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Capacity and Error Exponent for the Direct 
Detection Photon Channel-Part I 

AARON D. WYNER, FELLOW, IEEE 

Abstract-The capacity and error exponent of the direct detection 

optical channel are considered. The channel input in a T-second interval 

is a waveform A(r), 0 5 t I T, which satisfies 0 I A(t) I A, and 

(l/r)],,%(t) dt I aA, 0 < IT 11. The channel output is a Poisson process 

with intensity parameter X(t) + he. ‘The quantities A and CIA represent the 

peak and average power, respectively, of the optical signal, and X0 repre- 

sents the “dark current.” In Part I the channel capacity of this channel and 

a lower bound on the error exponent are calculated. An explicit construc- 

tion for an exponentially optimum family of codes is also exhibited. In 

Part II we obtain an upper bound on the error exponent which coincides 

with the lower bound. Thus this channel is one of the very few for which 

the error exponent is known exactly. 

DEDICATION 

These papers are dedicated to the memory of Stephen 0. 
Rice, an extraordinary mentor, supervisor, and friend. He 
was a master of numerical methods and asymptotics and 
was very much at home with the nineteenth-century 
menagerie of special functions. The generous and easy way 
in which he shared his genius with his colleagues is leg- 
endary, and I was fortunate to have been a beneficiary of 
his advice and expertise during the first decade of my 
career at Bell Laboratories. As did all of Steve’s colleagues, 
I learned much from this gentle and talented man. We will 
remember him always. 

I. INTRODUCTION 

T HIS IS THE first of a two-part series on the capacity 
and error exponent of the direct-detection optical 

channel. Specifically, in the model we consider, informa- 
tion modulates an optical signal for transmission over the 
channel, and the receiver is able to determine the arrival 
time of the individual photons which occur with a Poisson 
distribution. Systems based on this channel have been 
discussed widely in the literature [l]-[5] and are of impor- 
tance in applications. 

The channel capacity of our channel was found by 
Kabanov [3] and Davis [2] using martingale techniques. In 
the present paper we obtain their capacity formula using 
an elementary and intuitively appealing method. We also 
obtain a “random coding” exponential upper bound on 
the probability of error for transmission at rates less than 
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capacity. In Part II [8], we obtain a lower bound on the 
error probability which has the same asymptotic exponen- 
tial behavior (as the delay becomes large with the transmis- 
sion rate held fixed) as the upper bound. Thus this channel 
joins the infinite bandwidth additive Gaussian noise chan- 
nel as the only channel for which the “error exponent” is 
known exactly for all rates below capacity. In Section IV 
of the present paper we also give an explicit construction 
of a family of codes for use on our channel, the error 
probability of which has the optimal exponent. Here too 
our channel and the infinite bandwidth additive Gaussian 
noise channel are the only two channels for which an 
explicit construction of exponentially optimal codes is 
known. 

Precise Statement of the Problem and Results 

The channel input is a waveform h(t), 0 I t < cc, which 
satisfies 

OGqt) IA, (q 

where the parameter A is the peak power. The waveform 
A( .) defines a Poisson counting process v(t) with “inten- 
sity” or (“rate”) equal to X(t)+ X,, where X, > 0 is a 
background noise level (sometimes called “dark current”). 
Thus the process v(t), 0 I t < co, is the independent-incre- 
ments process such that 

v(0) = 0, (1.2a) 

and,forO<r, tcco, 

-AAj 

Pr{v(t+7)--V(t)=j} =+, j=o,1,2;.. 

(1.2b) 

where 

A=/‘+T(A(t’)+h,)dt’. 
t 

(1.2c) 

Physically, we think of the jumps in v( .) as corresponding 
to photon arrivals at the receiver. We assume that the 
receiver has knowledge of v(t), which it would obtain 
using a photon-detector. 

For any function g(t), 0 I t < co, let g,” denote 
{g(t): a I t I b}. Let S(T) denote the space of (step) 
functions g(t), 0 I t I 7, such that g(0) = 0, g(t) E 
{0,1,2, * * * }, g(t) t . Therefore, vO, ’ the Poisson counting 
process defined above, takes values in S(T). 

OOlS-9448/88/1100-1449$01.00 01988 IEEE 
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A code with parameters (M, T, a, P,) is defined by the 
following: 

a) a set of M waveforms X,(t), 0 I t I T, which sat- 
isfy the “peak power constraint” (1.1) and the 
“average power constraint” 

;/, 0 
‘h, t dt<aA (l-3) 

(of course, 0 I a Il); 
b) a “decoder” mapping D: S(T) + {1,2; . *, M}. 

The overall error probability is 

where the conditional probabilities in (1.4) are computed 
using (1.2) with X(a) = A,(.). 

A code as defined above can be used in a communica- 
tion system in the usual way to transmit one of M mes- 
sages. Thus when h,(t) corresponding to message m, 
15 m I M, is transmitted, the waveform v(t), 0 I t < T, is 
received, and is decoded as D(vT). Equation (1.4) gives the 
“word error probability,” the probability that D( v,‘) f m 

when message m is transmitted, averaged over the M 
messages (which are assumed to be equally likely). The 
rate of the code (in nats per second) is (l/T)ln M. 

Let A, h,, a be given. A rate R 2 0 is said to be achiev- 
able if, for all E > 0, there exists (for T sufficiently large) a 
code with parameters (M, T, a, P,) with M 2 eRT and 
P, I E. The channel capacity C is the supremum of achiev- 
able rates. In Section II we establish the following theo- 
rem, which was found earlier by Kabanov [3] and Davis [2] 
using less elementary methods. 

Theorem I: For A, A,, a 2 0, 

C=A[q*(l+s)ln(l+s))+(l-q*)slns 

-(q*+s)ln(q*+s)] (1.5a) 

where 

s = X,/A, (1.5b) 

q*=bn(a,q,(s)), (1.5c) 

and 

q&) = “+$;:“’ -s. (1.5d) 

For the interesting case where s = X, = 0 (no dark cur- 
rent), (1.5) yields 

C= Aq*ln$, (1.6) 

where q* = rnin(a, e-i). Further, we show in Appendix I 
(Proposition A.3) that when s -+ cc (i.e., high noise), 
qO(s) = (l/2) + 0(1/s), and the capacity is 

c = &*(I- 4”) 
2s 

(1.7a) 

q* + min(a,l/2). 

Equation (1.7) was also obtained by Davis [2]. 

