detectors have been pro-

posed in the literature. They are mainly divided into three cate-

gories: uncoded detection, coded SIC detection, and coded PIC

detection.

1) Uncoded Low-Complexity Detection: Many low-

complexity linear detections such as Matched Filter (MF),

Zero-Forcing (ZF) receiver, Minimum Mean Square Error

(MMSE), and Message Passing Detector (MPD) [7], [27] are

proposed for the practical systems. In addition, some iterative

methods such as Jacobi method, Richardson method [28]–[30],

Belief Propagation (BP) method, and iterative MPD [5], [6],

[31], [32] are put forward to further reduce the computational

complexity by avoiding the unfavorable matrix inversion

in the linear detections. Although being attractive from the

complexity view point, these individual detectors are regarded

to be sub-optimal MUDs, where decoding results are not fed

back to the detector. As a result, the multi-user interference is

not cancellated sufficiently.

2) Coded SIC Detection: SIC, where correct decoding re-

sults are fed back to the detector for perfect interference cancel-

lation, is one of the key technologies to improve the detection

performance. It is well known that for the MAC, the SIC is an

optimal strategy and can achieve all points in the capacity re-

gion of MIMO-NOMA with time-sharing technology [33], [34].

Besides, the MMSE-SIC detector [37], [38] has been proposed

to achieve the optimal performance [7]. Nevertheless, the fol-

lowing disadvantages make SIC infeasible when applying to the

practical MIMO-NOMA [3], [7], [35].
� The users are decoded one by one, which greatly increases

the time delay.
� The decoding order is required to be known at both the

transmitter and receiver, which results in additional over-

head cost.
� It assumes that all the previous users’ messages are recov-

ered correctly and thus can be completely removed from

the received signals. Nevertheless, in practice, the correct

recovery is never be possible, which leads to error propa-

gation during the interference cancellation.
� To achieve all points in the capacity region of MIMO-

NOMA, time-sharing should be used, which needs coop-

eration between the users.

� The decoding order of SIC changes with the different chan-

nel state and different Quality of Service (QoS), which

brings a higher overhead cost.

3) Coded PIC Detection: PIC, where users are parallelly

recovered and messages exchanged between the detector and

decoders are soft, is another promising technique for the practi-

cal MIMO-NOMA systems [6], [30], [32], [37]. This technique

has been commonly used for the non-orthogonal MAC like

the Code Division Multiple Access (CDMA) systems [7], [35]

and the Interleave Division Multiple Access (IDMA) systems

[39], [40]. Various iterative detectors,1 such as iterative Linear

MMSE (LMMSE) detector, iterative BP detector and iterative

MPD [41]–[43]. The advantages of iterative detection are listed

as follows.
� The complexity is very low, since the overall receiver is

departed into many parallel low-complexity processors.
� Time delay is much lower than SIC, since the users are

recovered in parallel.
� Error propagation is greatly mitigated, since user interfer-

ence are cancellated in soft and thus perfect interference

cancellation is not required.
� System overhead is reduced, since the preset decoding

order is not required.
� User cooperation is removed, since time-sharing is not

required.

The existing PIC detections have a good simulative perfor-

mance, but are regarded as suboptimal due to a performance gap

to the associated capacity limit [35]. This is due to the fact that

the detector and the decoders are designed separately and are not

matched with each another, which results in performance loss

although the decoding feedback is included for the detection.

4) Principles of A Good Iterative Multi-User Detector:

From the review above, we conclude the key principles in de-

signing a good iterative multi-user detector.
� Multi-user interference cancellation and discrete signal re-

construction are performed respectively by MUD and user

detectors.
� The decoding results should be fed back to the detector for

a thorough interference cancellation.
� The detector and multi-user code should be jointly de-

signed and matched with each other to avoid rate loss. In

particular, the multi-user channel code should be optimized

for the super-channel that encompasses the MIMO-NOMA

channel and the multi-user detector.

The achievable rate analysis of such iterative detection for

MIMO-NOMA is an intriguing problem.

C. Relationship with Interference Channel and Vector

Multiple Access Channel

To clarify the relationship between interference channel (IC),

vector multiple-access channel (VMAC) and MIMO-NOMA

channel. We first give the definitions of IC and VMAC below.
� IC considers multiple transmitters and multiple receivers,

and transmitter cooperation and receiver cooperation are

not allowed (i.e. multiple scalar/vector inputs and multiple

scalar/vector outputs).

1For the uncoded iterative detector in Section I-B1, the iteration is processed
inside the detector. However, for the coded PIC detector, the iterative detection
is performed between the detector and decoders, i.e., outside the detector.



� VMAC considers multiple transmitters and a single re-

ceiver, and both transmitters and receiver are equipped

with multiple antennas (i.e. multiple vector inputs and a

vector output).

Hence, the MIMO-NOMA channel (multiple scalar inputs

and a vector output) discussed in this paper is different from

IC because only a single receiver is considered. Moreover, the

MIMO-NOMA channel is a special case of VMAC if each

transmitter is only equipped with single antenna.

It is well known that the capacity of IC [44] is still an open is-

sue. In addition, the capacity of general VMAC is only solved by

a numerical algorithm [45]. In contrast, MIMO-NOMA channel

(or VMAC with single-antenna transmitters) has a closed-form

capacity region, which has been solved in [52], see also [7] and

[34] for more details.

D. Gap Between P2P MIMO and MIMO-NOMA

The Extrinsic Information Transfer (EXIT) [46], [47], MSE-

based Transfer Chart (MSTC) [48], [49], area theorem and

matching theorem [46]–[49] are the main methods to analyse

the achievable rate or the Bit Error Rate (BER) performance of

MIMO systems. It is proven that a well-designed single-code

with linear precoding and iterative LMMSE detection achieves

the capacity of the MIMO systems [43]. However, this results

only applies to point-to-point (P2P) MIMO systems.

Since there is no user collaboration in MIMO-NOMA, the

precoding in P2P MIMO [43] cannot be used. Besides, the

singular value decomposition (SVD) and water-filling in [43]

are unachievable in multi-user MIMO NOMA too, since there

is no channel information at transmitters. Furthermore, only

one user rate is analyzed in P2P MIMO [43], but in MIMO-

NOMA, the whole achievable rate region that contains all the

user rates needs to be established. Apart from that, the non-

orthogonal multi-user interference makes the problem be more

complicated. For example, the decoding processes of the non-

orthogonal users in MIMO-NOMA interfere with each other,

which results in a much more complicated MSTC functions and

area theorems. In summary, the results in P2P MIMO (e.g. [43])

cannot be cannot be straightforwardly applied to analyze the

achievable rates of the iterative detection for MIMO-NOMA.

E. Contributions

In this paper, the achievable rate analysis of the iterative

LMMSE detection is provided for MIMO-NOMA, which shows

that the low-complexity iterative LMMSE can be rate region

optimal if it is properly designed. The contributions of this

paper are summarized as follows.2

a) Matching conditions and area theorems of the iterative

detector are proposed for MIMO-NOMA.

b) Achievable rate analysis of iterative LMMSE detection

are provided.

c) Analytical proofs are derived for the designed iterative

LMMSE detection to achieve:
� the capacity of symmetric MIMO-NOMA with any

number of users,

2In points a, b, c and d, the ideal SCM codes (with infinite layers and infinite
length), which are designed to match the SINR-variance transfer curves of
LMMSE detection, are used for the multiuser codes.

� the sum capacity of the asymmetric MIMO-NOMA

with any number of users,
� all the maximal extreme points in the capacity region

of the asymmetric MIMO-NOMA with any number of

users, and
� all points in the capacity region of two-user and three-

user asymmetric MIMO-NOMA.

d) We prove that the elementary signal estimator (ESE) of

IDMA in Multiple Input and Signal Output (MISO) and

the maximal ratio combiner (MRC) in Multiple Output

and Signal Input (SIMO) are two special cases of iterative

LMMSE receiver. Hence, both ESE of IDMA in MISO

and MRC in SIMO are sum capacity achieving.

e) An algorithm is provided to design a practical iterative

LMMSE detection.

f) A kind of capacity-approaching multi-user NOMA code

for the LMMSE detection, in the form of a special (non-

standard) Irregular Repeat-Accumulate(IRA) multiuser

code, is systematically constructed. This special IRA

multi-user code must be designed in conjunction with the

LMMSE detection to produce extrinsic transfer functions

that satisfy a certain constraint among the different users.

g) Numerical results show that our iterative LMMSE de-

tection with optimized IRA code outperforms the existing

methods, and is within 0.8dB from the associated capacity

limit.

From the information theoretic point of view, to the best of

our knowledge, this is the first work that proves that a proper

designed PIC (joint design of the iterative LMMSE detection

and the multi-user code) can achieve the capacity of MIMO-

NOMA with low complexity. From the practical point of view,

the jointly designed iterative LMMSE detection (PIC) has sig-

nificant improvement in the BER performances over the existing

iterative receivers (including both SIC and PIC) in a variety of

system loads.

