

College of Engineering

Capacity Allocation in Multi-cell UMTS Networks for Different Spreading Factors with **Perfect and Imperfect Power Control Robert Akl, D.Sc.**

Son Nguyen, M.S.

Department of Computer Science and Engineering

- User and Interference Model
- WCDMA Capacity with Perfect Power Control
- WCDMA Capacity with Imperfect Power Control
- Spreading Factors
- Numerical Results
- Conclusions

CDMA with One Class of Users

Relative average interference at cell i caused by n_j users in cell j $I_{ii} =$

$$I_{ji} = \mathbf{E}\left[\iint_{C_j} \frac{r_j^m(x,y) 10^{\frac{\zeta_j}{10}}}{r_i^m(x,y)/\chi_i^2} \frac{n_j}{A_j} dA(x,y)\right]$$
$$I_{ji} = e^{(\gamma\sigma_s)^2} \frac{n_j}{A_j} \iint_{C_j} \frac{r_j^m(x,y)}{r_j^m(x,y)} dA(x,y)$$

$$\boldsymbol{I}_{ji} = e^{(\gamma \sigma_s)^2} \frac{nj}{Aj} \iint_{C_j} \frac{r_j^m(x,y)}{r_i^m(x,y)} \, dA(x,y)$$

where

$$r = \frac{\ln(10)}{10}$$

- is the standard deviation σ_{s} of the attenuation for the shadow fading
- is the path loss exponent m

WCDMA with Multiple Classes of Users

 Inter-cell Interference at cell *i* caused by n_iusers in cell *j* of class g

$$I_{ji,g} = S_g v_g n_{j,g} \frac{e^{(\gamma \sigma_s)^2}}{A_j} \int_{C_j} \frac{r_j^m(x, y)}{r_i^m(x, y)} w(x, y) dA(x, y)$$

$$\kappa_{ji,g} = \frac{e^{(\gamma\sigma_s)^2}}{A_j} \int_{C_j} \frac{r_j^m(x,y)}{r_i^m(x,y)} w(x,y) dA(x,y).$$

w(x,y) is the user distribution density at (x,y)

 $\mathcal{K}_{ji,g}$ is per-user (with service g) relative inter-cell interference factor from cell j to BS i

Total Inter-cell Interference Density in WCDMA

$I_g^{\text{inter}} = \frac{1}{W} \sum_{j=1, j \neq i}^M \sum_{g=1}^G S_g \nu_g n_{j,g} \kappa_{ji,g}$

- M is the total number of cells in the network
- G total number of services
- W is the bandwidth of the system

5/52

$$w(x, y) = \frac{\eta}{2\pi\sigma_{1}\sigma_{2}} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}} e^{-\frac{1}{2}\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}}$$

• "means" is a user density normalizing parameter

• "variances" of the distribution for every cell

$$I_g^{\text{own}} = \frac{1}{W} \sum_{g=1}^G S_g \nu_g n_{i,g}$$

is the total intra-cell interference density caused by all users in cell *i*

Signal-to-Noise Density in WCDMA

University_{of} North Texas

- where N_0 is the thermal noise density, R_g is the bit rate for service g
 - τ_{g} is the minimum signal-to-noise ratio required

Structure of the Following Inequality Constraints

$$\sum_{g=1}^{G} n_{i,g} \nu_g + \sum_{j=1, j \neq i}^{M} \sum_{g=1}^{G} n_{j,g} \nu_g \kappa_{ji,g} - \nu_g \leq c_{eff}^{(g)}$$

where
$$c_{eff}^{(g)} = \frac{W}{R_g} \left[\frac{1}{\tau_g} - \frac{R_g}{S_g^* / N_0} \right]$$

- τ_g S_g^*
- is the minimum signal-to-noise ratio
 - is the maximum signal power
- $n_{i,g}$ the number of users in BS *i* for given service *g*

The capacity in a WCDMA network is defined as the maximum number of simultaneous users $(n_{1,g}, n_{2,g}, \dots, n_{M,G})$ for all services $g = 1, \dots, G$. This is for perfect power control (PPC).

Imperfect Power Control

Transmitted signals between BSs and MSs are subject to multi-path propagation conditions

• The received signals $\left(\frac{E_b}{I_0}\right)_{i,g}$ vary according to a lognormal distribution with a standard deviation on the order of 1.5 to 2.5 dB. Thus $(E_b)_{i,b}$ in each cell *i* for every user with service *g* needs to be replaced

$$(E_b)_{i,b} \square \varepsilon_{i,g} (E_b)_{o,b}$$

$$E\left[\frac{(E_b)_{o,b}}{I_0}\varepsilon_{i,g}\right] = \frac{(E_b)_{i,b}}{I_0}e^{(\beta\sigma_c)^2}$$

$$c_{eff_IPC}^{(g)} \Longrightarrow \frac{c_{eff}^{(g)}}{\rho^{\frac{(\beta\sigma_c)^2}{2}}}$$

Relationship between Spreading and Scrambling

- Channelization codes: separate communication from a single source
- Scrambling codes: separate MSs and BSs from each other

Main differences between WCDMA and IS-95 air interfaces

UNIVERSITY			
NORTH TEXAS		Channelization code	Scrambling code
	Usage	Uplink: Separation of physical data (DPDCH) and control channels (DPCCH) from same MS	Uplink: Separation of MSs
		Downlink: Separation of downlink connections to different MSs within one cell.	Downlink: Separation of sectors (cells)
	Length	Uplink: 4-256 chips same as SF Downlink 4-512 chips same as SF	Uplink: 10 ms = 38400 chips Downlink: 10 ms = 38400 chips
	Number of codes	Number of codes under one scrambling code = spreading factor	Uplink: Several millions Downlink: 512
	Code family	Orthogonal Variable Spreading Factor	Long 10 ms code: Gold Code Short code: Extended S(2) code family
	Spreading	Yes, increases transmission bandwidth	No, does not affect transmission bandwidth

Spreading Factor

Orthogonal Variable Spreading Factor (OVSF) codes

Simulations

Network configuration

- COST-231 propagation model
- Carrier frequency = 1800 MHz
- Average base station height = 30 meters
- Average mobile height = 1.5 meters
- Path loss coefficient, *m* = 4
- Shadow fading standard deviation, $\sigma_s = 6 \text{ dB}$
- Bit energy to interference ratio threshold, *t* = 9.2 dB
- Activity factor, v = 0.375
- Processing gain, *W/R* = 6.02 dB, 12.04 dB, 18.06 dB, and 24.08 dB for Spreading Factors equal to 4, 16, 64, and 256.

Numerical Results

Numerical Results

Numerical Results

17/52

Numerical Results

Results of Optimized Capacity Calculation

- The SIR threshold for the received signals is decreased by 0.5 to 1.5 dB due to the imperfect power control.
- As expected, we can have many low rate voice users or fewer data users as the data rate increases.
- The determined parameters of the 2dimensional Gaussian model matches well with the traditional method for modeling uniform user distribution.

Questions?