(1.7b) q* = q*(p) = min [a,+( [ s(l:pjrjld-l))* (l-lob) 

The quantity 

turns out to be the optimum ratio of signal energy 
(/X,(t) dt) to AT (the maximum allowable signal energy) 
to achieve the maximum transmission rate. Should 
qO(s) I a, then code signals A,(t) which satisfy /h,(t) dt 
= q,(s)AT will satisfy constraint (1.3). Should q(s) > a, 
then we chose signals for which lx,(t) dt = aAT. Thus for 
codes which achieve capacity, the average number of re- 
ceived photons per second is q*AT. 

Next, let A, XO,a be given. Define P,*(M, T) as the 
infimum of those P, for which a code with parameters 
(M, T, a, P,) is achievable. For 0 5 R < C, define the opti- 
mal error-exponent by 

E(R) = limsup i In P,*[eRTj, T). 
T-CC 

(1.8) 

ThuswecanwriteP,*([eRT],T)=exp{-E(R)T+o(T)} 
for large T. In Section III, we establish an upper bound on 
P,* using “random code” techniques which yields a lower 
bound on E(R). In Part II [g] we establish an upper 
bound on E(R) which agrees with the lower bound for all 
R, 0 I R < C. Finally, in Section IV of the present paper 
we give an explicit construction for a family of codes with 
parameter M 2 eRT, such that 

P,=exp{-E(R)T+o(T)}, asT*cc. 

Thus this family of codes is essentially optimal. 
We now give the formula for the optimal error exponent 

E(R): 

E(R) =max[AE,b,q)-G], (1.9a) 

where the maximization is over p E [O,l], and q E [0, a]. 
E,( .) is defined by 

E,(w) = (q++s[l+v]l+p, 

where s = X,/A and 

(1.9b) 

-1. (1.9c) 

The maximization in (1.9a) with respect to p and q is done 
in Section III. As a result of this maximization, we obtain 
a convenient way to represent E(R) in which we express 
R and E(R) parametrically in the variable p E [0, l]. Thus 
set 

R*(f) =A s[ (l+q*~)Pq’(l+fil/l+pln(l+;) (l+p) 
-(1+q*r)1+pln(l+q*7) , O<pll (l.lOa) 1 

where s = X,/A and r = 7(p) is given by (1.9c), and 
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We show in Appendix I (Proposition A.2) that 

lim R*(p) = C, 
P-+0 

(1 .ll) 

the channel capacity given by (1.5). Furthermore, as p 
increases from zero to one, R*(p) strictly decreases from C 
to R*(l) > 0. Thus for R*(l) I R < C, there is a unique p, 
0 < p I 1, such that R = R*(p). The error exponent can be 
written, for R = R*(p) E [R*(l), C], as 

E(R)=AE,(P,~*(P))-PR. (1.12) 

As in the expression for channel capacity, 

41(P) A 
&{ [ s(l+;)T(p) l’“li; OCPll 

(1.13) 

is the optimum ratio of average signal energy /a%,(t) dt 

to AT. It can be shown that for 0 < p I 1, ql( p) I l/2 and 
q,(l) = l/2. Furthermore, we show in Appendix I (Pro- 
position A.l) that, as p -+ 0, 

fimqh) = 4oW, 

where q&s) is given by (1Sd). 
The quantity R*(l) is sometimes called the “critical 

rate.” For 0 I R I R*(l), the expression for E(R) is 

E(R)=R,-R, (1.14a) 

where 

and 

R, = Aq*(l- q*)(Ji+s - fi)* (1.14b) 

q*=min(a,l/2). (1.14c) 

Thus for 0 I R I R*(l), E(R) is a straight line with slope 
-1. The quantity R,, called the “cutoff rate” is, by 
(l.l4a), equal to E(0). 

We can get a better idea of the form of the E(R) curve 
by looking at the special cases s + 0, s + co. When s = 0 
(no dark current), we show in Appendix I (Proposition 
A.4) that 

T(p) = s-w+P)), 
4*(p) = mini 0, (l+;)l/p). 

and 

(1.15a) 

R*(p) = -A[q*(p)]l’Pln(q*(p)), (1.15b) 

and with R = R*(p), 

E(R) = Aq*- Aq*‘+P-pR. (1.15c) 

Thus the critical rate is 

R(1) = Aq** ln2 

where q* = q*(l) = min(a,1/2). The cutoff rate R, = 

Aq*(l - q*), so that for 0 5 R I R*(l), 

E(R) = Aq*(l- q*) - R. 

For the high-noise case, s + co, the capacity C is given 
by (1.7). We show in Appendix I that the error exponent 

has the form 

i 

c 
-- 

E(R)- 2 
R, 0 s R 5 C/4 . (1.16) 

(E-m*> C/41R<C 

This is identical to the error exponent for the so-called 
“ very noisy channel.” 

II. DIRECT (EXISTENCE) THEOREMS I- 
CHANNEL CAPACITY 

In this section we make an ad hoc assumption on the 
structure of the channel input signal h(t) and the receiver. 
Under this assumption, we compute lower bounds on the 
channel capacity C and the error exponent E(R). In the 
companion paper [8] we show that this ad hoc assumption 
degrades performance in a negligible way and that the 
bounds obtained here on C and E(R) are, in fact, tight. 
Here are the assumptions. Let A > 0 be given. Then as- 
sume the following. 

a) The channel input waveform X(t) is constant for 
(n-l)A<t<nA, n=1,2,3;.., and A(t) takes only the 
values 0 or A. For n = 1,2; . -, let x, = 0 or 1 according as 
A(t) = 0 or A in the interval ((n -l)A, nA]. 

b) The receiver observes only the samples v(nA), 
n =1,2; * -, or alternatively the increments 

pn= v(nA)- v((n -1)A). (2.1) 
(Recall that v(0) = 0.) 

c) Further, the receiver interprets jn 2 2 (a rare event 
when A is small) as being the same as jn = 0. Thus the 
receiver has available 

(2.4 

Subject to assumptions a, b, c, the channel reduces to a 
two-input two-output discrete memoryless channel (DMC) 
with transition probability W(j]k) = Pr { y, = j]x, = k} 
given by 

W(l]O) = XOAe-h~A = sAAC'~, 

W(l]l) = (A + X,) Ae-(A+hoA) 

= (~+,s)AA~-(‘+~)~‘. (2.3) 