Comments: It is well known that finite-length coding will lead

to rate loss. In this paper, when we refer to the proposed iterative

LMMSE achieving the capacity (sum capacity or all points in

the capacity region) of MIMO-NOMA, infinite-length channel

codes are considered by default. Specifically, in this paper, we

use an ideal SCM code (with infinite layers and infinite length),

which is designed to match the SINR-variance transfer curves

of LMMSE detection. The existence of such code is rigorously

proved in Appendix D.

This paper is organized as follows. In Section II, the MIMO-

NOMA system and iterative LMMSE detection are introduced.

The matching conditions and area theorems for the MIMO-

NOMA are elaborated in Section III. Section IV provides the

achievable rate analysis. Important properties and special cases

of the iterative LMMSE detection are given in Section V. Prac-

tical multiuser code design is provided in Section VI. Numerical

results are shown in Section VII.

II. SYSTEM MODEL AND ITERATIVE LMMSE DETECTION

Consider an uplink MU-MIMO system that showed in Fig. 1:

Nu autonomous single-antenna terminals simultaneously com-

municate with an array of Nr antennas of the BS [3], [4]. Here,

Nu and Nr can be any finite positive integers. Since all the users

interfere with each other at the receiver and are non-orthogonal
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Fig. 1. Block diagram of MIMO-NOMA system. SCM ENC is the superpo-
sition coded modulation encoder and APP DEC is the a-posteriori probability
decoder. Πi and Π−1

i denotes the interleaver and de-interleaver. LMMSE rep-

resents the LMMSE detector. The equivalent channel H′ contains the channel
H and the power parameter of each user wi , i ∈ Nu .

in the time, frequency and code domain, it is thus named MIMO-

NOMA.3 The system is represented as

yt = Hxtr (t) + n(t), t ∈ N , N = {1, . . . , N} (1)

where H is an Nr × Nu channel matrix, n(t) ∼ CNN r (0, σ2
n )

an independent additive white Gaussian noise (AWGN),

xtr (t) = [xtr
1 (t), . . . , xtr

Nu
(t)]T the transmission, and yt the re-

ceived vector at time t. In this paper, we consider the block

fading channel [7], i.e., H is fixed during one block transmis-

sion and known at the BS. When the channel is block fading,

in time-division duplexing (TDD) mode, it is possible for the

BS to estimate the downlink channel when receiving message

from the uplink. In frequency-division duplexing (FDD) mode,

it is possible for the receiver feedback the channel to BS. How-

ever, as these are standard assumption for many others in the

literature, we will not describe in details.

A. Transmitters

As illustrated in Fig. 1, at user i (i ∈ Nu , Nu =
{1, 2, · · · , Nu}), an information sequence ui is encoded by an

error-correcting code into an N -length sequence x′
i , which is

interleaved by an N -length independent random interleaver4 Πi

to get xi = [xi,1 , xi,2 , . . . , xi,N ]T . We assume that each xi,t

is taken over the points in a discrete signaling constellation

S = {s1 , s2 , . . . , s|S|}. After that, the xi is scaled with wi , and

we then get the transmitting xtr
i , i ∈ Nu . Let σ2

x i
= 1 denote the

normalized variance of xi , and Kx be power constraint diagonal

matrix whose diagonal elements are w2
i , i ∈ Nu . Therefore, the

system can be rewritten to

yt = HK1/2
x x(t) + n(t) = H′x(t) + n(t), t ∈ N , (2)

where x(t) = [x1(t), . . . , xNu
(t)]T .

B. Capacity Region of MIMO-NOMA

Let Y denote the received random vector, and X represent the

transmitting random vector. Assuming S ⊆ Nu , Sc ⊆ Nu/S
and S ∪ Sc = Nu , the partial channel matrix is denoted as

3Here, MIMO-NOMA is different from IC since only a single receiver is
considered. Moreover, MIMO-NOMA is also different from VMAC since each
transmitter is only equipped with single antenna.

4The interleavers improve the system performance by enhancing the random-
ness of the messages or the channel noise, and avoiding the short cycles in the
system factor graph [39], [40], [50].

H′
S = [{h′

i , i ∈ S}]N r ×|S |, where h′
i is the ith column of H′.

Similar definition is applied to XS . Let Ri be the rate of user

i and RS =
∑

i∈S Ri represent the sum rate of the users in set

S. Then, capacity region5 RS of the MIMO-NOMA system is

given by [33], [34]

RS ≤ I(Y;XS |XS c ) = log

∣

∣

∣

∣

I|S| +
1

σ2
n

H′H
S H′

S

∣

∣

∣

∣

, ∀S ⊆ Nu ,

(3)

where |A| denotes the determinant of A. The sum rate is

Rsum = RNu
= log

∣

∣

∣

∣

INu
+

1

σ2
n

H′H H′

∣

∣

∣

∣

. (4)

C. Iterative Receiver

We adopt a joint detection-decoding iterative receiver, which

is widely used in the multiple-access systems [31], [37], [43].

The messages eEST (xi), l̃EST (xi), l̃DEC (x′
i), and eDEC (x′

i),
i ∈ Nu , are defined as the estimates of the transmissions. As

illustrated in Fig. 1, at the BS, the received signals Y =
[y1 , . . . ,yN ] and message {l̃EST (xi), i ∈ Nu} are passed to

a LMMSE detector to estimate message eEST (xi) for de-

coder i, which is then deinterleaved with Π−1
i into l̃DEC (x′

i),
i ∈ Nu . The corresponding single-user decoder outputs mes-

sage eDEC (x′
i) based on l̃DEC (x′

i). Similarly, this message

is interleaved by Πi to obtain l̃EST (xi) for the detector. This

process is repeated iteratively until the maximum number of

iterations is achieved.

In the rest of this paper, we will not distinguish xi and x′
i

as they are same sequences with different permutations, i.e.,

l̃DEC (x′
i) and eDEC (x′

i) can be denoted with eEST (xi) and

l̃EST (xi). In fact, the messages eEST (xi) and l̃EST (xi) can be

replaced by the means and variances respectively.

1) Key Assumptions: For simplicity, we make the following

assumptions, which are widely used in iterative decoding and

turbo equalization algorithms [41], [43], [47], [51].

Assumption 1: For the LMMSE detector, each xi(t) is in-

dependently chosen from S for any i and t; the messages

{eEST (xi), i ∈ Nu} are independent with each other, and the

entries of eEST (xi) are i.i.d. given xi .

Assumption 2: For the decoder, the messages eDEC (x′
i),

i ∈ Nu are independent with each other, and the entries of

eDEC (x′
i) are i.i.d. given x′

i .

Assumptions 1 and 2 decompose the overall process into the

local processors such as the detector and decoders, which sim-

plifies the analysis of the iterative process. In detail, Assumption

1 simplifies the LMMSE estimation (see Section II-D1, and As-

sumption 2 simplifies the transfer function of decoders (see

Section II-C2.

2) A-posteriori Probability (APP) Decoder: We assume

each decoder employees APP decoding6 at the receiver. The

5Different from the interference channel whose capacity is still an open issue
and the vector multiple-access channel whose capacity only has a numerical
solution, the capacity calculation of MIMO-NOMA is trivial and has been has
been well studied in [7], [52].

6Although computational complexity of the APP decoding is too high to
apply in practical systems, low-complexity message-passing algorithms can be
used to achieve near-optimal performance [51]. APP decoding assumption is
included to simplify our analysis.



extrinsic variance output of APP decoder is defined as

vi,t = MMSE
(

xi,t |̃lDEC (xi,∼t)
)

. (5)

From Assumption 2, we have vi,t = vi ,∀t. Therefore, we can

define the SINR-Variance transfer function of the decoders as

vx̄ = ψ(ρ), (6)

Where ψ(ρ) = [ψ1(ρ1), . . . , ψNu
(ρNu

)].

D. LMMSE Detector

In the MIMO-NOMA, the complexity of the optimal MAP

detector is too high, and LMMSE detector is an alternative low-

complexity detector.

1) A-Posteriori LMMSE Estimation: Message l̃EST (xi,t) is

de-mapped to x̄i,t with variance vi . Assumption 1 indicates that

vi is invariant with respect to t. Hence,

x̄i,t = E
[

xi,t |l̃EST (xi,t)
]

, vi = E
[

|xi,t − x̄i,t |
2 |l̃EST (xi,t)

]

,

(7)

where E[a|b] denotes the expectation of a given b. Let x̄(t) =
[x̄1,t , . . . , x̄Nu ,t ] and Vx̄(t) = Vx̄ = diag(v1 , v2 , . . . , vNu

).
The a-posteriori LMMSE estimation [5], [7], [31], [43] is

x̂(t) = Vx̂

[

V−1
x̄ x̄(t) + σ−2

n H′H yt

]

, (8)

where Vx̂ = (σ−2
n H′H H′ + V−1

x̄ )−1 denotes the a-posteriori

deviation of the estimation. A derivation of (8) is given in AP-

PENDIX A. For more details of LMMSE, please refer to Sec-

tion II-C2 and Section IV-F of [5].

2) Extrinsic LMMSE Detector: Let x̂i,t and vx̂ i
be the entry

and diagonal entry of x̂(t) and Vx̂ , respectively. The LMMSE

detector outputs extrinsic7 mean and variance for xi,t (denoted

by ui,t and φ−1
i ) by excluding the prior message l̃EST (xi,t) with

the message combining rule [27]:

φi(vx̄) = v−1
x̂ i

(vx̄) − v−1
i and ui,t =

x̂i,t

φivx̂ i

−
x̄i,t

φivi
, (9)

where vx̄ = [v1 , v2 , . . . , vNu
].