We now apply the standard formulas for channel capac- 
ity and random coding error-exponent to find lower bounds 
on C and E(R). For A > 0 given, let T = NA. We will hold 
A fixed and let N + cc. The average power constraint (1.3) 
is equivalent to 

(2.4) 1Y n=l 

where (xml, xm2;. ., xmN) corresponds to X,( *) as in as- 
sumption a). Thus the lower bound on C is max I( X, Y)/A 
nats per second, where X, Y are binary random variables 
connected by the channel I%‘(. I-), and the maximum is 
taken with respect to all input distributions which satisfy 

E(X) <a. (2.9 
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Now set probability W(. 1.) given by (2.3) and constraint func- 

q=Pr{X=l}, a = sA AePSAA, 
tion = x, [6, theorem 7.3.21 asserts the existence of a code 
with block length N, average cost q, with e RIN code words, 

b = (1 + s) A Ae-(l+s)AA. (2.6) and error probability 

We have P,I exp{-N[~o(p,q,r)-p~l]+o(N)}, 

I(X;Y)=H(Y)-H(YIX) as N-too, (3Sa) 

=h(qb+(l-q)a)-q/z(b)-(1-q)h(a) where 

Af(4) (2.7) E,(p, 4, r> 
where (h(u)=-ulnu-(l-u)ln(l-a), O<u<l, is the l+P 

binary entropy function. Thus =-log i i Q(k)e’(k-4)W(jlk)1’1’p , (3.lb) 

A.C> ErzOl(X;Y) = max f(q). 
o~q~o 

(2.8) 
i j=O k=O I 

and where O<p<l, O<q<l, O<r<o3 are arbitrary, 
So far, the parameter A has been arbitrary. We now and Q(1) = q, Q(0) = l- q. To obtain the tightest bound, 

assume that A is very small and estimate f(q). Using we maximize E,,(p, q, r) over 0 5 p ~1, 0 < r <co, and 
h(u)=-ulnu+u+O(U2), as u-+0, and qb+(l-q)a O<q<u. 

- A A( q + s), we have We now substitute W(j]k) given by (2.3) into the ex- 

f(4) =h(qb+(l-q)a)-qh(b)-(l-q)h(a) pression for E,( .) in (3.lb). Write 

=AA[-(q+s)ln(q+s)+q(l+s)ln(l+s) E,(p,q,r)=-log i t$l+P+r(l+p)q (3.2a) 

+(l-q)slns]+o(A). j=o 

Thus (2.8) yields, as A -+ 0, where 

C2 sup A[-(q+s)ln(q+s)+q(l+s)ln(l+s) 
o~q~o 

v;. = i Q(k)e’kW(jlk)“(‘+P), j = 0,l. (3.2b) 
k=O 

+(l-q)slns]. (2.9) Makinguseof 

Since the term in brackets in (2.9) is concave in q, its 
unconstrained maximum with respect to q occurs when its 

(1+x)‘=l+tx+O(x2), asx+O, (3.3) 

derivative is equal to zero. This occurs when we can write 

ln(q+s) = (l+s)ln(l+s)-sins-1, (2.10a) V, = (l- q)e’(l- sAAe-SAA)l’ltp 

or + qe’(l- (1-t s)AAe-(l+S)AA)l’lfP 

(l+s)l+” 
4= ss 

-s 2 qo(s). (2lOb) =(1-q)(l-E)+qe’jl-( g)AA)+O(A2) 

From (2.9) and (2.10) we conclude that maxO ~ q ~ (r f (q) is 
achieved for q = qo(s), provided u 2 qo(s). When u 5 qO(s) 

= (1-q+qe’) 

(from the concavity of the term in brackets in (2.9)) this (l-q)s+(l+s)qe’ 

maximum is achieved with q = u. Thus we have 1-q+qe’ 1 I +@A21 , 
C>A[-(q*+s)ln(q*+s)+q*(l+s)ln(l+s) and 

where 

+ (1- q*)s Ins] (2.11a) 

q*=~n(u,q,(s)). (2.11b) 

Let us remind the reader at this point that (2.11) is a 
lower bound on C because we have not as yet shown that 
we can make assumptions a, b, c with negligible loss in 
performance. We will do this in Part II [8]. In the next 
section, we turn to the random code error-exponent. 

III. DIRECT THEOREMS II-ERROR EXPONENT 

For an arbitrary DMC with input constraint, the ran- 
dom code exponent is given in [6, ch. 7, eqs. (7.3.19), 
(7.3.20)]. When specialized to our channel with transition 

J7, = (1 - q) e”( SA &-sAA)l’(l+p) 

+ qe’[(l+ s)~~e-(‘+“)AA]l’(l+p) 

= (~A)l/(l+P)[~l/(l+~)(i- 4)+ qer(l+s)l/(l+p)] 

*[1+W)l 
= (AA) l/(l+p)(l- q + qe’) 

*[ 

~l/(l+P)(l-q)+qer(l+s)l’(l+P) ,l+o(A), 

(l-4+44 1 
Substituting into (3.2) and using 

ln(l+x)=x-:+0(x3), as x -+ 0, P-4) 
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we have 

~o(Pdw9 

=r(l+p)q-(l+p)ln(l-q+qe’) 

(1-4b+(l+44er 

(1-4)+4e’ 1 
-AA 

sl/(l+P)(l_q)+qe’(l+s)l/(l+P) l+p 

O-cd+@ 1 
+ O(A”). (3.5) 

We now maximize E,(p, q, r) with respect to p, q, r. Let 
us first maximize with respect to r. With q, p held fixed let 

g(r) =r(l+p)q-(l+p)ln(l-q-tqe’), (3.6a) 

so that’ 

Eo(p, 4, r> = g(r) + Q(l). (3.6b) 

Now g(r) is a concave function of r, and g(0) = 
g’(0) = 0. Thus the r which maximizes E,(p, q, r) must 
tend to zero as A + 0. In fact, the maximizing r satisfies 

JEO 
-= 

Jr 

o = 4?(r) 

~+o@) 

= (l+p)q+ il_t4Pj;;+O(A). 

Thus using e’ = 1 + r + 0( r2) as (r + 0), we have 

r = O(A), asA+O. 

Writing a Taylor series for g(r), we have as A + 0, 

g(r) = g(O)+ g’(O)r + g”(0)r2 + O(r3) 

= O(A”). 