3) Extrinsic Transfer Function: The following proposition

is proved in Appendix B.

Proposition 1 [53], [54]: Let ρ = [ρ1 , . . . , ρNu
], φ(vx̄) =

[φ1(vx̄), . . . , φNu
(vx̄)]. The output of the LMMSE detector is

an observation from AWGN channel,8 i.e., ut = x(t) + n∗
t with

Signal Interference Noise Ratio (SINR) ρ = φ(vx̄).
With Proposition 1, we can define the extrinsic LMMSE

SINR-Variance transfer function of user i as

φi(vx̄) = v−1
x̂ i

− v−1
i , for i ∈ Nu . (10)

The a-posteriori MSE of LMMSE detector for user i is

mmseest
ap,i(vx̄) = vx̂ i

. (11)

Furthermore, Proposition 1 will be used to derive the area prop-

erties of MIMO-NOMA (see Section III-B.

Remark: The variance vi varies from 0 to 1, because the

signal power is normalized to 1. From (4), the output estimation

7The a-posteriori estimate in (8) cannot be used directly due to the correlation
issue.

8The ”*” indicates that it is not the channel noise, but an imagined noise
including the interference.

of user i depends on the input variances of all the users. Thus,

the SINR-Variance transfer functions of all users interfere with

each other. In addition, φi(vx̄) is monotonically decreasing in

vx̄ , which means the lower input variances of the users, the

higher the output SINR of the detector.

E. Complexity of Iterative LMMSE Detection

From (8), the complexity of LMMSE estimator is Ξest =
O
(

min{NrN
2
u + N 3

u , NuN 2
r + N 3

r }
)

, where O(N 3
u ) (or

O(N 3
r )) arises from the matrix inverse calculation, O(NrN

2
u )

(or O(NuN 2
r )) from the matrix multiplication, and “min” from

Matrix Inversion Lemma. Hence, the total complexity of it-

erative LMMSE detection is O ((Ξest + NuΞdec)Nite), where

Nite is the number of iterations and Ξdec denotes the single-user

decoding complexity per iteration. Note that the complexity of

LMMSE detector is much lower than the optimal MUD whose

complexity grows exponentially with Nu and Nr , and polyno-

mially with |S|.

III. MATCHING CONDITIONS AND AREA THEOREMS

In [43], [48], [49], the I-MMSE theorem and the area the-

orems for the P2P communication systems are proposed. In

this section, these results are generalized to the MIMO-NOMA

systems.

A. Matching Conditions of MIMO-NOMA

1) SINR-Variance Transfer Chart: The iterative receiver

performs iteration between the detector and the decoders,

which are described by ρ = φ(vx̄) and vx̄ = ψ(ρ) respec-

tively. Hence, the iteration is tracked by

ρ(τ) = φ (vx̄(τ − 1)) ,vx̄(τ) = ψ (ρ(τ)) , τ = 1, 2, · · · .
(12)

Eq. (12) converges to a fixed point v∗
x̄ , which satisfies

φ (v∗
x̄) = ψ−1 (v∗

x̄) and φ (vx̄) > ψ−1 (vx̄) ,

for v∗
x̄ < vx̄ ≤ 1,

where ψ−1(·) denotes the inverse of ψ(·), which exists

since ψ(·) is continuous and monotonic [55]. The inequality9

vx̄ ≤ 1 comes from the normalized signal power of x(t),
t ∈ N .

As shown in Fig. 2, if v∗
x̄ = 0, then all the transmissions can

be correctly recovered, which means that φ (vx̄) > ψ−1 (vx̄)
for any available vx̄ , i.e., decoders’ transfer function ψ−1 (vx̄)
lies below that of the detector φ (vx̄).

2) Matching Conditions: The detector and decoders are

matched if

φ (vx̄) = ψ−1 (vx̄) , for 0 < vx̄ ≤ 1. (13)

Therefore, we obtain the following proposition.

9In this paper, all the inequalities for the vectors or matrixes correspond to
the component-wise inequalities.
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Fig. 2. SINR-variance transfer chart of the iterative receiver.

Proposition 2: For any i ∈ Nu , the matching conditions of

the iterative MIMO-NOMA systems can be rewritten to

ψi(ρi) = φ−1
i (φi(1)) = 1, for 0 ≤ ρi < φi(1); (14)

ψi(ρi) = φ−1
i (ρi), for φi(1) ≤ ρi < φi(0); (15)

ψi(ρi) = 0, for φi(0) ≤ ρi < ∞. (16)

Proof: Eq. 13 means that φi(vx̄) = ψ−1
i (vi) for any i ∈ Nu .

First, we have φi(1) > 0, since the detector always uses the

information from the channel. Hence, we get ψi(ρi) = 1, for

0 ≤ ρi < φi(1). Second, we have φi(0) > 1, since the de-

tector cannot remove the uncertainty introduced by the chan-

nel noise. Hence, we get ψi(ρi) = 0, for φi(0) ≤ ρi < ∞.

At last, ψi(ρi) = φ−1
i (ρi) exists due to its monotonicity on

φi(1) ≤ ρi < φi(0). Therefore, we have (14)–(16). �

Proposition 2 will be used in the area properties and rate

analysis of MIMO-NOMA.

B. Area Properties

Let snrdec
pri,i denote the SNR of the a-priori message for

decoder i, snrest
ext,i be the SNR of the extrinsic message for

user i at detector, mmseest
ap,i(·) be the a-posteriori variance of

the message for user i at detector, and mmsedec
ap,i(·) be the

a-posteriori variance of the message at decoder i. Besides,

snrest
ext,i = [snrest

ext,1 , . . . , snrest
ext,Nu

]. The following proposition

gives the area properties of the iterative detection, which will be

used to derive the user rate of MIMO-NOMA.

Proposition 3: The achievable rate Ri of user i and an upper

bound of Ri are given by

Ri =

∫ ∞

0

mmsedec
ap,i(snrdec

pri,i)dsnrdec
pri,i , (17)

Rmax
i =

∫ ∞

0

mmseest
ap,i(snrest

ext)dsnrest
ext,i , (18)

where Ri ≤ Rmax
i , i ∈ Nu , where the equality holds if and

only if the SINR-Variance transfer functions of the detector and

user decoders are matched with each other, i.e., the matching

conditions (13)∼(16) hold.

From (4), (6) and Proposition 1, we have snrdec
pri,i = ρi ,

snrest
ext,i = φi(vx̄), mmsedec

ap,i(snrdec,i
pri ) = (ρi + ψi(ρi)

−1)
−1

and mmseest
ap,i(snrest

ext,i) = vx̂ i
(vx̄). Therefore, we have the fol-

lowing corollary from Proposition 3.

Corollary 1: With the SINR-Variance transfer functions ρ =
φ(vx̄) and vx̄ = ψ(ρ), the achievable rate Ri of user i and an

upper bound of Ri are

Ri =

∫ ∞

0

(

ρi + ψi(ρi)
−1)−1

dρi , (19)

Rmax
i =

∫ ∞

0

vx̂ i
(vx̄)dφi(vx̄), (20)

respectively, and Ri ≤ Rmax
i , i ∈ Nu , where the equality holds

if and only if the matching conditions (13)∼(16) hold.

Now, the achievable rates can be calculated by (20) or (19)

together with (13) and the matching conditions (14)∼(16).

IV. ACHIEVABLE RATE OF ITERATIVE LMMSE DETECTOR

User achievable rate is derived for the iterative MIMO-

NOMA in this section. The Superposition Coded Modula-

tion (SCM) code is employed for the Forward Error Correc-

tion (FEC) code. We show that the achievable rate of iterative

LMMSE can achieve the capacity of symmetric MIMO-NOMA

and sum capacity of asymmetric MIMO-NOMA.

A. Achieving the Sum Capacity of Asymmetric MIMO-NOMA

For a general asymmetric MIMO-NOMA, achievable rate

analysis becomes more complicated due to challenges below.
� All the users’ transfer functions interfere with each other

at the detector, i.e., the any output of the detector relies on

every variance of the input messages from the decoders.
� All the transfer curves of decoders requires to lie below

that of the detector.
� The detector and decoders are associated with each other. It

is intractable to optimize over an abstract class of decoder

transfer functions for each user.

1) Transfer-Constraint Parameter: The area theorem tells

us that the achievable rate of every user is maximized if and

only if its transfer function matches with that of the detector.

Therefore, we can fix the transfer functions of the detector, and

then obtain users’ achievable rate by matching the decoders’

transfer functions with the detector.

To make the analysis feasible, we consider a transfer con-

straint for the input variances of the detector.

γi(v
−1
i − 1) = γj (v

−1
j − 1), for any i, j ∈ Nu . (21)

Let γ = [γ1 , . . . , γNu
] be the transfer-constraint parameter of

the iterative LMMSE detection. Without loss of generality, we

assume γ1 = 1 and γi > 0 , that is, v−1
i = 1 + γ−1

i (v−1
1 − 1)

for any i ∈ Nu .