Thus (3.5) yields, using r = O(A), 

maxE,(p, q, r) = AAE,(p, 4) + @A”> (3.7a) 
r 

where 

E,(p,q) =s(l-q)+(l+s)q 

- p+Py1- q)+q(l+s)‘/(‘+‘P)]l+P 

and 

(3.7b) 

1 l/l+P 

r= 1+- 
i i 

-1. (3.7c) 
s 

Further, since T = AN, we have from (3.1) 

P,I~~P{-T(AE,(P,~)-PR)+~(T)} (3.8) 

where we have passed to the limit A + 0, and R = R,/A is 
the rate in nats per second. Taking the maximum of the 
exponent in (3.8) with respect to 0 I p 11, and 0 I q 5 u, 
we obtain (1.9). We next perform this maximization. 

‘It can be verified that [O,(l)1 in (3.6b) and laO,/Jrl are 5 B i cc, for 

all P, 4, r. 

With R held fixed, set 

E,(p,q) =AE,hd-PR. (3.9 

It is easy to show that a 2EI(p, q)/aq2 I 0, so that with 
R, p held fixed, E,(p, q, R) is maximized with respect to q 

for q = ql(p) such that 

a4 
a4 q=q,=o. 

Since 

we have 

ql(p) =i[(s(l+ P)7)-q. (3.10) 

Furthermore, since, with p held fixed, E,(q, p) increases 
with q for q I ql(p), we conclude that 

oy;oEh, 4) = E,h q*(d) 

A E,(P) (3.11a) 

where 

q*(p) = ~nb, dd). (3.11b) 

Finally we must maximize E,(p) with respect to p. We 
begin by taking the derivative: 

dE3( P) 
-= ~(p,q’(p))+~(p,q’(p))~. 

4 

(3.12) 

Now if p is such that ql( p) I u (so that q*(p) = ql( p)), 
then 

JE2 

aq 4=4*(P) 

=A!!& 

a4 q=q1(p) = O* 

On the other hand, if p = p* such that ql(p*) > u, then, 
since ql(p) is continuous in p, q*(p) = u for p in a neigh- 
borhood of p*, and therefore dq*(p)/dpI,=,, = 0. Thus in 
either case, the second term in the right member of (3.12) 
is zero. We conclude that E,(p) has a stationary point 
(with respect to p) when 

--=-zA!%RROO. d-%(p) a-% 
dp ap ap 

(3.13) 

Using the fact that 82E,/a2p I 0, a similar argument 
shows that (d2/dp2)E3( p) I 0, so that E3( p) is concave 
and the solution to (3.13) maximizes E,(p). Thus E,(p) is 
maximized when p satisfies 

- (1+ rq*) ‘+plog(l+ Tq*) 2 R*(p) 1 
with q* = q*(p). We express R parametrically as a func- 
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tion of p, i.e., R = R*(p). Hence for R = R*(p,), the error 
exponent E2( p, q) is maximized for p = pl, and q = q*( pl). 
Thus we have shown that the optimal exponent E(R) 
defined in (1.8) is at least equal to the right member of 
(1.10) for R*(l) I R I C. 

Let us remark at this point that for purposes of estab- 
lishing a lower bound on the error exponent, it would have 
sufficed simply to guess the optimizing r, p, q, since the 
bound of (3.1) holds for arbitrary r, p, q. However, as we 
shall see in the Part II, this optimization with respect to 
r, p, q is necessary when applying the sphere-packing lower 
bound on P,. Since this optimization fits naturally into 
this section, we performed it here. 

It remains to establish the lower bound on E(R) for 
0 I R I R*(l). We begin by applying the general bound on 
E(R) given- by (3.1), for ad hoc r, p, q. Since our lower 
bound on P, for R E [0, R*(l)] does not depend on the 
optimization over these parameters, there is no need to 
perform the optimization. 

Let us apply (3.1) with r = 0, p =l, and q = q* 2 
min(u,1/2). Then, as in the derivation of (3.7), when 
r=O 9 

&E,(p,q,O) =q+s-s[l+rq]l+p+O(A) 

where 

1 l/(l+P) 

r= 1+- 
i i 

-1. 
s 

Setting p = 1, we have 

)mo &E,,(l, q,O) 

- =q+s-s[l+q( yy)] 

=q+s-[~+q(&-i-~)]2 

=q+s-[(1-q)fi+qGi]2 

=q+s-[(1-q)2s+2q(l-q)&G-i+qys+1)] 

=q(l-q)[l+2s-2&&i] 

= q(l- q)(Js14g2. (3.14) 

Substituting into (3.1) and using N = T/A, R = RI/A, 
we obtain 

where 

PeIexp{ -T(R,-R)} 

R, = Aq(l- q)(Js+l- fi)‘. 

IV. CONSTRUCTION OF EXPONENTIALLY 

OPTIMAL CODES 

We begin by giving, in Section IV-A the construction of 
the codes. The estimation of the error probability follows 
in Section IV-B. 

A. Code Construction 

We describe a family of codes with parameters T, M 

with each code waveform X,( .) satisfying 

1 
--$,(t)dt=;A, l<m<M (4.1) 

0 

where k, 12 k I M is an arbitrary integer. This family of 
codes is identical to the signal sets given in [7] in a 
different though related context. In fact this family was 
first discovered for the present application. Here is the 
code construction. 

For T, M, k given, let J&’ be the M X 

matrix, the columns of which are the 

tors with exactly k ones (and (M - k) zeros). For example, 

if M= 5, k = 2, then =lO, and .& is the 5 x10 
matrix 

(1 1 1 10 0 0 0 0 0’ 
1000111000 

~=0100100110. 
0010010101 

,o 0 0 10 0 10 1 1, 

Note that the total number of nonzero entries in & is 

so that (by symmetry) the number of nonzero 

entries in each row of a is (k/M) . Let the (m, j)th 
entry of .ZZ’ be denoted by a,j. 

We now construct the code waveforms {h,(.)}E=i. 

Divide the interval [0, T] into subintervals, each of 

Then for t in the jth subinterval, set 

(M\ 

which is (4.1). 
We will also need to compute the Euclidean distance 

between distinct code waveforms. Thus for m f m’, 

; ~Thn(t) - L,(t)12dt 

2A2 I number of i such that 1 



WYNER: CAPACITY AND ERROR EXPONENT-PART I 1455 

The last step follows from the fact that the columns of & 
are precisely those M vectors with exactly k ones, so that, 
if we specify amk = 1 and a,,j = 0, then the remaining 
(M - 2) entries in the j th column of A can be chosen in 

ways. Continuing, we have for m # m’ 

2(M-k)(k)A’ 

M(M-1) 

= g--)(x)(1-;). (4.3) 
Let us set q=k/M. Then let M=[eRT] and T+co, 
while q is held fixed. Then since A,( t ) = 0 or A from 

(4.2), 

;p{t: A,(t) =A} =q (4.4a) 

P 

1 
I, *t 

A0 60 CO DO 

Fig. 1. 

and from (4.3), 

;p{ t: A,(t) = A 
Let the intervals A,, B,, Co, D, be as shown in the 

figure. Thus 

= q(l- q) (4.4b) A, = S, n S$ co = s; n s,,, 

where p denotes Lebesgue measure. Thus the pairwise the 
distribution of the code waveforms is nearly that which we 
would expect if the waveforms were chosen independently; 
and for each t, the probability that A,(t) = A was q. This 
encourages us to hope that the resulting error probability 
is close to the random code bound, and in fact that turns 
out to be the case. 

Decoder: We next define a decoder mapping D for our 
code. For 1 I m I M, let 

S,,,= {tE [OJ]: A,(t) =A}. (4.5) 

Our decoder observes VT, and computes 

#,=I dy(t) = ( numbe~~arrivals}, l<m<M. 
Sl7l m 

(4.6) 
Then D(vT) = m* if 

J/m < 4,*> l<m<m*, 

#, 5 #,*7 m*<mlM. (4.7) 

Thus VT is decoded as that m which maximizes I/J,,,, with 
ties resolved in favor of the smallest m. Although this 
decoding rule is the maximum likelihood decoding rule, we 
do not exploit this fact here. In the following section we 
overbound the error probability which results when this 
decoding rule is applied to our code. 

In Fig. 1 we give a schematic diagram showing the 
graphs of two typical code waveforms when M is large. Of 
course, for nearly all the code waveforms A,(.), the sup- 
port sets S, would not be connected as they are in the 
figure. 

B. = S,,, n S,,,, Do = S; n S;,. (4.8) 

Also let IV,, IV,, W,, W, be the number of arrivals in the 
intervals A,, B,, C,, D,, respectively. Then JI, = WA + W,, 

and I,!J,,= W, + W,. Assuming that X, is transmitted, the 
decoder will prefer m’ over m (thereby making an error) 
only if I/J,,> J/,, or equivalently W, 2 WA. We assume 
that M is large so that the factor M/( M - 1) = 1, and (4.4) 
holds. Thus, in particular, 

dAo) = dl- q)T PL(Co) = 4(1- 4K 

P@O) = q2T ,@o) = (1 - d2T, (4.9) 

B. Error Probability when ho = 0 

It turns out that the bounding process for the special 
case where there is no dark current (A, = 0) is far easier 
than for the general case. For this reason we will bound P, 

for this special case separately, leaving the general case for 
the most hardy spirits. 

Let us begin by taking a look at what we have to prove. 
Refer to (1.9). When the dark current intensity X0 = 0, 
then s = X,/A = 0. As s + 0, r (as given in (1.9~)) satisfies 

7=S -l/(l+P) 

and from ( .9b) 

E,(p, 4) = 4 - q’+‘. 

We will show that for any R 2 0, q E [0, a] and p E [O,l], 
for T sufficiently large, there is a code in our family with 
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parameters (1 e RT], T, u, P,), where 

-$nP,>AE,(p,q)-pR 

= Aq - Aq@+f’) - pR. (4.10) 

To do this we set M = eRT and k = aM (ignoring the 
constraint that M, k must be integers), and construct the 
code as specified in Section IV-A. Note that (1.3) is 
satisfied and the code has average power u. We now 
estimate the error probability. 

Given the code {X,(*)}~=, as specified in Section 
IV-A, define, for 1 I m I M, 

P,, = Pr { D( VT) # mlx,( .) is transmitted}. (4.11) 

The decoder D is defined by (4.7) and of course 

Pe=i f P,,. (4.12) 
m=l 

Let m be given (1 I m I M). For m’ # m, define the 
event 

Em,= Wn,~ An>. (4.13) 

Thus the decoder D “prefers” m’ over m only if EmI 
occurs. Furthermore, 

pm 2 q u w,o). (4.14) 
d#m 

Now, without loss of generality, we can assume that the 
support set S, of A,(.) is the interval [0, qT]. Thus, given 
that A,(.) is transmitted, the random variable #,, the 
number of arrivals in S,,,, is Poisson distributed with 
parameter qA T, i.e., 

(W’?” 
Pr{J/,=n]X,(.)} =e-qATI. 

Thus we can write (4.14) as 

Ls E Pr{L=4LCH 
n=O 

(4.15) 

where p E [0, l] is the arbitrary parameter in (4.10). The 
last step in (4.15) follows from the fact that, for any set of 
events, say { Ai}, 

PrUA,I xPr(Ai) ‘, [ 1 0 < p I 1. (4.16) 
i i 

For p = 1, this is the familiar union bound. For CPr ( Ai) < 
1, raising the sum to the pth power only weakens the union 

bound. For CPr(Ai) 2 1, the right member of (4.16) is 
2 1, so that the bound holds trivially. 

Let us now look at Pr{ E,@,(e), #, = n}. The code 
waveforms X,( 0) and X,( .) can be represented schemati- 
cally as in Fig. 1. Since there is no dark current, there 
cannot be any arrivals on the interval SG = C, + D,, when 
x,(t) = 0. Thus, given that X,(a) is transmitted, I/J,, = W, 
= the number of arrivals in interval B,. Furthermore, 
given that #, = n, the event { +!J,, 2 J/,} occurs if and only 
if the n arrivals on S, = A, + B, all fall on interval B,. 
Since these n arrivals are uniformly and independently 
distributed on S,,,, we have 

Pr(E,A~,(~)~~,=~) = [p(h) p(A,+b)]‘=q”. 

Substituting into (4.15) we obtain 

Pt?rn~ c 
o” e-‘JAT(qAT)” c q” p 

n=O n! 1 1 ldf WI 
= (M-l)P f e-qAT;yAT)nqp” 

n=O 
00 

5 MPe-qAT c’ 
q(l+P)AT]n 

n=O 
n! 

=MPexp{-AT(q-ql+P)}. 

Setting M = e RT yields 

P,,sexp{-T(Aq-Aq(l+P)-pR)}, (4.17) 

which, combined with (4.12) yields (4.10) which is what 
we have to establish. 