Actually, different values of γ give different variance tracks.

Furthermore, different variance tracks correspond to different

achievable rates of the users, i.e., the user’s achievable rate can

be adjusted by the transfer-constraint parameter γ.

Fig. 3 and Fig. 4 presents the variance tracks with different

values of γ for two-users and three-user MIMO-NOMA systems



Fig. 3. Variance tracks for different γ, where γ1 = 1 is fixed. vi denotes the
variance of user i, i = 1, 2. When γ2 changes from ∞ to 0, the track changes
from the blue curve (SIC case with decoding order: user 1 → user 2) to green
curve (SIC case with decoding order: user 2 → user 1). When γ1 = γ2 = 1, it
degenerates into the symmetric case (red line).

Fig. 4. Variance tracks for different γ, where γ1 = 1 is fixed. vi denotes the
variance of user i, i = 1, 2, 3. The variance track changes with γ2 and γ3 . When
γ3 /γ2 → ∞ and γ2 /γ1 → ∞ (green curve), it degenerates into the SIC case
with the decoding order: user 3 → user 2 → user 1. When γ1 = γ2 = γ3 = 1,
it degenerates into the symmetric case (red line). The other curves are the general
asymmetric cases.

respectively. As we can see, (21) includes the symmetric case

(i.e. w1 = · · · = wNu
) and all the SIC points (maximal extreme

points of the capacity region). If γk i
/γk i−1

→ ∞, for any i ∈
Nu/{1}, we obtain the SIC points with the decoding order

[k1 , k2 , . . . , kNu
], which is a permutation of [1, 2, . . . , Nu ]. The

blue curve and green curves in Fig. 3 and Fig. 4 correspond to

the SIC cases.

2) Transfer Function: With the transfer constraint in (21),

we have

V−1
x̄ = INu

+ γi(v
−1
i − 1)Λ−1

γ
= V−1

x̄ (vi) (22)

and

Vx̂ = (σ−2
n H′H H′ + V−1

x̄ )−1

= (σ−2
n H′H H′ + V−1

x̄ (vi))
−1

= Vx̂(vi) (23)

where i ∈ Nu , and Λγ = diag(γ) is a diagonal matrix whose

diagonal entries are γ. Thus, we have

φi(vx̄) = vx̂ i
(vi)

−1 − v−1
i = φi(vi) = ρi . (24)

For example, if we take i = 1, we have

V−1
x̄ = V−1

x̄ (v1), Vx̂ = Vx̂(v1), and φi(vx̄) = φi(v1).
(25)

3) Asymmetric Matching Condition: With the transfer con-

straint, the matching conditions are simplified as follows.

Proposition 4: Based on (24), for i ∈ Nu , the matching con-

ditions (13) can be rewritten to

ψi(ρi) = φ−1
i (φi(1)) = 1, for 0 ≤ ρi < φi(1); (26)

ψi(ρi) = φ−1
i (ρi), for φi(1) ≤ ρi < φi(0); (27)

ψi(ρi) = 0, for φi(0) ≤ ρi < ∞. (28)

Proof: From (25), we have φi(1) = φi(1) and φi(0) =
φi(0). Substituting it to (14)–(16), we obtain Proposition 5. �

4) User Achievable Rate: The users’ achievable rates are

given by the following lemma.

Lemma 1: For the asymmetric MIMO-NOMA with any Nu

and Nr , the achievable rate of user i for iterative LMMSE de-

tection is

Ri =

∫ v1 =0

v1 =1

[

v1 − γ−1
i [Vx̂(v1)]i,i

]

dv−1
1 − log(γi), (29)

where Vx̂(v1) = (σ−2
n H′H H′ + INu

+ (v−1
1 − 1)Λ−1

γ
)−1 , and

[·]i,i denotes the i-th diagonal entry of the matrix.

Proof: See Appendix C. �

Lemma 1 gives the achievable rate of each user, but it is an

complicated integral function and we cannot see the specific

relationship between the achievable rates and Λγ .

Remark: When γi = 1 for i ∈ Nu , and for a symmetric sys-

tem with: (i) the same rate Ri = R for i ∈ Nu ; (ii) the same

power Kx = w2I, Theorem 1 degenerates to Corollary 2.

5) Achievable Sum Rate: Although it is difficult to give the

exact achievable rate region, the iterative LMMSE detection is

shown to sum capacity achieving.

Theorem 1: For any Nu and Nr , the iterative LMMSE

detection achieves the sum capacity of MIMO-NOMA, i.e.,

Rsum = log |INu
+ σ−2

n H′H′H |.
Proof: See Appendix F. �

Theorem 1 shows that for a general asymmetric MIMO-

NOMA, from the sum rate perspective, the LMMSE detector

is an optimal detector without losing any useful information

during the estimation.

6) Monotonicity of Achievable Rate: The following lemma

shows the monotonicity of achievable rate in (29).

Lemma 2: The achievable rate Ri of user i increases

monotonously with γi and decreases monotonously with γj ,

where i, j ∈ Nu and j �= i.
Proof: It is easy to find that mmseest

ap,i (or mmsedec
ap,i) in-

creases monotonously with γi and decreases monotonously γj

for i, j ∈ Nu and j �= i. Thus, based on Proposition 3, we

have that Ri increases monotonously with γi and decreases

monotonously γj for j �= i. �
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Lemma 2 is important in user rate adjustment, i.e., if we want

increase the rate of user i, it only needs to increase γi . Besides,

the monotonicity is also important for the practical iterative

detection design.

B. Achieving the Capacity of Symmetric MIMO-NOMA

Then, we consider a simple symmetric MIMO-NOMA sys-

tems, that is the users have the same power and the same rate,

i.e., Kx = w2I and Ri = Rj , for i, j ∈ Nu .

1) Transfer Function: Since all the users have the same con-

ditions, we thus obtain that all the users have the same transfer

functions, which means vi = v and ρi = ρ, for any i ∈ Nu .

Therefore, the transfer functions are derived as:

vx̂ i
(vx̄)

(a)
=

1

Nu
mmseest

ap (vx̄) =
1

Nu
Tr {Vx̂}

=
1

Nu
Tr
{

(

σ−2
n w2HH H + v−1INu

)−1
}

= vx̂(v), (30)

and

φi(vx̄)
(b)
= vx̂(v)−1 − v−1

=
1

Nu
Tr
{

(

σ−2
n w2HH H + v−1INu

)−1
}−1

− v−1

= φ(v) = ρ, (31)

where equations (a) and (b) are obtained from the symmetric

assumption. Similarly, we have ψi(ρi) = ψ(ρ), i ∈ Nu .

2) Matching Condition: Since all the users are symmetric,

Proposition 2 can be simplified as follows.

Proposition 4: The matching conditions of the iterative sym-

metric MIMO-NOMA system are given by

ψ(ρ) = φ−1(φ(1)) = 1, for 0 ≤ ρ < φ(1); (32)

ψ(ρ) = φ−1(ρ), for φ(1) ≤ ρ < φ(0); (33)

ψ(ρ) = 0 for, φ(0) ≤ ρ < ∞. (34)

3) Achievable Rate: In this case, the analysis of symmetric

MIMO-NOMA degenerates into that of single-user and single-

antenna system. From the transfer functions and matching con-

ditions above, we obtain the following theorem.

Corollary 2: For a symmetric MIMO-NOMA with any Nu

and Nr that: (i) Ri = R,∀i ∈ Nu ; (ii) Kx = w2I; the it-

erative LMMSE detection achieves the capacity, i.e., Ri =
1

Nu
log |IN r

+ w 2

σ 2
n
HHH |,∀i ∈ Nu , and Rsum = log |IN r

+
w 2

σ 2
n
HHH |.

Corollary 2 shows that for a symmetric MIMO-NOMA sys-

tem, the iterative detection structure is optimal, i.e., the LMMSE

detector is an optimal detector without losing any useful infor-

mation during the estimation.

C. Practical Iterative LMMSE Detection Design

It should be noted that the codes design depends also on Λγ .

Since we cannot get a closed-form solution of the user rate with

respect to Λγ , it is hard to obtain the proper Λγ for the given user

Algorithm 1: Algorithm for Finding Λγ .

1: Input: H, Kx , σ2
n , ǫ > 0, δ > 0, Nmax ,

R = [R1 , . . . , RNu
] and calculate H′.

2: If R ∈ RS (RS is the capacity region given by (3))

3: Random choose γ = [γ1 , . . . , γNu
], γi > 0,

∀i ∈ Nu ,

Calculate R(0)(γ) = [R
(0)
1 , . . . , R

(0)
Nu

] by (29)

and t = 1.

4: While
(

||R(0) − R||1 > ǫ or t < Nmax

)

5: For i = 1 : Nu

6: fixed γ∼i = [γ1 , . . . , γi−1 , γi−1 , . . . , γNu
],

find γ∗
i for R

(1)
i (γi = γ∗

i ) = Ri , and

7: calculate R(1)(γ∼i , γ
∗
i ) = [R

(1)
1 , . . . , R

(1)
Nu

].

8: While ||R(1) − R||1 > ||R(0) − R||1
9: γ∗

i = (γi + γ∗
i )/2 and go to step 7.