C. Error Probability for Positive X, 

The bounding process for the case of positive X, paral- 
lels the process for X, = 0. We bound the error probability 
P,, (defined by (4.11)) conditioned on both the total 
number of arrivals on [0, T], i.e., v(T), and on I/J,. We 
then apply the generalized union bound of (4.16) to obtain 
the desired bound on P,, and P,. 

We will show that for any R 2 0, q E [0, a] and p E [O,l], 
for T sufficiently large, there is a code in our family with 
parameters (1 e RT 1, T, u, P,) where 

-$lnP,>AE,(p,q)-pR 

where E,(p, q) is given in (1.9). As in the case A, = 0, we 
do this by setting M = e RT and k = aM, and construct the 
code as specified in Section IV-A. 

Given the code {X,( .)},“=l as specified in Section IV-A, 
define Pem by (4.11), so that P, is given by (4.12). For a 
given m and m’f m, define the event E,,,, by (4.13), and 
observe that (4.14) also holds in the general case, A, > 0, 
i.e., 

pm 5 pr ( UmZ.lhmC)). (4.18) 

Again as in the above discussion, assume that the support 



WYNER: CAPACITY AND ERROR EXPONENT-PART I 

set S,,, of X,(e) is the interval [0, qT]. Now when h,( .) is 
transmitted, v(T), the number of arrivals in [0, T], is the 
sum of two independent Poisson distributed random vari- 
ables v(qT) and (v(T)- v(qT)), with parameters A, and 
AO, respectively, where 

A,= (A+X,)qT=qAT(l+s) 

h,=X,(l-q)T= (1-q)ATs. (4.19) 

Thus v(T) is Poisson distributed with parameter 

A=A,+A,=(q+s)AT. (4.20) 

Furthermore, given that v(T) = n, 1c/,= v(qT) has the 
binomial distribution 

Pr { 4, = n,lv(T) = n, A,(-)} = (,:),“l(l- 7T)n-n1 

where 

Al qo+4 

r=xyq-= q+s . 

Thus the joint probability 

Pr{lC/m=nl,v(T) =nlh,(-)) 

e- ‘A” 
=- 

n. I 

(4.21a) 

(4.21b) 

(4.22) 

We will bound Pem starting from (4.18) using a tech- 
nique similar to that used for the case X, = 0. Specifically, 
we will condition on $, = n, and v(T) = n. This will lead 
us to consider terms like 

Pr(&lL(-), 4, = n,, v(T) = n), (4.23a) 

where m’ # m. Whenever it is unambiguous, we will write 
such conditional probabilities as 

Pr(E,@,,,, n,, n>. (4.23b) 

Now for a given m, m’ (m # m’), we can, as we did before, 
assume that the waveforms X,( .) and A,,( .) are repre- 
sented as in Fig. 1. As we remarked following (4.Q 
J/,,,, 2 4, if and only if WC - WA 2 0. Let us define 

n,=n-n, (4.24) 

so that the conditions v(T) = n, IJ,,, = n, are equivalent to 

WA + W, = n, Wc+WD=n,. (4.25) 

Now, given A,( a) transmitted and conditions (4.25), 
WC, WA are independent random variables with 

Pr { WA = k,lA,, n,, n} 

P(Ao) 

*I ~ k, 
‘-- dAo)+dBo) I 

= (l-q)klqnl-kl, Osklsn, 

Pr{Wc=kolh,,nl,n} = qko(l- q)no-ko, 

0 5 k, 5 no. (4.26) 

1451 

Of course, 

Pr(EJX,,n,,n) =Pr{ WC-- WA20(X,,n,nl). (4.27) 

Now, from (4.26) 

E( WC - wAlxm, nl? n> = %q - %(‘- 4) 

=(n-n,)q-n,(l-q). (4.28) 

Should this expectation be negative, we might expect the 
probability in (4.27) to be small, and in fact this is the 
case. This motivates us to define the set 

A= {(n,,n):OIn,<n 

n,q-n,(l-q) = (n-n,)q-n,(l-q) CO}. (4.29) 

Then, returning to (4.18), we have 

P,, 5 Pr ( u wm) 
d#Wl 

7 C Q(n,,n)Pr( U Em@,, J/, = n,, v(T) = n 
n,, n m’#Wi 

+ c Q(n,,n) c Pr(E,,]X,,n,,n) ’ 
(n,,il)~A d#Wl 1 

(4.30) 

where p E [O,l] is arbitrary. The first term in (4.30) is 
bounded by Lemma B.l in Appendix II as 

c Q(n,,n> =Pr{(kdT)) EAAIX,) 
(q,n)ZA 

<exp{ -I?T) (4.31a) 

where 

E=A[q(l+s)+(l-q)s-(l+s)qs1-4]. (4.31b) 

This leads us to consider the second term in (4.30). 
Specifically, let us look at Pr(E,JX,, n,, n), for m’ f m 
and (n,, n) E A. From (4.27), 

Pr{EJX,,nl,n} =Pr{W,-W,>OIX,,n,n,} 

sE(e T(Wc- K)Ij-ym, nl, n) (4.32) 

where r 2 0 is arbitrary and (n,, n) E A.’ The expectation 
in (4.32) under the indicated conditions can be found 
directly using the distributions for WA and W, in (4.26). 
Thus 

E (e-‘&(X,, n,, n) = 5 ( il)(l- q)klqvk,e-+ 

k,=O 

= (q+(l-q)e-‘)“I (4.33a) 

E( e’K(h,, n,,n) = z ( ;,)qkD(l-q)‘lo~kneTko 
k,=O 

= (l-q+qe’)“‘. (4.33b) 

*We have made use of the well-known inequality Pr(U 2 0) 5 EeTU, for 
any random variable U and T 2 0. 
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Using the conditional independence of WA, WC and (4.33) 
(4.32) becomes, for (n,, n) E A, 7 2 0, 

Pr(E,, IL, n,, n) s exp {y(d) (4.34a) 
where 

y(~)=n,ln(l-q+qe’)+n,ln(q+(l-q)e-’). 

(4.34b) 

To get value of 7 which yields the best bound, set the 
derivative of y(7) equal to zero: 

y’(7) = no 
n,(l- q) e-’ 

l-q+qeTqe’-q+(l-q)e-’ 
= 0. (4.35) 

Equation (4.35) is a quadratic equation in (e’): 

(e2’)(noq2) + e’[nodl- 4)- nl(l- 4141 
- n,(l- q)2 = 0, 

which factors as 

(4.40) 

where r is given by (4.21b), and A by (4.20). Let 

6 = nl/n (4.41) 

so that 

n$oQh, n)rP 
1 

[e7n0q-n,(l-q)][e’q+(l-q)] =O. (4.36) (4.42) 

Now for a given n, 

Using 

(4.42) becomes 

e - I,A,I I- 
n! 

nexp 
(l--m-dP 

(l-5)l+p 1 . (4.43) 

Only one of the solutions of (4.36) for e’ is positive: 

e7= 4 - 4) 

noq * 

Note that (nl, n) E A implies that 

7 = In [ 1 ndl-d ,. 
noq -’ 

so that (4.32) will hold. Substituting (4.37) into (4.34) 
yields after a bit of manipulation 

n” 
P(E,JX,, n,, n) I (1- q)“‘q”‘- 

r+@ 
A l?( n,, n) (4.38) 

for m # m’, (n,, n) E A, no = n - n,. Substituting (4.38) 
and (4.31) into (4.30), we obtain 

P,, I eCiT + c Qhn) c r ’ 
(n,,n)EA [ 1 ,til’# m 

Se -‘T+ MP E i Q( 4, n)[r(n,, n>l ’ (4.39) 
n=l n,=O 

where I? is given (4.31b), r by (4.38), and Q by (4.22). 

Set 
a = ( qPT)l/(l+ P) p= [(l-*)(l-q)P]l’(l+p). (4.44) 

Then the term in square brackets in (4.43) is 

(l+p) Ilnf+(l-S)ln&]. 
[ 

(4.45) 

To maximize this concave function of < with respect to 
5, we set its derivative equal to zero which yields 5 = a/ 
(a + p). Therefore, the maximum of the square-bracketed 
term in (4.45) is (1 + p)ln(a + j?). Substituting into (4.43) 
vields 
_I 

e- ‘A” 
2 Q(nl,n)rPI (n-1)! (cI+/~)~(‘+~). (4.46) 

“, = 0 

Now substitute (4.46) into (4.39) to obtain 

=e -ET+ MpA(a~p)‘+~ 

=e -2T+ MPA((Y+~)~+~ exp{-A+A(a+/?)l+P} 

(4.47) 

. 
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where ,?? is given by (4.31b), A by (4.20), and (Y, /3 by Proof: We begin by expanding T(P) in a Taylor series about 
(4.44) with r given by (4.21b). Thus p = 0. We have 

lm+p) 

(y= (qP7T)1/(1+P)= 

ql+p(l + #) 

[ 1 
T(P) =@)+P+(0)+~(P*) 

q+s =i--p(l++)In(l+~)+0($). 

= Thus sr=l-p(1+s)ln(l+(l/s))+O(p2) and 

p = ((l- q)P(l- 7r))1’(1+p) 

= (l-q) 2& l'(l+p) [ 1 
and the exponent in the right member of (4.47) is 

-A +A(cx+~)~+~ 

l/P 

l/P 

1 1 

= (1t py 
1-p(l+s)ln 1++ +0(p2) I 0 1 

+ e-‘exp (l+s)ln l+’ 
p=o 

( ( J) =e~‘(l+~)‘+‘. 

Thus, since r(O) = l/s, substitution into (A.lb) yields 

+ (l- q)( &)i’““il”o] 

= -TA(q+s-[q(l+s)l’~l+p~+(l-q)sl~‘+P]l+P) 

=- TA{q+s-s(l+~q)‘+p} 

= -TA&(Pdl) 

where T = (1 + (l/s)) ‘/Q+~) -1, and E,(p, q) is given by 
(1.9). Substituting into (4.47) and setting M = e”‘, we 
have 

P,,se-‘T+exp{-T(AEl(p,q)-pR)+o(T)}, 

as T --) cc. ye show in Appendix II that for all q, p, R, the 
exponent E 2 E,( p, q) - pR. Thus 

1 M 

a(P) -qo(s>, asp-O, 

which is (Ala) and the proposition. 

We next verify (1.11). 
Proposition A.2: Iim ,,,,R*(p) = C, where R*(p) is given by 

(l.lOa). 
Proof: Since, from (l.lOb), 

q*(p) =~n(ayql(p)), 

we have from Proposition A.1 that 

q*(o) = m4J9 qo(4) 

Further, since T(O) = l/s, (l.lOa) yields 

R*(O) =As[q*(l+i)ln(l+i)-(l+T)ln(l+T)] 

Pe=& F P,,~~~P{-T[AE,(P,~)-PR]+~(T)}, 
m-1 

where q* = q*(O). Rearranging yields 

which is what we have to show. R*(O) =A[q*(l+s)ln(l+s)-(s+q*)ln(s+q*) 

+s(l-q*)lns]. 

APPENDIX I Comparison with (1.Q establishes the proposition. 

In this Appendix we will verify the limiting and asymptotic We now turn to the limiting formulas for channel capacity C 

formulas given in Section 1. We begin by verifying (1.13). when s = 0 (no dark current) and s = co. The formula for C 

Proposition A.1: For fixed s 2 0, when s = 0 follows immediately from the general formula and is 

(l+s)‘+s 
given by (1.6). For s = co, the asymptotic formula for C is given 

~~oYl(P) = al(s) p sse -s (Ala) 
by (1.7) which is Proposition A.3. 

Proposition A.3: As s + co, the capacity 

where ql(p) is given by (1.13), i.e., 

T(;j ([ s(l+;~T(p)?l}, (A.lb) where 
a(P) =- 

(A’2a) 

and T(P) is given by (l.%), i.e., q*=min(o,l/2). (A.2b) 

-1. (Ale) Pro@ Using the Taylor series In (1 + x) = x - (x2/2) + 
(x3/3)+ -.-, and e”=1+x+(x2/2!)+(x3/3!)+ ..., we get 
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the following expansion for qo(s) (given by (1.5d)) for large s: 

We now approximate C as given by (1.5a) for large s: 

C=A[q*(l+s)ln(l+s)+(l-q*)slns-(q*+s)ln(q*+s)] 

=R[P’(l+s)ln(l++)-(q*+s)ln(l+%)l 

=A[q*,,,s,[~-$+o(;)] 

(A.4 

Comparison of (A.3) and (A.4) with (A.2) yields the proposition. 
We now look at the error exponents for the cases s = 0, cc. We 

first verify (1.15). 
Proposition A.4: For s = 0, let 

R*(P) =A[q*(p)l”Pln(q*(p)), 

where 

q*(P) = hn( uj (l+;)l/p). 