10: End While

11: γi = γ∗
i and R(0) = R(1) .

12: End For

13: t = t + 1.

14: End While

15: If t < Nmax

16: Output: γ.

17: Else

18: Ri = Ri − δ, ∀i ∈ Nu .

19: End If

20: Else R /∈ RS

21: Find the projection R∗ of R on the dominant face of

RS .

22: R = R∗, and go back to step 2.

23: End If

rates. Nevertheless, Algorithm 1 provides a numeric solution of

Λγ to satisfy user rate requirement.

For any Nu and Nr , Algorithm 1 gives a numeric search of

Λγ given rate R, where Nmax is the maximum iterative number,

ǫ and δ indicate the allowed precision, and || · ||1 denotes the

1-norm. It should be noted that γ∗
i in step 6 definitely exists and

can be easy searched by dichotomy or quadratic interpolation

method as Ri increases monotonously with γi (Lemma 2). In

addition, steps 8∼10 ensure that the new γ∗
i is always better than

the previous one and the search program will not stop until the

requirement Λγ is got. Experimentally, we find that the points

in the system capacity region are always achievable.

V. IMPORTANT PROPERTIES AND SPECIAL CASES OF ITERATIVE

LMMSE DETECTION

Can the iterative LMMSE detection achieve all points in the

capacity region of asymmetric MIMO-NOMA? To answer this

question, we derive some properties and show that:
� for the two-user MIMO-NOMA, all points in the capacity

region can be achieved by iterative LMMSE detection;
� all the maximal extreme points in the capacity region of

MIMO-NOMA with any number of users can be achieved

by iterative LMMSE detection.



Fig. 5. Achievable region of iterative LMMSE detection for two-user MIMO-
NOMA system. When the parameter γ changes from 0 to ∞, point (R1 , R2 )
moves from maximal extreme point B to maximal extreme point A along seg-
ment AB.

Furthermore, MISO and SIMO are discussed as two special

cases, which show that the ESE in IDMA and MRC are sum

capacity optimal for MISO and SIMO respectively.

A. Achieving the Maximal Extreme Point

As it is mentioned in Capacity Region Domination Lemma

in Appendix G, the system capacity region is dominated by a

convex combination of the maximal extreme points, which can

be achieved by SIC.

Here, we show that all these maximal extreme points can

be achieved by iterative LMMSE detection when the transfer-

constraint parameter Λγ is properly chosen.

Corollary 3: For any Nu and Nr , all the maximal extreme

points in the capacity region of MIMO-NOMA can be achieved

by iterative LMMSE detection.

Proof: See Appendix H. �

This corollary shows that if the parameter Λγ is properly

chosen, the iterative LMMSE detection degenerates into the

SIC methods, i.e., the SIC methods are special cases of the

proposed iterative LMMSE detection.

B. Two-User MIMO-NOMA

As it is mentioned, it is hard to calculate the specific achiev-

able user rates from (29). However, in two-user case, the achiev-

able rate region can be calculated and it equals to the capacity

of MIMO-NOMA.

Theorem 2: Iterative LMMSE detection achieves the whole

capacity region of two-user MIMO-NOMA:

⎧

⎪

⎨

⎪

⎩

R1 ≤ log(1 + 1
σ 2

n
h′H

1 h′
1),

R2 ≤ log(1 + 1
σ 2

n
h′H

2 h′
2),

R1 + R2 ≤ log |I2 + σ−2
n H′H H′|.

(35)

Proof: The pentagon in Fig. 5 indicates the capacity re-

gion of two-user MIMO-NOMA system, which is dominated

by segment AB, and point A and point B are two maximal

extreme points. Without loss of generality, we let γ1 = 1 and

γ2 = γ ∈ [0,∞). From Theorem 1, we get

Rsum = R1 + R2 = log |I2 + σ−2
n H′H H′|, (36)

which is the exact sum capacity of the system.

Fig. 6. Relationship between the user rates and parameter γ of the itera-
tive LMMSE detection for two-user MIMO-NOMA system. Nr = 2, Nu = 2,
σ2

N = 0.5 and H = [1.32 − 1.31; −1.43 0.74].

In addition, as we discussed in Corollary 3, when γ changes

from 0 to ∞, R1 reduces from log(1 + 1
σ 2

n
h′H

1 h′
1) to log

|I2 + σ−2
n H′H H′| − log(1 + 1

σ 2
n
h′H

1 h′
1), and R2 increases

from log |I2 + σ−2
n H′H H′| − log(1 + 1

σ 2
n
h′H

2 h′
2) to log(1

+ 1
σ 2

n
h′H

2 h′
2). As the R1 and R2 are both continuous functions

of γ, from (36), we can see that when the parameter γ changes

from 0 to ∞, the point (R1 , R2) moves from maximal extreme

point B to maximal extreme point A along the segment AB. It

means that the iterative LMMSE detection can achieve any point

on the segment AB. Therefore, the iterative LMMSE detection

achieves all points in the capacity region as it is dominated by

the segment AB. �

Let γ1 = 1 and γ2 = γ, and we can give the specific expres-

sions of R1 and R2 . The following corollary is derived directly

from Lemma 1.

Corollary 4: For two-user MIMO-NOMA with iterative

LMMSE detection, the user rates are given by
{

R1 = 1
2 log(γ|A|) + a2 2 γ−a1 1

2η log a2 2 γ+a1 1 −η
a2 2 γ+a1 1 +η ,

R2 = 1
2 log(γ−1 |A|) − a2 2 γ−a1 1

2η log a2 2 γ+a1 1 +η
a2 2 γ+a1 1 +η ,

(37)

where

A = σ−2
n H′H H′ + I2 =

[

a11 a12

a21 a22

]

and η =
√

a2
22γ

2 + 2(2a21a12 − a22a11)γ + a2
11 . It is easy to

find that η is a real number since A is positive definite and

γ ≥ 0.

It should be noted from (37) that R1 and R2 are non-

linear functions of γ. It is easy to check that R1 + R2 =
log det

(

I2 + σ−2
n H′H H′

)

, and when γ → 0 (or γ → ∞), the

limit of (R1 , R2) in (37) converges to the maximal point B (or

A) in Fig. 5. When the parameter γ changes from 0 to ∞, the

point (R1 , R2) can achieve any point on the segment AB in

Fig. 5. It also shows an alternative proof of Theorem 3. In ad-

dition, the achievable rates of TDMA and OFDMA are strictly

smaller than that of the iterative LMMSE NOMA.

Fig. 6 presents the rate curves of R1 and R2 respect to the

parameter γ. It verifies that R2 increases monotonously with the

γ (or γ2), and R1 + R2 equals to the sum capacity.
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C. MISO: Nr = 1

Let Nr = 1. From (48), (9) can be rewritten to

ui,t = xi,t +
v2

i h′
i
H

vi − vx̂ i

(

σ2
n + h′Vx̄h

′H
)−1

×
[

h′
(

x\i,t − x̄\i,t

)

+ nt

]

,

vx̂ i
= vi − v2

i |hi |
2
(

σ2
n + h′Vx̄h

′H
)−1

.

Thus,

ui,t = xi,t +
h′H

i

|h′
i |

2

[

h′
(

x\i,t − x̄\i,t

)

+ nt

]

, (38)

ρ−1
i = [v−1

x̂ i
− v−1

i ]−1 =
1

|h′
i |

2

⎡

⎣

∑

k �=i

|h′
k |

2vk + σ2
n

⎤

⎦. (39)

Equivalently, it can be rewritten to

ut = Λ−1
h ′H h ′ [h

′H yt − Ωh ′H h ′ x̄t ], (40)

ve = ρ.−1 = (σ2
n + h′Vx̄h

′H )|h′|.−2 − v̄, (41)

where ΛA = diag{A}, ΩA = A − ΛA , and |h′|.−2 =
[|h′

1 |
−2 , . . . , |h′

Nu
|−2 ].

Relation to ESE in IDMA: Note that (40) and (41) are the

same as the ESE in IDMA [39], which means that the ESE in

IDMA is a kind of LMMSE receiver. This explains that IDMA

is a good multiple access scheme, since it can achieve the sum

capacity of the MISO system.

D. SIMO: Nu = 1

Let Nu = 1. From (48), (9) can be rewritten to

x̂t = vx̂

[

v−1 x̄t + σ−2
n h′H yt

]

, (42)

vx̂ = [σ−2
n ‖h′‖2 + v−1 ]−1 , (43)

and

ut =
h′H yt

‖h′‖2
, vx̂ =

σ2

‖h′‖2
. (44)

In this case, the iteration between the detector and decoders are

trivial.

Relation to MRC: Note that (44) is the exact MRC [56], which

means that MRC is a kind of LMMSE receiver. This shows that

MRC is optimal and can achieve the capacity of the SIMO

system.

VI. PRACTICAL MULTIUSER CODE DESIGN FOR

MIMO-NOMA

Recently, Low-Density Parity-Chek (LDPC) codes are opti-

mized to support much higher sum spectral efficiency and user

loads for MISO in [57]–[59]. In addition, a LDPC code con-

catenated with a simple repetition code is constructed to obtain

a near MISO capacity performance in [60], . To further support

massive users, an IRA code parallelly concatenated with a rep-

etition code is proposed in [61], [62]. However, these design

methods do not consider the effect of multiple receive antennas.

In this paper, a kind of multi-user IRA code consisting of repe-

tition code and IRA code is optimized for MIMO-NOMA. For

more details, please refer to [20]. We will show that the opti-

mized IRA can approaching the MIMO-NOMA capacity (e.g.

BER performances are within 0.8dB away from the Shannon

limit) for various of system loads. In this section, we give the

multi-user IRA code design in detail.

To design suitable multiuser codes for the LMMSE detec-

tion, we first derive a transformation between the input-output

variance of LMMSE detection and the input-output mutual in-

formation of the single-user decoders. Then, based on the EXIT

analysis [47], [61]–[63], code parameters can be optimized to

match well with LMMSE detection.

To be specific, since the output of LMMSE can be equiva-

lent to the observation from AWGN channel, the extrinsic vari-

ance associated with the estimated signal from LMMSE is the

variance of equivalent noise, such that the a-priori mutual in-

formation for the decoder is obtained by exploiting the EXIT

analysis. For general linear block codes, the EXIT functions can

be obtained easily [47], [61]–[63]. For the opposite direction,

the a-priori variance of LMMSE is determined by the extrinsic

mutual information from the decoder. The whole iterative pro-

cess will stop when the decoding is successful or the maximum

iteration number is reached. In other words, we can statistically

trace the iterative message update between LMMSE detection

and a bank of single-user decoders. The detailed process is as

follows.

A. LMMSE → Decoder

For simplicity, we assume H′ is IID Gaussian, and consider

the detection of user k. Let x̄k and uk be a-priori and ex-

trinsic estimations of LMMSE detection associated with xk .

Correspondingly, let vk and ve
k be the variances of x̄k and uk

respectively. We can obtain the a-posteriori output variance vx̂k

of LMMSE is [5], [6], [31]

vx̂k
=

√

(snr−1 + Nr − Nu)2 + 4Nusnr−1 − (snr−1 + Nr − Nu)

2Nu (vk )−1
,

where snr = vk/σ2
n . Extrinsic output variance of LMMSE is

ve
k = [(v̂k )−1 − (vk )−1 ]−1

= (vk )

×

√

(snr−1 + Nr − Nu)2 + 4Nusnr−1 − (snr−1 + Nr − Nu)

(snr−1 + Nr + Nu) −
√

(snr−1 + Nr − Nu)2 + 4Nusnr−1

Based on Proposition 1, we can rewritten uk = xk + z̃k , where

z̃k is an equivalent Gaussian noise with mean 0 and variance

V ar(z̃k ) = V ar(uk ) = ve
k . Therefore, a-priori mutual infor-

mation associated with xk for the DEC can be obtained.

B. Code Optimization → Detector

Following the similar methods in [61]–[63], the EXIT func-

tion of repetition-aided IRA can be obtained and then extrin-

sic mutual information Ie
k is calculated. According to EXIT

analysis [47], [61]–[63], output log-likelihood ratio Le
k obeys

Gaussian distribution N ((J−1(Ie
k ))2/2, (J−1(Ie

k ))2), where



Fig. 7. Relationship between the user rates and parameters [γ2 , γ3 ] of the iterative LMMSE detection for three-user MIMO-NOMA. Nr = 2, Nu = 3, σ2
N = 0.5

and H = [0.678 0.603 0.655; 0.557 0.392 0.171].

function J(·) is given in [47]. Since xk is a BPSK signal,

variance vk = EL e
k
[1 − (tanh(Le

k/2))2 ] is obtained by Monte

Carlo simulations, which is fed back to the LMMSE.

By using this variance-EXIT transfer process between the

LMMSE and decoder, we trace statistically the message update

and then optimize the parameters of repetition-aided IRA codes

to match well with the LMMSE.

VII. NUMERICAL RESULTS

This section presents the numerical results of achievable rate

of three-user MIMO-NOMA, and provides the BER simulations

for the proposed iterative LMMSE detection with optimized

multi-user codes.

A. Three-User MIMO-NOMA

For three-user MIMO-NOMA, it is hard to get a closed-form

solution of the user rates. Hence, it is difficult to show the

exact achievable rate region of the iterative LMMSE detection.

However, the user rates in (29) can be solved numerically.

Fig. 7 shows the relationships between the user rates and

[γ2 , γ3 ] with γ1 = 1, where Nr = 2, Nu = 3, σ2
N = 0.5, and

H = [0.678 0.603 0.655; 0.557 0.392 0.171]. Notice that al-

though the user rates change with γ2 and γ3 , the sum rate Rsum

is constant and equals to the system sum capacity. Furthermore,

the user rate R2 increases monotonously with γ2 , but R1 and

R3 decrease monotonously with γ2 . Similarly, the user rate

R3 increases monotonously with γ3 , but R1 and R2 decrease

monotonously with γ3 .

In Fig. 8, the system capacity region is the polygonal con-

sisted by the red lines, which is dominated by the red hexagonal

face. The red points in Fig. 8 are the achievable points of the it-

erative LMMSE detection. It shows that as we change the values

of γ2 and γ3 , the achievable points can reach any point on the

dominated hexagonal face. Therefore, for the three-user MIMO-

NOMA, the iterative LMMSE detection can also achieve all

points in the capacity region, i.e., the iterative LMMSE detec-

tion is an optimal detection. In addition, we can see that the

Fig. 8. Achievable rates for all (γ1 , γ2 ) of the iterative LMMSE detec-
tion for three-user MIMO-NOMA system. Nr = 3, Nu = 3, σ2

N = 0.5 and
H = [1.95 1.28 − 2.53; −0.31 − 0.16 2.22; 0.55 1.08 − 1.98]. Subfig-
ure A and Subfigure B are the same figure with different rotated viewports.

achievable rates of TDMA and OFDMA are strictly smaller

than that of the iterative LMMSE NOMA.

It should be noted that the results in this paper can also apply

to the overloaded MIMO-NOMA systems (like Fig. 7) that the

number of users is larger than the number of BS antennas, i.e.,

Nu > Nr .

B. BER Performance With Optimized IRA Codes

Here, we assume that each user employs a repetition-

aided IRA code proposed for the Multiple-Access Channel

(MAC) [61], [62], which is constructed by parallelly concatenat-

ing a repetition code and IRA code. In this paper, we optimize the

repetition-aided IRA codes over MIMO-NOMA systems with

channel load β = {0.5, 1, 2, 3}, where user number Nu and re-

ceive antenna Nr are (Nu , Nr ) = (8, 16), (16, 16), (16, 8), and

(24, 8), respectively. The corresponding optimized code param-

eters are given in Table I, which illustrates that these decoding

thresholds are very close to the Shannon limits.

To verify the finite-length performance of the repetition-aided

IRA codes, we provide the BER performances of the optimized
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Fig. 9. SINR-variance transfer charts and BER performances of the LMMSE Receiver for MIMO-NOMA with channel load β = {0.5, 1, 2, 3}, where user
number Nu and receive antenna Nr are (Nu , Nr ) = (8, 16), (16, 16), (16, 8), (24, 8) respectively. Each user is encoded by an optimized IRA code with code
rate 0.1 bits/symbol and code length 4.096 × 104 . The use rate of MAC-IRA code is 0.08 and decoding threshold is 0.03 dB from the MAC capacity. The rate of
SU-IRA is 0.1 and decoding threshold is from 0.05 dB from the single-user capacity.

TABLE I
OPTIMIZED REPETITION-AIDED IRA CODES OVER MIMO-NOMA

codes. Each user employs a random interleaver and the length of

information vector for each user is 4096. The rate of each user

is Ru = 0.1 bits/symbol, and the sum rate is Rsum = 0.1 ∗ Nu

bits per channel use. Eb/N0 is calculated by Eb/N0 = Pu

2Ru σ 2
n

,

where Pu = 1 is the power of each user, and σ2
n is the variance of

the Gaussian noise. The standard sum-product algorithm is used

for the single-user decoding, in which the maximum iteration

number is 250. Fig. 9 shows that for all β, gaps between the

BER curves of the codes at 10−5 and the corresponding Shannon

limits are about 0.7 ∼ 0.8 dB.

To validate the advantage of the proposed system through

matching between LMMSE detector and optimized IRA codes,

we provide two state-of-art systems for comparisons, which

are LMMSE detector combined with an existing repetition-

aided IRA code [61], [62], and MMSE-SIC detector [37],

[38] combined with a capacity-approaching Single-User IRA

(SU-IRA) code. Note that the parameters of repetition-aided

IRA code [61], [62] are λ(x) = 0.063021x + 0.228288x2 +
0.111951x9 + 0.226877x29 + 0.369864x49 , q = 5, and α = 1,

denoted as MAC-IRA code, whose rate is 0.08 and decoding

threshold is 0.03 dB from the MAC capacity. The parameters

of SU-IRA are 0.085867x2 + 0.132226x9 + 0.198883x29 +
0.276011x79 + 0.307013x99 , q = 1, and α = 2, whose rate is

0.1 and decoding threshold is from 0.05 dB from the single-user

capacity. As shown as Fig. 9, when the BER curves of three

systems are at 10−4 , the optimized IRAs have 1.4 ∼ 2 dB per-

formance gains over the un-optimized IRAs, and 0.38 ∼ 1.3 dB

performance gains over the systems consisting of MMSE-SIC

detector and the SU-IRA code. These comparisons demonstrate

that multiuser code optimization provides a promising new treat-

ment for the applications of MIMO-NOMA technologies.