Then, for R = R*(p), 0 I p I 1, 

E(R)=Aq*(p)-A[q*(p)]‘+P-pR. 

Proof: As s + 0, from (1.9~) (with p held fixed) 

(A.5a) 

(A.5b) 

(A.4 

Thus m(p) = sP/@+P), and (1.13) yields 

ql(P) + (1+ P)Ft 

as s + 0. Thus from (l.lOb), q* is as given in (A.5b). Substitution 
of this q* and T(P) into (l.lOa) yields (A.6) and the proposition. 

Finally, we turn to the case of large background noise, s + ce. 
Here the asymptotics are a bit tricky, and we must proceed with 
care. 

We start with (1.9) which is 

E(R) =oy$%(~d-~R] 

O<q<0 

(A.71 

where E,(p,q) is given by (1.9b). Let us expand E,(p,q) and 
T(P) in powers of (l/s), as s 4 cc with p, q held fixed. Using the 
binomial formula, we have from (1.9~) 

-1 

=l+ (1+p)s 
I-+(&)(&-l)+f+o(;)-l 

1 

[ 

P 1 
=- I-- 2(1+p)s+o jT 

(1+ P)S ( )I . (A.81 

Also, applying the binomial formula to (1.9b), we obtain, as 
s + cc (so that 7 = 0(1/s) + 0), 

E,(p,q) =q+S-S[l+Tq]‘+’ 

(1-r P)P 
l+(l+p)Tq+- 2 (V)2+o(T343) . 1 

Substituting (A.8), we have 

s(l+ P)P 
E,tP>q) =4-sT(l+P)q- 2 T2q2 + So( T3q3) 

(A.9) 

Finally, substituting (A.9) into (A.7) we obtain 

Et R, - OF,“11 
&dl- q)p 
2s(l+ P) 

-PR, (A.lO) 

O<q<0 

as s -+ 00. The right member of (A.lO) is maximized with respect 
to q when q = min(o,l/2) p q*. Furthermore, from (1.7), the 
channel capacity C - Aq*(l - q*)/2s, as s + cc. Thus we can 
rewrite (A.7) as 

E(R) - o~zl [&C-P+ (A.11) 

Differentiating the term in brackets in (A.ll) with respect to p 

and setting the result equal to zero, we conclude that, for 0 I R 
< C, the maximizing p is 

C 
p=min 1, x -1 . is 1 

Since m - 1 I 1, for C/4 < R I C, we have 

E(R) - 
C/2-R, 01 R<C/4 

(a -m2, c/41 RIG’ 

which is (1.16). 

APPENDIX II 

In this appendix we establish two lemmas which we needed in 
Section IV. The first lemma is needed to verify (4.31). Let V, and 
Vt be independent Poisson random variables with 

E(K) =A,=(l-q)ATs 

E(VI) =h,=qAT(l+s). (B.1) 
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When code waveform X,( .) is transmitted, ($,, v(T)) has the 
same distribution as (Vi, V, + V,). Thus, with set A defined by 

(4.29, 

Pr{(J/,,dT)) ZA} = c Q(n,,n> 
(nl,n)eA 

=Pr{T/,q-V,(l-q) >O}. (B.2) 

Thus (4.31) follows from Lemma Bl. 
Lemma Bl: With V,, Vi defined as above, let 2 = qVo - 

(1- q)V,. Then 

Pr{Z>O} Ie-” (B.3a) 

where 

~=A[q(l+s)+(1-q)s-(1+s)4s’-$ (B.3b) 

Proof: We use the same (Chemoff) bounding technique as in 
Section IV. For all 7 2 0, we have 

Pr{Z>O} 5 Ee”. W) 

It remains to show that 8 is not less than the error exponent 
E,(p, q)- pR, where E1() is given by (1.9). In fact, 

E,twd-pR:E,(p,q) :E,(Lq) 

2 Aq(l- q)(G -6)“. 

Step 1 follows from p, R 2 0, step 2 from aE,/ap 2 0 (which 
follows from [6, theorem 5.6.31, for DMC’s), 
and step 3 by using the same steps as in (3.14). That 
k 2 Ei( p, q) - pR follows from the following proposition which 
was proved by Reeds. 

Proposition B.2 (Reeds): Let I? be defined by (B.3b). Let 

k? = Aq(l- q)[fi -61’. 

Then B 2 B. 

Proof: Let t = (s/l + s)“‘, so that t increases from 0 to 1 
as s increases from 0 to cc. We have 

B-l? q(l+s)+(l-q)s-s’-~(1+s)~-q(l-q)(~-~)2 

A(l+s) = 1ss 

=q+t2(1-q)-t2(1-q)-q(l-q)(l-t)2 

=q2+2q(l-q)t+(l-q)2t2-t2(1-q) 

=[q+(1-q)t]2-tZ(‘-+ 

We now compute this expectation and optimize with respect to Therefore, it will suffice to prove that 
T 2 0 to obtain the tightest bound. 

q+(l-q)t2t(‘-4), OIt11. 

EeT(qvo) = 
’ 

- AoAk 

e k! ’ 
----eTqk = exp { - A, + hoerq} Since 0 I q I 1, the function fi( t) = t(’ -4) is concave and 

k=O fi(l) =l, f/(l) = (1- q). Thus the graph of fl(t) versus t lies 
below its tangent line at (1, f(1)): q + (1 - q)t. Hence the propo- 

Ee- 7(1-q)% = sition. 

Thus 

= exp { - A, + Ate-‘(’ -4) } . 

Ee’z = exp { - ( A, + A,) + AOerq + A,e-T(1 -4)) . (B.5) 

To get the tightest bound, set the derivative of the exponent with 
respect to 7 equal to zero yielding 

AOqerq - A,(1 - q) e-T(l-d = 0 

or 

e7= A,(l- 4) l+s =- f~.6) 
Aoq S 

\ I 

Note that T = log [(l + s)/s] 2 0, as required. Combining (B.6), 
(B.5), and (B.4) we have 

Pr{Z>O}lexp 
i 

-(A,+A~)+A~(~)~+A,(+-)~~~) 

=e 
-ET 

where k is given by (B.3b). Hence the lemma. 
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