VIII. CONCLUSION

The theoretical limit of the PIC iterative receiver has been

an open problem for a long time, especially for the multi-

user MIMO channel. This paper analyzes the achievable rate

region of the iterative LMMSE multi-user detection for both



symmetric and asymmetric MIMO-NOMA. For the symmetric

case, it is proved that iterative LMMSE detection achieves the

capacity of MIMO-NOMA with any number of users; while

for the asymmetric case, it is proved that the iterative LMMSE

detection achieves the sum capacity of MIMO-NOMA with any

number of users. In addition, all the maximal extreme points

in the capacity region of MIMO-NOMA with any number of

users are achievable, and all points in the capacity regions of

two-user and three-user systems are also achievable. Finally, a

kind of IRA multiuser code is designed for the iterative LMMSE

receiver. Simulation results show that under different channel

loads, the BERs of the proposed iterative LMMSE detection are

within 0.8dB from the Shannon limits and outperform the ex-

isting methods. Furthermore, the improvement is more notable

for large system overloads (e.g. β ≥ 3), while for small system

overloads (e.g. β ≤ 0.5), the AWGN SU-IRA and the MMSE

SIC with SU-IRA is good enough since the user interference is

negligible.

How to design a low-complexity iterative receiver to achieve

the capacity region of the general vector multiple access channel

[45] will be an interesting future work.

APPENDIX A

DERIVATION OF A-Posteriori LMMSE

We assume x(t) ∼ CN (x̄(t),Vx̄), i.e. p(x(t)) ∝

e−(x(t)−x̄(t))H V−1
x̄ (x(t)−x̄(t)) . Since n(t) ∼ CN (0, σ2

nI), we

have

p(yt |x(t)) ∝ e
−

(y t −H ′x ( t ) )H (y t −H ′x ( t ) )

σ 2
n .

Thus, the a-posteriori conditional probability of x(t) given

yt is

p(x(t)|yt)

= p(x(t))p(yt |x(t))

∝ e−x(t)H [σ−2
n H ′H H ′+V−1

x̄ ]x(t)+2x(t)H [V−1
x̄ x̄(t)+σ−2

n H ′H yt ]

∝ e−x(t)H V−1
x̂

x(t)+2x(t)H V−1
x̂

x̂(t) (45)

Therefore, the a-posteriori estimation and variance are

x̂(t) = Vx̂

[

V−1
x̄ x̄(t) + σ−2

n H′H yt

]

, (46)

Vx̂ = (σ−2
n H′H H′ + V−1

x̄ )−1 . (47)

Hence, we obtain (8).

APPENDIX B

PROOF OF PROPOSITION 1

The a-posteriori LMMSE in Eq. (8) can be rewritten to

x̂(t) = x̄(t) + Vx̄H
′H
(

σ2
nIN r

+ H′Vx̄H
′H
)−1

(yt − H′x̄(t)).

From (9), we get ui,t = xi,t + n∗
i,t , and

n∗
i,t =

vi

vx̂ i
φi

h′
i
H (

σ2
nIN r

+ H′Vx̄H
′H
)−1

·

[

H′
(

x\i(t) − x̄\i(t)
)

+ n(t)
]

, (48)

where x\i(t) (or x̄\i(t)) denotes the vector whose ith entry

of x(t) (or x̄(t)) is set to zero. The equivalent noise n∗
i,t is

independent of xi,t . In Eq. (21) of [64] and Theorem 4(b) of

[65], a rigorous proof is elaborated to show that n∗
i,t is Gaussian

distributed, i.e., ni,t ∼ CN (0, 1/φi(vx̄)). Hence, we obtain the

proposition.

APPENDIX C

PROOF OF LEMMA 1

From (19), the achievable rate of user i is given by

Ri =

∫ ∞

0

(

ρi + ψi(ρi)
−1
)−1

dρi

(a)

≤

∫ φ i (0)

φ i (1)

[

ρi +
(

φi
−1(ρi)

)−1
]−1

dρi

+

∫ φ i (1)

0

(1 + ρi)
−1dρi

(b)
=

∫ v i =0

v i =1

(

v−1
i + φi(vi)

)−1
dφi(vi) + log (1 + φi(vi))

(c)
=

∫ v i =0

v i =1

vx̂ i
(vi)dvx̂ i

(vi)
−1 −

∫ v i =0

v i =1

vx̂ i
(vi)dv−1

i

− log vx̂ i
(vi = 1)

(d)
= −

∫ v1 =0

v1 =1

γ−1
i [Vx̂(v1)]i,i dv−1

1 − lim
v1 →0

log [Vx̂(v1)]i,i

(e)
=

∫ v1 =0

v1 =1

[

v1 − γ−1
i [Vx̂(v1)]i,i

]

dv−1
1 − log(γi). (49)

The inequality (a) is derived by (26)∼(28) and the equality holds

if and only if there exists such a code whose transfer function

satisfies the matching conditions. The equations (b) ∼ (d) are

given by ρi = φi(vi), (24) and (25), equation (e) comes from

(22) and (23). In Appendix D, we show the existence of such

codes whose SINR-variance transfer functions match that of the

LMMSE detector. In Appendix E, the existence of the infinite

integral of (29) is proven.

APPENDIX D

THE CODE EXISTENCE IN LEMMA 1

We first introduce an important property that is established in

[43], which builds the relationship between the code rate and its

transfer function ψi(ρi).
Property of SCM Code: Assume ψ(ρ) satisfies

(i) ψ(0) = 1 and ψ(ρ) ≥ 0, for ρ ∈ [0,∞);
(ii) monotonically decreasing in ρ ∈ [0,∞);

(iii) continuous and differentiable in [0,∞) except for a

countable set of values of ρ;

(iv) limρ→∞ ρψ(ρ) = 0.

Let Γn be an n-layer SCM code with SINR-variance transfer

function ψn (ρ) and rate Rn . Then, there exists {Γn} such that:

(i) ψn (ρ) ≤ ψ(ρ),∀ρ ≥ 0,∀n; (ii), Rn → R (ψ(ρ)) as n → ∞,

where R (ψ(ρ)) denotes code rate of transfer function ψ(ρ).
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This property means that there exists such an n-layer SCM

code Γn whose transfer function can approach ψ(ρ) that satisfies

the conditions (i)∼(iv) with arbitrary small error when n is large

enough.

From the “Property of SCM Codes”, we can see that there

exist such n-layer SCM codes whose transfer function satis-

fies (i)∼(iv) when n is large enough. Therefore, it only needs

to check the matched transfer function meets the conditions

(i)∼(iv) in order to show the existence of such codes. It is easy

to see that conditions (i) and (iv) are always satisfied by (26)

and (27) respectively. From (24)∼(28), we can see that ψi(ρi)
is continuous and differentiable in [0,∞) except at ρi = φi(0)
and ρi = φi(1). Thus, Condition (iii) is satisfied. To show the

monotonicity of the transfer function, we first rewrite (31) by

the random matrix theorem as

φi(vi) =

[

vi − v2
i

w2

σ2
n

hH
i

(

IN r
+

w2vi

σ2
n

HHH

)−1

hi

]−1

− v−1
i

=

⎡

⎣

(

w2

σ2
n

hH
i

(

v−1
i IN r

+
w2

σ2
n

HHH

)−1

hi

)−1

− 1

⎤

⎦

−1

= 1/
(

f−1
i (vi) − 1

)

, (50)

where fi(vi) = w 2

σ 2
n
hH

i (v−1
i IN r

+ w 2

σ 2
n
HHH )

−1
hi . It is easy to

check that fi(vi) is a decreasing function with respect to vi , and

φi(vi) is thus a decreasing function of v. With the definition of

ψ(ρ) from (26)∼(28), we then see that ψi(ρi) is a decreasing

function in [0,∞). Therefore, the matched transfer function can

be obtained by the SCM code, i.e., there exists such codes that

satisfy the matching conditions.

APPENDIX E

THE EXISTENCE OF INFINITE INTEGRAL (29)

With (29), we have

Ri = −

∫ v1 =0

v1 =1

γ−1
i [Vx̂(v1)]i,idv−1

1 − lim
v1 →0

log(γiv1)

(a)
= −

∫ ∞

0

[

(Aγ + sINu
)−1
]

i,i
ds − lim

s→∞
log(γis

−1)

(b)
= −

∫ ∞

0

ui
H
(

ΛAγ
+ sINu

)−1
uids − lim

s→∞
log(γis

−1),

(c)
= −

∫ ∞

0

Nu
∑

j=1

‖uij‖
2(λAγ, j + s

)−1
ds − lim

s→∞
log(γis

−1)

=

Nu
∑

j=1

‖uij‖
2 log

(

λAγ ,j

)

− log(γi), (51)

where equation (a) comes from s = v−1
1 and Aγ =

Λ
1/2
γ (σ−2

n H′H H′ + INu
)Λ

1/2
γ ; equation (b) is based on Aγ =

UH ΛAγ
U and ui is the ith column of U; λAγ ,j is the ith

diagonal element of ΛAγ
. Thus, we show the existence of the

infinite integral (49), i.e., Ri has finite value.

APPENDIX F

PROOF OF THEOREM 1

With (29), the achievable sum rate is

Rsum =

Nu
∑

i=1

Ri

(a)
= −

∫ v1 =0

v1 =1

Nu
∑

i=1

(

γ−1
i [Vx̂(v1)]i,i

)

dv−1
1

− lim
v1 →0

log

(

vNu
1

Nu

Π
i=1

γi

)

= −

∫ v1 =0

v1 =1

Tr{Λ−1
γ

Vx̂(v1)}dv−1
1

− lim
v1 →0

log

(

vNu
1

Nu

Π
i=1

γi

)

(b)
= − lim

v1 →0
log

(

vNu
1

Nu

Π
i=1

γi

)

−
[

log |(v−1
1 − 1)INu

+
(

INu
+ σ−2

n H′H H′
)

Λγ |
]v1 =0

v1 =1

= − lim
v1 →0

log

(

vNu
1

Nu

Π
i=1

γi

)

− lim
v1 →0

log |v−1
1 INu

|

+ log |(INu
+ σ−2

n H′H H′)Λγ |

= log |INu
+ σ−2

n H′H H′|,

which is the exact system sum capacity of MIMO-NOMA sys-

tem. Equation (a) is derived by (29), and equation (b) is based

on (23) and the law
∫

Tr{(sI + A)−1}ds = log |sI + A|. It

means iterative LMMSE detection is sum capacity-achieving.

APPENDIX G

CAPACITY REGION DOMINATION LEMMA

The following lemma is used of the proofs in the rate analyses

of iterative LMMSE detection.

Capacity Region Domination Lemma [52]: All the points in

the capacity region RS is dominated by a convex combination

of the following (Nu !) maximal extreme points.
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Rk1
= log

|IN u + 1

σ 2
n

H ′H H ′|

|I|Sc
1
|+

1

σ 2
n

H ′H
Sc
1
H ′

Sc
1
|
,

...

RkN u −1
= log

|I|Sc
N u −2

|+
1

σ 2
n

H ′H
Sc
N u −2

H ′
Sc
N u −2

|

|1+ 1

σ 2
n

h ′H
k N u

h ′
k N u

|
,

RkN u
= log

(

1 + 1
σ 2

n
h′H

kN u
h′

kN u

)

,

(52)

where (k1 , . . . , kNu
) is a permutation of (1, 2, . . . , Nu ), Si =

{k1 , . . . , ki} for i = 1, . . . , Nu − 1.

APPENDIX H

PROOF OF COROLLARY 3

For any maximal extreme point expressed in (52) with

order vector [k1 , . . . , kNu
], we let γk i

/γk i−1
→ ∞, for any



i ∈ Nu/{1}. Therefore, similar to the green curves showed in

Fig. 3 and Fig. 4, the user kNu
is recovered after all the variances

of other users already being zeros as γkN u
/γk i−1

→ ∞, for any

i ∈ Nu/{1}. Thus, from (29), the rate of user kNu
is

RkN u
= log

(

1 +
1

σ2
n

h′H
kN u

h′
kN u

)

, (53)

which is the same as that in (52). Similarly, when we recovering

user kNu −1 , all the users have been recovered except user kNu

and user kNu
− 1. Hence, based on Theorem 1, we have

RkN u −1
+ RkN u

= log

∣

∣

∣

∣

I|Sc
N u −2 |

+
1

σ2
n

H′H
Sc

N u −2
H′

Sc
N u −2

∣

∣

∣

∣

. (54)

Thus, the rate of user kNu −1 is

RkN u −1
= log

|I|Sc
N u −2 |

+ 1
σ 2

n
H′H

Sc
N u −2

H′
Sc

N u −2
|

1 + 1
σ 2

n
h′H

kN u
h′

kN u

, (55)

which is the same as that in (52). Continue this process and we

can show all the other users’ rates are the same as that of in (52).

Therefore, we have Corollary 3.

ACKNOWLEDGMENT

The authors would like to thank Prof. L. Ping for fruitful

discussions.

REFERENCES

[1] D. Argas, D. Gozalvez, D. Gomez-Barquero, and N. Cardona, “MIMO for
DVB-NGH, the next generation mobile TV broadcasting,” IEEE Commun.

Mag., vol. 51, no. 7, pp. 130–137, Jul. 2013.
[2] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj,

and H. V. Poor, MIMO Wireless Communications. Cambridge, U.K.: Cam-
bridge Univ. Press, 2007.

[3] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with
very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60,
Jan. 2013.

[4] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590–3600, Nov. 2010.

[5] L. Liu, C. Yuen, Y. L. Guan, Y. Li, and Y. Su, “Convergence analysis
and assurance Gaussian message passing iterative detection for massive
MU-MIMO systems,” IEEE Trans. Wireless Commun., vol. 15, no. 9,
pp. 6487–6501, Sep. 2016.

[6] L. Liu, C. Yuen, Y. L. Guan, Y. Li, and Y. Su, “A low-complexity Gaussian
message passing iterative detection for massive MU-MIMO systems,” in
Proc. IEEE 10th Int. Conf. Inf., Commun. Signal Process., Singapore,
Dec. 2015, pp. 1–5.

[7] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cam-
bridge, U.K.: Cambridge Univ. Press, 2005.

[8] L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I, and Z. Wang, “Non-orthogonal
multiple access for 5G: Solutions, challenges, opportunities, and future re-
search trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, Sep. 2015.

[9] METIS, “Proposed solutions for new radio access,” Mobile and Wireless

Communications Enablers for the 2020 Information Society, Rep. TR.-
ICT-317669-METIS/D2.4, Feb. 2015.

[10] “5G radio access: Requirements, concepts and technologies,” NTT DO-
COMO, Inc., Tokyo, Japan, 5G Whitepaper, Jul. 2014.

[11] B. Kim and W. Chung, “Uplink NOMA with Multi-Antenna,” in Proc.

IEEE Veh. Technol. Conf. Spring, Scotland, U.K., 2015.
[12] S. Chen, K. Peng, and H. Jin, “A suboptimal scheme for uplink NOMA

in 5G systems,” IEEE Int. Wireless Commun. Mobile Comput. Conf.,
Aug. 2015, pp. 1429–1434.

[13] M. Al-Imari, P. Xiao, M. A. Imran, and R. Tafazolli, “Uplink non-
orthogonal multiple access for 5G wireless networks,” in Proc. 11th Int.

Symp. Wireless Commun. Syst., Barcelona, Aug. 2014, pp. 781–785.

[14] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K.
Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future
radio access,” in Proc. IEEE 77th Veh. Technol. Conf., Dresden, Germany,
Jun. 2013, pp. 1–5.

[15] G. Liu, X. Chen, Z. Ding, Z. Ma, and F. R. Yu, “Hybrid half-duplex/full-
duplex cooperative non-orthogonal multiple access with transmit power
adaptation,” IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 506–519,
Jan. 2018.

[16] B. Di, L. Song, and Y. Li, “Trellis coded modulation for non-orthogonal
multiple access systems: Design, challenges, and opportunities,” IEEE

Wireless Commun., vol. 25, no. 2, pp. 68–74, Apr. 2018.
[17] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo,

“Nonorthogonal multiple access for 5G and beyond,” Proc IEEE, vol. 105,
no. 12, pp. 2347–2381, Dec. 2017.

[18] L. Liu, C. Yuen, Y. L. Guan, and Y. Li, “Capacity-achieving iterative
LMMSE detector for MIMO-NOMA systems,” in Proc. IEEE Int. Conf.

Commun., Kuala Lumpur, Malaysia, May 2016, pp. 1–6.
[19] C. Xu, Y. Hu, C. Liang, J. Ma, and L. Ping, “Massive MIMO, non-

orthogonal multiple access and interleave division multiple access,” IEEE

Access, vol. 5, pp. 14728–14748, 2017.
[20] Y. Chi, L. Liu, G. Song, C. Yuen, Y. L. Guan, and Y. Li, “Practical MIMO-

NOMA: low complexity and capacity-approaching solution,” IEEE Trans.

Wireless Commun., vol. 17, no. 9, pp. 6251–6264, Sep. 2018.
[21] Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for

NOMA downlink and uplink transmission based on signal alignment,”
IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4438–4454, Jun. 2016.

[22] H. Wang, R. Zhang, R. Song, and S. Leung, “A novel power minimization
precoding scheme for MIMO-NOMA uplink systems,” IEEE Commun.

Lett., vol. 22, no. 5, pp. 1106–1109, May 2018.
[23] M. Jiang, Y. Li, Q. Zhang, Q. Li, and J. Qin, “MIMO beamforming design

in nonorthogonal multiple access downlink interference channels,” IEEE

Trans. Veh. Techn., vol. 67, no. 8, pp. 6951–6959, Aug. 2018.
[24] D. Micciancio, “The hardness of the closest vector problem with pre-

processing,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 1212–1215,
Mar. 2001.
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